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Abstract— We present a method to learn probabilistic
object models (POMs) with minimal supervision which
exploit different visual cues and perform tasks such as
classification, segmentation, and recognition. We formulate
this as a structure induction and learning task and our
strategy is to learn and combine elementary POMs that
make use of complementary image cues. We describe a
novel structure induction procedure which uses knowledge
propagation to enable POMs to provide information to
other POMs and “teach them” (which greatly reduces the
amount of supervision required for training and speeds up
the inference). In particular, we learn a POM-IP defined
on Interest Points using weak supervision [1], [2] and use
this to train a POM-mask, defined on regional features,
which yields a combined POM which performs segmen-
tation/localization. This combined model can be used to
train POM-edgelets, defined on edgelets, which gives a
full POM with improved performance on classification. We
give detailed experimental analysis on large datasets for
classification and segmentation with comparison to other
methods. Inference take five seconds while learning takes
approximately four hours. In addition, we show that the
full POM is invariant to scale and rotation of the object
(for learning and inference) and can learn hybrid objects
classes (i.e. when there are several objects and the identity
of the object in each image is unknown). Finally, we show
that POMs can be used to match between different objects
of the same category and hence enable objects recognition.

Index Terms— Unsupervised Learning, Object Classifi-
cation, Segmentation, Recognition.

I. INTRODUCTION

RECENT work on object classification and
recognition has tended to represent objects

in terms of spatial configurations of features at a
small number of interest points [3], [4], [5], [6],
[7], [8]. Such models are computationally efficient,
for both learning and inference, and can be very
effective for tasks such as classification. But they
have two major disadvantages: (i) the sparseness of
their representations restricts the set of visual tasks
they can perform, and (ii) these models only exploit
a small set of image cues. Sparseness is suboptimal
for tasks such as segmentation which instead require
different representations and algorithms. This has
lead to an artificial distinction in the vision litera-
ture where detection/classification and segmentation
are treated as different problems being addressed
with different object representations, different image
cues, and different learning and inference algo-
rithms. One part of the literature concentrates on
detection/classification – e.g. [3], [4], [5], [6], [7],
[8], [1], [2], [9] – uses sparse generative models, and
learns them using comparatively little human super-
vision (e.g. the training images are known to include
an object from a specific class, but the precise
localization/segmentation of the object is unknown).
By contrast, the segmentation literature – e.g. [10],
[11], [12] – uses dense representations but typically
requires that the precise localization/segmentation
of the objects are given in the training images. But
until recently– e.g. [13], [14], [15] – there have
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been few attempts to combine segmentation and
classification or to make use of multiple visual cues.

Pattern theory [16], [17] gives a theoretical frame-
work to address these issues – represent objects
by state variables W , specify a generative model
P (I|W )P (W ) for obtaining the observed image I,
and an inference algorithm to estimate the most
probable object state W ∗ = arg maxW P (W |I). The
estimated state W ∗ determines the identity, pose,
configuration, and other properties of the object
(i.e. is sufficient to perform all object tasks). This
approach makes use of all cues available in the
image and is formally optimal in the sense of Bayes
decision theory. Unfortunately it currently suffers
from many practical disadvantages when faced with
the complexity of natural images. It is unclear how
to specify the object representations, how to learn
generative models from training data, and how to
perform inference effectively (i.e. to estimate W ∗).

The goal of this paper is to describe a strategy
for learning probabilistic object models (POMs) in
an incremental manner with minimal supervision.
The strategy is to first learn a simple model that
only has a sparse representation of the object and
hence only explains part of the data and performs
a restricted set of tasks. Once learnt, this model
can process the image to provide information that
can be used to learn POMs with increasingly richer
representations, which exploit more image cues and
perform more visual tasks. We refer to this strategy
as knowledge propagation (KP) since it uses knowl-
edge provided by the simpler models to help train
the more complex models (e.g. the simple models
act as teachers). Knowledge propagation is also used
after the POMs have been learnt to enable rapid
inference to be done (i.e. estimatet5 W ∗). To assist
KP, we use techniques for growing simple models
using proposals obtained by clustering [1], [2]. A
short version of this work was presented in [18].

We formulate our approach in terms of proba-
bilistic inference and machine learning. From this
perspective, learning POMs is a structure induction
problem [19] where the goal is to learn the structure
of the probability model describing the objects as
well as the parameters of their distributions. Struc-
ture induction is a difficult and topical problem
and differs from more traditional learning where the
structure of the model is assumed known and only
the parameters need to be estimated. Knowledge
propagation is a method for doing structure learning

that builds on our previous work on structure induc-
tion [1], [2] which is summarized in section (IV).

For concreteness, we now briefly step through the
process of structure learning by KP as it occurs
in this paper – see figure (1). Firstly, we learn
a POM defined on interest points (IP’s), POM-
IP, using the techniques described in [1], [2]. We
start with a POM-IP because the sparseness of the
interest points and their different appearances makes
it easy to learn it with minimal supervision. This
POM-IP can be learnt from a set of images each
of which contains one of a small set of objects
with variable pose (position, scale, and rotation)
and variable background. This is the only infor-
mation provided to the system – the rest of the
processing is completely automatic. The POM-IP is
a mixture model where each component represents
a different aspect of the object (the number of
components is learnt automatically). This POM-
IP is able to detect and classify objects, to detect
their aspect, deal automatically with scaling and
rotation changes, and give very crude estimates
for segmentation. Secondly, we extend this model
by incorporating different cues to enable accurate
segmentation and to improve classification. More
specifically, we use the POM-IP to train a POM-
mask which uses regional image cues to perform
segmentation. Intuitively, we start by using a version
of grab-cut [20], [21], [22], [23] where POM-IP
substitutes for human interaction to provide the
initial estimate of the segmentation (as motion cues
do in ObjCut [24]). This, by itself, yields a fairly
poor segmentations of the objects. But this segmen-
tation can be improved by using the training data
to learn priors for the masks (different priors for
each aspect). This yields an integrated model which
combines POM-IP and POM-mask and which is
capable of performing classification and segmenta-
tion/localization. Thirdly, the combination of POM-
IP and POM-mask allows us to estimate the shape
of the object and provide sufficient context to train
POM-edgelets which can localize subparts of the
object and hence improve classification (the context
provides strong localization for the POM-edgelets
which makes it easy to learn them and perform
inference with them). After the models have been
learnt, KP is also used so that POM-IP provides
estimates of pose (scale, position, and orientation)
which helps provide initial conditions for POM-
mask which, in turn, provides initial conditions for
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Fig. 1. The flow chart of knowledge propagation. POM-IP is learnt and then trains POM-mask (using max-flow/min-cut) which includes
learning a probabilistic object mask (see the feedback arrows). Then POM-IP and POM-mask help train POM-edgelets by using the object
mask to provide context for the nine POM-edgelets. Knowledge propagation is also used for inference (after learning) with similar flow from
POM-IP to POM-mask to POM-edgelets.

the POM-edgelets. We stress that learning and per-
forming inference on POM-mask and POM-edgelets
is very challenging without the initial conditions
provided by the earlier models. The full model
couples the POM-IP, POM-mask, POM-edgelets
together (as a regular, though complicated, graphical
model) and performs inference on this model. Jojic
et al. [25] provide alternative unsupervised learning
approach which addresses model coupling for video
segmentation problem.

Our experiments demonstrate the success of our
approach. Firstly, we show that the full POM –
coupling POM-IP, POM-mask, and POM-edgelet
– performs better for classification that POM-IP
alone. Secondly, the segmentation obtained by cou-
pling POM-IP with POM-mask is much better than
performing segmentation with grab-cut initialized
by POM-IP only. In addition, we show that the
performance of the system is invariant to scale,
rotation, and position transformations of the objects
and can be performed for hybrid object classes. We
give comparisons to other methods [3], [14], [15].
Finally we show promising results for performing
recognition by the POM-IP (i.e. distinguishing be-
tween different objects in the same category).

The structure of this paper is as follows. First
we describe the knowledge propagation strategy in
section (II). Next we give details specifications of

the image cues and the representations used in this
paper in section (III). Then we specify the details
of the POMs and KP in section (IV,V,VI). Finally
we report the results in section (VII).

II. LEARNING BY KNOWLEDGE PROPAGATION

We now describe our strategy for learning by
knowledge propagation. Suppose our goal is to learn
a generative model to explain some complicated
data. It may be too hard to attempt a model that can
explain all the data in one attempt. An alternative
strategy is to build the model incrementally by first
modeling those parts of the data which are easiest.
This will provide context making it easier to learn
models for the rest of the data.

To make this specific, consider learning a prob-
ability model for an object and background, see
figure (2), which uses two types of cues: (i) sparse
interest points (IP), and (ii) dense regional cues.
The object can occur at a range of scales, positions,
and orientations. Moreover, the object has several
aspects whose appearance varies greatly and whose
number is unknown. In previous work [1], [2] we
have described how to learn a model POM-IP which
is capable of modeling the interest-points of the
object (and the background). After learning, the
POM-IP is able to estimate the pose (position, scale,
and orientation) and the aspect of the object for new
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Fig. 2. The object is composed of a mask (thick closed contour) plus
interest-points (pluses and minuses) and has two aspects. The first
aspect (a.1) is composed of a POM-IP (a.2) and a POM-mask (a.3).
Similarly the second aspect (b.1) is composed of a POM-IP (b.2)
and a POM-mask (b.3). Panels c.1 and c.2 show examples where the
object is embedded in an image. Learning the POM-IP is practical,
by the techniques described in [1], [2], but learning the POM-mask –
or the full POM that combines IP’s with the mask, is difficult because
of the number of aspects (only two shown here) and the variability
in scale and orientation (not shown). But the POM-IP is able to help
train the POM-mask – by providing estimates of scale, orientation,
and position – and facilitate learning of a full POM.

images. We now want to enhance this model by
using additional regional cues and a richer represen-
tation of the object. To do this, we want to couple
POM-IP with a POM-mask which has a mask for
representing the object (one mask for each aspect)
and which exploits the regional cues. Our strategy,
knowledge propagation, involves learning the full
POM sequentially by first learning the POM-IP
and then the POM-mask. We perform sequential
learning — learning POM-IP and then using it to
train POM-mask – (because we do not know any
direct algorithm to learn both simultaneously).

We now describe the basic ideas for a simple
model and then return to the more complex models
required by our vision application (which include
additional models trained by both POM-IP and
POM-mask).

To put this work in context, we recall the ba-
sic formulation of unsupervised learning and in-
ference tasks. Suppose we have data {dµ} that
is a set of sample from a generative model
P (d|h, λ)P (h|Λ) with hidden states h and model

Fig. 3. Knowledge Propagation. Left Panel: the model for
P (d1|h1)P (h1) where the likelihood and prior are specified by
λ1, Λ1. Right Panel: Learning the structure and parameters λ1, Λ1 for
P (d1|h1)P (h1) enables us to learn a model with additional hidden
states h2, data d2, and parameters λ2, Λ2. We can also perform
inference on h2 by first estimating h1 using model P (d1|h1)P (h1).

parameters λ, Λ. The two tasks are: (i) to learn
the model – i.e. determine λ, Λ by MAP esti-
mation λ∗, Λ∗ = arg maxλ,Λ P (λ, Λ|{dµ}) using
training data {dµ} (which also includes learning the
structure of the model), and (ii) to perform infer-
ence from d to determine h(d) by MAP h∗(d) =
arg maxh P (h|d, λ, Λ). But, as described in the in-
troduction, there may not be efficient algorithms to
achieve these tasks.

The basic idea of knowledge propagation can
be illustrated as follows, see figure (3). Assume
that there is a natural decomposition of the data
into d = (d1, d2) and hidden states h = (h1, h2)
so that we can express the distributions as
P (d1|h1, λ1)P (d2|h2, λ2)P (h1|Λ1)P (h2|h1, Λ2).
This is essentially two models for generating
different parts of the data which are
linked by the coupling term P (h2|h1, Λ2),
as in figure (3). Knowledge propagation
proceeds by first decoupling the models
and learning the model by setting λ̂1, Λ̂1 =
arg maxλ1,Λ1

∏
µ

∑
h1

P (dµ
1 |h1, λ1)P (h1|Λ1) from

the data {dµ
1} (i.e. ignoring the {dµ

2}). Once this
model has been learnt, we can use it to make
inference of the hidden state h∗1(d). This provides
information which can be used to learn the
second part of the model – i.e. to estimate λ∗2, Λ

∗
2 =

arg maxλ2,Λ2

∏
µ

∑
h2

P (dµ
2 |h2, λ2)P (h2|h∗1(dµ), Λ2).

These estimates are only approximate,
since they make approximations about the
coupling between the two models. But these
estimates can be improved by treating them
as initial conditions for alternating iterative
algorithms, such as belief propagation or
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Gibbs sampling, (e.g. converge to a maxima
of

∏
µ P (dµ

1 |h1, λ1)P (dµ
2 |h2, λ2)P (h1|Λ1)P (h2|Λ2)

by doing maximization with respect to λ1, Λ1

and λ2, Λ2 alternatively). This results in a
coupled Bayes net for generating the data.
Knowledge propagation is also be used in
inference. We use the first model to estimate
h∗1(d) = arg maxh1 P (d1|h1)P (h1) and then
estimate h∗2(d) = arg maxh2 P (d2|h2)P (h2|h∗1(d)).
Once again, we can improve these estimates
by using them as initial conditions for
an algorithm that converges to a maxima
of P (d1|h1)P (h1)P (d2|h2)P (h2) by doing
maximization with respect to h1 and h2

alternatively. It is straightforward to extend
knowledge propagation – both learning and
inference – to other sources of data d3, d4, ... and
hidden states h3, h4, ....

In this paper, d1(I) denotes the set of interest
points (IP) in the image, see figure (2). The vari-
able h1 = (V, s,G) determines the correspondence
V between observed IPs and IPs in the model,
s respects the aspect of the model (a choice of
mixture component), and G is the pose of the
object (position, scale, and orientation). The model
parameters λ1, Λ1 are described in section (IV).
We refer to the probability distribution over this
model P (d1(I)|s, V,G)P (s)P (V )P (G) as POM-IP.
The form of this model means that we can do
efficient inference and learning (including structure
induction) without needing to know the pose G or
the aspect s [1], [2]. See section (IV) for the full
description.

d2(I) are feature vectors (e.g. color, or inten-
sity, values) computed at each pixel in the im-
age. The variables h2 = (L, ~q) denote the la-
beling L (e.g. inside or outside boundary), and
the distributions ~q = (qO, qB) specify the distri-
bution of the features inside and outside the ob-
ject. The POM-mask is defined by the distributions
P (d2(I)|L, ~q)P (L|G, s)P (~q) and are specified by
corresponding model parameters λ2, Λ2, see sec-
tion (V). Inference and learning are considerably
harder for POM-mask if not intractable (without a
POM-IP or other help). Attempts to learn image
masks (e.g. [26]) assume very restricted transforma-
tion of the object between images (e.g. translation),
a single aspect s, or make use of motion flow (with
similar restrictions). But, as we show in this paper,
POM-IP can provide the estimates of the pose G, the

Fig. 4. The coupling between POM-IP and POM-mask is provided
by the G, s variables for pose and aspect. This yields a full Bayes
net contain IP-nodes and mask-nodes. Learning of the parameters of
the POM-mask is facilitated by the POM-IP.

aspect s, and a very crude estimation of the object
mask (given by the bounding box of the interest
points) which are sufficient to teach the POM-mask
and to perform inference after the POM-mask has
been learnt.

The coupling between POM-IP and POM-mask
is performed by the variables G, s, see figure (4)
which extends figure (3).

Learning the POM-mask will enable us to train
additional models that are specified within specific
subregions of the object. Once POM-mask has
been applied, we can estimate the image region
corresponding to the object and hence identify
the subregions. This provides sufficient context to
enable us to learn models POM-edgelets defined
on edgelets, see section (VI), which occur within
specific subregions of the object. The full POM is
built by combining a POM-IP with a POM-mask
and POM-edgelets, see figure (4,1).

III. THE IMAGE REPRESENTATION

This section describes the different image features
that we use: (i) interest points (used in POM-IP), (ii)
regional features (in POM-mask), and (iii) edgelets
(in POM-edgelet).

The interest point features d1(I) of an image
I used in POM-IP are represented by a set of
attributed features d1(I) = {zi}, where zi =
(~xi, θi, Ai) with ~xi the position of the feature in
the image, θi is the feature’s orientation and Ai

is an appearance vector. The procedures used to
detect and represent the feature points was described
in [1], [2]. Briefly, we detect interest points and
determine their position ~x by Kadir-Brady [27]
and represent them by the SIFT descriptor [28]
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using principal component analysis to obtain a 15-
dimensional appearance vector A and an orientation
θ.

The regional image features d2(I) used in POM-
mask are computed by applying a filter ρ(·) to
the image I yielding a set of responses d2(I) =
{ρ(I(~x)) : ~x ∈ D}, where D is the image domain.
POM-mask will split the image into the object
region {~x ∈ D s.t.L(~x) = 1} and the background
region {~x ∈ D s.t.L(~x) = 0}. POM-mask requires
us to compute the feature histograms, fO(., L) and
fB(., L), of the filter ρ(·) in both regions:

fO(α, L) =
1

|DO|
∑

~x∈D

δL(~x),1δρ(I(~x)),α, (1)

fB(α, L) =
1

|DB|
∑

~x∈D

δL(~x),0δρ(I(~x)),α, (2)

where |DO| =
∑

~x∈D δL(~x),1, |DB| =
∑

~x∈D δL(~x),0

are the sizes of the object and background regions,
δ is the Kronecker delta function, and α indicates
the histogram bin. In this paper, the filter ρ(I(~x)) is
either the color or the grey-scale intensity.

The edgelet features d3(I) are also represented
by attributed features d3(I) = {ze

j}, where ze
j =

(~xj, θj) with ~xj the position of the edgelet and θi its
orientation. The edgelets are obtained by applying
the Canny edge detector.

The sparse features of the models – interest points
and edgelets – will be organized in terms of triplets.
For each triplet we calculate an invariant triplet vec-
tor (ITV) which is a function ~l(~xi, θi, ~xj, θj, ~xk, θk)
of the positions ~xi and orientations θi of the three
features that form it and which is invariant to the
position, scale, and orientation of the triplet – see
figure (5). We note that previous authors have used
triplets defined over feature points (without using
orientation) to achieve similar invariance [29], [30].

IV. POM-IP
In this section we introduce the POM-IP. The

terminology for the hidden states of the full POM
is shown in table (I).

The POM-IP is defined on sparse interest points
d1(I) = {zi} and is almost identical to the proba-
bilistic grammar Markov model (PGMM) described
in [1], [2], see figure (6). The only difference is
that we use an explicit pose variable G which is
used to relate the different POMs and provides a key

l3

l1

l2β1

β2

β3

α1

α2

α3

θ2

θ3

θ1

Fig. 5. The oriented triplet is specified by the internal angles β, the
orientation of the vertices θ, and the relative angles α between them.

Fig. 6. Graphical Illustration of POM-IP. This POM-IP has three
aspects (mixture components) which are children of the OR node.
Compare the first two aspects to the models in figure (2). Each aspect
model is built out of triplets, see description in section (IV). There
is also a background model to account for the interest points in the
image which are not due to the object.

mechanism for knowledge propagation (G appeared
in [2] but was integrated out in equation (9)). But, as
we will show in the experimental section, POM-IP
outperforms the PGMM due to details on the re-
implementation (e.g., allowing a greater number of
aspects).

The POM-IP is specified as a generative model
P ({zi}|s,G, V )P (G)P (s)P (V ) for generating in-
terest points {zi}. It generates IP’s both for the
object(s) and for the background. It has hidden
states s (the model aspect), G (the pose), and
V (the assignment variable which relates the IP’s
generated by the model to the IP’s detected in
the image). Each aspect s consists of an or-
dered set of IP’s z1, ..., zn(s) and corresponds to
one configuration of the object. These IP’s are
organized into a set of n(s) − 2 cliques of
triplets (z1, z2, z3), ..., (zn(s)−2, zn(s)−1, zn(s)−2) (see
figure (7)). The background IPs zn(s)+1, ..., zn(s)+b

are generated by a background process. G is the
pose of the POM-IP and can be expressed as G =
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n2

n1

n3 n2

n1

n3

n4

n2

n1

n3

n4

n5

Fig. 7. The POM-IP uses triplets of nodes as building blocks. The structure is grown by adding new triangles. The POM-IP contains
multiple aspects of similar form (not shown) and a default background model (not shown). Right panel shows the junction tree representation
which enables dynamic programming for inference.

(~xc, θc, Sc) where ~xc, θc, Sc are the center, rotation,
and scale of the POM-IP. The assignment variable
V = {i(a)} indicates the correspondence between
the index a of the IPs in the model and their labels i
in the image. We impose the constraint that each IP
in the model can correspond to at most one IP in the
image (i.e.

∑
i i(a) ≤ 1 for all a ∈ {1, ..., n(s)}).

Model IPs can be unobserved – i.e.
∑

i i(a) = 0
– because of occlusion or failure of the feature
detector. (We require that all IPs generated by the
background model are always observed).

The term P ({zi}|s,G, V ) specifies how to gen-
erate the IP’s for the object (with aspect s) and for
the background. Ignoring unobserved points for the
moment, we specify this distribution in exponential
form as:

log P ({zi}|s,G, V ) =

~λs · ~φ({(~xi(a), θi(a), G) : a = 1, ..., n(s)})
+ ~λA,s · ~φD({Ai(a) : a = 1, ..., n(s)})
+ λ|B|+ ~λB · ~φB({zi(b) : b = n(s), ..., n(s) + |B|})
+ log J({zi};~l, G)− log Z[λ]. (3)

The first term on the right hand side specifies
the prior on the geometry of the POM-IP which is
given in terms of Gaussian distributions defined on
the clique triplets. More precisely, it is expressed as
~λs ·∑n(s)−2

a=1
~φ(~l(za, za+1, za+2)) where we define a

Gaussian distribution over the ITV ~l(za, za+1, za+2)
for each clique triplet za, za+1, za+2 and set the
clique potential to be the sufficient statistics of
the Gaussian (so the parameters ~λs specify the
means and covariances of these Gaussians). The
second term specifies the appearance model in

terms of independent Gaussian distributions for the
appearance of each IP. It is expressed as ~λA,s ·
~φD({Ai(a) : a = 1, ..., n(s)}) =

∑n(s)
a=1

~λA,s
a ·

~φD(Ai(a)) where the potentials φD(Ai(a)) are the
sufficient statistics of the Gaussian distribution for
the ath IP. The third and fourth terms specify the
probability distribution for the number |B| and
appearance/positions/orientations of the background
IPs respectively. We assume that the positions and
orientations of the background are uniformly dis-
tributed and that the appearances are uncorrelated so
we can re-express ~λ ·~φB(.) as

∑n(s)+|B|
b=n(s)

~λB ·~φ(zi(b)).
The fifth term is a Jacobian factor J({zi};~l, G)
which arises from the change of coordinates be-
tween the spatial positions and orientations of the
IPs {~xi(a), θi(a)} in image coordinates and the ITVs
~l and the pose G used to specify the model. In [2]
we argue that this Jacobian factor is approximately
constant for the range of spatial variations of interest
(alternatively, we can use the theory described in
[31] to eliminate this factor by using a default
model). The sixth, and final, term Z[λ] normal-
izes the distribution. This term is straightforward
to compute – provided we assume the Jacobian
factor is constant – since the the distributions are
either Gaussian (for the shape and appearance) or
exponential (for the number of background IPs).

The distribution P (s) is also of exponential form
P (s) = 1

Z[λs]
exp{λs

~φ(s)}. The distribution P (G)
is uniform. The distribution over V assumes that
there is a probability ε that any object IP point is
unobserved (i.e. i(a) = 0).

As described in [1], [2], there are three impor-
tant computations we need do with this model: (i)
inference, (ii) parameter learning, and (iii) model
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evidence for model/structure induction. The form
of the model makes these computations practical by
exploiting the graph structure of the model.

Inference requires estimating (V ∗, s∗, G∗) =
arg max(V,s,G) P (V, s,G|d1(I)). To do this, for each
aspect s we perform dynamic programming to es-
timate V ∗ (exploiting the model structure) and G∗.
Then we search over maximize over s by exhaustive
search (the number of aspects varies between 5
and 20). Two approximations are made during the
process [1], [2]: (I) We perform an approximation
which enables us to estimate V ∗ by working with
the ITVs ~l directly, and then later estimate the G∗.
(II) If an IP is undetected (i.e. i(a) = 0) then
we replace its unobserved values zi(a) by the best
prediction from the observed values in its clique
(observe that this will break down if two out of
three IP’s in a clique are unobserved, but this has
not occurred in our experiments).

Parameter Learning requires estimating
the model parameters λ from a set
of training data {d1(Iµ)} by λ∗ =
arg maxλ P ({d1(I)}|s,G, V, λ)P (s|λ)P (V ). This
can be performed by the Expectation Maximization
(EM) algorithm in the free energy formulation [32]
by introducing a probability distribution Q(s, V )
over the hidden states (s, V ). (Good estimates for
initializing EM are provided by the dictionary,
see two paragraphs below). The free energy is a
function of Q(., .) and λ and the EM algorithm
performs coordinate descent with respect to these
two variables. The forms of the distribution ensure
that the minimization with respect to Q(., .) can
be performed analytically (with λ fixed) and that
the minimization with respect to λ can also be
performed simply using dynamic programming
(the summation form) to sum over the possible
states of V and exploiting the quadratic (e.g.
Gaussian) forms of the potentials. We make similar
approximations to those made for inference [1],
[2]:(I) Work with the ITV’s and eliminate G. (II)
Fill in the values of unobserved IP’s by prediction
from their clique neighbors.

Model Evidence is calculated to help
model/structure induction by providing a fitness
score for each model. We formulate it as calculating∑

s,V,G P ({d1(I)}|s,G, V )P (s)P (G)P (V ) (i.e. we
evaluate the performance of each model with fixed
values of its model parameters λ). This requires the
standard approximations: (I) work with the ITV’s

and eliminate G. (II) Fill in unobserved IP’s by the
clique predictions.

Model/Structure Induction is performed by spec-
ifying a set of rules for how to construct the
model out of elementary components. In PGMM
[1], [2] the elementary components are triplets of
IP’s. To help the search over models/structures we
create a dictionary of triplets by clustering. More
specifically, recall that for each triplet (z1, z2, z3)
of IP’s we can compute its spatial and appearance
potentials φ(z1, z2, z3) and φA(z1, z2, z3). We scan
over the images, compute these potentials for all
neighboring triplets, and cluster them. For each
cluster τ we determine estimates of the parameters
{λτ , λ

A
τ }. This specifies a dictionary of probabilistic

triplets D = {λc, λ
A
c } (since the distributions are

Gaussians this will determine the mean state of
the triplet and the covariances). The members of
the dictionary are given a score to rank how well
they explain the data. This dictionary is used in the
following way. For model induction at each step we
have a default model (which is initialized to be pure
background). Then we propose to grow the model
by selecting a triplet from the dictionary (elements
with high scores are chosen first) and either adding
it to an existing aspect or by starting a new aspect. In
both cases we estimate the model parameters by the
EM algorithm using initialization provided by the
parameters of the default model and the parameters
of the selected triplet. We adopt the new model if
its model evidence is better than that of the default
model. Then we proceed to select new triplets from
the dictionary.

As shown in [2], the the structure and the pa-
rameters of the POM-IP can be learnt with minimal
supervision when the number of aspects is unknown
and the pose (position, scale, and orientation) varies
between images. Its performance on classification
was comparable to other approaches evaluated on
benchmarked data. Its inference was very rapid
(seconds) due to the efficiency of dynamic program-
ming. Nevertheless, the POM-IP is limited because
its reliance only on interest points means that it
gives poor performance on segmentation and fails
to exploit all the image cues, as our experiments
show in section (VII).

V. POM-MASK

The POM-mask uses regional cues to perform
segmentation/localization. It is trained using knowl-
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Notation Meaning
{(~x, θ, A) : i = 1, ..., N} the interest points in the image

~xi the location of the feature
θi the orientation of the feature
Ai the appearance vector of the interest point feature
s the aspect of the object

a = 1, ..., Ns the set of attributed nodes of the aspect s
V = {i(a)} the correspondence variable between node a and the interest point i

G the pose (position, orientation, and scale) of the object
q = (qO, qB) the set of distribution on the image

qO the distribution of features inside the object
qB the distribution of features outside the object
I the intensity image
L a binary label field of the object

TABLE I

THE TERMINOLOGY USED TO DESCRIBE THE HIDDEN STATES h OF THE POMS.

edge from the POM-IP giving crude estimates for
the segmentation (e.g. the bounding box of the IP’s).
This training enables POM-mask to learn a shape
prior for each aspect of the object. After training, the
POM-mask and POM-IP are coupled – figures (4).
During inference, the POM-IP supplies estimates of
pose and aspect to help estimate the POM-mask
variables.

A. Overview of the POM-mask

The probability distribution of the POM-mask is
defined by:

P (d2(I)|L, ~q)P (L|G, s)P (~q)P (s)P (G), (4)

where I is the intensity image, d2(I) are the regional
features – see section (III). L is a binary valued la-
beling field {L(~x)} indicating which pixels ~x belong
inside L(~x) = 1 and outside L(~x) = 0 the object,
~q = (qO, qB) are distributions on the image statistics
inside and outside the object. P (d2(I)|L, ~q) is the
model for generating the data when the labels L and
distributions ~q are known.

The distribution P (L|G, s) defines a prior prob-
ability on the shape L of the object which is
conditioned on the aspect s and the pose G of the
object. It is specified in terms of model parameters
λ2 = {M(s)(~x)}, ~u(s) where M(s)(~x) ∈ [0, 1] is
a probability mask (the probability that pixel ~x is
inside the object) and ~u(s) is the vector between
the center of the mask and the center of the interest
points (as specified by G). Intuitively, the proba-
bility mask is scaled, rotated, and translated by a
transform T (G,~u(s), s) which depends on G,~u(s)

and s. Estimates of G, s are provided to the POM-
mask by POM-IP for both inference and learning
– otherwise we would be faced with the challenge
of searching over G, s in addition to L, ~q and the
model parameters M(s), ~u(s).

The prior P (~q) is set to be the uniform distribu-
tion (i.e. an improper prior) because our attempts to
learn it showed that it was extremely variable for
most objects. P (s) and P (G) are the same as for
POM-IP.

The inference for the POM-mask estimates

~q∗, L∗ = arg max
~q,L

P (d2(I)|L, ~q)P (L|G∗, s∗) (5)

where G∗ and s∗ are the estimates of pose and aspect
provided by POM-IP by knowledge propagation.
Inference is performed by an alternative iterative al-
gorithm similar to grab cut [20], [21], [23] described
in detail in section (V-B). This algorithm requires
initialization of L. Before learning has occurred, this
estimate is provided by the bounding box of the
interest points detected by POM-IP. After learning,
the initialization of L is provided by the thresholded
transformed probability mask T (G∗, ~u(s∗), s∗)M s∗ .

Learning the POM-mask is also performed with
knowledge propagated from the POM-IP. The main
parameter to be learnt is the prior probability
of the shape, which we represent by a proba-
bility mask. Given a set of images {d2(Iµ)} we
seek to find the probability masks {M(s)} and
the displacements {~u(s)}. Ideally we should sum
over the hidden states {Lµ} and {~qµ}, but this
is impractical so we maximize over them. Hence
we estimate {M(s)}, {~u(s)}, {Lµ}, {~qµ} by maxi-
mizing

∏
µ P (d2(Iµ)|Lµ, ~qµ)P (Lµ|G∗, u(s∗µ)) where
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{s∗µ, G∗
µ} are estimated by POM-IP for image Iµ.

This is performed by maximizing with respect
to {Lµ}, {qµ} and {M(s)}, {~u(s)} alternatively,
which combines grab-cut with steps to estimate
{Mµ(s)}, {~u(s)}, see section (V-C).

B. POM-mask model details
The distribution P (d2(I)|L, ~q) is of form:

1

Z[L, ~q]
exp{

∑

~x∈D

φ1(ρ(I(~x))|L(~x), ~q)

+
∑

~x,~y∈Nbh(~x)

φ2(I(~x), I(~y)|L(~x), L(~y))} (6)

where ~x is the index of image pixel, ~y is a neigh-
boring pixel of ~x and Z[L, q] is the normalizing
constant. This model gives a tradeoff between local
(pixel) appearance specified by the unary terms and
binary terms which bias neighboring pixels to have
the same labels unless they are separated by a
large intensity gradient. The terms are described as
follows.

The unary potential terms generate the appear-
ance of the object as specified by the regional
features, see section (III), and are given by:

φ1(ρ(I(~x))|L(~x), ~q) ={
log qO(ρ(I(~x))) if L(~x) = 1
log qB(ρ(I(~x))) if L(~x) = 0

. (7)

The binary potential φ2(I(~x), I(~y)|L(~x), L(~y)) is
an edge contrast term [24] and makes edges more
likely at places where there is a big intensity gradi-
ent:

φ2(I(~x), I(~y)|L(~x), L(~y)) ={
γ(I(~x), I(~y), ~x, ~y) if L(~x) 6= L(~y),
0 if L(~x) = L(~y)

. (8)

where γ(I(~x), I(~y), ~x, ~y) =

λ exp{−g2(I(~x),I(~y))
2γ2 } 1

dist(~x,~y)
, g(., .) is a distance

measure on the intensities/colors I(~x), I(~y), γ is
a constant, and dist(~x, ~y) measures the spatial
distance between ~x and ~y. For more details, see
[20], [21].

The prior probability distribution P (L|G, s) for
the labels L is defined as follows:

P (L|G, s) =
1

Z[G, s]
exp{

∑

~x∈D

ψ1(L(~x); G, s)

+
∑

~x∈D ,~y∈Nbh(~x)

ψ2(L(~x), L(~y)|ζ)} (9)

The unary potentials correspond to a shape
prior,or probabilistic mask, for the presence of the
object while the binary term encourages neighboring
pixels to have similar labels. The binary terms are
particularly useful at the start of the learning process
because the probability mask is very inaccurate at
first. As learning proceeds, the unary term becomes
more important.

The unary potential ψ1(L(~x); G, s) encodes a
shape prior of form:

ψ1(L(~x); G, s) = L(~x) log(T (G,~u, s)M(~x, s))

+(1− L(~x)) log(1− T (G, u, s)M(~x, s)),
(10)

which is a function of parameters M(~x, s), ~u(s),
T (G,~u, s), which need to be learnt. Here M(~x, s) ∈
[0, 1] is a probabilistic mask for the shape of the
object for each aspect s. T (G,~u, s) transforms the
the probabilistic mask – translating, rotating, and
scaling it – by an amount that depends on the pose
G with a displacement ~u(s) (to adjust between the
center of the mask and the center of the interest
points). In summary T (G,~u(s), s)M(~u(s), s)(~x) is
the approximate prior probability that pixel ~x is
inside the object (with aspect s) if the object has
pose G. The approximation becomes exact if the
binary potential vanishes.

The binary potential is of Ising form and encour-
ages homogeneous regions:

ψ2(L(~x), L(~y)|ζ) =

{
0, if L(~x) 6= L(~y)

ζ, if L(~x) = L(~y)
.

(11)
where ζ is a fixed parameter.

C. POM-mask inference and learning details:

Inference for the POM-mask requires estimating

~q∗, L∗ = arg max
~q,L

P (d2(I)|L, ~q)P (L|G∗, s∗) (12)

where G∗ and s∗ are provided by POM-IP.
Initialization of L is provided by the

thresholded transformed probability mask
T (G∗, ~u(s∗), s∗)M(~x, s∗) (after the probabilistic
mask M(., .) has been learnt) and by the bounding
box of the interest points provided by POM-IP
(before the probabilistic mask has been learnt).
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We perform inference by maximizing with re-
spect to ~q and L alternatively. Formally,

~qt+1 = arg max
q

P (d2(I)|Lt, ~qt) :

which gives qt+1
O (α) = fO(α, Lt),

qt+1
B (α) = fB(α, Lt)

Lt+1 = arg max
L

P (d2(I)|Lt, ~qt)P (L|G∗, s∗). (13)

The estimation of ~qt+1 only requires computing
the histograms of the regional features inside and
outside the current estimated position of the object
(specified by Lt(~x)). The estimation of Lt+1 is
performed by max-flow [21]. This is similar to grab-
cut [20], [21], [23] except that: (i) our initialization
is performed automatically, (ii) our probability dis-
tribution differs by containing the probability mask.
In practice we only performed a single iteration
of each step since more iterations failed to give
significant improvements.

The learning requires estimating the proba-
bility masks {M(~x, s)} and the displacement
~u(s). In principle we should integrate out the
hidden variables {Lµ(~x)}, and the distributions
{~qµ}. But this is computationally impractical so
we estimate them also. This reduces to max-
imizing the following quantity with respect to
{M(~x, s)}, ~u(s), {Lµ(~x)}, {~qµ}:

∏
µ

P (d2(Iµ)|Lµ, ~qµ)P (Lµ|G∗
µ, s

∗
µ) (14)

where {s∗µ, G∗
µ} are estimated by POM-IP.

This is performed by maximizing with respect
to {M(~x, s)},~u(s), {Lµ(~x)}, and {~qµ} alternatively.
The maximization with respect to {Lµ(~x)} and {qµ}
is given in equation (13) and performed for every
image {Iµ} in the training dataset using the current
values {M t(~x, s)}, ~ut(s) for the probability masks
and the displacement vectors.

The maximization with respect to {M(~x, s)} cor-
responding to estimating:

{M t(~x, s∗)} =

arg max
∏
µ

P (d2(Iµ)|Lt
µ, ~q

t
µ)P (Lt

µ|G∗
µ, s

∗
µ), (15)

where P (Lt
µ|G∗

µ, s
∗
µ) is computed from equa-

tion (13) using the current estimates of {M(~x, s∗)}
and ~u(s∗).

This can be approximated (this is exact if the
binary potentials vanish) by:

M t(~x, s) =

∑
µ δs∗µ,sT (G∗

µ, ~u(s∗µ), s∗µ)−1Lt
µ(~x)∑

µ δs∗µ,s

,

(16)
where δ is the Kronecker delta function. Hence
the estimate for M t(~x, s) is simply the average
of the estimated labels Lt

µ(~x) for those images
µ which are assigned (by POM-IP) to aspect s,
where the pose of these labels has been trans-
formed T (G∗

µ, ~u(s∗µ), s∗µ)−1Lt
µ(~x) by the estimated

pose Lt
µ(~x). Note we use T (G,~u(s), s) to trans-

form the probability mask M to the label L, so
T (G, u(s), s)−1 is used to transform L to M .

The maximization with respect to ~u(s) can be
approximated by ~u(s)t+1 = ~k(Lt, G∗, s∗) where
~k(Lt, G∗, s∗) is the displacement between the center
of the label Lt and the pose center adjusted by
the scale and orientation (all obtained from G∗) for
aspect s∗.

In summary, the POM-mask gives significantly
better segmentation that the POM-IP alone (see re-
sults section). In addition, it provides context for the
POM-edgelets. But note that the POM-mask needs
the POM-IP to initialize it and provide estimates of
the aspect s and pose G.

VI. THE POM-EDGELET MODELS

The POM-edgelet distribution is of the same form
as POM-IP but does not include attributes A (i.e.
the edgelets are specified only by their position and
orientation). The data d3(I) is the set of edges in the
image. The hidden states h3 are the correspondence
V between the nodes of the models and the edgelets.
The pose and aspect are determined by the pose and
aspect of the POM-IP.

Once the POM-mask model has been learnt we
can use it to teach POM-edgelets which are defined
on sub-regions of the shape (adjusted for our es-
timates of pose and aspect). Formally the POM-
mask provides a mask L∗ which is decomposed into
non-overlapping subregions (3 by 3) L∗ =

⋃9
i=1 L∗i

where L∗i
⋂

L∗j = 0 for i 6= j. There are 9 POM-
edgelets which are constrained to lie within these
different subregions during learning and inference.
(Note that training a POM-edgelet model on the
entire image is impractical because the numbers
of edgelets in the image is orders of magnitude
larger then the number of interest points, and all
edgelets have similar appearances). The method to
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learn the POM-edgelets is exactly the same as the
one for learning the POM-IP except we do not have
appearance attributes and the sub-region where the
edgelets appear is fixed to a small part of the image
(i.e. the estimate of the shape of the sub-region).

The inference for the POM-edgelets requires an
estimate for the pose G and aspect s which is
supplied by the POM-IP (the POM-mask is only
used in the learning of the POM-edgelets).

VII. RESULTS

We now give results for a variety of different
tasks and scenarios. We compare performance of
the POM-IP [1] and the full POM. We collect the
26 classes from Caltech 101 [33] which have at least
80 examples (the POMs requires sufficient data to
enable us to learn them). In all experiments, we
learnt the full POM on a training set consisting
of half the set of images (randomly selected) and
evaluated the full POM on the remaining images,
or testing set. Some of the images had complex
and varied image backgrounds while others had
comparatively simple backgrounds (we observed no
changes in performance based on the complexity of
the backgrounds, but this is a complex issue which
deserves more investigation).

The speed for inference is less than 5 seconds on
a 450×450 image. This breaks down into 1 second
for interest-point detector and SIFT descriptor, 1
second for edge detection, 1 second for the graph
cut algorithm, and 1 second for matching the IPs
and edgelets. The training time for 250 images is
approximately 4 hours.

Overall our experiments show the following three
effects demonstrating the advantages of the full
POM compared to POM-IP. Firstly, the performance
of the full POM for classification is better than
POM-IP (because of the extra information provided
by the POM-edgelets). Secondly, the full POM
provides significantly better segmentation than the
POM-IP (due to POM-mask). Thirdly, the full POM
enables denser matching between different objects
of the same category (due to the edgelets in the
POM-edgelets). Moreover, as for POM-IP [2], the
inference and learning is invariant to scale, position,
orientation, and aspect of the object. Finally, we also
show that POM-IP – our re-implementation of the
original PGMM [2] – performs better than PGMM
due to slight changes in the re-implementation and a

different stopping criterion which enables the POM-
IPs to have more aspects.

A. The Tasks

We tested on three tasks: (I) The classification
task is to determine whether the image contains the
object or is simply background. This is measured
by the classification accuracy. (II) The segmenta-
tion task is evaluated by precision and recall. The
precision |R∩GT|/|R| is the proportion of pixels in
the estimated shape region R that are in the ground-
truth shape region GT. The recall |R ∩ GT|/|GT|
is the proportion of pixels in the ground-truth shape
region that are in the estimated shape region. (III)
The recognition task which we illustrate by showing
matches.

We performed these tests for three scenarios: (I)
Single object category when the training and testing
images containing an instance of the object with
unknown background. Due to the nature of the
datasets we used there is little variation in orien-
tation and scaling of the object, so the invariance
of our learning and inference was not tested. (II)
Single object category with variation where we had
manipulated the training and testing data to ensure
significant variations in object orientation and scale.
(III) Hybrid object category where the training and
testing images contain an instance of one of three
objects (face, motorbike, or airplane).

B. Scenario 1: Classification for Single object cat-
egory

In this experiment, the training and testing images
come from a single object class. The experimental
results, see figure (8), show improvement in clas-
sification when we use the full POM (compared to
the POM-IP/PGMM). These improvements are due
entirely to the edgelets in the full POM because the
regional features from POM-mask supply no infor-
mation for object classification due to the weakness
of the appearance model (i.e. the qO distribution
has uniform prior). The improvements are biggest
for those objects where the edgelets give more
information compared to the interest points (e.g.
the football, motorbike, and grand piano). We give
comparisons to the results reported in [3], [14], [1]
in table (II).
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Fig. 8. We report the classification performance for the 26 object classes which have at least 80 images. The average classification rate of
POM-IP (PGMM) is 86.2%. The average classification rate of POMs is 88.6%.

TABLE II

COMPARISONS OF CLASSIFICATION WITH RESULTS REPORTED IN

[3], [14], [1].

Dataset full POM [1] [3] [14]
Faces 98.0 98.0 96.4 96.7

Airplane 91.8 90.9 90.2 98.4
Motorbikes 94.6 92.6 92.5 92.0

C. Scenario 2: Segmentation for Single object cat-
egory

Observe that segmentation (see table (III)) is
extremely improved by using the full POM com-
pared to the POM-IP. To evaluate these comparisons
we show improvements between using the PGMM
model, the POM-IP model (with grab-cut), the
POM-IP combined with the POM-mask, and the full
POM.. The main observation is that the bounding
box round the interest-points is only partially suc-
cessful. There is a bigger improvement when we use
the interest-points to initialize a grab-cut algorithm.
But the best performance occurs when we use the
edgelets. We also compare our method with [15] for
segmentation. See the comparisons in table (IV).

D. Performance for different object categories
To get better understanding of segmentation and

classification results, and the relative importance of
the different components of the full POM, consider
figure (9) where we show examples for each object
category (see figure (8) and table (III)). The first
column shows the input image and the second
column gives the bounding box of the interest points
of POM-IP. Observe that this bounding box only

TABLE IV

SEGMENTATION COMPARISON WITH CAO AND FEIFEI [15]. THE

MEASURE OF SEGMENTATION ACCURACY IN PIXELS IS USED.

POM Cao and Feifei[15]
Faces easy 86.0% 78.0%
Leopards 71.0% 57.0%

Motorbikes 79.0% 77.0%
Bonsai 76.3% 69.0%
Brain 82.1% 71.0%

Butterfly 85.5% 64.0%
Ewer 79.8% 68.0%

Grand Piano 84.8% 78.0%
Kangaroo 79.1% 63.0%

Laptop 71.0% 63.0%
Starfish 85.9% 69.0%

Sunflower 86.2% 86.0%
Watch 75.5% 60.0%

gives a crude segmentation and can lie entirely
inside the object (e.g. face, football), or encompass
the object (e.g. car, starfish), or only capture a part
of the object (e.g. accordion, airplane, grand piano,
windsor chair). The third column shows the results
of using grab-cut initialized by the POM-IP. This
gives reasonable segmentations for some objects
(e.g. accordion, football) but has significant errors
for others (e.g. car, face, watch, windsor chair)
sometimes capturing large parts of the background
while missing significant parts of the object (e.g.
windsor chair). The fourth column shows that the
POM-mask learns good shape priors (probability
masks) for all objects despite the poorness of some
of the initial segmentation results. This column also
shows the positions of the edgelet features learnt
by the POM-edgelets. The thresholded probability
mask is shown in the fifth column and we see
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TABLE III

THE SEGMENTATION PERFORMANCE PRECISION/RECALL FOR 26 OBJECTS CLASSES WHICH CONTAIN AT LEAST 80 IMAGES.

Dataset PGMM[1] POM-IP POM-IP + POM-Mask full POM
Airplane 44.0 / 62.5 61.4 / 75.9 73.9 / 75.1 75.2 / 75.4
Bonsai 71.2 / 37.5 77.5 / 54.0 78.3 / 53.6 78.6 / 53.4
Brain 84.0 / 39.1 94.1 / 60.9 97.7 / 68.9 97.7 / 69.0

Buddha 70.2 / 64.5 76.0 / 85.4 78.4 / 84.2 80.9 / 83.4
Butterfly 72.1 / 45.7 85.9 / 72.2 85.2 / 74.0 85.5 / 74.7

Car 31.1 / 89.6 28.0 / 61.6 52.0 / 50.7 50.0 / 54.3
Chandelier 73.3 / 48.5 82.4 / 54.6 83.4 / 50.8 83.4 / 50.9

Ewer 77.4 / 49.0 91.2 / 62.0 94.1 / 58.1 94.2 / 58.4
Face 86.8 / 64.4 72.6 / 87.0 72.2 / 89.3 73.5 / 89.6

Face easy 91.8 / 65.4 76.6 / 87.9 76.2 / 91.8 77.5 / 92.3
Grand Piano 73.1 / 54.5 86.2 / 61.5 88.0 / 76.8 87.8 / 81.3

Hawksbill 54.3 / 57.4 66.1 / 71.8 69.8 / 64.5 70.5 / 64.3
Helicopter 44.5 / 62.7 51.7 / 57.0 57.1 / 56.4 58.0 / 54.5

Ibis 38.8 / 63.5 60.3 / 68.7 60.9 / 66.6 61.2 / 66.7
Kangaroo 53.7 / 53.3 69.3 / 60.9 65.1 / 58.7 65.6 / 58.6

Ketch 63.0 / 63.9 67.9 / 69.7 67.1 / 72.5 69.8 / 71.0
Laptop 78.8 / 33.2 89.5 / 54.2 91.1 / 48.3 90.1 / 47.8

Leopards 37.0 / 71.7 55.9 / 56.2 55.9 / 56.2 55.9 / 56.2
Menorah 62.6 / 43.6 73.2 / 35.4 77.4 / 31.6 74.2 / 38.3

Motorbike 65.6 / 84.2 80.9 / 71.8 88.2 / 69.6 82.8 / 86.3
Revolver 49.5 / 58.1 75.3 / 72.6 82.8 / 63.9 82.7 / 62.0
Scorpion 47.7 / 48.8 71.0 / 63.8 69.1 / 54.7 68.7 / 54.3
Starfish 42.8 / 74.2 71.5 / 77.5 74.5 / 73.1 77.1 / 78.5

Sunflower 82.8 / 66.7 87.9 / 79.4 86.9 / 81.7 87.9 / 81.8
Trilobite 66.8 / 50.7 67.5 / 68.3 71.3 / 74.8 71.3 / 74.9
Watch 82.2 / 64.4 94.0 / 63.4 94.9 / 63.9 95.4 / 69.2

Average 67.9 / 58.4 73.5 / 66.5 76.6 / 65.8 76.9 / 67.4

that it takes reasonable forms even for the windsor
chair. The sixth column show the results of using
the full POM model to segment these objects (i.e.
using the probability mask as a shape prior) and
we observe that the segmentations are good and
significantly better than those obtained using grab-
cut only. Observe that the background is almost
entirely removed and we now recover the missing
parts, such as the legs of the chair and the rest of the
grand piano. Finally, the seventh column illustrates
the locations of the feature points (interest points
and edgelets) and shows that the few errors occur
for the edgelets at the boundaries of the objects.

We show some failure modes in figure (10).
These objects – Leopard and Chandelier – are not
best suited for the approach in this paper for the
following reasons: (i) rigid mask (or masks) are
not the best way to model the spatial variability
of deformable objects like leopards, (ii) the texture
of leopards and background are often fairly similar
which makes POM-mask not very effective (without
using more advanced texture cues), and (iii) the
shapes of Chandeliers are not well modeled by a
fixed mask and it has few reliable regional cues.

E. Scenario 3: Varying the scale and orientation of
the objects

The full POM is designed so that it is invariant to
scale and rotation for both learning and inference.
This advantage was not exploited in scenario 1,
since the objects tended to have similar orientations
and sizes. To emphasize and test this invariance, we
learnt the full POM for a data-set of faces where
we scaled, translated, and rotated the objects, see
figure (11). The scaling was from 0.6 to 1.5 (i.e.
by a factor of 2.5) and the rotation was uniformly
sampled from 0 to 360 degrees. We considered
three cases where we varied the scale only, the
rotation only, and scale and rotation. The results,
see table (V,VI), show only slight degradation in
performance for the tasks.

F. Scenario 4: Hybrid Object Models
We now make the learning and inference tasks

even harder by allowing the training images to
contain several different types of objects (extending
work in [1] for the PGMM). More specifically, each
image will contain either a face, a motorbike, or
an airplane (but we do not know which). The full
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Fig. 9. The rows show the fourteen objects that we used. The seven columns are labelled left to right as follows: (1) Original Image, (2) the
Bounding Box specified by POM-IP , (3) the GraphCut segmentation with the features estimating using the Bounding Box, (4) the probability
object-mask with the edgelets (green means features within the object, red means on the boundary), (5) the thresholded probability mask,(6)
the new segmentation using the probability object-mask (i.e. POM-IP + POM-mask), (7) the parsed result.
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1.a 1.b 1.c 1.d 1.e 1.f 1.g

2.a
2.b 2.c 2.d 2.e 2.f 2.g

Fig. 10. Failure Modes. Panel 1(a): the Leopard Mask. Panels 1(b),1(d),1(f): input images of leopards. Panels 1(c),1(e),1(g): the segmentations
output by POMs are of poor quality – parts of the leopard are missed in 1(c) and 1(g) and the segmentation includes a large background
region in 1(d). We note that segmentation is particularly difficult for leopards because their texture is similar to the background in many
images. Panel 2(a): the Chandelier Mask. Panels 2(b),2(d),2(f): example images of chandeliers. Panels 2(c),2(e),2(g): the segmentations output
by POMs. Chandeliers are not well suited to our approach because they are thin and sparse so the regional cues, used in the POM-mask,
are not very effective (geometric cues might be better).

Fig. 11. The full POM can be learnt even when the training images are randomly translated, scaled and rotated.

TABLE V

CLASSIFICATION RESULTS WITH VARIABLE SCALE AND

ORIENTATION.

POM PGMM [1]
Faces 98.0 98.0

Faces(Scaled) 96.5 -
Faces(Rotated) 96.7 94.8

Faces(Scale+Rotated) 94.6 92.3

TABLE VI

COMPARISONS OF SEGMENTATION BY DIFFERENT POMS WHEN

SCALE AND ORIENTATION ARE VARIABLE. THE PRECISION AND

RECALL MEASURE IS REPORTED.

Dataset PGMM POM-IP POM-IP+Mask full POM
Faces 86 / 64 72 / 87 72 / 89 73 / 89
Scaled 83 / 63 71 / 90 76 / 87 76 / 89
Rotated 80 / 61 62 / 90 70 / 88 70 / 90

Sca.+Rot. 81 / 57 63 / 84 68 / 85 68 / 87

POM will be able to successfully learn a hybrid
model because the different objects will correspond
to different aspects. It is important to realize that
we can identify the individual objects as different
aspects of the full POM, see figure (12). In other
words, the POM does not only learn the hybrid
class, it also learns the individual object classes in
an unsupervised way.

The performance of learning this hybrid class
is shown in table (VII,VIII). We see that the per-
formance degrades very little, despite the fact that
we are giving the system even less supervision.
The confusion matrix between faces, motobikes
and airplanes is shown in table (IX). Our result is
slightly worse than [14].
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Fig. 12. Hybrid Model. The training images consist of faces,
motorbikes and airplanes but we do not know which type of object
is in the image.

TABLE VII

THE CLASSIFICATION RESULTS FOR HYBRID MODELS

Dataset full POM PGMM[1]
Hybrid 87.8 84.6

G. Scenario 5: Matching and Recognition

This experiment was designed as a preliminary
experiment to test the ability of the POM-IP to
perform recognition (i.e. to distinguish between
different objects in the same object category). These
experiments show that the POM-IP is capable of
performing matching and recognition. Figure (13)
shows an example of correspondence between two
images. This correspondence is obtained by first
performing inference to estimate the configuration
of POM-IP and then to match corresponding nodes).
For recognition, we use 200 images containing 23
persons. Given a query of a image containing a
face, we output the top three candidates from the

TABLE VIII

THE SEGMENTATION RESULTS FOR HYBRID MODELS USING

DIFFERENT POMS. THE PRECISION AND RECALL MEASURE IS

REPORTED.

Dataset PGMM[1] POM-IP POM-IP+Mask full POM
Hybrid 60 / 61 69 / 72 77 / 65 73 / 73

TABLE IX

THE CONFUSION MATRIX FOR THE HYBRID MODEL. THE MEAN

OF THE DIAGONAL IS 89.8% (I.E. CLASSIFICATION ACCURACY)

WHICH IS COMPARABLE WITH THE 92.9% REPORTED IN [14].

Face Motorbikes Airplanes
Face 96.0% 0.0% 4.0%

Motorbikes 2.2% 85.4% 10.4%
Airplanes 2.0% 10.0% 88.0%

Fig. 13. An example of correspondence obtained by POM.

Fig. 14. Recognition Examples. The first column is the prototype.
The next three columns show the top three rankings. A distance to
the prototype is shown under each image.

200 images. The similarity between two images is
measured by the differences of intensity of the cor-
responding interest points. The recognition results
are illustrated in figure (14).

VIII. DISCUSSION

This paper is part of a research program where the
goal is to learn object models capable of performing
all object-related visual tasks. In this paper we
built on previous work [1], [2] which used weak
supervision to learn a probabilistic grammar Markov
model (PGMM) which used interest point features
and performed classification. Our extension is based
on combining elementary probabilistic object mod-
els (POMs) which use different visual cues and
can combine to perform a variety of visual tasks.
The POMs cooperate to learn and do inference by
knowledge propagation. In this paper, the POM-
IP (or PGMM) was able to train a POM-mask
model so that the combination could perform local-
ization/segmentation. In turn, the POM-mask was
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able to train a set of POM-edgelets which when
combined into a full POM can use edgelet features
to improve the classification. We demonstrated this
approach on large numbers of images of different
objects. We also showed the ability of our approach
to learn and perform inference when the scale and
rotation of objects is unknown. We showed its
ability to learn a hybrid model containing several
different objects. The inference is performed in
seconds, and the learning in hours.
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