
UC San Diego
UC San Diego Previously Published Works

Title
Evaluation of Gaze-to-Object Mapping Algorithms for Use in “Real-World” Translatable 
Neuropsychological Paradigms

Permalink
https://escholarship.org/uc/item/0pn148w5

Journal
Psychology & Neuroscience, 16(4)

ISSN
1984-3054

Authors
Liu, Weichen
Andrade, Gianna
Schulze, Jürgen
et al.

Publication Date
2023-12-01

DOI
10.1037/pne0000324
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pn148w5
https://escholarship.org/uc/item/0pn148w5#author
https://escholarship.org
http://www.cdlib.org/


Evaluation of Gaze-to-Object Mapping Algorithms for Use in 
“Real-World” Translatable Neuropsychological Paradigms
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1Department of Computer Science and Engineering, University of California San Diego, La Jolla, 
CA, USA

2Department of Psychiatry, University of California San Diego, La Jolla, CA, USA

Abstract

Objective: Eye-tracking technology is commonly used for identifying objects of visual attention. 

However, applying this technology to virtual reality (VR) applications is challenging. This report 

analyzes the performance of two gaze-to-object mapping (GTOM) algorithms applied to eye-gaze 

data acquired during a “real-world” VR cue-reactivity paradigm.

Methods: Two groups of participants completed a VR paradigm using an HTC Vive Pro Eye. 

The gazed objects were determined by the reported gaze rays and one of two GTOM algorithms − 

naïve ray-casting (n=18) or a combination of ray-casting and Tobii’s G2OM algorithm (n=18). 

Percent gaze duration was calculated from 1-second intervals before each object interaction 

to estimate gaze accuracy. The object volume of maximal divergence between algorithms was 

determined by maximizing the difference in Hedge’s G effect sizes between small and large 

percent gaze duration distributions. Differences in percent gaze duration based on algorithm and 

target object size were tested with a mixed ANOVA.

Results: The maximum Hedge’s G effect sizes differentiating large and small target objects was 

observed at an 800cm3 threshold. The combination algorithm performed better than the naïve 

ray-casting algorithm (p=.003, ηp
2=.23), and large objects (>800cm3) were associated with a 

higher gaze duration percentage than small objects (≤800cm3; p<.001, ηp
2=.76). No significant 

interaction between algorithm and size was observed.

Conclusions: Results demonstrated that Tobii’s G2OM method outperformed naïve ray-casting 

in this “real-world” paradigm. As both algorithms show a clear decrease in performance for 

detecting objects with volumes <800cm3, we recommend using gaze-interactable objects >800cm3 

for future HTC Vive Pro Eye applications.
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Introduction

Eye-tracking has a long history in neuropsychological research. Eye-movement and eye-

gaze data are often collected to help elucidate mechanisms involved in visual information 

processing and attention (Deubel & Schneider, 1996; Duchowski, 2002; Hoffman & 

Subramaniam, 1995) and has been used as indirect markers of a variety of behavioral 

and psychological outcomes such as covert cognitive processes or traits [e.g., information 

processing patterns, cognitive effort (Ke et al., 2021)], patterns of social media interaction 

(Hussain et al., 2019), clinical diagnoses (Yaneva et al., 2020), and driver drowsiness 

recognition (Zhao et al., 2018). The methods for detecting and monitoring eye movements 

have changed considerably over the previous 100 years or so, with most modern approaches 

relying on video-based systems and computer vision techniques (Clay et al., 2019). Given 

the tremendous technical advances, decreasing costs, and increasing convenience [e.g., 

integrated virtual reality (VR) head-mounted displays (HMDs)], eye-tracking has become 

a fruitful tool for the investigation of wide variety of neuropsychological processes (Clay et 

al., 2019).

Psychological research frequently capitalizes on visual attention metrics to inform on a 

broad set of psychological phenomena. Within these endeavors, mapping eye-gaze fixation 

points to specific semantic or target object in the visual field is a common goal. For example, 

studies on infant language development (Yu et al., 2019), attentional bias to dysphoric and 

threatening stimuli associated with depression and anxiety (Armstrong & Olatunji, 2012), 

and new advances in the use of eye-tracking to improve attention management via live 

biofeedback (Toreini et al., 2020), all employ some form of eye-gaze fixation mapping. 

Gaze-path visualization estimates such as gaze duration towards an object [also referred to 

as dwell time or fixation time (e.g., Liu et al., 2022; Paulus & Remijn, 2021)], number 

of object fixations (e.g., Pluciennicka et al., 2016), orienting bias towards objects [or the 

probability of the initial object fixation (e.g., Liang et al., 2017)], and break frequencies 

[or the number of times distractor stimuli are gazed at (e.g., Qureshi et al., 2018)] are 

conventional measures of interest in these endeavors. These metrics rely on accurate 

identification of the attentional target object, a process termed gaze-to-object mapping 

(GTOM), to ensure their validity. GTOM algorithms attempt to provide information on 

the object of intended attentional gaze (the “what”) despite frequent discrepancies from 

actual recorded eye-gaze location (the “where”). Rapid involuntary eye-movements (i.e., 

micro-saccades), hardware limitations [e.g., accuracy and precision (Valtakari et al., 2021)], 

individual biological differences [e.g., eye shape, color, pupil size and reflectivity (Wang 

et al., 2017)], and imperfect calibration processes all contribute to error in the acquired 

eye-tracking data and complicate successful attentional target object identification.

Paradigms using 2D graphical interfaces, such as traditional free-viewing tasks (e.g., Liang 

et al., 2017), allow for a relatively simple and accurate extraction of GTOM metrics as 

the target stimuli remain mostly static and can be based predominately on aligning objects 

with recorded eye-gaze position in 2D space (Duchowski, 2017; Paulus & Remijn, 2021). 

However, extraction of 2D gaze points cannot be adapted to 3D immersive environments 

(Stellmach et al., 2010). Due to the relative novelty of eye-tracking acquisition in 3D 

applications, the literature remains sparse as to the utility of various GTOM algorithms 

Liu et al. Page 2

Psychol Neurosci. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



under the additional complexities imposed by the 3D environment. For instance, in 3D 

scenarios, gaze may be directed towards multiple objects at various depths, and dynamic 

scene changes and movement of scene objects or cameras can cause occlusions (Bernhard 

et al., 2014). Thus, the identification of “where” (i.e., eye-gaze position) an individual is 

looking becomes less informative (Sundstedt et al., 2013). Ray-casting (Mine, 1995), one 

of the most commonly used object selection algorithm for 3D applications due to its ease 

of implementation (Starker & Bolt, 1990), involves casting rays from the tracked body 

part (i.e., hands or pupils) into the virtual environment and identifying any object that is 

intersected by the rays as a target. However, ray-casting becomes problematic and inefficient 

when the target objects are small, or at least appear small due to distance from the individual 

(Poupyrev et al., 1998; Wang & Kopper, 2021).

Attempts have been made to account for some of the 3D-related complexities in GTOM by 

leveraging the multitude of information contained in the 3D scenes to identify the objects 

of attention. Techniques based on identifying dynamic areas of interest (Bernhard et al., 

2014; Papenmeier & Huff, 2010; Sundstedt et al., 2013), “active” approaches utilizing 

Bayesian inferential models to predict attentional targets under the assumption that gaze 

follows attention (Bernhard et al., 2014), and progressive refinement (including user input) 

to allow for improvements in accurate 3D selection (Wang & Kopper, 2021) have shown 

initial promise in addressing some of these complexities. However, to our knowledge, these 

techniques have yet to be tested within immersive 3D VR environments which are much 

more dynamic, result in increased participant engagement, and encourage head and body 

movement within the scenes. VR environments which attempt to mimic the intricacy of real-

world scenarios further add to this complexity by encouraging additional in-scene movement 

and interaction, making the implementation of these techniques more difficult. Tobii, a 

leader in eye-tracking technology, developed a machine-learned selection algorithm named 

G2OM which is compatible with various publicly available VR headsets (including HTC’s 

VIVE Pro Eye), thus increasing its popularity and potential for use in commercial and 

research settings (Shadiev & Li, 2023). According to Tobii (https://developer.tobii.com/xr/

solutions/tobii-g2om/), their G2OM algorithm has been trained using millions of data points 

and purportedly improves upon naïve ray-casting, yet to our knowledge, has not been 

previously validated in an independent study with eye-tracking metrics derived from a 3D or 

VR environment.

Given the paucity of research on GTOM performance in immersive VR environments, the 

present report sought to analyze the performance of two of the more common GTOM 

algorithms as applied to eye-tracking data acquired from adult community participants 

during a “real-world” VR nicotine cue-reactivity paradigm. We hypothesized that a 

combination of Tobii’s G2OM and naïve ray-casting would perform better than the use 

of naïve ray-casting alone due to Tobii’s inclusion of machine learning which is purported to 

facilitate object selections in the VR environment. Tobii’s G2OM was not tested in isolation 

due to its detrimental effect on paradigm performance. Given the error sources described 

above, we further hypothesized that both algorithms would perform better when the gazed 

objects were larger in size.
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Materials and Methods

VR Hardware and Software

The HTC Vive Pro Eye VR headset (HTC, Taoyuan City, Taiwan) was used to enable VR 

capabilities and collect eye-related data. The headset’s built-in eye tracker allows a trackable 

field of view of 110 degrees in perfect conditions with a frequency of 120Hz and accuracy 

of 0.5 − 1.1 degrees (when the pupils are within a 20-degree field of view). HTC’s SRanipal 

SDK (https://developer-express.vive.com/resources/vive-sense/eye-and-facial-tracking-sdk/) 

was used in conjunction with Tobii XR SDK (https://vr.tobii.com/sdk/) to gain access 

to various data from the eye tracker. The SRanipal SDK provided access to raw eye 

tracking data, such as pupil positions and pupil diameters, while Tobii’s XR SDK provided 

the G2OM algorithm. Two hand-held HTC Vive controllers were also used to allow for 

participant interaction with select scene objects.

NTP Cue VR Paradigm Composition

The Nicotine and Tobacco Product (NTP) Cue VR paradigm was developed by the authors 

for use in an ongoing study on improving the assessment of the nicotine craving construct 

through immersive VR and eye-tracking (Liu et al., 2022). The paradigm was built using 

Unity and contains six different scenes; three scenes include the presence of nicotine cues 

(e.g., tobacco cigarettes, e-cigarettes, lighters) and three scenes include only control cues 

(e.g., cell phone, pens, candy). Across the six scenes, there are 348 interactable objects 

with volume ranging from 2 cm3 to 7720 cm3 (mean=965.00, SD=1729.04). Of those, 230 

objects have a volume of less than 800 cm3. Most of the nicotine related objects belong 

to the small object group. Examples of small and large interactable objects can be seen in 

Figure 1 (large objects are highlighted in green and small objects are highlighted in red).

Study participants are free to move around (via teleportation) within limited areas of 

the scenes and interact with various cue objects within the VR environment using the 

controllers. None of the interactable objects are in motion by default, and only move when 

interacted with by the participant. Participants are instructed to “Just explore everything 

around you until the scene changes.”

Data Collection

During each scene, regular time series data including timestamp and raw gaze intersection 

point (GIP) is collected every 10 milliseconds (100Hz), independent of the frame time. 

Button presses on the controller (including time, button pressed, and object of interaction, 

if applicable) are recorded when they occur. GTOM identified target objects and their 

timestamps are recorded when the eye-gaze switches to a new GTOM identified object.

Gaze Duration Calculation and Statistical Analysis

Two different GTOM algorithms are used in this experiment: naïve ray-casting and a 

combination of ray-casting and Tobii’s G2OM algorithm. The naïve ray casting algorithm 

relies on PhysX to perform ray vs. collider intersection tests. A collider is any object of 

interest in the virtual environment. The invisible ray emanates from the user’s eye position 

and points in the user’s gaze direction (as reported by the HTC Vive Pro Eye). The software 
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then checks for intersections of the ray with a collider in the virtual environment. The closest 

intersected object is then assumed to be the target of the user’s attention.

The combination method was developed as a compromise between performance and 

quality. The G2OM algorithm provided by Tobii’s XR SDK is a machine-learning based 

mapping algorithm that aims to improve small object and fast-moving object tracking 

(https://developer.tobii.com/xr/solutions/tobii-g2om/). The specifics of the G2OM algorithm 

and how it works are not provided by Tobii, except that it is a machine-learned selection 

algorithm that has been trained using vast amounts of data to determine precisely where the 

user is looking within any given scene. For our study, we used Tobii’s G2OM algorithm 

as is, with no ability to modify any parameters or settings provided by Tobii (https://

developer.tobii.com/xr/develop/xr-sdk/documentation/). Due to the complexity of the “real-

world” scenes in the NTP Cue VR paradigm, considering all objects within the scenes 

as candidates for Tobii’s G2OM algorithm detrimentally affects the framerate. Therefore, 

for the combination method, only the interactable objects are considered candidates and 

detected by Tobii’s G2OM. The detection of background and other non-movable large 

objects are then demoted to relying on the naïve ray-casting algorithm. Thus, for each frame, 

given the eye-tracking data from the Vive Pro Eye, if Tobii’s G2OM algorithm detects any 

object of interest, then such object is selected. Otherwise, the naïve ray-casting method 

is used. In both cases, the GTOM algorithms perform target object selection in real-time 

during the task performance.

Given that individuals typically gaze at objects between .09 and .64 seconds prior to directed 

object interaction, with substantial individual variability (Land & Hayhoe, 2001; Lavoie et 

al., 2018), relative performance was estimated as the percent of time an object is gazed at 1 

second prior to each interaction in the scene. For these analyses, each 1 second interval prior 

to an interaction was considered as a trial. To calculate the total gaze duration on the target 

object during each trial, we summed the time differences between frames when the gaze 

was on the target object. This allowed us to estimate the percentage of time that participants 

spent gazing at the target object (identified by ray-casting or combined G2OM) before 

the interaction occurred by dividing the duration of gaze on the target object by the total 

trial duration (1 second). Participants conducted 1391 interactions in total. Out of the total 

number of interactions, the group using direct naïve ray-casting conducted 791 interactions, 

while the group using a combination of ray-casting and Tobii’s G2OM conducted 600 

interactions.

We then applied kernel density estimation over the percent gaze duration data across 

all trials for small objects and large objects separately to get two distributions for each 

GTOM algorithm. The object volume threshold of maximal divergence between the naïve 

ray-casting and combination algorithms was determined by adjusting the threshold of size 

classification to maximize the difference in Hedge’s G effect sizes between the small and 

large percent gaze duration distributions. This allowed us to estimate the volume threshold 

at which the naïve ray-casting and combination algorithms performed the worst in correctly 

identifying target objects; A perfectly precise GTOM algorithm would result in similar large 

and small object percent gaze durations (e.g., Špakov, 2011) as individuals generally spend 

comparable amounts of time looking at any object, regardless of size, before interacting with 
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them in novel environments. Therefore, a discrepancy in estimated gaze duration between 

small and large objects likely signifies inaccuracies in a GTOM algorithm. The resulting 

maximum Hedges g effect sizes differentiating between large and small target objects was 

achieved when the threshold was set to 800 cm3, corresponding to Hedges g’s of 0.37 for 

the naïve ray-casting method and 0.21 for the combination method. Thus, small objects were 

defined as those ≤ 800 cm3 and large objects were defined as those > 800 cm3 for the 

remainder of the analyses.

A mixed ANOVA model was used to test the effect of target object size (within-

subjects effect: small, large) and GTOM algorithm (between-subjects effect: ray-casting, 

combination) on percent of object gaze duration. Demographic variables identified as 

statistically different (via chi-square or independent t-tests) between the algorithm groups, 

namely age and nicotine use days, were entered as covariates of no-interest into a second 

mixed ANOVA model to test the durability of the effects of interest. The threshold of 

statistical significance was set at p <.05 for all analyses. Based on empirical observation of 

participant eye-gaze performance during the task (selection of videos reviewed), all analyses 

were also conducted using a 5-second trial period prior to object interaction to ensure 

variability in eye-gaze duration was captured in the trial period, in addition to the primary 

analysis which used a 1-second trial period prior to object interaction.

Participant Recruitment and Screening Procedures

Participant eye-tracking data for this report was culled from an ongoing study investigating 

eye-tracking indices of nicotine cue-reactivity in daily and non-daily users of nicotine and 

tobacco products. The first 36 subjects from this study were included in the analyses. 

Inclusion criteria for the ongoing study are: 1) ages 18+, 2) non-daily (average use on 4–27 

days per month, past 3 months) or daily nicotine use (average use on 7 days per week, past 

3 months), and 3) nicotine use history ≥1 year. Exclusionary criteria include: 1) medical or 

psychiatric history affecting brain development (i.e., history and/or treatment of neurologic 

disorders, severe head trauma with loss of consciousness >2 minutes, or current severe 

DSM-5 psychiatric disorders other than tobacco use disorders), 2) non-fluency in English, 

3) visual problems that may make task completion difficult (e.g., severe motion sickness, 

blindness, glasses).

Data from 18 of the earlier participants used the naïve ray-casting to perform GTOM, 

while the next 18 participants’ data utilized the combination ray-casting and Tobii’s G2OM 

algorithm.

Sample Demographics

Sample demographic information is provided in Table 1. Overall, the included sample was 

predominantly male (58.3%) and White (66.7%), and 58.3% had no or very limited (one 

time) previous experiences with VR. The average age of the sample was 32.47 years-old 

(SD=15.70) and participants used nicotine or tobacco products on 68.92 of the past 90 

days (SD=30.51), on average. Differences between participants in the two algorithm groups 

were observed with respect to age (t=−5.26, p<.001) and nicotine use (t=−2.76, p=.01); no 

differences were observed between the groups on the other demographic variables (ps>.05).
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Results

Results of the mixed ANOVA testing the effects of the algorithm (naïve ray-casting 

versus combination), target object size (small, large), and their interaction (group*size) on 

algorithm performance (percentage of target gaze duration before each interaction during 

the paradigm) revealed no significant interaction between algorithms and target object size 

(F=0.90, p=.35, ηp
2=.03; see Table 2 for means and standard deviations). However, a 

main effect of group was observed whereby the combination algorithm (mean=19.73%, 

SD=7.92%) outperformed the naïve ray-casting algorithm (mean=15.99%, SD=5.96%), 

regardless of size (F=10.06, p=.003, ηp
2=.23; Figures 2 and 3). A main effect of size 

was also observed, whereby large objects with volumes > 800 cm3 (mean=23.15%, 

SD=6.17%) had a higher gaze duration percentage than small objects (mean=12.55%, 

SD=3.30%), regardless of GTOM algorithm (F=107.98, p<.001, ηp
2=.76; Figures 2 and 

3). These analyses were rerun including age and nicotine use as covariates in the mixed 

ANOVA model with no changes in statistical significance or direction of effects observed 

– interaction (group*size): F=0.85, p=.36, ηp
2=.03; main effect of group: F=11.65, p=.002, 

ηp
2=.27; main effect of size: F=8.10, p=.01, ηp

2=.20. The 5-second trial period ANOVA 

analyses also did not differ in terms of direction or significance of effects - interaction 

(group*size): F=2.21, p=.15, ηp
2=.06; main effect of group: F=11.08, p=.002, ηp

2=.25; main 

effect of size: F=41.58, p<.001, ηp
2=.55.

Discussion

The present report describes the performance of two common GTOM algorithms used 

within a “real-world” VR nicotine cue-reactivity paradigm. The analyses support the use 

of the combined naïve ray-casting and Tobii’s G2OM algorithm, as opposed to relying 

on the naïve ray-casting alone, for eye-tracking investigations in virtual 3D scenes. We 

observed that the combination method generally outperformed the naïve ray-casting method 

in identifying target objects, yet still exhibited a clear decrease in performance for objects 

with volumes less than 800 cm3. This suggests that, while the combination method may 

be more effective overall, it still has difficulty accurately identifying smaller objects. Thus, 

we recommend that researchers interested in using the HTC VIVE Pro Eye to acquire 

eye-tracking data for object mapping within VR paradigms avoid including small objects of 

interest in their virtual scenes until improved GTOM algorithms are available.

Despite the observed imprecision in the GTOM algorithms, pilot analyses of attentional 

target gaze duration from this same sample demonstrated effects in the hypothesized 

direction (Liu et al., 2022). Specifically, consistent with the literature on attentional bias 

in individuals who regularly use nicotine products (Bradley et al., 2004; Gamito et al., 

2014; Kwak et al., 2007; Mogg et al., 2003), we observed greater gaze durations towards 

the nicotine cues in our pilot analyses, which were predominately small (<800 cm3), as 

compared with the control cues, in two out of the three active cue VR scenes (Liu et al., 

2022). Thus, although the present findings suggest a precision bias in the GTOM algorithms 

used in our 2022 study, the practical significance of this imprecision may be modest as the 

effect sizes of some psychological constructs (e.g., nicotine-related attentional bias) may 

exceed the magnitude of this imprecision.
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Given the small sample and between subject nature of the GTOM comparison, we 

caution against over interpretation of the present study results; however, we believe the 

large effect size observed between GTOM algorithms (ηp
2=.23) and within-in subject 

object size comparisons (ηp
2=.76) warrant further investigation and careful consideration 

when designing future VR eye-tracking studies involving GTOM. Further, our metric of 

performance assumes that humans look at smaller versus larger objects for similar durations 

prior to interacting with them. Although intuitive, a direct test incorporating a ground truth 

is needed to confirm these results. Similarly, it is theoretically possible that the observed 

reduction in percent gaze-time for smaller objects is due to less time spent gazing at 

smaller objects overall. However, data from the parent study on nicotine attentional bias 

support that greater time was spent gazing at smaller, most often nicotine-related, objects 

on average as opposed to generally larger control objects (Liu et al., 2022), supporting that 

the effect we observed in this study is likely due to the GTOM algorithm performance and 

not due to shorter overall gaze times towards smaller objects. Lastly, we did not collect 

data on the angular size of the scene objects which would have allowed for more precise 

control of object distance in the calculations. Given that participants were necessarily within 

arm’s reach of the objects during the gaze collection time, it is unclear whether the slight 

differences in object distances would have impacted the study results.

The potential utility of improving and testing GTOM algorithms for use in VR settings 

is considerable for commercial marketing/entertainment, education, clinical treatment, and 

research applications that rely on object selection (Adhanom et al., 2023). With respect to 

psychological research, conversion of traditional 2D and 3D paradigms frequently used to 

study visual attention (e.g., free-viewing and visual search tasks) to VR paradigms would 

allow for greater translatability of study findings to real-world settings, reduce the need for 

repetitive trial structures, and increase consistency and reliability of the data by allowing 

the researcher to control all sensory input received by the participant while still maintaining 

an immersive “real life” experience (Peeters, 2019). Limitations still exist as, similar to 

most 2D and 3D applications, objects for the most part must be labeled for GTOM to be 

accomplished and meaningfully interpreted. Practically, this should be done prior to data 

collection, although post-processing labelling is also possible with additional effort. This 

need may be eliminated in the future as algorithms relying on artificial intelligence for 

object identification become more accurate and widely available. Regardless, routine testing 

of algorithm performance is critical to ensure data accuracy before we can capitalize on the 

vast benefits VR paradigms have to offer.

To our knowledge, this is the first report on GTOM algorithm performance as applied to 

eye-tracking data acquired from a “real-world” immersive VR environment. The results 

highlight the complexities of acquiring accurate GTOM data in complex immersive 3D 

scenes including smaller sized objects and suggest higher-level algorithms are needed to 

enhance our mapping capabilities. Additionally, the analysis process presented can serve as 

a template for future analyses comparing performances of novel eye tracking devices and 

GTOM algorithms.
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Public Significance Statement

This is the first report on gaze-to-object mapping (GTOM) algorithm performance as 

applied to eye-tracking data acquired from a “real-world” immersive VR environment. 

The results highlight the complexities of acquiring accurate GTOM data in complex 3D 

scenes including smaller sized objects and suggest higher-level algorithms are needed to 

enhance our mapping capabilities.
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Figure 1. 
Examples of small versus large interactable objects in the NTP Cue VR paradigm scenes. 

Large objects > 800cm3 are highlighted in green, small objects ≤ 800cm3 are highlighted in 

red (e.g., small-cigarette: 3.98 cm3, large-ashtray: 1339.69 cm3).

Liu et al. Page 13

Psychol Neurosci. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Bar plot displaying percent gaze duration (metric of algorithm accuracy) means for the naïve 

ray-casting (ray-casting) and the combination of ray-casting and Tobii’s G2OM (combo) 

gaze-to-object mapping (GTOM) algorithms plotted by object size (large = objects with 

volumes >800 cm3; small = objects with volumes ≤ 800 cm3). Error bars represent +/− 1 

standard error.
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Figure 3. 
Kernel density estimation of percent gaze duration (metric of algorithm accuracy) for the 

naïve ray-casting (ray-casting) and the combination of ray-casting and Tobii’s G2OM 

(combo) gaze-to-object mapping algorithms plotted by object size (large = objects with 

volumes >800 cm3; small = objects with volumes ≤ 800 cm3).
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Table 1.

Sample demographics (N=36).

Variable % Frequency or Mean (SD)

Ray-Casting (n=18) Ray-Casting + Tobii’s G2OM (n=18)

Age* 22.11 (2.56) 42.83 (16.53)

Sex – % Male 61.1% 55.5%

Ethnicity – % White 50.0% 83.3%

Previous VR experience

 - Never 33.3% 44.4%

 - Once 11.1% 27.8%

 - A few times 44.4% 27.8%

 - Many times 11.1% 0.0%

Nicotine use days (past 90 days)* 56.06 (35.69) 81.78 (17.10)

*
p<.05
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Table 2.

Percent gaze durations by object size and GTOM algorithm.

Percent Gaze Durations Mean (SD)

Ray-Casting (n=18) Ray-Casting + Tobii’s G2OM (n=18)

Small object (≤ 800 cm3volume) 11.17% (1.85%) 13.94% (3.81%)

Large object (>800 cm3volume) 20.80% (4.61%) 25.52% (6.61%)
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