
UC Irvine
ICS Technical Reports

Title
Arcadia, a software development environment research project

Permalink
https://escholarship.org/uc/item/0pp5p5wd

Authors
Taylor, Richard N.
Clarke, Lori
Osterweil, Leon J.
et al.

Publication Date
1985-11-25

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pp5p5wd
https://escholarship.org/uc/item/0pp5p5wd#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Arcadia: A Software Development
Environment Research Projec!_

Richard N. Taylor,, Lori Clarke*, Leon J. Osterweil**,
J;ck C. Wileden*, Michal Young

Technical Report #85-31

Department of Information and Computer Science
University of California, Irvine1

*Department of Computer and Information Science
University of Massachusetts, Amherst2

**Department of Computer Science
University of Colorado, Boulder

November 25, 1985

1This work was supported in part by DARPA under contract (ONR) N00039-83-C-
0567, by National Science Foundation grants DCR-8451421 and DCR-8502558, the Alcoa
Foundation, and Hughes Aircraft (MICRO program).

2This work was supported in part by the following grants: Rome Air Development Cor­
poration, No.SCEEE-PDP /85-0037; National Science Foundation, grant No.DCR-8404217
and No.DCR-8408143; and Control Data Corporation, No.84M103.

Contents

Abstract

1 Introduction

2 Aspects of the Architecture
2.1 Object Management

2.1.1 Objects in Arcadia . .
2.1.2 Sharing Objects

2.2 Tool Management And Invocation In Arcadia .
· 2.3 User Interface

3 Aspects of the Ada Environment
3.1 Basic Capabilities . . .
3.2 Tool-building Tools ..
3.3 Extended Capabilities

4 Development Strategy

5 Acknowledgements

References

1

2

3

4
6
6
9

10
14

19
19
20
21

22

24

26

Abstract

The research objectives of the Arcadia project are two-fold: discovery and
development of envfronment architecture pri'nciples and creation of novel software
development tools, particularly powerful analysis tools, which will function within
an environment built upon these architectural principles.

Work in the architecture area is concerned with providing the framework to
support integration while also supporting the often conflicting goal of extensibility.
Thus, this area of research is directed toward achieving external integration by
providing a consistent, uniform user interface, while still admitting customization
and addition of new tools and interface functions. In an effort to also attain
internal integration, research is aimed at developing mechanisms for structuring
and managing the tools and data objects that populate a software development
environment, while facilitating the insertion of new kinds of tools and new classes
of objects.

The unifying theme of work in the tools area is support for effective analysis
at every stage of a software development project. Research is directed toward
tools suitable for analyzing pre-implementation descriptions of software, software
itself, and towards the production of testing and debugging tools. In many cases,
these tools are specifically tailored for applicability to concurrent, distributed, or
real-time software systems.

The initial focus of Arcadia research is on creating a prototype environment,
embodying the architectural principles, which supports Ada1 software develop­
ment. This prototype environment is itself being developed in Ada.

Arcadia is being developed by a consortium of researchers from the Univer­
sity of California at Irvine, the University of Colorado at Boulder, the University
of Massachusetts at Amherst, TRW, Incremental Systems Corporation, and The
Aerospace Corporation. This paper delineates the research objectives and de­
scribes the approaches being taken, the organization of the research endeavor,
and current status of the work.

1 Ada is a trademark of the U.S. Department of Defense.

2

1 Introduction

Early research in software development environments was seldom referred to in
those terms. The primary focus of environment-related research was usually on
specific tools, programming languages, databases, or operating system concepts.
Interlisp, for example, focused heavily on developing functions that helped in
the production of Lisp programs [TM81]. Only after many of these functions
were developed was it recognized that such a suite of capabilities constituted an
envfronment in which code production could take place. Unix2 is fundamentally
an operating system, but its design encourages and even enforces a particular way
of binding tool capabilities together; it is arguably an environment, though very
different in structure from Interlisp.

Subsequent developments have aided in refining the notion of a software de­
velopment environment. For instance, it is now recognized that a development
environment must contain much more than just programming tools: design and
analysis methods, the tools to support them, and management techniques must
all be carefully integrated to form an effective environment.

More recent research has delineated the notion of an environment architecture.
This term is used to denote the set of rules and support infrastructure which char­
acterize, bind together, and enable utilization of the software development support
tools existing within an environment. Object managers, user-interface tools, and
tool activation managers may all be elements of an environment architecture.

Environments and their underlying architectures can be classified according to
the qualities they possess. The qualities dominating the development of Arcadia
are extensibility and integration. Extensibility refers to the ease with which it is
possible to add new capabilities to an environment. Incorporation of new capa­
bilities in an extensible environment will not involve changes to the fundamental
architecture, unless a basic property of the new capability is in direct conflict with
the fundamental principles of the environment. Note that "extensible" as used
here is not equivalent to "open", as that term is often interpreted: open often des­
ignates the ability to incorporate foreign programs without change. Integration in
the context of Arca.dia denotes several properties: {1) consistent user interfaces,
{2) easy context switching with restoration of state, and (3) efficient communi­
cation between tools through the sharing of data structures. The first of these
contributes to external integration, while the latter two are aspects of internal
integration. Secondary objectives for Arcadia are to effectively support creation
and evolution of software by a team of developers and to support development

2 Unix is a trademark of AT&T.

3

that occurs over a network of machines.
In addition to environment architecture issues, the Arcadia project is also in­

vestigating specific techniques to support all aspects of the software development
process. Specifically, the project is working on creating tools, and on defining
the objects that they manipulate, in three broad categories. First are the basic
components of a software development environment. Emphases here include the
development of an internal representation for programs, called IRIS, that is suit­
able not only for compilation purposes but also for interpretation, analysis and
program transformation. Second are tool-building tools. This class of tools is of
particular value to software developers who, like the members of the Arcadia con­
sortium, are constructing software development environments. Since they include
such things as lexer and parser generator tools, however, they are also of potential
interest to many other software developers. Finally~ there are analysis tools. These
include testing and debugging tools as well as design analysis tools and other tools
applicable in pre-implementation stages of software development. An important
goal in this area is addressing the special concerns related to embedded systems
software, such as distributed system design analysis and host-target debugging.

The Arcadia project is, therefore, a research activity exploring issues in two
domains. An environment architecture is being investigated and created, as are
a number of software development support tools. These tools and the objects
they manipulate are the components acted upon by the environment architecture.
Together, the architecture and the tools constitute an experimental Ada environ­
ment, which is being implemented in Ada. The environment is being designed
to assist in a wide range of development activities and to support a variety of
models of the software process; our focus is on fundamental issues concerning
automated support for software development. Subsequent sections of this paper
examine these aspects separately. Some aspects of our development strategy are
also briefly described.

2 Aspects of the Architecture

Environment architectures are similar to operating systems in that they deal prin­
cipally with the management of processes, objects, and interfaces. Moreover en­
vironment architectures provide a level of virtual machine above that of conven­
tional operating systems. Specific environments provide levels above that, since
they provide powerful tools. Our working premise has been that any program or
interface definition which determines how tools interact, how they must be built,
or how objects behave in the environment, must be a part of the environment

4

l
architecture. t

Environment architectures ar~
they constitute a level of virtual t
with respect to traditional progra~·
uniformity, and completeness. Ea\
apply to the three fundamental en·
domain of environments extensibil
modification of the entities, such a
mity is particularly an issue with r
the user and the environment. Co
chitectures includes assessment oft
architecture must be methodology-s

< m
z
CJ
0
;>;:l

z
0

..,,
c
z
CJ

.....
9

may be forced by that architecture t ~~~:
programming methodology, or test in. ~ ~ ~ ~ 3
not be supportable due to a lack of\ · ~ ~~~~
chitecture. For example, the archite1 r ~I
concurrency in the environment and i\ .,, ~ ~ ~

Lastly, environment architectures rt Sc;; ~~
ities with regard to the level of abstra~\ ;
with processes, objects, and interfaces.\y

-~1
~\

\

\

~, .. since
~ uated
~bility,

\they r the
and

1
ifor­
'ween
\ ar­
fhat
\ure

el,

ray
~r-

for
\.1

~J
The following subsections detail ol.,F ..,.,yproacn "fiCtnese~ategories. Our end

goal is the formulation of a clean conceptual architecture model upon which useful
systems can be built. We begin with a capsule sketch of the environment.

The User's View and Tool Structure The toolset of Arcadia will be made
up of very small, modular tool fragments (section 2.2); any substantial task will
involve potentially complex interaction between fragments. It is imperative that
users be shielded from this complexity. This will be achieved partially by allowing
users to simply describe an object which can be derived from existing objects in
the data base, and leaving it to the tool and object managers to plan and coordi­
nate the application of tool fragments to produce the desired object. Users must
also be shielded from the complexity of tool fragment interactions during highly
interactive tasks, such as editing. The users of interactive tools in Arcadia will
not be faced with the complexity of dozens of tool fragments interacting in po­
tentially complex ways, but rather will deal with a high-level user interface. They
will see a set of (graphically) depicted objects, upon which certain operations are
possible. Different operations on the same object may be carried out by different
tool fragments, and a single operation may involve the coordination of several tool

5

fragments, but the users need not be aware of this.
What, then, is a "tool" in Arcadia? In a conventional programming environ­

ment, a tool is a collection of capabilities which execute together in an integrated
manner, and which are generally developed and maintained together as a unit.
That is, the usual notion of a tool is more or less equivalent to the notion of a
program. In Arcadia, a tool is just a collection of tool fragments temporarily allied
for the purpose of providing the desired functionality to complete some activity.
These fragments may be loosely connected as in a Unix pipeline, but often they
may be more closely coordinated. In particular, an interactive tool may consist of
several fragments cooperating in the modification of a single object or collection
of objects, including the display.

2.1 Object Management

A central premise of this project is that Arcadia should appear to the user to
be a system for creating and managing numerous and diverse software objects
such as source and object code, design elements, test data, and graph representa­
tions which arise during the process of developing software. Accordingly a view of
software development and maintenance which Arcadia attempts to support is that
software is a large and intricate collection of long lived {persistent) objects and ag­
gregates of information, and that the process of developing software successfully is
dependent upon {and perhaps tantamount to) the process of successfully creating,
organizing, augmenting, and exploiting these objects and aggregates. Accordingly,
Arcadia users will be encouraged to think of their work in terms of the need to
create, aggregate, alter, and view the objects. {A trivial ex~ple: rather than
requesting the execution of a program, the user will request display of the output
of a program as applied to a specified set of data.) Thus the object management
function is one of the most important in Arcadia. This philosophical approach
to environment organization and the architecture of our object manager are both
based upon similar approaches taken in the Toolpack and Odin projects [Ost83]
(C085].

2.1.1 Objects in Arcadia

Arcadia objects may range widely in size and character. Objects may be small­
such as tool option specifications and test data, or may be large-such as entire
executable programs or the results of executing large test suites. Objects may be
as diverse as text, object code, test data, symbol tables or bitmap display frames.

6

To help in the management of such diversity, each object is annotated and each
object may be related to a potentially wide range of other objects.

The most important annotation which Arcadia objects carry is type. In Arca­
dia source text is one type, object code is another, test data, parse trees, attribute
tables, and so forth are yet others. From this perspective the Arcadia objects
can be viewed as instances of abstract data types. The types are defined within
Arcadia in terms of clusters of accessing functions. Arcadia will offer facilities for
creating and integrating new accessing function clusters and thereby augmenting
its collection of types. This is perhaps the most important sense in which Arcadia
is extensible.

Newly created objects are said to have been derived from their predecessors,
in which case Arcadia notes this derivation relation and uses it to store the new
objects, placing them as descendents of their predecessors in a structure known
as the Object Derivation Graph (ODG). Each object can be viewed as the root of
two subgraphs of the ODG which are trees. An object's Ancestor Derivation Tree
indicates which ancestor objects were used to derive the object; it's Descendent
Deriviation Tree indicates which objects depend upon the object for their deriva­
tion. Objects which are created either by importation from outside Arcadia or by
user creation through a tool such as an editor will initially have no ancestor or
descendent subtrees. As tool functions are applied to these objects and, in turn,
to objects derived from them, the Arcadia object manager will automatically orga­
nize all of these objects as descendents. As any Arcadia object may be persistent,
these object derivation trees are potentially arbitrarily deep.

The notion of organizing objects into trees in which descendants have been
created by derivation from ancestors has already been exploited in certain version
control systems such as RCS [Tic82]. In such systems, all derivations are created
by the action of a single tool, generally a text editor. It is assumed that there
is a single root version, and that this version has one or more successors, each of
which can be derived from the root version by the action of the deriving tool (e.g.
the text editor). These descendents can then be further transformed by successive
actions of the deriving tool to create further subtrees of versions. By moving up
and down this tree, a software maintenance team can make changes having either
greater or lesser impact, as their needs and wishes may require.

Arcadia will effect a similar derivational structuring of the object store, but
in Arcadia this structure is developed, not by successive derivations by means
of a single tool, but by applications of any Arcadia tool. Thus a user may use
Arcadia to create a Descendent Derivation Tree for versions of source code as in
RCS, or may create a complex tree in which objects of various types, the results

7

of different sequences of tool applications, are all stored in a single Descendent
Derivation Tree.

Arcadia will also incorporate algorithms for determining when derived objects
at lower levels of a Descendent Derivation Tree have become obsolete because of
alterations or deletions of objects higher up in the tree. Whenever an object at
a higher level of the tree is changed, the Arcadia object manager will recognize
that all descendents of that object must be viewed with suspicion. Arcadia will
not take immediate steps to rederive these objects, however. Instead Arcadia will
employ a demand rederivation strategy under which new versions of an object are
not created until they have been requested either directly or indirectly by the user.
At that time, all the objects in the requested object's Ancestor Derivation Tree are
examined. If it was in fact derived from ancestor objects which have subsequently
been altered, the Arcadia object manager will begin the process of recomputing
it from the current version of the ancestor objects. Objects between the altered
ancestors and the desired object are rederived. They will also be compared to
their previous versions. If at any point the rederived objects match their previous
versions, the rederivation process will stop and the equivalence of old and new
versions of objects lower in the tree will be noted.

Hierarchy will also be used to organize the Arcadia object store. Users may
define arrays or structures of objects of heterogeneous types. These array and
structure definitions are also Arcadia objects, and they may, in turn, be organized
into higher level structures. This enables the Arcadia user to create structural
hierarchies which are u~eful in, for example, modelling the inherent structure of
systems being developed or maintained. In Arcadia these structures may over­
lap. This will make it possible for the user to create an object corresponding
to a procedure library and then include it in several other objects, presumably
corresponding to higher level functional sections of code. This inclusion is logical
rather than physical and thus does not cause duplication of storage or difficulties
in properly reflecting updates of shared objects.

It is important to point out that Arcadia software objects are not necessarily
always created in response to direct user requests. Arcadia will support the no­
tion of active tools. as well as passive tools. Active tools will commence execution
without direct invocation by users. They will carry out their activities by access­
ing and processing objects according to plans which will have been designed in
advance, and perhaps by users other than the current user. These active tools will
be invoked by Arcadia in accordance with such control mechanisms as timers or
daemons whose job it will be to detect relevant changes in the object store.

Finally, it should be noted that Arcadia and all of its constituent tools, includ-

8

ing the object manager, are themselves objects which are managed. Components of
the environment architecture are in this sense indistinguishable from components
of the software being developed by the environment user. This structure will aid
in the ongoing development of Arcadia. J?etails of how tools may be considered
as objects and what configuration management must be performed can be found
in Section 2.2 on page 13.

2.1.2 Sharing Objects

Although Arcadia encourages the user to view software development and mainte­
nance activities as the creation and management of a central store of persistent
software objects, there is nothing in this view that requires this store to be phys­
ically centralized. In fact Arcadia will feature a distributed object store in which
sharing of objects will be allowed and mediated. Arcadia is designed to support
the cooperative activities of teams of software developers and maintainers, each
of which is working on a workstation having significant self-contained disk storage
facilities. Thus, each worker will have a separate store of persistent software ob­
jects. In addition, the workstations are assumed to be connected to each other by
high speed data links. Thus each worker will also have potential access to software
objects stored at other workstations.

The sharing of an object in Arcadia will be entered into carefully, monitored
and supervised closely, and withdrawn from safely, all under the supervision of
the Arcadia Federation Policy Manager. This software device is based upon the
notion of a Software Federation [HM85]. In a federation, all objects initially belong
to only one user, but shared access to these objects can be arranged as well.
The sharing arrangement is negotiated by the party requesting the object and
the party (or parties) currently controlling the object. The sharing arrangement
may specify who is able to access the object, who is able to alter the object and
the circumstances under which access to the object can be passed on to others.
When one or more of the sharing parties wishes to withdraw from the sharing
arrangement this too is negotiated under control of the Federatfon. Withdrawal
may entail the making of copies, the creation of automatic updating relations
among former shadng partners, or other devices for assuring an amicable and
equitable parting of the ways.

The Federation mechanism assures that users retain autonomy when necessary,
but are able to share when sharing is necessary or profitable. It also offers users
such benefits of distribution as robustness in the face of hardware difficulties, and
easy access to popular objects through the creation of multiple copies.

9

2.2 Tool Management And Invocation In Arcadia

Tool Structure Arcadia is intended to be a vehicle for furnishing extensive
and growing tool capabilities. These capabilities will be furnished primarily by
collections of small tools - tool fragments - rather than by a few, large, mono­
lithic tools. For example, in Arcadia the task of prettyprinting could be carried
out by a collection of tool fragments including a lexical analyzer, a parser, and
a formatter-operating in concert. Some sophisticated prettyprinting functions
would also require the invocation of a static semantic analyzer. An instrumented
test execution could be carried out by a dozen or more tool fragments, operating
at times in sequence and at times in parallel.

Creating larger tool capabilities out of smaller, more general tool fragments
is a powerful and effective approach for a number of reasons. One of the main
reasons is that, if the tool fragments are well chosen, they will prove to be usable
as components of a variety of larger tools, thereby enabling the creation of these
larger tools at lower cost. For example, both the prettyprinter and dynamic in­
strumentation tool just mentioned require lexical analysis and parsing in order to
begin their work. Both tools incorporate these fragments, thereby saving the cre­
ators of these tools the effort of having to recreate these functional capabilities. In
fact, the tool and object management functions of Arcadia will permit either the
prettyprinter or dynamic instrumentation tool to re-use the intermediate results
of the other.

Another benefit of a tool fragment architecture is that it encourages toolmak­
ers to think in terms of good modular decomposition for their tools and good
organization for the data and software objects which their tools use. Thus, we
believe that the writer of a prettyprinter, for example, will create a better tool
because correspondingly more time can be spent contemplating the nuances of the
problem of prettyprinting, having been spared the problems of contemplating the
nuances of parsing. In addition, because the writer of the prettyprinter is given
access to the output of a proven parser, it is likely that the prettyprinter will be
of better quality for its reliance on a more robust parser and its ability to exploit
a richer range of information than would likely have been created from scratch.
In short, we contend that the prettyprinter will be a better tool because it will
be based conceptually upon such data and software constructs as lexical tokens,
parse trees, and symbol tables and will be based physically upon major bodies of
robust proven code.

Monolithic tools are not without their advantages, however, as experience with
Arcturus (TS85] and Interlisp has shown. Accordingly there is nothing in the

10

architecture of Arcadia which prohibits inclusion of monoliths. With suitable
hardware support such tools may outperform more modular varieties. As the
population of tools within Arcadia increases, "fly-offs" between tools of the two
styles will be interesting and important studies.

Planning Tool Activations Although we have only mentioned two straight­
forward tool capabilities, Arcadia can incorporate a rich variety of tools, some of
which may require complex configurations of tool fragments for their implemen­
tation. In many cases it will be possible to determine in advance just which tool
fragments will have to be invoked to transform existing objects into other needed
objects. There are some tools, however, for which this knowledge may not be
completely available in advance. For example, a data flow analyzer (eg. [OF76])
must analyze the compilation units of a program in two passes, where the order
of analysis during the second pass is computed during the first pass. In this case
it is impossible to predetermine the exact order of invocation of tool fragments on
the separate software objects.

Arcadia will support the synthesis of such tools as well. The mechanism needed
here is a planning tool fragment whose job is to dynamically create tool invocation
sequences that are tailored and adjusted in accordance with the current state of
the object store and preprogrammed conditions. Planner tools in Arcadia will be
able to create tool invocation sequences in which tools are scheduled for future
invocation and in which software objects are taken and produced in unexpected
or changed orders. In addition, planners will be able to schedule the invocation of
other planners at projected future critical points.

Though it is anticipated that substantial tool activation will occur as the result
of users requesting display of various objects, direct tool invocation will, of course,
be supported. There is no gain in power here, it is merely a convenience and
acquiescence to what seems natural in certain circumstances. Furthermore many
specfic interactive tools are command driven and requiring that the environment
be directed another way is incompatible with our goal of uniformity of interface.
The topic of user interfaces is treated in section 2.3.

Object Usage In Arcadia, all software objects which are created by the tool
fragment components of larger tools have the potential for being automatically
stored by the object manager. There are at least two good reasons for doing
this. First, by storing them, the object manager can later make them available
as needed by other tools subsequently invoked by the user. This will result in an
execution time saving. Second, these objects represent increased knowledge about

11

the state of the software being developed or maintained and thus might well be of
interest to the user. On the assumption that the user might at some future point
wish to access this knowledge, it is stored by the object manager.

As observed earlier, these objects all have types which are assigned by the
tool fragments which create them. Thus, another perspective on the outcome of
executing a tool is that it effects the derivation of a collection of typed software
objects by a set of tool fragments, some of which may not have been directly
invoked by the user. These objects are persistent and are kept available for possible
future reuse by subsequently invoked tools or for perusal by the user. In either
case, the possible magnitude and diversity of these objects makes it imperative
that this process be transparent to users, most of whom will not be interested in,
or equal to, the task of correctly and efficiently orchestrating their creation and
exploitation.

Automatic storage of all objects is not required, of course, as it may be un­
desirable under certain circumstances. For instance, to provide rapid response to
user interaction, a suite of tool fragments may be employed which pass on informa­
tion from fragment to fragment though a series of objects. Though these objects
could be profitably retained, as described in the preceding paragraph, it may be
expedient to not retain them as a performance penalty may be involved.

Incorporation of New Tools The internal composition of tools will be of
limited interest to tool users, but will be of great interest to tool developers. Tool
developers are expected to be able to consult Arcadia objects which store the
specifications of current Arcadia tool fragments and object types and use those
specifications in creating new tools. In Arcadia all such information about existing
tool fragments and the abstract data types that they manipulate will be stored
in centrally maintained objects. This will facilitate the process of altering and
augmenting the type structure and set of tools.

The chief Arcadia object which stores information about existing fragments
and types is the Type Derivation Graph. This graph contains as its nodes all of
the abstract data types maintained by Arcadia, and has as its edges annotated
designations of the· various tools. New Arcadia types are incorporated by creating
new nodes in the Type Derivation Graph. In order for the user to be able to create
instances of this type, arguments to the appropriate creation/ access routines may
have to. be derived from instances of existing types. Thus, loosely speaking, in
order for the new type to be effectively incorporated into Arcadia, at least one
tool which creates instances of the new type by calling appropriate routines must
be written, and that tool must be represented in the type derivation graph by a

12

set of edges connecting the new node to nodes representing the types of the objects
which the new tool must take as input.

Again, this new tool will access capabilities for the creation of instances of
the new type. In Arcadia, these capabilities must be clearly separated out into
functional primitives belonging to the new type. These primitives-for the cre­
ation of new instances-must be accompanied by other functional primitives for
describing and manipulating objects of the new type. In short, the new type will
be integrated into Arcadia by the augmentation of the type derivation graph, by
the creation of at least one new tool, and by the creation of a set of accessing
primitives which is sufficiently complete to seal the implementation of the new
type and make it a data abstraction in the usual sense of the term.

Although the preceding discussion described the way in which new tool frag­
ments can be entered into Arcadia, it also indicates how existing tool fragments
and object types can be altered. If the implementation of an existing object type
is to be altered transparently to the tool fragments using it, this alteration can
be done simply by replacing the bodies of the accessing functions defining the
type (and of course converting any instances of that type). Alternatively, the new
implementation can be viewed as implementing a new type, and as being able to
create instances of the new type. If a new tool fragment, capable of creating ob­
jects of existing types, is to be incorporated into Arcadia, this will be done simply
by incorporating into the type derivation graph a new edge or set of edges.

Tools are Objects, Too The preceding paragraph suggests that in Arcadia
tools themselves are also viewed as objects. This is an important, though hardly
novel, perspective on the architecture of our system, reflecting our desire to treat
tools uniformly with other objects. (This view has been exploited successfully
in. many environments, such as Interlisp and Cedar [Tei84].) Tool fragments are
themselves bodies of executable code which are created from source text by a
derivation process which will be captured within Arcadia. When these tool frag­
ments are incorporated into Arcadia as described above, they become capable of
deriving new types of objects from existing types. They should not be viewed as
inherently different from the objects and types upon which they operate, however.
Clearly tools themselves demand careful version control, and Arcadia furnishes
this. When the source text for a tool fragment is altered, the object code derived
from it is presumably altered as well. Thus, objects derived by use of the new tool
fragment cannot be assumed to be the same as objects derived from identical an­
cestor objects by the predecessor version of the tool fragment. Arcadia's version
control and derivation tracking features will identify these differences and take

13

proper account of them in managing the Arcadia object store. This will enable
Arcadia system maintainers to maintain Arcadia with itself, to incorporate new
tool fragments in parallel with older versions, to monitor the new fragments, and
to replace older fragments when warranted.

Inter-tool Communication The model of communication between tools in
Arcadia is the (possibly remote) procedure call, as all objects are modelled as
instances of abstract data types. This is in contrast to, for example, sequential
input/output of ASCII text, as is the model in Unix. With this model it should be
possible to transfer information efficiently between tools. When "tight integration"
i$ desired, multiple tools must be able to share data structures (i.e. concurrently
access the same ADTs which are implemented as monitors). This will be especially
important when the internal form of an object is not naturally linear. Tools, of
course, will be written not knowing whether tight or loose integration .will be
employed, where "loose" means data is transferred through the file system. For
instance, it should be possible, .at the underlying implementation level, to pass
a tree from tool to tool by "passing a pointer" to the root of the tree, without
transforming the tree to a stream of text. A linearizing transformation of a data
structure should ideally be necessary only when an environment object is moved
to secondary storage by the object manager; practically, linearization may be

. necessary for moving between tools in different address spaces.
A related issue is flexibility in environment configuration. We expect that the

hardware upon which the environment is hosted will vary: some users will be able
to afford more resource-consumptive tools than others, or will be able to afford
more expensive styles of interaction. For instance a user having a machine with a
large physical memory may desire that several tools execute concurrently, improv­
ing efficiency by communicating through shared reference to objects. Moreover
many tools may be concurrently active. Other users may need an environment
which makes extensive use of a file system for communication between tools and
parsimoniously uses memory. Flexibility in environment configuration is therefore
called for, to suit varying performance requirements and resource availability.

2.3 User Interface

A succession of systems from Xerox [TM81] [Tei84] (GR83] (SIK*82] and from
Xerox emigres [Ins85] have refined a style of user interface characterized by the
illusion of directly manipulating a set of objects depicted on the screen. Several
properties are necessary to maintain this illusion, including rich visual represen-

14

tation of objects and immediate reaction to user input. To support this approach,
Arcadia will be hosted primarily on powerful workstations with bitmapped graph­
ics and pointing devices. The usual amenities will be provided, including nested
and overlapping (or tiled) windows and selection of objects and operations with a
pointing device.

Managing the User Interface Graphical user interfaces with windows and
mice are now common, but most of these systems are based on toolkits which
must be incorporated piecemeal into an application program. Details of the user
interface are woven into the application, complicating both.

Recently, some researchers have described an approach in which the user inter­
face is completely separated from the functional aspects of an application. Manip­
ulation of objects is logically separated from maintenance of a depiction of those
objects, and user input is mapped into abstract commands which are independent
of the particular command syntax visible to the user. This separation of con­
cerns has several advantages. Tool fragments are simplified because they need not
contain user interface code, and the same fragments can be incorporated in inter­
active and non-interactive tools. Klefstad [Kle85] has shown how this approach
can maintain uniformity of the interface across tools while allowing customiza­
tion of the interface to suit each user and adapt to the available terminal device.
Coutaz [Cou85] argues that such a separation also allows the user interface and
tool functionality to evolve independently. An important contribution of her work
is identifying the object to be displayed, the abstract depiction_ of that object as
maintained by the user interface system, and the concrete depiction of the object
on the display device, as three objects subject to independent but coordinated
manipulation.

The Arcadia display manager will be a separate collection of tool fragments
which manage the relation between objects, their depictions, and their displays.
The input manager, in coordination with the display manager, will provide tools
with a sequence of commands in exactly the same manner as those commands
would be received if the tool were running in a non-interactive activity. If we view
the environment .for. a moment as a processor for a language in which the objects
are all the objects of the environment and the operations are provided by tool
fragments, then we can view this organization of the user interface as separating
the syntax of a command language from its semantics.

Command Language The approach taken to developing a command language
or languages for Arcadia reflects an attempt to satisfy two potentially conflicting

15

requirements. On the one hand uniformity of user interface, regardless of the func­
tion being performed, is held as greatly desirable. This uniformity can be achieved
most readily by choosing a single command language which is used in all contexts.
H the command language is sufficiently rich, such as Ada or an extension thereto,
this will probably be an acceptable choice in many environments. Arcturus suc­
cessfully adopts this approach for an Ada programming environment. The work
of Klefstad even demonstrates that a respectable amount of extensibility can be
retained with this approach [Kle85].

On the other hand, study of the plethora of activities that occur in the broad
spectrum of system development reveals that many different conceptual models are
used in the various activities. For instance, very different sets of concepts underlie
the graphical manipulation of Petri nets, typesetting of documents, verification
of an algorithm, and assessment of the progress of a project. The interface to
automated aids which support these activities should, therefore, be consistent
with these varying models. In a given context, such as Petri net editing, the user
should have available the exact set of semantic commands needed for that activity,
phrased in appropriate terminology, reflecting the appropriate conceptual model.
As the context changes, so does the conceptual model, and therefore so changes
the set of commands. This, apparently, argues for non-uniform user interfaces.

We are attempting a synthesis governed by the following propositions. First,
there exist classes of tools which share some fundamental concepts. "Editors" is
an example class. Second, the syntax of commands is an orthogonal issue to that
of the conceptual model.

Our approach to commanding Arcadia is, therefore, as follows. Ignoring for the
moment the issue of syntax, at any moment when the user is in contact with Arca­
dia there are a few conceptual commands always available. This set is not agreed
upon yet, but may well include "terminate this activity" and "help!". Then, de­
pending on the class of activity in which the user is engaged, there exist commands
which are universal to this class. There may be several levels of classes. Finally,
the user will be performing activities in a specialized context; within it exist com­
mands peculiar to that activity. The set of commands which may be entered at
any time includes, therefore, locally defined commands, commands provided by
the parent class, and on up the chain until the outermost leyel is reached. Com­
mands at a given level are not able to hide commands at higher levels 3 4 • Thus

3 This approach bears a top-level relation to Smalltalk's organization. Arcadia will differ, how­
ever, in the implementation and in the inheritance mechanism. We seek an inheritance mechanism
which will exhibit some of the desirable properties of strong typing and information hiding.

4 Note that classes of tools mix with classes of objects. That is, there may be a set of operations

16

the command language available to the user, in terms of semantic concepts, varies
from context to context, but exhibits uniformity of concepts within a class. The
overall principle, therefore, is the meta-notion of selecting semantic constructs.

At each level in this hierarchy of semantic commands different syntax for in­
voking the commands could be used. This seems undesirable (though that is not
without debate) and is not necessary in Arcadia; uniform syntax is an achievable
goal. Specifically, at all levels icons could be used, or menu picks (including the
picking of points in a graphical region), or textual function signatures. 5 The syn­
tax may be device dependent. The Arcadia user interface facilities will therefore
enable the development of substantial sets of tools which are uniform syntactically
and, more important, uniform semantically.

Graphical Depiction of Objects Interactive manipulation of an object in­
volves the coordinated management of three distinct representations: an internal
representation suited for manipulation by the involved tool fragments, a represen­
tation which captures the additional information necessary to graphically depict
the object, and a device-oriented representation (e.g., bitmap) actually presented
to the user. A component of the Arcadia framework will map the abstract graph­
ical depiction into the concrete depiction, hiding from all other components the
details of managing a particular device. Artists, written by tool builders, will be
responsible for mapping the internal representation of an object into the abstract
depiction accepted by Arcadia.

Artists, introduced by Myers for an interactive debugging system [Mye83],
contribute to the modularity goal of Arcadia by separating the functionality of tool
fragments from display. Artists also contribute to the portability of Arcadia by
adapting a tool to different classes of devices. The graphical interface component
of the Arcadia framework can hide the details of managing a particular device,
but it can't hide such gross characteristics as whether the user is seated at a bit­
map workstation or a character-oriented terminal. A petri net editing tool, for
instance, might use a graphically oriented artist when communicating through a
workstation and a textual petri net artist when connected to a character terminal.
'Plug-compatible' artists can also be used on the same device when the desirable

universal to editors, and another set of operations universal to petri nets. A petri net editor consists
of a set of tool fragments providing an appropriate combination of those two sets of operations.
Moreover, objects mix with objects. A textual editor for Ada programs should provide editor
operations, textual operations, and (some) program operations. This is a sort of inheritance- class
'editable petri net' may be created by inheriting capabilities from 'petri net' and 'editing'.

5 Arcturus uses the latter approach exclusively. The "ideal" implementation of Arcturus can
thus be viewed as using Ada as the implementation language and as the sole command language.

17

depiction is a matter of user preference.

Display Mapping Artists and the graphical interface component of Arcadia
map, in two steps, the internal representation of objects into concrete depictions.
Furthermore, an inverse mapping, from physical screen locations to objects, must
also be maintained to support input with a pointing device. First, a two-way
mapping between ob;'ects and components of the abstract depi"cti'on will be main­
tained by the operations on the abstract depiction data type supplied as part of
the Arcadia framework. Second, a two-way mapping between p~rts of the abstract
depicti'on and parts of the concrete depiction will be maintained by the graphics
subsystem. When the user points to a concrete depiction of an object, Arcadia
will associate the screen position with an object and inform the tool of the object
selection.

Binding of Tools and Artists A t~ol, as we have described it above, is not
a static entity but rather a temporary alliance of tool fragments cooperating in
the manipulation of one or more objects. It is not reasonable, therefore, to stat­
ically bind artists to particular tool fragments. It is better to think of an artist
as an extension of the operations supported by an object, adding some operations
(e.g., select) and extending some others (i.e., causing each change to the state
of an object to result in a corresponding change in the graphical depiction). To
some degree this view of artists is consonant with our view of all objects in Ar­
cadia as instances of abstract data types. It points out, however, some important
requirements for object management in Arcadia.

First, since the abstract depiction constructed by an artist includes references
to the depicted object (the two-way mapping discussed above), it cannot be man­
aged completely independently from the depicted object. For instance, the user
of a petri net editor may move places and transitions around on the screen. After
an editing session the abstract depiction will contain useful layout information
that ought to be preserved for future sessions. Another, non-interactive tool may
modify the internal representation of the same net in other ways. The references
from the abstract depiction to the depicted object must be managed in such a way
that they do not become invalid when this happens.

Second, we wish to minimize the effort required to build new objects and their
artists. The Incense system [Mye83] provided default artists for data structures.
Arcadia will also provide a scheme for supplying default artists and inheritance
of artists from related object types. For instance, the default artist for a record
containing fields of type f oo and bar should be composed from the generic record

18

artist, the artist for type Joo, and the artist for type bar.

3 Aspects of the Ada Environment

The first use of the Arcadia environment architecture will be as the foundation for
an advanced Ada software development environment. In the short term, construc­
tion of this advanced Ada environment will provide an opportunity to exercise and
evaluate the integration and extensibility capabilities of the Arcadia architecture.
A first version of this environment will be populated with a set of basi·c components
needed to support programming and program validation activities. This version
will also include a set of tool-building tools, such as lexer and parser generators,
that could prove valuable to a wide variety of software developers.

The longer term objective is to use the extensible Arcadia environment ar­
chitecture as a research platform to develop and study prototype tools providing
software developers with extended capabili"ties that go far beyond simply support­
ing coding. Tools supporting analysis, at every stage in the software development
process, are of particular interest. This prototyping activity will build upon and
use the basic components and tool-building tools contained in the first version of
the Ada environment as well as exploit the extensibility of the Arcadia architec­
ture.

This section outlines Arcadia activities in each of these areas.

3.1 Basic Capabilities

The basic capabilities needed in any Ada environment are primarily directed at
composing, running and debugging Ada programs. A variety of such tools are
currently in various stages of development. Already in existence is an Ada front­
end that performs lexing, parsing (with decent error recovery), tree building, and
pretty-printing. It is completely written in Ada. Current efforts are directed at
fleshing out other basic components of a programming environment. For instance,
work is underway on a static semantic analyzer that will transform the output
of the front-end ·into the IRIS internal representation described below. We are
also developing an interpreter and a debugger that uses IRIS. Among the basic
components not being developed by Arcadia consortium members are editors and
code generators. At present, these are two areas in which we prefer to import
and integrate existing tools into the environment rather than expend our own
development resources.

19

From an Ada perspective, perhaps the most interesting of the basic capabilities
in the Arcadia Ada environment is the internal representation used for programs.
Led by members from Incremental Systems Corporation and the University of
California at Irvine, the consortium has explored a range of possible options. Our
primary goals for the internal representation have been extensibility, simplicity,
performance, and capacity. In particular we are seeking to minimize the amount of
special case processing performed by tools, provide a general capability for adding
arbitrary unanticipated fields as later required by individual tools, and requiring
that only the attributes used by a given tool need be local when that tool is
executing.

The internal form that has resulted from our deliberations is called IRIS (Inter­
nal Representation Including Semantics). IRIS is a graph structure that represents
an Ada program including information derived from static semantic analysis (e.g.,
overload resolution).

The nodes in an IRIS attributed graph are of only two types: terminal and non­
terminal. Non-terminal nodes contain an indication of the operator represented by
the node, an indication of the number of operands required for this operator, and
pointers to the appropriate number of operand subtrees. The IRIS operators have
been chosen to reflect the semantics of Ada, and not its syntax. Terminal nodes
contain an indication of the nature of the cont~nts of the node, literal or non­
literal, followed by the appropriate contents. Literals include integers, characters,
strings, reals, and identifiers. If the node is a non-literal, then an operator field
is present which has the same content and interpretation as th_e operator field of
non-terminal nodes. This implies that the terminal node may contain a pointer
to an object declared elsewhere in the IRIS graph 6 • The detailed specification of
the contents of IRIS nodes is still in flux, as consequences of various choices are
being examined.

3.2 Tool-building Tools

Tool-building tools will play a dual role in the Arcadia Ada environment. Their
first use will be to f9-cilitate the work of consortium members in developing proto­
types of additional tools, primarily analysis tools, that will eventually be integrated
into the environment. They are also, however, of potential value to end users of

6 Note that this represents an unusual use of the phase "terminal node". It is terminal in the
sense that there are no additional IRIS subtrees hanging off this node. This pointer may only point
up in the IRIS tree, presumably to the declaration of an object for which this node represents a
reference.

20

the environment, since many software systems employ components such as parsers
or attributed graph structures. Hence they will remain among the tools available
in later versions of the environment.

Two important tool-building tools are currently in existence: alex and ayacc.
Their input specifications are nearly identical to their Unix counterparts, lex and
yacc. They produce, respectively, scanners and parsers that are written in Ada.
Both alex and ayacc are written in Ada as well.

Work is presently progressing on another tool-building tool, called GRAPHITE,
that supports the use of attributed graph representations by facilitating the encap­
sulation of attributed graph classes into abstract data types. This tool comprises a
Graph Description Language (GDL), for succinct definition of classes of attributed
graphs, and a processor that automatically creates an Ada implementation for a
class of attributed graphs from its GDL description. Thus GRAPHITE allows its
users to treat attributed graphs and their operations as primitive constructs in a
higher-level programming language and to enjoy the benefits of information hiding.
Perhaps the most interesting aspect of GRAPHITE is its support for prototyping
activities such as those being undertaken by Arcadia consortium members. Using
GRAPHITE, it is possible for different groups to experiment with definitions of
attributed graph objects, without forcing recoding or even recompilation of those
tools that access the redefined object but do not explicitly use the new information.
Details of GRAPHITE may be found in [WCW86).

3.3 Extended Capabilities

Our plans for extended capabilities, to be developed within one to three years,
focus particularly on analysis activities. Our interests lie in p~e-implementation
analysis, analysis applicable to distributed and real-time systems, testing and de­
bugging, host-target analyses, analysis of inter-module relationships, and support
for efficient analyses of large systems. We also plan to support language exten­
sions, such as Anna [vHLK085] [LvH85], project management activities, and some
forms of automatically aided program generation. A brief overview of some of our
plans is given here ..

One class of extended capabilities will support rigorous and systematic testing
of Ada programs. Work is underway to establish a suitable set of test coverage
methods [CPRZ85) and to automate them. Other work is aimed at evaluating,
integrating, and automating test data selection strategies. Both kinds of testing
capabilities are specifically targeted for use in conjunction with Ada programs and
for implementation in Ada.

21

Another class of extended capabilities will support debugging of Ada task­
ing programs. Work is underway on a powerful tasking debugger that supports
breakpointing, value modification, and full control over task scheduling, yet re­
tains consistency with key Ada semantics [BTM85]. This debugger is based on
a uniprocessor interpreter for tasking programs. Its use in debugging host-target
configurations is also being investigated [Tay84]. Also underway is work on a high­
level debugger for distributed systems that supports monitoring of distributed pro­
grams at a level above that of the Ada language primitives. This approach allows
users to specify the higher level events, typically consisting of complex patterns of
event occurrences, that the debugger should notice, then wait for the debugger to
announce when one has occurred [BW83]. Various distributed implementations of
this debugging tool are being explored.

Yet another class of extended capabilities address pre-implementation analysis.
Work on a static analysis method for concurrent Ada programs [Tay83] provides
a basis for tools that will derive a complete concurrency history from an Ada
program. Tools based on the constrained expressions approach [ADWR86] will
permit designs of concurrent systems, expressed in an Ada-based design notation,
to be analyzed. Such analyses will allow users of the Arcadia Ada environment to
detect errors in their concurrent programs long before those programs are coded
and ready for testing. Cooperative application strategies for these techniques are
also being studied.

Support for programming-in-the-large will also be among the extended capa­
bilities provided in the Arcadia Ada environment. The Precise Interface Control
(PIC) language constructs have been tailored to support the description of in­
terface relationships among the modules of an Ada software system [WCW85].
Tools to support analysis of those interface relationships, throughout the software
development process, are currently being implemented.

Finally, management tools will also be among the extended capabilities of the
environment. Capabilities pioneered in the TRW Software Productivity Project
[BPS*84] will provide managerial control over the software development process
as practiced by users of the Arcadia Ada environment.

4 Development Strategy

In this section we present an overview of the Arcadia development strategy. First,
we describe our assumptions about the host environment on which the Arcadia
software development environment will be implemented. Then we discuss our
maturation and technology transfer plans. Finally, we describe the internal orga-

22

nization of the Arcadia consortium.
An important objective for the Arcadia environment is to achieve modest porta­

bility. We believe that a prototype demonstrating novel research directions is of
limited value unless it can be widely disseminated among the research community.
Although support for full portability would extract far too heavy a toll on our
development efforts, modest portability can probably be achieved at reasonable
cost. To accomplish this goal we have decided to base our host environment upon
those resources that are widely available in current academic or industrial research
and development organizations. To be specific, we will use the programming lan­
guage Ada, the UNIX operating system, and VAX mainframes networked ~ith
SUN workstations.

Although it could be argued that Ada is not widely available, we believe that
this situation is quickly being remedied with the increased introduction of vali­
dated compilers. An explicit goal of the Ada design was to support portability.
We want to exploit this feature as well as take advantage of Ada's support for
advanced programming language concepts, such as abstract data types and dis­
tributed processing.

Despite agreement on the host environment, we still intend to limit and isolate
operating system and machine dependencies as much as reasonably possible. For

. example, we expect file manipulation and graphics capabilities to be potential
portability problem areas. In both cases, we intend to select a relatively small
set of primitive operations and use an Ada package to map these operations onto
the host environment. These packages will most likely have to be recoded if the
Arcadia environment is ever ported to other machines or operating systems.

As the prototype environment is developed we intend to carefully evaluate it.
One of the advantages of the environment architecture, basic components, and
tool-building tools is that together they provide a research platform for evaluating
individual analysis tools or groups of tools. Moreover the addition of new tools to
the environment is one way to evaluate how well the architecture supports inte­
gration and extensibility. In addition to subjective evaluations based on individual
use and experience, we intend to conduct objective experiments. In this regard,
we plan to monitor the performance and use of the overall environment as well as
undertake tool-specific experiments.

This evaluation process, which will be an on-going activity, will lead to a suc­
cession of environment prototypes, each with more refined and extended capabili­
ties than the previous version. At appropriate points in the development process,
some of the architectural components or environment tools may become candi­
dates for production-quality development. Recognizing that the transition from

23

experimental to production quality poses several difficulties, we are trying to plan
for technology transition activities. Most of the industrial consortium members
are involved in this planning. Although producing and maintaining production
quality versions is infeasible for the university members of the consortium, it is
our expectation that industrial members may choose to fulfill this role. Other
organizations, whose primary charter is technology transfer, may also choose to
become involved in these activities.

The idea of forming a research consortium was under discussion among the
Arcadia principals for some time before the first meeting was actually held and
members agreed to work together on this project. Before that, all of the members
had had previous research interactions with each other and some had worked to­
gether on projects in the past. Most notably, all the members continue to share a
common world view. This view is founded on the belief that software development
environment research needs to be expanded well beyond the domain of program
development tools. In particular, consortium members emphatically agree on the
crucial importance of integration, extensibility, and powerful analysis tools appli­
cable throughout the software development process. This background has enabled
the consortium to function effectively, with no external influence necessary.

Members of the consortium meet about every three months to distribute plans
and share ideas. These meetings lead to in-depth discussions and evaluations of
the work that each group is doing. Members find that this immediate feedback, al­
though often critical, provides new insights into the problems and positively affects
their research. Members are committed to sharing software and expertise. There
have even been some short-term exchanges of personnel between organizations.

Working in a consortium adds overhead to the development process; ideas
must be discussed until there is some consensus and software must be developed
to conform to the dictates of the architecture. On the other hand, members of the
consortium can build upon each other's work. In fact, one of the primary motiva­
tions for forming a consortium was recognition of the huge software development
effort that was involved in building even a prototype environment. Basically, be­
cause of the sharing of ideas, expertise, and software, we expect the results of the
consortium effort. to.be greater than the sum of the contributions each organization
could make separately.

5 Acknowledgements

There is hardly a single aspect of Arcadia which has not been shaped by partici­
pants from each instifation in the Consortium. Over the past year the following

24

people have been involved in the design of Arcadia. At UCI: R.W. Selby, C.
Snider, C. Kelly, I. Shy, S. Sykes, R. Schmalz, T. Nguyen. At Colorado: D.
Baker, D. Heimbigner, G. Clemm. At Massachusetts: A. Wolf. At Aerospace:
A. Brindle, R. Cowan, D. Martin. At TRW: F.Belz, B. Boehm. At Incremental
Systems Corporation: D. Fisher. We also readily acknowledge the contributions
of S. Squires.

25

References

[ADWR86] G. S. Avrunin, L. K. Dillon, J.C. Wileden, and W. E. Riddle. Con­
strained expressions: adding analysis capabilities to design methods
for concurrent software systems. IEEE Transactions on Software En­
gineering, SE-12(1):(to appear), January 1986.

[BPS*84] B. Boehm, M. Penedo, E. Stuckle, R. Williams, and A. Pyster. A
software development environment for improving productivity. IEEE
Computer, 30-42, June 1984.

[BTM85] Anne F. Brindle, Richard N. Taylor, and David F. Martin. A De­
bugger for Ada Tasking. Technical Report ATR-85(8033)-1, The
Aerospace Corporation, El Segundo, CA, 1985.

[BW83] Peter Bates and Jack C. Wileden. High-level debugging of distributed
systems: the behavioral abstraction approach. Journal of Systems
and Software, 3:255-264, 1983.

[C085] Geoffrey M. Clemm and Leon J. Osterweil. The integration of Tool­
pack/IST. In IF IP Working Con/ erence on Problem Solving Environ­
ments for Scientific Computing, IFIP, Sophia-Antipolis, France, June
1985. To appear.

[Cou85] Joelle Coutaz. Abstractions for user interface design. Computer,
18(9):21-34, September 1985.

[CPRZ85] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A
comparison of data flow path selection criteria. In Proceedings of the
Eighth International Con/ erence on Software Engineering, pages 244-
251, ACM Sigsoft, London, August 1985.

[GR83] Adele Goldberg and David Robson. Smalltalk-BO: The Language And
Its Implementation. Addison Wesley, 1983.

[HM85] Dennis Heimbigner and Dennis McLeod. A federated architecture for
information management. ACM Transactions on Office Informati"on
Systems, 3(3) :253-278, July 1985.

[Ins85] Inside Macintosh. Apple Computer, Inc., Cupertino, California, pro­
motional edition, March 1985.

26

[Kle85] Raymond 0. Klefstad, II. Uniform User Interface for a Programming
Environment. PhD thesis, University of California, Irvine, Depart­
ment of Information and Computer Science, 1985. In preparation.

[LvH85] David C. Luckham and Friedrich W. von Henke. An overview of
ANNA, a specification language for Ada. IEEE Software, 2(2):9-22,
March 1985.

[Mye83] Brad A. Myers. Incense: a system for displaying data structures.
Computer Graphics, 17(3) :115-125, July 1983.

[OF76] Leon J. Osterweil and Lloyd D. Fosdick. DAVE - a validation, er­
ror detection, and documentation system for FORTRAN programs.
Software - Practi'ce & Experience, 6:4 73-486, 1976.

(Ost83] L. J. Osterweil. Toolpack- An experimental software development
environment research project. IEEE Transactions on Software Engi­
neering, SE-9(6):673-685, November 1983.

[SIK*82] David Canfield Smith, Charles Irby, Ralph Kimball, Bill Verplank,
and Eric Harslem. Designing the Star user interface. BYTE,
7(4) :242-282, April 1982.

[Tay83] Richard N. Taylor. A general-purpose algorithm for analyzing con­
current programs. Communicati'ons of the ACM, 26(5) :362-376, May
1983.

[Tay84] Richard N. Taylor. Debugging real-time software in a host-target
environment. Technique et Science Informatiques (Technology and
Science of Informatics}, 3(4):281-288, 1984.

[Tei84] Warren Teitelman. A tour through Cedar. In Proceedings of the
7th Internati'onal Con/ erence on Software Engi'neeri'ng, pages 181-
195, Orlando, FL, March 1984.

[Tic82] . Walter ·F. Tichy. Design, implementation, and evaluation of a revi­
sion control system. In Proceedings of the Sixth Internati'onal Con/ er­
ence on Software Engi'neering, pages 58-67, Tokyo, Japan, September
1982.

[TM81] W. Teitelman and L. Masinter. The Interlisp programming environ­
ment. Computer, 14(4) :25-33, April 1981.

27

[TS85] Richard N. Taylor and Thomas A. Standish. Steps to an advanced
Ada programming environment. IEEE Transactions on Software En­
gi'neering, SE-11(3):302-310, March 1985. (Appeared earlier in Pro­
ceedings of the Seventh International Conference on Software Engi­
neering, Orlando, March, 1984).

[vHLK085] Friedrich W. von Henke, David C. Luckham, Bernd Krieg-Brueckner,
and Olaf Owe. Semantic specification of Ada packages. In John G. P.
Barnes and Gerald A. Fisher, Jr., editors, Ada in Use: Proceedings
of the Ada International Con/ erence, pages 185-196, Association for
Computing Machinery and Ada-Europe, Cambridge University Press,
Paris, May 1985. Also available from Cambridge University Press as
a volume in the Ada Companion Series.

[WCW85] Alexander L. Wolf, Lori A. Clarke, and Jack C. Wileden. Ada-based
support for programming-in-the-large. IEEE Software, 2(2) :58-71,
March 1985.

[WCW86] A. Wolf, L. Clarke, and J. Wileden. GRAPHITE: a meta-tool for
Ada environment development. In Second Ada Applicati'ons and En­
vironments Con/ erence (submitted}, 1986.

28

