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THE PHYSICS OF FLUIDS VOLUME 2, NUMBER 1 JANUARY-FEBRUARY, 195!> 

Theoretical Structure of Plasma Equations* 
M. N. RosENBLUTH AND N. RosTOKER 

John Jay Hopkins Lahoratory for Pure and Applied Science, General Atomic Division of General Dynamics Corporation, 
San Diego, California 

(Received October 27, 1958) 

In high-temperature plasmas, collisions are very infrequent. Thus the charged particles travel 
on independent orbits determined by the electromagnetic field. At first sight this would seem com­
pletely different from a conventional fluid where particles are closely hemmed in by their neighbors. 
However, there can exist collective modes of motion in which the particles interact with each other 
by altering the fields. 

In this paper a new method is developed for the solution of the linearized transport equation. 
By facilitating direct use of the properties of particle orbits, a considerable simplification is achieved. 
In particular, a variational expression is derived for determining stability which is rigorous in the 
limit of small Larmor radius. 

1. INTRODUCTION 

I NVESTIGATIONS of the stability of a fully 
ionized plasma are usually based on the magneto­

hydrodyna.mic equations• (M-H approximation). 
The essential features of these equations are the 
assumptions of scalar pressure P and an adiabatic 
invariant 

(1) 

Chew, Goldberger, and Low2 have proposed a 
different approximation (C-G-L approximation) in 
which the pressure is not scalar and there are two 
adiabatic jnvariants 

d (Pi.) 
dt p,.B = O, (2) 

:t (~1~2) = 0. (3) 

P 1 and Pi. are pressures parallel and perpendicular 
to the direction of the magnetic field B. Neither the 
accuracy nor t he conditions for the validity of these 
approximations are completely understood. 

The transport equation provides a complete 
description of the plasma and a deductive basis for 
approximate descriptions. The M-H and C-G-L 
approximations consist of taking moments of the 
transport equation. Each moment equation is a 
differential equation that involves only macroscopic 
variables. The adiabatic invariants are introduced 
arbitrarily to terminate the set of moment equations. 

* Research on controlled thermonuclear reactions is a 
joint program carried out by General Atomic and the Texas 
Atomic Energy Research Foundation. 

1 M. .Kruskal and M. Schwarzschild, Proc. Roy. Soc. 
(London) A22J, 348 (1954); M. N. Rosenbluth, "Stability 
of the pinch," Los Alamos Scientific Laboratory Rept. 
LA-2030 (April, 1956). 

1 Chew, Goldberger, and Low, Proc. Roy. Soc. (London) 
236, 112 (1956). 
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To investigate the stability of a particular plasma 
configuration, the moment plus adiabatic invariant 
equations are solved subject to suitable boundary 
conditions. 

The essential feature of the present approach is 
that the transport equation is solved at the outset 
to give the perturbed distribution function in terms 
of the perturbed field variables. The macroscopic 
variables calculated from the solution must then 
satisfy Maxwell's equations. In the limit of small 
Larmor radius, these become integro-differential 
equations. This approach leads to more complex 
macroscopic equations, but it has the virtue of being 
correct when the M-H and C-G-L approximations 
are not. 

A convenient way of t reating stability problems 
is to calculate the change in energy which results 
from a small perturbation. In the M-H approxi­
mation this method leads to a variational principle.3 

The energy change calculated by the present 
procedure of solving the transport equation also 
will be shown to give a variational principle. It is 
bounded below by the M-H energy change and 
above by the C-G-L energy change. 

2. SOLUTION OF THE TRANSPORT EQUATION 

At sufficiently high temperatures the plasma can 
be described by the collision-free transport equation' 

of, F, iii+ v·Vf, + m,"V.f, = 0, (4) 

where 

a Frieman, Kruskal, Kulsrud, and Bernstein, NY0-7315, 
Project Matterhorn Rept. PM-S-25, (Princeton University, 
Princeton, New Jersey, March, 1957); Proc. Roy. Soc. 
(London) (to be published). 

• L. Spitzer, Jf., Physic8 of Ji'1.dly Ionized G<Ulea (Interscicnce 
Publishers, Inc., New York, 1956). 
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F, = q,(E + ~ v x B ). 

E and Bare macroscopic fields that satisfy .Maxwell's 
equations. They are produced by the charge density 

and the current density 

j = I,: q; J f ;V d3v. 

f ,(x, v; t) is the distribution function for the ith 
particle species. (For present purposes, i = 1 for 
electrons and i = 2 for ions; the subscript i will be 
deleted except where it is essential.) 

The stationary state whose stability is to be 
considered satisfies 

V• V/o + _!}_ (v x B)-V,/0 = 0. (5) 
me 

The linearized time-dependent equation that de­
termines the stability of this state is 

a 
at of+ v·Vof 

+ ..!L (v x B)·V,o/ = l>F·V.fo (6) 
m.c m. 

This equation describes both the dynamical and 
statistical aspects of the problem. 

The dynamical aspects of the stability problem 
have been clarified by a treatment5 which proceeds 
from the solution of the orbit equations 

~~; = ! ( E + ~ v' x B), 
dx' - - v' dt' - . 

(7) 

To calculate macroscopic variables, such as charge 
density, current density, etc., it is essential to know 
the weighting ftmction for the particles. A more 
convenient treatment of the statistical aspects of 
the problem based on a solution of the transport 
equation has been given by Chandrasekhar, 
Kaufman, and Watson.6 

In the present approach, Eq. (6) is solved by 
making time integrations along the unperturbed 
orbits. This procedure does not emphasize one of the 
dynamical or statistical aspects at the expense of 

$ M. N. Rosenbluth and C. Longmire, Ann. Phys. (N. Y.) 
1, 120 ( 1957). 

•Chandrasekhar, Kaufman, and \Vatson, Ann. Phys. 
(~. Y.) 2, 435 (1957). 

the other. Equation (6) can be written as 

d 
dt c5/[x(t)v(t); tJ = 

so that 

oF· V ,/o 
m 

1 1··-· of(x, v; t) = - m , .• ,. (oF·V,fo) dt' + of(to). (8) 

The integrand must be evaluated along the un­
perturbed orbit at x'(x, v; t'), v'(x, v; t'), where these 
functions satisfy 

dv' = _!}_ (v' B) 
dt' me x ' 

(9) 
dx' 
dt' = v', 

and the initial co11ditiom; x'(x, v; t) = x; v' 
(x, v; t) = v. 

The relevant physical problem defined by Eq. 
(8) is an initial-value problem. An arbitrary initial 
displacement is made from the state described by 
/ 0, and one wishes to know the subsequent time 
evolution. This type of problem has been solved by 
Laplace transforms. 7 The equations for the Laplace 
transforms of the init,ial-value problem are the same 
as for an eigenvalue problem where of = f, (x, v) · 
e"', c5B = B, (x) ep', etc., except for some inhomo­
geneous terms from the initial conditions. The 
Laplace transforms will have poles at the eigen­
values p = p,,. There are no additional singularities 
in which p has a positive real part. The significant 
time dependence of the solution of the initial-value 
problem will be of the form t' e''·', where l is the 
order of the pole at p = Pn· For stability consider­
ations it is sufficient to know whether p,. has a 
positive real part so that we shall only consider the 
eigenvalue problem. As long asp has a positive real 
part, there are no convergence difficultie:; in Eq. 
(8). Furthermore, in this case, the a.rbitrary function 
of(t0) in Eq. (8) drops out if tv ~ - oo. 

For an unperturbed magnetic field B(x) that is 
not constant, Eqs. (5) and (9) cannot be solved 
exactly. The appropriate expansion parameters are 
X, = a;/L where a, = m,vl.c/ q,B are the radii of 
gyration and L » a, is a characteristic length of the 
problem. (For example, L = B/IVBI.) In the 
calculation of of there are the additional parameters 
p/ w, where w = qB/ mc is the cyclotron frequency, 
p/ wv, where w,, = (47rNq2 /m)i is the plasma 
frequency, and LD/L, where Ln = (0/ 4·1rNq

2)t 
is the Debye length. These parameters are assumed 

1 L. Landau, J. Phys. U.S. S. R 10, 25 ( 1946). 
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to be of the same order as X. Each parameter is 
proportional to q - 1

• 

For Maxwell's equations we need to compute 
oj, the perturbed current. Because oj is proportional 
to qof, it would seem that of must be calculated to 
-0r<ler x· ~ 1 to determine oj to order X". However, to 
<:alculate t.he pressure tensor 

oP = ~ m; f vvof, d"v (10) 

to order >-." requires of only to order X". As any 
solution for of must satisfy the moment equat.ion 

pp.,oV = - V· oP + ~ [oj x B + j x oB], (11) 

oj x B can be inferred from oP. This is clearly 
Simpler than the direct calculation Of oj.6 

Our procedure is then as follows: oE is to be re­
garded as the fundamental variable. oB can be 
expressed in terms of it by l\Iaxwell's equations. 
The distribution function is then calculated by Eq. 
(8) and the charge density (or alternately the 
eomponent oj11 ) is computed directly from it in 
terms of oE. The two components of current perpen­
dicular to B are given by Eq. (11 ). The Maxwell 
equations V x oB = (47r/ c) oj and V · oE = 47rop. 
now provide the system to be solved for oE. (It is 
often convenieut to use the latter equation to 
eliminate oE1,.) Equat ion (8) will be solved to order 
x0

, so that the resulting equations should be anal­
ogous to magnetohydrodynamics in which the 
charge q does not appear. 

We now return to a brief disl'ussion of the equi­
librium state. 

To solve Eq. (5) it is convenient to use a local 
cylindrical coordinate system with the z axis in the 
direction of B = Bn. A solution of the form 

fo = f(x, v) + 'Ag(x , v) + O(A.2 ) 

is substituted into 

dfo 
V · V fo + w d</> = 0. 

Coefficients of >-." are set equal to zero. From the 
coefficient of X0

, at / acp = 0. Therefore, f = f(x, v.1., vu). 
For present purposes we assume f = f(x, 11

2
), i.e., an 

initially isotropic pressure tensor. From the co­
efficient of A. it follows that 

n·Vf = 0 (12) 

and 

fo = f(x,v2
) + !(v·n >< V f) + 'Ah(x;v.1.2 ,vu). (13) 

w 

The solution of Eq. (9) is only required to order 
x0

• To this order, the particle undergoes circular 
motion about a guiding center that follows a field 
line, i.e., 

v' = V 11n + V.1. [e1 cos J'' wdt" 

where 

V 2 = v2 
- ~ µB 

I m ' 

2 2 B v.L = -µ' rn 

e, = Ri(n· V )n and e2 = n x e1. 

(14) 

The magnetic moment µ = rn V .1. 
2 / ZB and v2 are 

constants of the motion.~ If B is constant along the 
orbit, V .1. = v.1. and Vft = vu are constants. Other­
wise, the particle orbit may have turning points 
because V r. = 0 when 

(15) 

of is calculated by substituting Eq. (13) into Eq. 
(8); with the assumed exponential time dependence, 

-of=EJ''•' (v' x V x o¥J.· (B x:s!f)dt' 
p , . __ .,, B 

+ c J,._, oE·B : Vt dt' 
,. __ .,, B 

+ ~ J ,._, (v' · oE) a!) dt' 
1n ,. __ .,, av ( 

+ >-. .!L J ,._, (n· oE) ah dt' + O(>-.) (16) 
m t' e - m dVu 1 

where 

~)< = :!2 + ~ (v'·n x V a~!) 
is the value of af / av2 at the guiding center and 
remains constant during a Larmor period. As 
of rv [(oFu/'A) + oE.L] [l + 0(>-.) + ···],the charge 
density will be op. rv [l/L] [(oEd >-.2) + (oE.L/ A.)] 
[1 + O(X) · · ·] » V • oE. Therefore, oE11 / oE.1. rv A.. 
The physical reason for this is that oE11 can cause 
a large charge density. If it is to be slowly varying 
it must be small. oE .L cannot produce a correspond­
ingly large charge density because the oE.1. x B 
drifts are independent of the sign of q. It is con­
venient t o introduce a two-component displacement 
vector ol; = l;e"' such that 
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oE = E B )( o{ + oE~ . (17) 
c 

Bearing in mind the discussion in the foregoing, 
we tren.t oEn as of order M~. It is clear that the 
component of { parallel to the field B is irrelevant 
and we set it equal to zero in the subsequent algebra. 

In the first term of Eq. (16) 

E. (v' )( v )( oE)-(B )( V f) 
P B2 

= ~11 [V x (o~ x B)]- V f + O(X). 

From the vector identities 

V·[(o~ x B) x V t] 

= Vf·[V )( (o( )( B)] - (o( )( B) ·V )( Vt 

= v. [B(o(· V f) - o((B· V t)] 

= B·V(o~·Vf) + o{·VfV·B 

and t he relations 

V ·B = B· V t= V x V/ = 0, 

the first term is reduced to 

In the second term 

(oE·B x V t) 
c B2 = p(n x o{)-(n x V t)= p(o{·Vf); 

after an integration by parts, the second term is 

o(·Vf - t~~I"' V,n·V(o(·Vf) dt'. (16.2) 

In the third term 

v' ·oE = 1!. (v' ·B x o() + v'·oE1 c 

mp ( dv') = q o(· dt' + v'·oE 11 ; 

after an integration by parts, the third term is 

at j '' · I 
2p(o{·v) av2 - 2p ,. __ .., [v'·(v'·V)o~ 

+ p(o~ ·v')] ·!J} dt' 

+ ~ {~~' .. (v' ·oE11) ~). dt' . 

The integrands next must be averaged over a Lannor 
period. af /(av2

). is constant during this time to O(>.), 

and the oscillatory parts of v' in Eq. (14) give zero 
except where a product cos2 or sin2 obtains. Thus, 
averaged over a period, we see that 

11 v/ 1 + (v 2 V./\__ 
vv =2 u-2;nn; 

I is the unit dyadic, and n the unit vector in the 
direction of B. The result for the third term is 

-p {~~
1 

.. [(2v1
2 

- V/)n -(n· V )o{ 

+ VJ.
2
V·o{] :~ dt' + 2p(o{·v) 

0
:!. 

+ 2q j' '-I v,oE, at2 dt'. 
m I' • -«> av 

The integrations now are to be carried out along 
the zero-order particle paths dx'/dt' = Vun. As 
df/dt' = V,n · V f = 0, of /av2 can be taken outside 
the integrals. 

The result for the distribution function is 

-of= o(·Vf + 2p(o(·v) a~ av 

+ 2q a~ f 1·-• V
11
0E

11 
dt' 

m av •'--«> 

af Ji· -· - p av2 ,. __ .., [(2V11
2 

- VJ.2)n ·(n·V)o{ 

+ v J. 2v. o{J dt' + o(x) . . . . c1s) 
Since oB = V x o{ x B, the lines of force move 
such that each point on a line is displaced by the 
local value of o{ which is perpendicular to the line. s 

Equation (18) is of the form - of = o( • V f + 0v • 

V .f. This means that particles are all displaced by 
the local value of o{ so that they remain "frozen" 
on the line of force. 

A particular particle is identified by the fact that 
it has velocity v and position x at time t. The zero­
order particle orbit x'(x, v; t') simply follows a field 
line B which forms a closed loop. The orbits will 
always be at least quasi-periodic in a finite system. 
That is, they will return a.rbitrarily close to the 
starting point. Thus, 

x'(t' + T) = x'(t'), (19) 

where 

1
1

' dl 
,,. = 2 

1, I v~ 1 · 

8 W. A. Newcomb, Princeton University Observatory, 
Tech. Rept. No. 1 (1955). 
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l is a coordinate that measures the length along the 
particle orbit. For particle orbit.a that have no 
turning points, l, and 4 are determined by B(x). 
They depend on x, but not on v. (4 - l,) is the 
distance around the closed loop that brings one 
back to the same point, e.g., once around a torus. 
If the particle orbit has turning points, Z1 and 4 are 
their positions. These quantities may be determined 
by solving Eq. (15). They depend on x and the 
velocity direction cos 8 = v • n/v, but not on the 
magnitude of v. 

The integrals in Eq. (18) can be reduced to integals 
over a single period. That is, if w(t' + r) = 'It(t'), 
then 

f l ' •I 'It(t')e"'' dt' ,; 1 
- PT f ,._, 'It(t')e"'' dt'. 

t'- - • 1 - e t ' •t-T 

The limiting forms of Eq. (18) are easily obtained 
for the c.ases pr « 1 and pr » l. They are as follows: 

for pr« I , 

2 af J 1 ' -of = (· Vf - - -, [(2V1
2 

- V./)n-(n· V )( 
r OV 1, 

<ll' + V .L 
2
V • (] IVnl + O(pr) · · · (20) 

for pr» 1, 

- of = o(· Vf + 2p(o~ · v) :!z - [(2v12 
- v/)n · (n· VH~ + v/V · o~) :!2 + o(;J + O(X). (21) 

In both cases the equation V · oE = 41rop. shows The result for the pressure tensor is 
that the contribution of the first integral in Eq. 
(18), while of order x0 , is of higher order in pr and oP = -(~ · VP)J + oP.Ll + (0P1 - oPJ.)nn, (24) 

I / pr, respectively, and may be omitted. where 

3. MARGINAL STABILITY EIGENVALUE PROBLEM 

oE satisfies Maxwell's equation 

B )( v )( v )( oE + (~)2B )( oE 

- ~(•' B) - c2 11J x , (22) 

where oj x B is related to the pressure tensor by 
Eq. (11). The pressure tensor can now be calculated 
to order pr by substituting Eq. (20) for of into Eq. 
(10). It is convenient to introduce as velocity 
variables the constants of the motion, v2 and 

is the unperturbed pressure, 

15 2 J"-118
cx> J(x, a)a da 

oP .L = -4 PB (x) a-o K(x, a)[l - aB(x) J4 ' 

(24.1) 

and 

oPu = _ 15 PB(x) f a-11s1x1 J(x, a)[l - aB(x)Ji da. 
2 o•O K( X, a) 

(24.2) 

To change from the independent variable oE to 2µ 1 - cos2 O 
a = mv2 = B(x) 

In these variables 

-•f = r.vf - 2 2 of J(x,a) 

(23) o~, we can substitute oE = p(B x <>f.) / c + O(X) 
and oB = v ·X (of. )( B) + O(X) into Eq. (22). 
For the marginal stability case p ~ 0, the eigen­
value equations are 

" "' v 0v 2 K(x,a)' (20.1) 

where 

f l, ( x,et) {[ 3 } 
J(x, a) = 1 - - aB(l') -(n· V)~ 

l.Cx.a) 2 

aB(l') } dl' 
+ -2-V·~ [l -aB(l')J' 

and 

J
l ,(X,a) dl' 

K(x, a) = i.1x,cr> [I - aB(l')];· 

B x V x V x (B x () - (V x B) x V 

x (B x ~ = 41rV • oP. (25) 

There are two equations for the two components 
of ~- In the case of a cylindrical pinch, n • V B = O 
everywhere, and none of the particle orbits has 
turning points. For displacements, f. = ~k e;ki, 

J(x, a) = 0 unless k = 0. For k r! 0, oP reduces to 
a scalar so that magnetohydrodynamics is valid. 
In the case k = O, singularities develop in the 
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.equations. 9 A complete treatment of this would 
require ca.rrying the expansions to higher order in A.. 

4. ENERGY PRINCIPLE FOR STABILITY PROBLEMS 

The eigenvalue equations for the marginal 
s tability case can be derived from a varational 
principle. The appropriate functional is the energy 
·change that results from the perturbation 

w = j {oE· oj + I 0Bl
2

} dax. (26) 
2p 8'1r 

This can be expressed as a functional of ~ using 
Eqs. (11) and (24). In the marginal stability case 

W = W0 + W,, (27) 

where 

Wo = ~ j {-~· V(~·VP) + ~ j·~ x V 

x (~ x B) +~'If JV x ~ x Bl2
} d3x (27.1) 

.and 

W, = -~ j {(oPm - oPJ.)n 

· (n·V)~ + oPJ.V·~l d3x. (27.2) 

A more explicit form for W, is obtained by substi­
tuting oP,; , oP J. from Eqs. (24.1) and (24.2), and 
-carrying out the volume integration over flux tubes; 
i.e., d3x = dl d<f.>/ B(l). <f.> is a coordinate which labels 
a given flux tube. d<f.> = B dS indicates the amount 
-0f flux contained therein. It is a convenient variable, 
as a particle orbit lies in a definite flux tube. The 
-order of integration of the variables l,a can be 
interchanged, i.e., 

J f 
<r• l / /1 ( i:) f <x•l / 11., 

1
1 ,(~.a ) 

dl da ~ da dl, 
• a•O a =O /, (tj.,a) 

(28) 

where Bm(<l>) is the minimum value of B for a 
particular flux tube. The resultant expression for 
W, is 

} i:: J f a ~ ltB .. 
W, = 

4
° P d<f.> aPO da [J(cf>, cx)]2/ K(<l>, a). 

(27 .3) 

W 1 is clearly a positive definite quantity. The term 
W 0 obtains in the M-H approximation as well as 
the C-G-L approximation. The difference between 
these approximations and the present result, which 

9 M. N. Rosenbluth, "Theory of pinch effect-stability 
.and beating," Second Geneva Conference on the Peaceful Uses 
~! At.omic Energy (1958), Paper No. 1074. 

is correct to order A., lies entirely in W 1 • The con­
dition that W be a minimum with respect to arbi­
trary variations in ~ turns out to be just that Eq. 
(25), the zero frequency equation, is satisfied. Thus, 
if Wmio = 0, the stability is marginal, and we can 
conclude that w min > 0 is a necessary condition 
for stability. 

A brief outline of the proof for sufficiency will 
now be given. Again we consider the change in 
energy which would result from a given perturbation 
oE with an assumed frequency p. In general, p may 
be complex, but has a positive real part. The energy 
change is then found to have oscillatory parts as 
well as a monotonically changing part. In order for 
a solution to exist, both parts of the energy change 
must vanish because there is assumed to be no 
external energy source. We restrict om attention 
to the monotonically changing part 

W'= J {[i [oE·o~ : ;~*·ojJ 
+ 4 (OB ~!B*)} d~x. (29) 

As in the previous case, we use Eq. (11) to find 
ojJ. • oju, oV, and oP are calculated by taking the 
appropriate moments of Eq. (18). The result for 
W' is of the form 

2W' = Wo(~, ~*) + W1 (~, ~*) + p*p J ~m ~* • ~ d3x 

(29.1) 

The first two terms are just the zero frequency 
limit, i.e., Eq. (27). The third term is a positive 
definite kinetic energy. The fourth term. is a com­
plicated correction to the potential energy. The 
major part of the proof consists in showing that 
Wi' > 0 for any 1;, unless p = 0 and oEn = 0, in 
which case Wi' = 0, by definition. After introducing 
the variables cf> and a as before, W,' is expressed in 
the form 

Wi' = j d~ j dv J da { ' dl 

·{ X*(a, l , v) f ~ -m Y(a , t, v)e~' dt 

+ (complex conjugate)}. (29.2) 

If we fix our attention on a particular v and a, there 
is a well-defined relation between t and l. We may 
then write X and Y as Fourier series int because the 
orbits are periodic. The first two integrations can 
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be performed explicitly, and the result displayed in 
terms of the expansion coefficients for ~ and E . In 
this form it is straightforward to show that the 
contribution from all elements dv d~ is positive. 

We may therefore conclude that if Wo + W1 > 0 
for all ~. then so is W', and no instability is possible. 
Thus the condition W min > 0, where Wis given by 
Eq. (27), is a necessary and sufficient condition for 
stability. 

S. RELATION TO APPROXIMATE METHODS 

In this section we show that Eq. (27) for W, 
which is correct to order >.., is bounded below by the 
M-II approximation and above by the C-G-L 
r1pproximation. Physical reasons for t his are given. 

Lower Bound of W 

According to the Schwarz inequality 

J (~)2 K da ~ [J J da T / J K da. 

Therefore, a lower bound for 1V 1 is 

_ .!.Q J {[L~~iis. J (<f>, a) da Jl 
w L - 4 p (/<f> "-1111. ~. 

J".o K (<I> , a) da J 
(30) 

It is now possible to perform the a integra.tions. 
The result is discussed below. For the magneto­
hydrody11amic approximation3 

where W 0 is formally the same as Eq. (27.1) and 

In this c·ase ~ is defined by oV = p~, where oV 
is the macroscopic velocity. Therefore, ~ has three 
components, whereas the ~ in W has only two 
components. However, 1V0 is stationary with 
respect to variations in ~ , and we may choose ~ so 
that lV2 is also minimized. The condition for this is 

{, '· dl If'' dl V · ~ =. ,, V ·f1. B(l) 1, B(l)' (32) 

which is constant along a flux tube. By substituting 
this value for V · ~ into Eq. (:31), it can be sho"·n 
that W2 = (3-y/ 5)W,,. For :i monatomic gas, 
'Y = 5/:3, so thiit 

w ~ W.M H • (33) 

Upper Bound of W 

This time the Schwarz inequality is applied te> 
Eq. (27 .3) in the form 

[J(<I>, a)J2 
K(<I>, a) 

ff. 3 J aB(l') }
2 

!
1, 1.,> lL] -2aB(l1

) n -(n ·V)~+-2-·~· 1 

~ Ida> (1 - aB(l')Jt dl ·· 
(3-t) 

If the right-hand ::iide of this inequality is sub­
stitu ted for J 2/K in Eq. (27.3), the a integrations 
can be carried out and we obtain an upper bound 
for w.: 

Wu= 4 J P[3(n ·n · V~)2 - 2(n·n·V ~)V· ~ 

+ 2(V · ~)2] d3x . (35) 

When w, w,. » p » 1/ r , Eq. {21) i:; applirable for 
of. The pressure tensor has the same form as Eq_ 
(U ), with 

oP J. = P[n ·n· v o~ - 2V · o~], 

oP = -P(2n·n · Vo~ + V · o~l 
(3li) 

By using Eq. (27.2), we find that in this case the 
potential energy change is W = W 0 + IV c,·. [Equa-· 
tion (26) includes a term p,.p2~2 , which is clearly 
the kinetic energy; it vanishes in t he margin.al 
stability case mid is omitted here.) T hus an upper 
bound for the marginal stability criterion is just the 
potential energy change for large p. T he upper 
bound also has a direct interpretation in terms of the 
0-G-L approximation. Equations (2) and (3) are 
differentiated and linearized, 

B
2

3 fpoP + (oV·V )PJ + 
2~ B·[poB + oV·VBJ 

Pm p,. 

3B2P 
- - . (pop .. + oV ·V p .. J = o. (37} 

p ... 

1 p 
- [poPJ. + oV·V P) - w B·[poB + oV·VBJ 
p,.B p .. 

p 
- -rB [pop .. + oV· V p .. J = 0. 

p,. 

After substituting oV = po~, oB = V x o~ x B, 
a.nd pop.,. + oV · V p,. = - p,. V • oV, Eq. (36) 
is obtained for oP J. and oPm. However, in the C-G-L 
theory these expressions contain a ~1 • But oE and 
oB are unaffected by any component of o~ along the 
field lines, and the motion of particles is due entirely 
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to these fields. Therefore, a more reasonable version 
of the C-G-L theory would appear to be obtained by 
<:onsidering ~~ to be zero in Eq. (36). With this inter­
pretation the upper bound Eq. (35) agrees with 
C-G-L. 

6. PHYSICAL INTERPRETATION 

The potential energy of Eq. (27.3) can be given a 
more transparent form. To this end, we calculate 
the change in kinetic energy T, which a particular 
particle will experience from the perturbation, by 
making use of the invariance of the action integral'~ 

f l, fl ' [2 Jt oA = o Vu dl = o - (T - µB) dl = 0. 
1, 1, m 

(38) 

The integration is carried out along the perturbed 
-0rbit rather than the unperturbed one as heretofore. 
µ is still a constant of the motion, 5 but T is not. 

After expressing the change in B and dl on the 
moving line in terms of ~. one finds for the change in 
kinetic energy of a particle 

oT = 2T J(<I>, a)· 
K(<f>,a) 

After some algebra, Eq. (27.3) becomes 

:E 
all 

pattiehe 

(39) 

(40) 

From Eqs. (30) and (31) we see that the M-H 
.approximation corresponds to 

(0T)2 

T I 
(41) 

where the brackets indicate an average with respect 
to a over all particles of energy T on a line of force. 
Such an average is of course inherent in a fluid-type 
equation of state where all the particles on a line are 
supposed to remain in thermal equilibrium. 

Similarly, the C-G-L upper limit can be written rui 

5 Wu= -
4 :E 

all 
ganicl e a 

(0Tu)2 

T 
(42) 

where oT u is the energy change predicted by using, 
instead of Eq. (38), the equation 

o(V1 dl) = 0. (43) 

In other words, the energy change for a particle at a 
particular point on a field line is calculated as if the 
fields were behaving all along its orbit just as they 
are locally. This provides a physical understanding 
of the meaning of the neglect of the third-moment 
pressure transport terms, which is the essence of the 
C-G-L theory. This approximation should agree 
with the high-frequency limit, where the past 
history is forgotten. 

Thus, in the correct theory, one must average 
along each particle's orbit and then sum over all 
particles. These operations are replaced by a double 
average in the M-H approximation and by a double 
sum in the C-G-L approximation. In view of this 
interpretation, the inequalities which we find are 
not surprising. 10 
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10Note added in proof: An alternate method of deriving the 
energy change W1 due to a slow perturbation (P. -+ O) is to 
calculate /JP J. and aP11 by summing the contnbution from 
all particles as given by Eq. (39). Substituting 8PJ. and IJP1 
into Eq. (27.2) gives our final result of Eq. (27.3) for W1. 
By circumventing the equations of motion this gives a 
much simpler derivation of W1. However, it does not permit 
as strong a formulation of the necessary and sufficient con­
ditions for stability. 

Basically the same results as obtained in this paper have 
been derived independently by Kruskal and Oberman 
[Phys. Fluids 1, 275 (1958)] from a completely different 
point of view, i.e., a thermodynamic argument. 




