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Abstract 

The research objectives of the Arcadia project are two-fold: discovery and 
development of envfronment architecture pri'nciples and creation of novel software 
development tools, particularly powerful analysis tools, which will function within 
an environment built upon these architectural principles. 

Work in the architecture area is concerned with providing the framework to 
support integration while also supporting the often conflicting goal of extensibility. 
Thus, this area of research is directed toward achieving external integration by 
providing a consistent, uniform user interface, while still admitting customization 
and addition of new tools and interface functions. In an effort to also attain 
internal integration, research is aimed at developing mechanisms for structuring 
and managing the tools and data objects that populate a software development 
environment, while facilitating the insertion of new kinds of tools and new classes 
of objects. 

The unifying theme of work in the tools area is support for effective analysis 
at every stage of a software development project. Research is directed toward 
tools suitable for analyzing pre-implementation descriptions of software, software 
itself, and towards the production of testing and debugging tools. In many cases, 
these tools are specifically tailored for applicability to concurrent, distributed, or 
real-time software systems. 

The initial focus of Arcadia research is on creating a prototype environment, 
embodying the architectural principles, which supports Ada1 software develop­
ment. This prototype environment is itself being developed in Ada. 

Arcadia is being developed by a consortium of researchers from the Univer­
sity of California at Irvine, the University of Colorado at Boulder, the University 
of Massachusetts at Amherst, TRW, Incremental Systems Corporation, and The 
Aerospace Corporation. This paper delineates the research objectives and de­
scribes the approaches being taken, the organization of the research endeavor, 
and current status of the work. 

1 Ada is a trademark of the U.S. Department of Defense. 
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1 Introduction 

Early research in software development environments was seldom referred to in 
those terms. The primary focus of environment-related research was usually on 
specific tools, programming languages, databases, or operating system concepts. 
Interlisp, for example, focused heavily on developing functions that helped in 
the production of Lisp programs [TM81]. Only after many of these functions 
were developed was it recognized that such a suite of capabilities constituted an 
envfronment in which code production could take place. Unix2 is fundamentally 
an operating system, but its design encourages and even enforces a particular way 
of binding tool capabilities together; it is arguably an environment, though very 
different in structure from Interlisp. 

Subsequent developments have aided in refining the notion of a software de­
velopment environment. For instance, it is now recognized that a development 
environment must contain much more than just programming tools: design and 
analysis methods, the tools to support them, and management techniques must 
all be carefully integrated to form an effective environment. 

More recent research has delineated the notion of an environment architecture. 
This term is used to denote the set of rules and support infrastructure which char­
acterize, bind together, and enable utilization of the software development support 
tools existing within an environment. Object managers, user-interface tools, and 
tool activation managers may all be elements of an environment architecture. 

Environments and their underlying architectures can be classified according to 
the qualities they possess. The qualities dominating the development of Arcadia 
are extensibility and integration. Extensibility refers to the ease with which it is 
possible to add new capabilities to an environment. Incorporation of new capa­
bilities in an extensible environment will not involve changes to the fundamental 
architecture, unless a basic property of the new capability is in direct conflict with 
the fundamental principles of the environment. Note that "extensible" as used 
here is not equivalent to "open", as that term is often interpreted: open often des­
ignates the ability to incorporate foreign programs without change. Integration in 
the context of Arca.dia denotes several properties: {1) consistent user interfaces, 
{2) easy context switching with restoration of state, and (3) efficient communi­
cation between tools through the sharing of data structures. The first of these 
contributes to external integration, while the latter two are aspects of internal 
integration. Secondary objectives for Arcadia are to effectively support creation 
and evolution of software by a team of developers and to support development 

2 Unix is a trademark of AT&T. 
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that occurs over a network of machines. 
In addition to environment architecture issues, the Arcadia project is also in­

vestigating specific techniques to support all aspects of the software development 
process. Specifically, the project is working on creating tools, and on defining 
the objects that they manipulate, in three broad categories. First are the basic 
components of a software development environment. Emphases here include the 
development of an internal representation for programs, called IRIS, that is suit­
able not only for compilation purposes but also for interpretation, analysis and 
program transformation. Second are tool-building tools. This class of tools is of 
particular value to software developers who, like the members of the Arcadia con­
sortium, are constructing software development environments. Since they include 
such things as lexer and parser generator tools, however, they are also of potential 
interest to many other software developers. Finally~ there are analysis tools. These 
include testing and debugging tools as well as design analysis tools and other tools 
applicable in pre-implementation stages of software development. An important 
goal in this area is addressing the special concerns related to embedded systems 
software, such as distributed system design analysis and host-target debugging. 

The Arcadia project is, therefore, a research activity exploring issues in two 
domains. An environment architecture is being investigated and created, as are 
a number of software development support tools. These tools and the objects 
they manipulate are the components acted upon by the environment architecture. 
Together, the architecture and the tools constitute an experimental Ada environ­
ment, which is being implemented in Ada. The environment is being designed 
to assist in a wide range of development activities and to support a variety of 
models of the software process; our focus is on fundamental issues concerning 
automated support for software development. Subsequent sections of this paper 
examine these aspects separately. Some aspects of our development strategy are 
also briefly described. 

2 Aspects of the Architecture 

Environment architectures are similar to operating systems in that they deal prin­
cipally with the management of processes, objects, and interfaces. Moreover en­
vironment architectures provide a level of virtual machine above that of conven­
tional operating systems. Specific environments provide levels above that, since 
they provide powerful tools. Our working premise has been that any program or 
interface definition which determines how tools interact, how they must be built, 
or how objects behave in the environment, must be a part of the environment 
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goal is the formulation of a clean conceptual architecture model upon which useful 
systems can be built. We begin with a capsule sketch of the environment. 

The User's View and Tool Structure The toolset of Arcadia will be made 
up of very small, modular tool fragments (section 2.2); any substantial task will 
involve potentially complex interaction between fragments. It is imperative that 
users be shielded from this complexity. This will be achieved partially by allowing 
users to simply describe an object which can be derived from existing objects in 
the data base, and leaving it to the tool and object managers to plan and coordi­
nate the application of tool fragments to produce the desired object. Users must 
also be shielded from the complexity of tool fragment interactions during highly 
interactive tasks, such as editing. The users of interactive tools in Arcadia will 
not be faced with the complexity of dozens of tool fragments interacting in po­
tentially complex ways, but rather will deal with a high-level user interface. They 
will see a set of (graphically) depicted objects, upon which certain operations are 
possible. Different operations on the same object may be carried out by different 
tool fragments, and a single operation may involve the coordination of several tool 
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fragments, but the users need not be aware of this. 
What, then, is a "tool" in Arcadia? In a conventional programming environ­

ment, a tool is a collection of capabilities which execute together in an integrated 
manner, and which are generally developed and maintained together as a unit. 
That is, the usual notion of a tool is more or less equivalent to the notion of a 
program. In Arcadia, a tool is just a collection of tool fragments temporarily allied 
for the purpose of providing the desired functionality to complete some activity. 
These fragments may be loosely connected as in a Unix pipeline, but often they 
may be more closely coordinated. In particular, an interactive tool may consist of 
several fragments cooperating in the modification of a single object or collection 
of objects, including the display. 

2.1 Object Management 

A central premise of this project is that Arcadia should appear to the user to 
be a system for creating and managing numerous and diverse software objects 
such as source and object code, design elements, test data, and graph representa­
tions which arise during the process of developing software. Accordingly a view of 
software development and maintenance which Arcadia attempts to support is that 
software is a large and intricate collection of long lived {persistent) objects and ag­
gregates of information, and that the process of developing software successfully is 
dependent upon {and perhaps tantamount to) the process of successfully creating, 
organizing, augmenting, and exploiting these objects and aggregates. Accordingly, 
Arcadia users will be encouraged to think of their work in terms of the need to 
create, aggregate, alter, and view the objects. {A trivial ex~ple: rather than 
requesting the execution of a program, the user will request display of the output 
of a program as applied to a specified set of data.) Thus the object management 
function is one of the most important in Arcadia. This philosophical approach 
to environment organization and the architecture of our object manager are both 
based upon similar approaches taken in the Toolpack and Odin projects [Ost83] 
(C085]. 

2.1.1 Objects in Arcadia 

Arcadia objects may range widely in size and character. Objects may be small­
such as tool option specifications and test data, or may be large-such as entire 
executable programs or the results of executing large test suites. Objects may be 
as diverse as text, object code, test data, symbol tables or bitmap display frames. 
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To help in the management of such diversity, each object is annotated and each 
object may be related to a potentially wide range of other objects. 

The most important annotation which Arcadia objects carry is type. In Arca­
dia source text is one type, object code is another, test data, parse trees, attribute 
tables, and so forth are yet others. From this perspective the Arcadia objects 
can be viewed as instances of abstract data types. The types are defined within 
Arcadia in terms of clusters of accessing functions. Arcadia will offer facilities for 
creating and integrating new accessing function clusters and thereby augmenting 
its collection of types. This is perhaps the most important sense in which Arcadia 
is extensible. 

Newly created objects are said to have been derived from their predecessors, 
in which case Arcadia notes this derivation relation and uses it to store the new 
objects, placing them as descendents of their predecessors in a structure known 
as the Object Derivation Graph (ODG). Each object can be viewed as the root of 
two subgraphs of the ODG which are trees. An object's Ancestor Derivation Tree 
indicates which ancestor objects were used to derive the object; it's Descendent 
Deriviation Tree indicates which objects depend upon the object for their deriva­
tion. Objects which are created either by importation from outside Arcadia or by 
user creation through a tool such as an editor will initially have no ancestor or 
descendent subtrees. As tool functions are applied to these objects and, in turn, 
to objects derived from them, the Arcadia object manager will automatically orga­
nize all of these objects as descendents. As any Arcadia object may be persistent, 
these object derivation trees are potentially arbitrarily deep. 

The notion of organizing objects into trees in which descendants have been 
created by derivation from ancestors has already been exploited in certain version 
control systems such as RCS [Tic82]. In such systems, all derivations are created 
by the action of a single tool, generally a text editor. It is assumed that there 
is a single root version, and that this version has one or more successors, each of 
which can be derived from the root version by the action of the deriving tool (e.g. 
the text editor). These descendents can then be further transformed by successive 
actions of the deriving tool to create further subtrees of versions. By moving up 
and down this tree, a software maintenance team can make changes having either 
greater or lesser impact, as their needs and wishes may require. 

Arcadia will effect a similar derivational structuring of the object store, but 
in Arcadia this structure is developed, not by successive derivations by means 
of a single tool, but by applications of any Arcadia tool. Thus a user may use 
Arcadia to create a Descendent Derivation Tree for versions of source code as in 
RCS, or may create a complex tree in which objects of various types, the results 
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of different sequences of tool applications, are all stored in a single Descendent 
Derivation Tree. 

Arcadia will also incorporate algorithms for determining when derived objects 
at lower levels of a Descendent Derivation Tree have become obsolete because of 
alterations or deletions of objects higher up in the tree. Whenever an object at 
a higher level of the tree is changed, the Arcadia object manager will recognize 
that all descendents of that object must be viewed with suspicion. Arcadia will 
not take immediate steps to rederive these objects, however. Instead Arcadia will 
employ a demand rederivation strategy under which new versions of an object are 
not created until they have been requested either directly or indirectly by the user. 
At that time, all the objects in the requested object's Ancestor Derivation Tree are 
examined. If it was in fact derived from ancestor objects which have subsequently 
been altered, the Arcadia object manager will begin the process of recomputing 
it from the current version of the ancestor objects. Objects between the altered 
ancestors and the desired object are rederived. They will also be compared to 
their previous versions. If at any point the rederived objects match their previous 
versions, the rederivation process will stop and the equivalence of old and new 
versions of objects lower in the tree will be noted. 

Hierarchy will also be used to organize the Arcadia object store. Users may 
define arrays or structures of objects of heterogeneous types. These array and 
structure definitions are also Arcadia objects, and they may, in turn, be organized 
into higher level structures. This enables the Arcadia user to create structural 
hierarchies which are u~eful in, for example, modelling the inherent structure of 
systems being developed or maintained. In Arcadia these structures may over­
lap. This will make it possible for the user to create an object corresponding 
to a procedure library and then include it in several other objects, presumably 
corresponding to higher level functional sections of code. This inclusion is logical 
rather than physical and thus does not cause duplication of storage or difficulties 
in properly reflecting updates of shared objects. 

It is important to point out that Arcadia software objects are not necessarily 
always created in response to direct user requests. Arcadia will support the no­
tion of active tools. as well as passive tools. Active tools will commence execution 
without direct invocation by users. They will carry out their activities by access­
ing and processing objects according to plans which will have been designed in 
advance, and perhaps by users other than the current user. These active tools will 
be invoked by Arcadia in accordance with such control mechanisms as timers or 
daemons whose job it will be to detect relevant changes in the object store. 

Finally, it should be noted that Arcadia and all of its constituent tools, includ-
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ing the object manager, are themselves objects which are managed. Components of 
the environment architecture are in this sense indistinguishable from components 
of the software being developed by the environment user. This structure will aid 
in the ongoing development of Arcadia. J?etails of how tools may be considered 
as objects and what configuration management must be performed can be found 
in Section 2.2 on page 13. 

2.1.2 Sharing Objects 

Although Arcadia encourages the user to view software development and mainte­
nance activities as the creation and management of a central store of persistent 
software objects, there is nothing in this view that requires this store to be phys­
ically centralized. In fact Arcadia will feature a distributed object store in which 
sharing of objects will be allowed and mediated. Arcadia is designed to support 
the cooperative activities of teams of software developers and maintainers, each 
of which is working on a workstation having significant self-contained disk storage 
facilities. Thus, each worker will have a separate store of persistent software ob­
jects. In addition, the workstations are assumed to be connected to each other by 
high speed data links. Thus each worker will also have potential access to software 
objects stored at other workstations. 

The sharing of an object in Arcadia will be entered into carefully, monitored 
and supervised closely, and withdrawn from safely, all under the supervision of 
the Arcadia Federation Policy Manager. This software device is based upon the 
notion of a Software Federation [HM85]. In a federation, all objects initially belong 
to only one user, but shared access to these objects can be arranged as well. 
The sharing arrangement is negotiated by the party requesting the object and 
the party (or parties) currently controlling the object. The sharing arrangement 
may specify who is able to access the object, who is able to alter the object and 
the circumstances under which access to the object can be passed on to others. 
When one or more of the sharing parties wishes to withdraw from the sharing 
arrangement this too is negotiated under control of the Federatfon. Withdrawal 
may entail the making of copies, the creation of automatic updating relations 
among former shadng partners, or other devices for assuring an amicable and 
equitable parting of the ways. 

The Federation mechanism assures that users retain autonomy when necessary, 
but are able to share when sharing is necessary or profitable. It also offers users 
such benefits of distribution as robustness in the face of hardware difficulties, and 
easy access to popular objects through the creation of multiple copies. 
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2.2 Tool Management And Invocation In Arcadia 

Tool Structure Arcadia is intended to be a vehicle for furnishing extensive 
and growing tool capabilities. These capabilities will be furnished primarily by 
collections of small tools - tool fragments - rather than by a few, large, mono­
lithic tools. For example, in Arcadia the task of prettyprinting could be carried 
out by a collection of tool fragments including a lexical analyzer, a parser, and 
a formatter-operating in concert. Some sophisticated prettyprinting functions 
would also require the invocation of a static semantic analyzer. An instrumented 
test execution could be carried out by a dozen or more tool fragments, operating 
at times in sequence and at times in parallel. 

Creating larger tool capabilities out of smaller, more general tool fragments 
is a powerful and effective approach for a number of reasons. One of the main 
reasons is that, if the tool fragments are well chosen, they will prove to be usable 
as components of a variety of larger tools, thereby enabling the creation of these 
larger tools at lower cost. For example, both the prettyprinter and dynamic in­
strumentation tool just mentioned require lexical analysis and parsing in order to 
begin their work. Both tools incorporate these fragments, thereby saving the cre­
ators of these tools the effort of having to recreate these functional capabilities. In 
fact, the tool and object management functions of Arcadia will permit either the 
prettyprinter or dynamic instrumentation tool to re-use the intermediate results 
of the other. 

Another benefit of a tool fragment architecture is that it encourages toolmak­
ers to think in terms of good modular decomposition for their tools and good 
organization for the data and software objects which their tools use. Thus, we 
believe that the writer of a prettyprinter, for example, will create a better tool 
because correspondingly more time can be spent contemplating the nuances of the 
problem of prettyprinting, having been spared the problems of contemplating the 
nuances of parsing. In addition, because the writer of the prettyprinter is given 
access to the output of a proven parser, it is likely that the prettyprinter will be 
of better quality for its reliance on a more robust parser and its ability to exploit 
a richer range of information than would likely have been created from scratch. 
In short, we contend that the prettyprinter will be a better tool because it will 
be based conceptually upon such data and software constructs as lexical tokens, 
parse trees, and symbol tables and will be based physically upon major bodies of 
robust proven code. 

Monolithic tools are not without their advantages, however, as experience with 
Arcturus (TS85] and Interlisp has shown. Accordingly there is nothing in the 
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architecture of Arcadia which prohibits inclusion of monoliths. With suitable 
hardware support such tools may outperform more modular varieties. As the 
population of tools within Arcadia increases, "fly-offs" between tools of the two 
styles will be interesting and important studies. 

Planning Tool Activations Although we have only mentioned two straight­
forward tool capabilities, Arcadia can incorporate a rich variety of tools, some of 
which may require complex configurations of tool fragments for their implemen­
tation. In many cases it will be possible to determine in advance just which tool 
fragments will have to be invoked to transform existing objects into other needed 
objects. There are some tools, however, for which this knowledge may not be 
completely available in advance. For example, a data flow analyzer ( eg. [ OF76]) 
must analyze the compilation units of a program in two passes, where the order 
of analysis during the second pass is computed during the first pass. In this case 
it is impossible to predetermine the exact order of invocation of tool fragments on 
the separate software objects. 

Arcadia will support the synthesis of such tools as well. The mechanism needed 
here is a planning tool fragment whose job is to dynamically create tool invocation 
sequences that are tailored and adjusted in accordance with the current state of 
the object store and preprogrammed conditions. Planner tools in Arcadia will be 
able to create tool invocation sequences in which tools are scheduled for future 
invocation and in which software objects are taken and produced in unexpected 
or changed orders. In addition, planners will be able to schedule the invocation of 
other planners at projected future critical points. 

Though it is anticipated that substantial tool activation will occur as the result 
of users requesting display of various objects, direct tool invocation will, of course, 
be supported. There is no gain in power here, it is merely a convenience and 
acquiescence to what seems natural in certain circumstances. Furthermore many 
specfic interactive tools are command driven and requiring that the environment 
be directed another way is incompatible with our goal of uniformity of interface. 
The topic of user interfaces is treated in section 2.3. 

Object Usage In Arcadia, all software objects which are created by the tool 
fragment components of larger tools have the potential for being automatically 
stored by the object manager. There are at least two good reasons for doing 
this. First, by storing them, the object manager can later make them available 
as needed by other tools subsequently invoked by the user. This will result in an 
execution time saving. Second, these objects represent increased knowledge about 
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the state of the software being developed or maintained and thus might well be of 
interest to the user. On the assumption that the user might at some future point 
wish to access this knowledge, it is stored by the object manager. 

As observed earlier, these objects all have types which are assigned by the 
tool fragments which create them. Thus, another perspective on the outcome of 
executing a tool is that it effects the derivation of a collection of typed software 
objects by a set of tool fragments, some of which may not have been directly 
invoked by the user. These objects are persistent and are kept available for possible 
future reuse by subsequently invoked tools or for perusal by the user. In either 
case, the possible magnitude and diversity of these objects makes it imperative 
that this process be transparent to users, most of whom will not be interested in, 
or equal to, the task of correctly and efficiently orchestrating their creation and 
exploitation. 

Automatic storage of all objects is not required, of course, as it may be un­
desirable under certain circumstances. For instance, to provide rapid response to 
user interaction, a suite of tool fragments may be employed which pass on informa­
tion from fragment to fragment though a series of objects. Though these objects 
could be profitably retained, as described in the preceding paragraph, it may be 
expedient to not retain them as a performance penalty may be involved. 

Incorporation of New Tools The internal composition of tools will be of 
limited interest to tool users, but will be of great interest to tool developers. Tool 
developers are expected to be able to consult Arcadia objects which store the 
specifications of current Arcadia tool fragments and object types and use those 
specifications in creating new tools. In Arcadia all such information about existing 
tool fragments and the abstract data types that they manipulate will be stored 
in centrally maintained objects. This will facilitate the process of altering and 
augmenting the type structure and set of tools. 

The chief Arcadia object which stores information about existing fragments 
and types is the Type Derivation Graph. This graph contains as its nodes all of 
the abstract data types maintained by Arcadia, and has as its edges annotated 
designations of the· various tools. New Arcadia types are incorporated by creating 
new nodes in the Type Derivation Graph. In order for the user to be able to create 
instances of this type, arguments to the appropriate creation/ access routines may 
have to. be derived from instances of existing types. Thus, loosely speaking, in 
order for the new type to be effectively incorporated into Arcadia, at least one 
tool which creates instances of the new type by calling appropriate routines must 
be written, and that tool must be represented in the type derivation graph by a 
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set of edges connecting the new node to nodes representing the types of the objects 
which the new tool must take as input. 

Again, this new tool will access capabilities for the creation of instances of 
the new type. In Arcadia, these capabilities must be clearly separated out into 
functional primitives belonging to the new type. These primitives-for the cre­
ation of new instances-must be accompanied by other functional primitives for 
describing and manipulating objects of the new type. In short, the new type will 
be integrated into Arcadia by the augmentation of the type derivation graph, by 
the creation of at least one new tool, and by the creation of a set of accessing 
primitives which is sufficiently complete to seal the implementation of the new 
type and make it a data abstraction in the usual sense of the term. 

Although the preceding discussion described the way in which new tool frag­
ments can be entered into Arcadia, it also indicates how existing tool fragments 
and object types can be altered. If the implementation of an existing object type 
is to be altered transparently to the tool fragments using it, this alteration can 
be done simply by replacing the bodies of the accessing functions defining the 
type (and of course converting any instances of that type). Alternatively, the new 
implementation can be viewed as implementing a new type, and as being able to 
create instances of the new type. If a new tool fragment, capable of creating ob­
jects of existing types, is to be incorporated into Arcadia, this will be done simply 
by incorporating into the type derivation graph a new edge or set of edges. 

Tools are Objects, Too The preceding paragraph suggests that in Arcadia 
tools themselves are also viewed as objects. This is an important, though hardly 
novel, perspective on the architecture of our system, reflecting our desire to treat 
tools uniformly with other objects. (This view has been exploited successfully 
in. many environments, such as Interlisp and Cedar [Tei84].) Tool fragments are 
themselves bodies of executable code which are created from source text by a 
derivation process which will be captured within Arcadia. When these tool frag­
ments are incorporated into Arcadia as described above, they become capable of 
deriving new types of objects from existing types. They should not be viewed as 
inherently different from the objects and types upon which they operate, however. 
Clearly tools themselves demand careful version control, and Arcadia furnishes 
this. When the source text for a tool fragment is altered, the object code derived 
from it is presumably altered as well. Thus, objects derived by use of the new tool 
fragment cannot be assumed to be the same as objects derived from identical an­
cestor objects by the predecessor version of the tool fragment. Arcadia's version 
control and derivation tracking features will identify these differences and take 
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proper account of them in managing the Arcadia object store. This will enable 
Arcadia system maintainers to maintain Arcadia with itself, to incorporate new 
tool fragments in parallel with older versions, to monitor the new fragments, and 
to replace older fragments when warranted. 

Inter-tool Communication The model of communication between tools in 
Arcadia is the (possibly remote) procedure call, as all objects are modelled as 
instances of abstract data types. This is in contrast to, for example, sequential 
input/output of ASCII text, as is the model in Unix. With this model it should be 
possible to transfer information efficiently between tools. When "tight integration" 
i$ desired, multiple tools must be able to share data structures (i.e. concurrently 
access the same ADTs which are implemented as monitors). This will be especially 
important when the internal form of an object is not naturally linear. Tools, of 
course, will be written not knowing whether tight or loose integration .will be 
employed, where "loose" means data is transferred through the file system. For 
instance, it should be possible, .at the underlying implementation level, to pass 
a tree from tool to tool by "passing a pointer" to the root of the tree, without 
transforming the tree to a stream of text. A linearizing transformation of a data 
structure should ideally be necessary only when an environment object is moved 
to secondary storage by the object manager; practically, linearization may be 

. necessary for moving between tools in different address spaces. 
A related issue is flexibility in environment configuration. We expect that the 

hardware upon which the environment is hosted will vary: some users will be able 
to afford more resource-consumptive tools than others, or will be able to afford 
more expensive styles of interaction. For instance a user having a machine with a 
large physical memory may desire that several tools execute concurrently, improv­
ing efficiency by communicating through shared reference to objects. Moreover 
many tools may be concurrently active. Other users may need an environment 
which makes extensive use of a file system for communication between tools and 
parsimoniously uses memory. Flexibility in environment configuration is therefore 
called for, to suit varying performance requirements and resource availability. 

2.3 User Interface 

A succession of systems from Xerox [TM81] [Tei84] (GR83] (SIK*82] and from 
Xerox emigres [Ins85] have refined a style of user interface characterized by the 
illusion of directly manipulating a set of objects depicted on the screen. Several 
properties are necessary to maintain this illusion, including rich visual represen-
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tation of objects and immediate reaction to user input. To support this approach, 
Arcadia will be hosted primarily on powerful workstations with bitmapped graph­
ics and pointing devices. The usual amenities will be provided, including nested 
and overlapping (or tiled) windows and selection of objects and operations with a 
pointing device. 

Managing the User Interface Graphical user interfaces with windows and 
mice are now common, but most of these systems are based on toolkits which 
must be incorporated piecemeal into an application program. Details of the user 
interface are woven into the application, complicating both. 

Recently, some researchers have described an approach in which the user inter­
face is completely separated from the functional aspects of an application. Manip­
ulation of objects is logically separated from maintenance of a depiction of those 
objects, and user input is mapped into abstract commands which are independent 
of the particular command syntax visible to the user. This separation of con­
cerns has several advantages. Tool fragments are simplified because they need not 
contain user interface code, and the same fragments can be incorporated in inter­
active and non-interactive tools. Klefstad [Kle85] has shown how this approach 
can maintain uniformity of the interface across tools while allowing customiza­
tion of the interface to suit each user and adapt to the available terminal device. 
Coutaz [Cou85] argues that such a separation also allows the user interface and 
tool functionality to evolve independently. An important contribution of her work 
is identifying the object to be displayed, the abstract depiction_ of that object as 
maintained by the user interface system, and the concrete depiction of the object 
on the display device, as three objects subject to independent but coordinated 
manipulation. 

The Arcadia display manager will be a separate collection of tool fragments 
which manage the relation between objects, their depictions, and their displays. 
The input manager, in coordination with the display manager, will provide tools 
with a sequence of commands in exactly the same manner as those commands 
would be received if the tool were running in a non-interactive activity. If we view 
the environment .for. a moment as a processor for a language in which the objects 
are all the objects of the environment and the operations are provided by tool 
fragments, then we can view this organization of the user interface as separating 
the syntax of a command language from its semantics. 

Command Language The approach taken to developing a command language 
or languages for Arcadia reflects an attempt to satisfy two potentially conflicting 
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requirements. On the one hand uniformity of user interface, regardless of the func­
tion being performed, is held as greatly desirable. This uniformity can be achieved 
most readily by choosing a single command language which is used in all contexts. 
H the command language is sufficiently rich, such as Ada or an extension thereto, 
this will probably be an acceptable choice in many environments. Arcturus suc­
cessfully adopts this approach for an Ada programming environment. The work 
of Klefstad even demonstrates that a respectable amount of extensibility can be 
retained with this approach [Kle85]. 

On the other hand, study of the plethora of activities that occur in the broad 
spectrum of system development reveals that many different conceptual models are 
used in the various activities. For instance, very different sets of concepts underlie 
the graphical manipulation of Petri nets, typesetting of documents, verification 
of an algorithm, and assessment of the progress of a project. The interface to 
automated aids which support these activities should, therefore, be consistent 
with these varying models. In a given context, such as Petri net editing, the user 
should have available the exact set of semantic commands needed for that activity, 
phrased in appropriate terminology, reflecting the appropriate conceptual model. 
As the context changes, so does the conceptual model, and therefore so changes 
the set of commands. This, apparently, argues for non-uniform user interfaces. 

We are attempting a synthesis governed by the following propositions. First, 
there exist classes of tools which share some fundamental concepts. "Editors" is 
an example class. Second, the syntax of commands is an orthogonal issue to that 
of the conceptual model. 

Our approach to commanding Arcadia is, therefore, as follows. Ignoring for the 
moment the issue of syntax, at any moment when the user is in contact with Arca­
dia there are a few conceptual commands always available. This set is not agreed 
upon yet, but may well include "terminate this activity" and "help!". Then, de­
pending on the class of activity in which the user is engaged, there exist commands 
which are universal to this class. There may be several levels of classes. Finally, 
the user will be performing activities in a specialized context; within it exist com­
mands peculiar to that activity. The set of commands which may be entered at 
any time includes, therefore, locally defined commands, commands provided by 
the parent class, and on up the chain until the outermost leyel is reached. Com­
mands at a given level are not able to hide commands at higher levels 3 4 • Thus 

3 This approach bears a top-level relation to Smalltalk's organization. Arcadia will differ, how­
ever, in the implementation and in the inheritance mechanism. We seek an inheritance mechanism 
which will exhibit some of the desirable properties of strong typing and information hiding. 

4 Note that classes of tools mix with classes of objects. That is, there may be a set of operations 
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the command language available to the user, in terms of semantic concepts, varies 
from context to context, but exhibits uniformity of concepts within a class. The 
overall principle, therefore, is the meta-notion of selecting semantic constructs. 

At each level in this hierarchy of semantic commands different syntax for in­
voking the commands could be used. This seems undesirable (though that is not 
without debate) and is not necessary in Arcadia; uniform syntax is an achievable 
goal. Specifically, at all levels icons could be used, or menu picks (including the 
picking of points in a graphical region), or textual function signatures. 5 The syn­
tax may be device dependent. The Arcadia user interface facilities will therefore 
enable the development of substantial sets of tools which are uniform syntactically 
and, more important, uniform semantically. 

Graphical Depiction of Objects Interactive manipulation of an object in­
volves the coordinated management of three distinct representations: an internal 
representation suited for manipulation by the involved tool fragments, a represen­
tation which captures the additional information necessary to graphically depict 
the object, and a device-oriented representation (e.g., bitmap) actually presented 
to the user. A component of the Arcadia framework will map the abstract graph­
ical depiction into the concrete depiction, hiding from all other components the 
details of managing a particular device. Artists, written by tool builders, will be 
responsible for mapping the internal representation of an object into the abstract 
depiction accepted by Arcadia. 

Artists, introduced by Myers for an interactive debugging system [Mye83], 
contribute to the modularity goal of Arcadia by separating the functionality of tool 
fragments from display. Artists also contribute to the portability of Arcadia by 
adapting a tool to different classes of devices. The graphical interface component 
of the Arcadia framework can hide the details of managing a particular device, 
but it can't hide such gross characteristics as whether the user is seated at a bit­
map workstation or a character-oriented terminal. A petri net editing tool, for 
instance, might use a graphically oriented artist when communicating through a 
workstation and a textual petri net artist when connected to a character terminal. 
'Plug-compatible' artists can also be used on the same device when the desirable 

universal to editors, and another set of operations universal to petri nets. A petri net editor consists 
of a set of tool fragments providing an appropriate combination of those two sets of operations. 
Moreover, objects mix with objects. A textual editor for Ada programs should provide editor 
operations, textual operations, and (some) program operations. This is a sort of inheritance- class 
'editable petri net' may be created by inheriting capabilities from 'petri net' and 'editing'. 

5 Arcturus uses the latter approach exclusively. The "ideal" implementation of Arcturus can 
thus be viewed as using Ada as the implementation language and as the sole command language. 
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depiction is a matter of user preference. 

Display Mapping Artists and the graphical interface component of Arcadia 
map, in two steps, the internal representation of objects into concrete depictions. 
Furthermore, an inverse mapping, from physical screen locations to objects, must 
also be maintained to support input with a pointing device. First, a two-way 
mapping between ob;'ects and components of the abstract depi"cti'on will be main­
tained by the operations on the abstract depiction data type supplied as part of 
the Arcadia framework. Second, a two-way mapping between p~rts of the abstract 
depicti'on and parts of the concrete depiction will be maintained by the graphics 
subsystem. When the user points to a concrete depiction of an object, Arcadia 
will associate the screen position with an object and inform the tool of the object 
selection. 

Binding of Tools and Artists A t~ol, as we have described it above, is not 
a static entity but rather a temporary alliance of tool fragments cooperating in 
the manipulation of one or more objects. It is not reasonable, therefore, to stat­
ically bind artists to particular tool fragments. It is better to think of an artist 
as an extension of the operations supported by an object, adding some operations 
(e.g., select) and extending some others (i.e., causing each change to the state 
of an object to result in a corresponding change in the graphical depiction). To 
some degree this view of artists is consonant with our view of all objects in Ar­
cadia as instances of abstract data types. It points out, however, some important 
requirements for object management in Arcadia. 

First, since the abstract depiction constructed by an artist includes references 
to the depicted object (the two-way mapping discussed above), it cannot be man­
aged completely independently from the depicted object. For instance, the user 
of a petri net editor may move places and transitions around on the screen. After 
an editing session the abstract depiction will contain useful layout information 
that ought to be preserved for future sessions. Another, non-interactive tool may 
modify the internal representation of the same net in other ways. The references 
from the abstract depiction to the depicted object must be managed in such a way 
that they do not become invalid when this happens. 

Second, we wish to minimize the effort required to build new objects and their 
artists. The Incense system [Mye83] provided default artists for data structures. 
Arcadia will also provide a scheme for supplying default artists and inheritance 
of artists from related object types. For instance, the default artist for a record 
containing fields of type f oo and bar should be composed from the generic record 
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artist, the artist for type Joo, and the artist for type bar. 

3 Aspects of the Ada Environment 

The first use of the Arcadia environment architecture will be as the foundation for 
an advanced Ada software development environment. In the short term, construc­
tion of this advanced Ada environment will provide an opportunity to exercise and 
evaluate the integration and extensibility capabilities of the Arcadia architecture. 
A first version of this environment will be populated with a set of basi·c components 
needed to support programming and program validation activities. This version 
will also include a set of tool-building tools, such as lexer and parser generators, 
that could prove valuable to a wide variety of software developers. 

The longer term objective is to use the extensible Arcadia environment ar­
chitecture as a research platform to develop and study prototype tools providing 
software developers with extended capabili"ties that go far beyond simply support­
ing coding. Tools supporting analysis, at every stage in the software development 
process, are of particular interest. This prototyping activity will build upon and 
use the basic components and tool-building tools contained in the first version of 
the Ada environment as well as exploit the extensibility of the Arcadia architec­
ture. 

This section outlines Arcadia activities in each of these areas. 

3.1 Basic Capabilities 

The basic capabilities needed in any Ada environment are primarily directed at 
composing, running and debugging Ada programs. A variety of such tools are 
currently in various stages of development. Already in existence is an Ada front­
end that performs lexing, parsing (with decent error recovery), tree building, and 
pretty-printing. It is completely written in Ada. Current efforts are directed at 
fleshing out other basic components of a programming environment. For instance, 
work is underway on a static semantic analyzer that will transform the output 
of the front-end ·into the IRIS internal representation described below. We are 
also developing an interpreter and a debugger that uses IRIS. Among the basic 
components not being developed by Arcadia consortium members are editors and 
code generators. At present, these are two areas in which we prefer to import 
and integrate existing tools into the environment rather than expend our own 
development resources. 
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From an Ada perspective, perhaps the most interesting of the basic capabilities 
in the Arcadia Ada environment is the internal representation used for programs. 
Led by members from Incremental Systems Corporation and the University of 
California at Irvine, the consortium has explored a range of possible options. Our 
primary goals for the internal representation have been extensibility, simplicity, 
performance, and capacity. In particular we are seeking to minimize the amount of 
special case processing performed by tools, provide a general capability for adding 
arbitrary unanticipated fields as later required by individual tools, and requiring 
that only the attributes used by a given tool need be local when that tool is 
executing. 

The internal form that has resulted from our deliberations is called IRIS (Inter­
nal Representation Including Semantics). IRIS is a graph structure that represents 
an Ada program including information derived from static semantic analysis (e.g., 
overload resolution). 

The nodes in an IRIS attributed graph are of only two types: terminal and non­
terminal. Non-terminal nodes contain an indication of the operator represented by 
the node, an indication of the number of operands required for this operator, and 
pointers to the appropriate number of operand subtrees. The IRIS operators have 
been chosen to reflect the semantics of Ada, and not its syntax. Terminal nodes 
contain an indication of the nature of the cont~nts of the node, literal or non­
literal, followed by the appropriate contents. Literals include integers, characters, 
strings, reals, and identifiers. If the node is a non-literal, then an operator field 
is present which has the same content and interpretation as th_e operator field of 
non-terminal nodes. This implies that the terminal node may contain a pointer 
to an object declared elsewhere in the IRIS graph 6 • The detailed specification of 
the contents of IRIS nodes is still in flux, as consequences of various choices are 
being examined. 

3.2 Tool-building Tools 

Tool-building tools will play a dual role in the Arcadia Ada environment. Their 
first use will be to f9-cilitate the work of consortium members in developing proto­
types of additional tools, primarily analysis tools, that will eventually be integrated 
into the environment. They are also, however, of potential value to end users of 

6 Note that this represents an unusual use of the phase "terminal node". It is terminal in the 
sense that there are no additional IRIS subtrees hanging off this node. This pointer may only point 
up in the IRIS tree, presumably to the declaration of an object for which this node represents a 
reference. 
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the environment, since many software systems employ components such as parsers 
or attributed graph structures. Hence they will remain among the tools available 
in later versions of the environment. 

Two important tool-building tools are currently in existence: alex and ayacc. 
Their input specifications are nearly identical to their Unix counterparts, lex and 
yacc. They produce, respectively, scanners and parsers that are written in Ada. 
Both alex and ayacc are written in Ada as well. 

Work is presently progressing on another tool-building tool, called GRAPHITE, 
that supports the use of attributed graph representations by facilitating the encap­
sulation of attributed graph classes into abstract data types. This tool comprises a 
Graph Description Language (GDL), for succinct definition of classes of attributed 
graphs, and a processor that automatically creates an Ada implementation for a 
class of attributed graphs from its GDL description. Thus GRAPHITE allows its 
users to treat attributed graphs and their operations as primitive constructs in a 
higher-level programming language and to enjoy the benefits of information hiding. 
Perhaps the most interesting aspect of GRAPHITE is its support for prototyping 
activities such as those being undertaken by Arcadia consortium members. Using 
GRAPHITE, it is possible for different groups to experiment with definitions of 
attributed graph objects, without forcing recoding or even recompilation of those 
tools that access the redefined object but do not explicitly use the new information. 
Details of GRAPHITE may be found in [WCW86). 

3.3 Extended Capabilities 

Our plans for extended capabilities, to be developed within one to three years, 
focus particularly on analysis activities. Our interests lie in p~e-implementation 
analysis, analysis applicable to distributed and real-time systems, testing and de­
bugging, host-target analyses, analysis of inter-module relationships, and support 
for efficient analyses of large systems. We also plan to support language exten­
sions, such as Anna [vHLK085] [LvH85], project management activities, and some 
forms of automatically aided program generation. A brief overview of some of our 
plans is given here .. 

One class of extended capabilities will support rigorous and systematic testing 
of Ada programs. Work is underway to establish a suitable set of test coverage 
methods [ CPRZ85) and to automate them. Other work is aimed at evaluating, 
integrating, and automating test data selection strategies. Both kinds of testing 
capabilities are specifically targeted for use in conjunction with Ada programs and 
for implementation in Ada. 
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Another class of extended capabilities will support debugging of Ada task­
ing programs. Work is underway on a powerful tasking debugger that supports 
breakpointing, value modification, and full control over task scheduling, yet re­
tains consistency with key Ada semantics [BTM85]. This debugger is based on 
a uniprocessor interpreter for tasking programs. Its use in debugging host-target 
configurations is also being investigated [Tay84]. Also underway is work on a high­
level debugger for distributed systems that supports monitoring of distributed pro­
grams at a level above that of the Ada language primitives. This approach allows 
users to specify the higher level events, typically consisting of complex patterns of 
event occurrences, that the debugger should notice, then wait for the debugger to 
announce when one has occurred [BW83]. Various distributed implementations of 
this debugging tool are being explored. 

Yet another class of extended capabilities address pre-implementation analysis. 
Work on a static analysis method for concurrent Ada programs [Tay83] provides 
a basis for tools that will derive a complete concurrency history from an Ada 
program. Tools based on the constrained expressions approach [ADWR86] will 
permit designs of concurrent systems, expressed in an Ada-based design notation, 
to be analyzed. Such analyses will allow users of the Arcadia Ada environment to 
detect errors in their concurrent programs long before those programs are coded 
and ready for testing. Cooperative application strategies for these techniques are 
also being studied. 

Support for programming-in-the-large will also be among the extended capa­
bilities provided in the Arcadia Ada environment. The Precise Interface Control 
(PIC) language constructs have been tailored to support the description of in­
terface relationships among the modules of an Ada software system [WCW85]. 
Tools to support analysis of those interface relationships, throughout the software 
development process, are currently being implemented. 

Finally, management tools will also be among the extended capabilities of the 
environment. Capabilities pioneered in the TRW Software Productivity Project 
[BPS*84] will provide managerial control over the software development process 
as practiced by users of the Arcadia Ada environment. 

4 Development Strategy 

In this section we present an overview of the Arcadia development strategy. First, 
we describe our assumptions about the host environment on which the Arcadia 
software development environment will be implemented. Then we discuss our 
maturation and technology transfer plans. Finally, we describe the internal orga-
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nization of the Arcadia consortium. 
An important objective for the Arcadia environment is to achieve modest porta­

bility. We believe that a prototype demonstrating novel research directions is of 
limited value unless it can be widely disseminated among the research community. 
Although support for full portability would extract far too heavy a toll on our 
development efforts, modest portability can probably be achieved at reasonable 
cost. To accomplish this goal we have decided to base our host environment upon 
those resources that are widely available in current academic or industrial research 
and development organizations. To be specific, we will use the programming lan­
guage Ada, the UNIX operating system, and VAX mainframes networked ~ith 
SUN workstations. 

Although it could be argued that Ada is not widely available, we believe that 
this situation is quickly being remedied with the increased introduction of vali­
dated compilers. An explicit goal of the Ada design was to support portability. 
We want to exploit this feature as well as take advantage of Ada's support for 
advanced programming language concepts, such as abstract data types and dis­
tributed processing. 

Despite agreement on the host environment, we still intend to limit and isolate 
operating system and machine dependencies as much as reasonably possible. For 

. example, we expect file manipulation and graphics capabilities to be potential 
portability problem areas. In both cases, we intend to select a relatively small 
set of primitive operations and use an Ada package to map these operations onto 
the host environment. These packages will most likely have to be recoded if the 
Arcadia environment is ever ported to other machines or operating systems. 

As the prototype environment is developed we intend to carefully evaluate it. 
One of the advantages of the environment architecture, basic components, and 
tool-building tools is that together they provide a research platform for evaluating 
individual analysis tools or groups of tools. Moreover the addition of new tools to 
the environment is one way to evaluate how well the architecture supports inte­
gration and extensibility. In addition to subjective evaluations based on individual 
use and experience, we intend to conduct objective experiments. In this regard, 
we plan to monitor the performance and use of the overall environment as well as 
undertake tool-specific experiments. 

This evaluation process, which will be an on-going activity, will lead to a suc­
cession of environment prototypes, each with more refined and extended capabili­
ties than the previous version. At appropriate points in the development process, 
some of the architectural components or environment tools may become candi­
dates for production-quality development. Recognizing that the transition from 
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experimental to production quality poses several difficulties, we are trying to plan 
for technology transition activities. Most of the industrial consortium members 
are involved in this planning. Although producing and maintaining production 
quality versions is infeasible for the university members of the consortium, it is 
our expectation that industrial members may choose to fulfill this role. Other 
organizations, whose primary charter is technology transfer, may also choose to 
become involved in these activities. 

The idea of forming a research consortium was under discussion among the 
Arcadia principals for some time before the first meeting was actually held and 
members agreed to work together on this project. Before that, all of the members 
had had previous research interactions with each other and some had worked to­
gether on projects in the past. Most notably, all the members continue to share a 
common world view. This view is founded on the belief that software development 
environment research needs to be expanded well beyond the domain of program 
development tools. In particular, consortium members emphatically agree on the 
crucial importance of integration, extensibility, and powerful analysis tools appli­
cable throughout the software development process. This background has enabled 
the consortium to function effectively, with no external influence necessary. 

Members of the consortium meet about every three months to distribute plans 
and share ideas. These meetings lead to in-depth discussions and evaluations of 
the work that each group is doing. Members find that this immediate feedback, al­
though often critical, provides new insights into the problems and positively affects 
their research. Members are committed to sharing software and expertise. There 
have even been some short-term exchanges of personnel between organizations. 

Working in a consortium adds overhead to the development process; ideas 
must be discussed until there is some consensus and software must be developed 
to conform to the dictates of the architecture. On the other hand, members of the 
consortium can build upon each other's work. In fact, one of the primary motiva­
tions for forming a consortium was recognition of the huge software development 
effort that was involved in building even a prototype environment. Basically, be­
cause of the sharing of ideas, expertise, and software, we expect the results of the 
consortium effort. to.be greater than the sum of the contributions each organization 
could make separately. 
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