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Abstract

Congruence subgroups from quantum representations of mapping class groups
by

Joseph J. Ricci

Ng and Schauenburg proved that the kernel of a (2+ 1)-dimensional topological quantum
field theory representation of SL(2,7Z) is a congruence subgroup. Motivated by their
result, we explore when the kernel of an irreducible representation of the braid group Bs
with finite image enjoys a congruence subgroup property. In particular, we show that in
dimensions two and three, when the projective order of the image of the braid generator
o1 is between 2 and 5 the kernel projects onto a congruence subgroup of PSL(2,7Z) and
compute its level. However, for each odd integer r equal to at least 5, we construct a pair
of non-congruence subgroups associated with three-dimensional representations. Our
techniques use classification results of low dimensional braid group representations and
the Fricke-Wohlfarht theorem in number theory, as well as Tim Hsu’s work on generating

sets for the principal congruence subgroups of PSL(2,7).
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Chapter 1

Introduction

The double cover SL(2,7Z) of the modular group PSL(2,7Z) naturally occurs in quantum
topology as the mapping class group of the torus. Let X , be the orientable genus g
surface with n punctures and denote by Mod(%,,) its mapping class group. A (241)-
dimensional topological quantum field theory (TQFT) or equivalently a modular tensor
category affords a projective representation of Mod(3,,,) which we refer to as a quantum
representation. An amazing theorem of Ng and Schauenburg [NS10] says that the kernel
of a quantum representation of SI(2,7Z) is always a congruence subgroup. The modular

group is also disguised as the three-strand braid group Bs through the central extension:
1 — {(0102)*) = Bs — PSL(2,Z) — 1.

Each simple object of the modular tensor category C associated to a (24 1)-TQFT gives
rise to a representation of Bs. Are there versions of the Ng-Schauenburg congruence
kernel theorem for those braid group representations? We initiate a systematical inves-

tigation of this problem and find that a naive generalization does not hold.
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To pass from a quantum representation of Bz to one of the modular group PSL(2,7Z),
we consider only irreducible representations px : By — GL(d, C) associated to a simple
object X of a modular tensor category C. Then the generator (o,03)% of the center of Bs
acts by a scalar of finite order. By tensoring px with a root of unity, we obtain a repre-
sentation of the modular group py : PSL(2,Z) — GL(d,C). According to the property
F conjecture, the representations px should have finite images if the squared quantum
dimension d3 of X is an integer. So, to generalize the Ng-Schauenburg result, it makes
sense to look at simple objects with Property F. For the Ising anyon o, the kernel is
indeed a congruence subgroup, but the kernel for the anyon denoted as G' in D(S3) is
not [CHW15]. Therefore, when a Property F anyon has a congruence subgroup property
is more subtle. In this paper we systematically explore the low dimensional irreducible
representations of Bs with finite images, and determine when the kernel is a congruence

subgroup.

In addition to the intrinsic mathematical interest, this research has potential application
in physics. Topological quantum computation relies on braiding anyons and so unitary
representations of braid groups arise naturally here. The matrices contained in the im-
age of a B3 representation can also be used as quantum gates for topological quantum
computations. Therefore, the congruence property of B3 representations might even find
application to quantum information processing [Wanl0]. Whether the kernel is a con-
gruence or non-congruence subgroup may relate to some interesting properties of the

associated gate set.

Another motivation of this research is to study the vector-valued modular forms (VVMF)
associated to congruence subgroups (see [Ganl4] and the references therein). VVMFs

provide deep insight for the study of TQFTs and conformal field theories (CFTs). Since
2
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the general VVMF theory applies also to non-congruence subgroups, TQFT representa-
tions of Bs provide interesting test ground of the theory and conversely, VVMF could
provide deep insight into the study of the TQFT representations of Bz even in the non-

congruence case.

Our main results essentially come in two varieties. First, for two or three-dimensional
representations of B3 with finite image such that the projective order of ¢y is less than 5,
we are able to prove that the kernel is always a congruence subgroup. On the other hand,
we provide a construction for non-congruence subgroups associated to three-dimensional
representations of Bs. In fact, for any odd integer r equal to 5 or more, we can con-
struct representations such that o; maps to an element of order 2r and the kernel is a
non-congruence subgroup. Therefore, the uniformity exhibited in the Ng-Schauenburg

theorem does not extend to quantum representation of Bs.

Let us summarize the structure of this work. In chapter 2, we introduce the machinery
required to define the our so-called quantum representations. In the case of quantum
representations of the braid group, our construction admits a pictorial description of the
representations compatible with the definition of the braid group as a group of braid
diagrams with the operation of stacking. Two formulations are provided; one using cat-

egorical language and one using 65 symbols.

In chapter 3, the language of congruence subgroups of the modular group is introduced.
To every finite index subgroup of the modular we can associate an integer called the
geometric level. It turns out that the geometric level is a central ingredient in proving
our main results. In this chapter we also prove the Fricke-Wohlfahrt theorem and, com-

bined with the work of Hsu, we establish a criterion for determining when a finite index

3
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subgroup of the modular group is a congruence subgroup which requires only checking a

few equalities. This is easily programmed by a computer, for instance.

In chapter 4, we record the results of Rowell, Tuba, and Wenzl which will important
tools for our classification. Then we are able to prove our main results. First, we explore
representations in dimension two. After a series of reductions, we find there are only a
small number of equivalence classes of representations that satisfy the conditions we are
interested in and show each one has a kernel that projects onto a congruence subgroup
of PSL(2,Z). The story is similar in dimension three for those representations mapping

o1 to a matrix of projective order less than 6, but fails to persist for all irreducibles.

In chapter 5, we explore our results within the context of the Property F conjecture.
Whenever X is a Property F anyon, the kernels of the afforded representations of Bj
are either congruence or non-congruence subgroups. Therefore we can classify anyons as

either congruence or non-congruence type.

In chapter 6, we provide some directions in which to take this work and some potential
areas of application. It could be interesting to understand the role of the congruence
property of a representation when it is the multiplier of a vector-valued modular form.
Another option could be to explore vector-valued modular forms which are invariant in
some sense with respect to a finite index subgroup of the modular group and understand

how the congruence property fits into this theory.



Chapter 2

Quantum representations of

mapping class groups

In this chapter we will define the notion of a fusion category, which can be regarded as
the quantum version of a finite group. There are several equivalent ways of defining a
fusion category. One approach is using categorical language, which is elegant but leaves
calculations difficult. Another approach is using 6j symbols which naturally allows for
explicit calculations. This is analogous to defining a connection in differential geometry
either coordinate-free or with Christoffel symbols. Since we have application to quantum
computation in mind we will go the route of 65 symbols. We will see that a braided 6j
fusion system (and therefore equivalently a braided fusion category) amounts to a collec-
tion of complex numbers that determine the matrix entries to certain representations of
the braid groups, regarded as the mapping class group of the marked disc. Our goal will
be to keep track of this data diagrammatically using objects called fusion trees. If the
braiding additionally satisfies a certain non-degeneracy condition, the data of the fusion

system also defines representations of the mapping class groups surfaces with genus.
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2.1 6j fusion systems

A 67 fusion system axiomatizes the numerical data that goes along with the categorical
definition of a fusion category. First, we will define a label set, which behaves similar to

a group.

Definition 2.1.1 A label set is a finite set L together with a distinguished element 1
and an involution (—)* : L — L such that 1* = 1. FElements of L are called labels and

1 is called the trivial label. The map (—)* is called the duality.

A fusion rule is the generalization of the binary product that is a part of a group structure.
However, a fusion rule allows us to combine two elements of a label set and outputs a

sum of a labels rather than a single label.

Definition 2.1.2 Denote by N¥ the set of functions from L to N. A function — ® — :
L x L — N is called a fusion rule if it satisfies the following conditions. First let
us make some notation. Given two labels a and b, formally write a ® b = ®NSc where
N& = (a®b)(c). When no confusion can arise, we will write ab instead of a @ b. Using

this notation, — ® — is a fusion rule if for all a,b,c,d € L:
(i) (a®b)®@c=a® (b® c), that is,

j{:‘AE%ACi :ZEE:'AQ;ﬁC;

x€L x€L
(ii) Ngi = Ni, = Oca-
(iii) Ny = NL = 6y
A fusion rule is called multiplicity-free if N5 € {0,1} for all a,b,c € L. We will

be primarily discussing multiplicity-free fusion rules (and will emphasize those which are

not when they arise).
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A triple of labels (a,b,c) is admissible if N¢, # 0. An automorphism of a fusion rule

is a permutation « of L satisfying

for all z,y,z € L.

Example 2.1.3 FEwvery finite group G gives rise to a label set and fusion rule by
setting L = G, the trivial label to be the group identity, g* = g~1, and g h = gh.

Such systems arise via the representation category of a finite abelian group.

Example 2.1.4 This example is due to Tambara and Yamagami [see [TY98]].
Given a finite group G, let m be some symbol not appearing as an element of G.

Then we get a fusion rule on the label set L =G LI{m} given by

gOh=gh, m@g=g@m=m, mOm = Dyecg

forg,h € G.

Example 2.1.5 When G = Zs in the example above, the resulting fusion rule is
called the Ising fusion rule. The 3 elements of the label set are usually denoted
{1,0,9} in the literature where 1 is the trivial label. The fusion rules take the

form

cRQo=1®Y, vRY=1, cRY=9YR0c=o0.

Although quite simple, this fusion rule is quite important. It is closely related
to the Chern-Simmons- Witten SU(2)-TQFT at level 2 or equivalently the purifi-

cation of Rep Ugsly C where q is an appropriate choice of 16th root of unity. It
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arises as a Temperley-Lieb-Jones algebroid with Kauffman variable A = je~™/16

[see [Wan10]].

Example 2.1.6 For this example, we must first give a few definitions. Let H be
a C-algebra. Then H ® H inherits a natural algebra structure, as do the higher
tensor powers of H. An algebra homomorphism A : H — H ® H is called a
comultiplication. For an element x of H, we will write A(z) = > ) 2" ® "
(this is called Sweedler notation). An algebra homomorphism ¢ : H — C is
called a counit and can also be viewed as a one-dimensional representation of H.
Let H be an algebra, A a comultiplication, ¢ a counit, ® =Y . x; ® y; ® z; an
invertible element of H ®@ H ® H, and {,r invertible elements of H. Then the

tuple (H,A,e,®,0,r) is a quasi-bialgebra if for all x € H:

(i) (iId@A)(A(2)) = 2((A ®id)(A(2))) @,
(ii) (e @id)(A(z)) = (7 al, (d®e)(A(z)) = rar™1,
(117) (1d®id ®A)(P)(A @1d®id)(P) = Pass(id ®A ® id)(P) P10,

(iv) (id®e ®id)(®) =7r @ £~}
where @193 = ® R 1 and Pozy = 1 Q@ &. This is reminiscent of the definition
of bialgebra with the generalization that the comultiplication is not coassociative.
Instead, it is replace by the associator conditions involving ®. The element ®
is sometimes called the Drinfeld associator of H. Suppose further S is an anti-

automorphism of H and there are elements a and b in H such that for allx € H

Z S(x)ax" = e(x)a, Zx’bS(x”) =¢e(z)b
(z) ()
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and

inbS(yi)azi =1, Z S(;)ay:bS(zi) = 1,

where @1 = 3.7, ® §; ® Z;. Then we call the tuple (H,A,e,®,0,1r,S,a,b)
a quasi-Hopf algebra. Again, the definition here is similar to a traditional
Hopf algebra but it slightly more general. When the structure maps of a quasi-
bialgebra or quasi-Hopf algebra is clear or not explicitly needed we will just refer
to it by the underlying algebra. Let H be a semisimple quasi-Hopf algebra with
finitely many isomorphism classes of irreducible representations, say represented
by Vi, ..., V, where Vi is the trivial representation induced by the counit of H.
When V' and W are representations of H, the comultiplication and antipode of
H turn VW and V* into representations of H too. Since H is semisimple, we
know that there are non-negative integers N{fj so that for all i and j we can write
VioV; = @ka@N’k‘k. Then we can obtain a label set and fusion rule by taking
L ={1,...,n}, the trivial label to be 1, and the fusion rule i ® j = @kajk.
The duality is determined by taking the dual representation of V;. In this case

a triple (i, 7, k) is admissible if and only if an isomorphic copy of Vi appears in

the decomposition of V; @ V; into its irreducible summands.

One way to produce a lot of examples of quasi-Hopf algebras is using the quantum
double construction, due to Drinfeld ([Dri90]). Let G be a finite group. There is
a quasi-Hopf algebra denoted D(G), whose underlying algebra structure is that
of C|G] ® C[G]*. In particular, a basis of D(G) can identified with tensors of
the form g ® 0, where g € G and 0y,(k) = 0p . The quasi-Hopf alegbra structure
of D(G) is well known, as it its representation theory. In particular, D(G) is

semisimple and its irreducible representations are parameterized by pairs (Cy, 1)
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where Cy is the conjugacy class of some g € G and 11 is an irreducible represen-

tation of the centralizer of g.

In their paper [[CHW15]], the authors examined the case of G = Ss, the sym-
metric group on three elements. The conjugacy classes of S3 are C, = {e},
Cuazy = {(12),(13),(23) }, and Cpasy = {(123),(132) } and the respective cen-
tralizers of interest are isomorphic to Ss, Zs, and Zs respectively. The three irre-
ducible representations of D(Ss3) corresponding to Ss are labelled A, B, C where A
15 the trivial representation, and B and C' correspond to sign and 2-dimensional

representations. Continuing, the letters D and E are used for the two irreps 1

and -1 coming from Zs and finally F, G, H are used to label the three irreducibles

Chapter 2

corresponding to the trivial, e

2mi/3

and e

47i/3

a label set L ={A,B,C,D,E,F,G,H}. The fusion rules are listed below.

representations of Zs. Thus, we get

®|A|B|C D E F G H

AlA|B|C D E F G H

B|B|A|C E D F G H

C|C|C|AeBoC |DOFE Do FE GoH FoH Foda

D|D|FE|D&FE ADCOF® | BoCoFe | DO E Do FE Do FE
GoH GoH

E|F|D|DaoFE BOCOF® | AGCOF® | DO FE Do FE Do FE
GoH GoH

F|F|F|Ge&H Do FE Do FE APBeoF | HeC Gol

G|G|G|FeoH Do FE Do FE HoeC ABaoG | Fal

H|H H|F&dG Do FE Do E GoC FoC A®BoH

We will be interested in this example throughout this work and refer back to it

from time to time.

The label set and fusion rule correspond to the isomorphism classes of simple objects and

tensor product of a fusion category. Another ingredient is the associativity of the tensor

product which is captured below.

10




Quantum representations of mapping class groups Chapter 2

Definition 2.1.7 Let L be a label set with a fized fusion rule. A sextuple of labels
(a,b,c,d,n,m) is admissible if (a,b,m), (m,c,d), (b,c,n), and (a,n,d) are all admissi-
ble. Given a function F : L® — C, we write Féﬁ’jfm for F(a,b,c,d,n,m) and F%¢ for the

matriz with (n,m)-entry Fi?fm where the indices n and m range over all labels making

(a,b,c,d,n,m) admissible. We say F' is a 6j symbol system if:
(i) F satisfies the admissibility condition:

(1) If (a,b,c,d,n,m) is not admissible, then F$* = 0.

d;nm

(2) Each matriz F2* is invertible.

(i1) F satisfies the pentagon axiom: for all a, b, ¢, d, e, f, p, q, m € L, we have

ZFbcd F}z.ndFabc _ Fabp chd

q;pn ges esnm figm™ fipe
nel

We also call the numbers { F| iljfm } the F-symbols. Below we distinguish those 6j symbol
systems satisfying additional axioms corresponding to the unit and rigidity axioms in a
fusion category. Let G4 = (Fg*)~" and G4, be the (n,m)-entry of G§™.
Definition 2.1.8 A 65 symbol system is a 6j fusion system if:

(i) F satisfies the triangle aziom: F%° = I whenever 1 € {a,b,c}.

(it) F satisfies the rigidity axiom: for any a € L, we have F{1* = Go.%Y .

Example 2.1.9 Let G be a finite group considered as a fusion rule. Then the
67 fusion systems of G are exactly the 3-cocycles f : G x G x G — C. Note that
if (a,b,c,d,n,m) is admissible then necessary d = abc, m = ab, and n = bc. So

then f(a,b,c,d,n,m) = F;:fn = F;I;i”gc w = fla,b,¢) is really just a function of

11
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the first three arguments. Then, if a, b, ¢, d, e, f, p, ¢, m € G and both sides of

ZFbcd FandFabc _ Fabp chd

g;pn= fige™ e;nm figm™ fipe
nerL

are non-zero, then this forces e = abe, f = abed,n = bc,m = ab,p = cd, and

q = bed so that the equality reduces to

f(b,c,d)f(a,be,d)f(a,b,c) = f(a,b,cd)f(ab,c,d)

which is exaclty the 3-cocycle condition.

Example 2.1.10 Let H be a quasi-bialgebra and let ® be the Drinfeld associator
of H. For any three H-modules U, V, and W, the action of ® induces a H-module
1somorphism

FU’V,W(U(XJV)@W—)U@(V@W)

given by Fyyw(u@v)@w) =& (u® (v@w)). Then for all H-modules X, the

map Fyyw induces a linear map
FEYW  Hom(X,U ® (V@ W)) = Hom(X,(U® V) W)

from which the F'—symbols can be determined. Azioms in the definition of quasi-
bialgebra guarantees the resulting coefficients satisfy the pentagon and definition

of 67 fusion system.
The two definitions below explain what it means for two 6j fusion systems to be the same.
Definition 2.1.11 Let L be a label set with a fixed fusion rule. Two 6j fusion systems

F and F are gauge equivalent if there is a function f : L* — C mapping (a,b,c) to

1 such that:
12
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(i) f® 0 if (a,b,c) is admissible.
(ii) flo= fat =1 foralla € L.

(i1i) f satisfies the rectangle axiom: for all a,b,c,d,n,m € L,
P Fg g, = File Fo 1

Definition 2.1.12 Two 6j fusion systems are equivalent if they are gauge equivalent

up to an automorphism of the label set.

Example 2.1.13 Let G be a finite group, viewed as a label set as in Fxample
2.1.3. Then 6j fusion systems with this fusion rule are in bijection with the set of
orbits H3(G,C)/ Aut(G). If G 2 Z,, then H*(G,C) = G. A generating 3-cocyle
15 given by

h(z,y, z) = e2mEEH—yta)/n?

where a is the residue of a modulo n. The cocycle h corresponds to the 65 symbols
h(z,y,z) = F30e . ., Form =3, the cocycles h and h* differ by the nontrivial

automorphism of Zs. Therefore there are just two inequivalent fusion systems

with fusion rule given by Zs.

As we said before, a fusion category is the quantum analog of a finite group. A braided
fusion category is then the analog of an abelian group, where the braiding corresponds

to a commutativity condition.

Definition 2.1.14 A braiding on a 67 symbol system with label set L is a function

R : L? — C mapping (a,b,c) to R such that:

(i) R® #£ 0 if (a,b,c) is admissible.
13
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(ii) R satisfies the hexagon axiom: for all a,b,c,d,e,m € L,

(R o (Ri)*™ = Y e (RO L,
nerL
A 67 fusion system together with a choice of braiding R is called a braided 6j fusion
system.

We also call the numbers { R% } the R-symbols. The next two definitions are the version

of pivotality and sphericality for 65 fusion systems, accounting for the compatible twist.

Definition 2.1.15 A 6j fusion system is pivotal if there is a choice of roots of unity t,
for each label a € L satisfying the pivotal axioms:

(i) t1 =1.

(1) tox

(iii) t,'t, 't = Fibs FIe2 Feot for all admissible triples (a,b,c).

The numbers {t, } are called the pivotal coefficients. A 67 fusion system together with
a choice of pivotal coefficients is called a pivotal 6j fusion system. We say a pivotal

67 fusion system is a spherical 6j fusion system ift, € { —1,1} for all a € L.

Definition 2.1.16 A braided 67 fusion system together with a choice of spherical coeffi-

cients 1s called a ribbon 63 fusion system.

2.2 Braid group representations from braided 6 fu-

sion systems

The axioms for the data of a braided 65 fusion system provide exactly the conditions

required to define a collection of representations of the braid groups. The fusion rules for
14
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a 67 fusion system can be expressed diagrammatically and the F-symbols and R-symbols
relate diagrams to each other. We will see that the pentagon and hexagon axioms are far
from arbitrary conditions, but rather provide exactly the coherence that our we would

hope our diagrammatic choices exhibit.

2.2.1 Fusion trees

Let (L,®, F, R) be a (multiplicity-free) braided 65 fusion system and let C be a corre-
sponding fusion category. Whenever N¢, is nonzero, there is a one-dimensional vector
space Hom(X,, X, ® Xj) for some simple objects X,, Xj, and X, corresponding to the
labels a, b, c. We can express this pictorially in a fusion tree as shown below (we think

of the tree as representing a map X, — X, ® X,):

a b

T

We can also draw fusion trees for starting choices of more than two labels, corresponding
to maps from a simple object into a higher-fold tensor product. If (a,b,m) and (m, ¢, d)

are both admissible then we can draw the fusion tree

Notice that we chose to have the vertex on the left fork on the tree. However, since the
objects (X, ® X3) ® X, and X, ® (X, ® X.) are isomorphic, there is an isomorphism
between Hom(X, (X, ® X,)® X.) and Hom(X,4, X, ® (X, ® X.)). Hence there are change

of basis coeflicients from fusion trees of the above form to those of the form
15
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These coeflicients are exactly the 65 symbols. We express the change of basis as

m - Z F, c?;?zcm n
n
d d
and call this relation an F'—move (because the coefficients are collected in the so-called
F-matrix). We can extend this relation to any fusion trees with more than three top
labels. However, we must immediately address a consistency question that arises from
our choice above. If we have a fusion tree with four labels at the top then there are
multiple ways to apply series of F-moves to arrive two expressions involving the same
fusion trees, we would expect that these agree. Fortunately, the pentagon axiom will give
us exactly the consistency that we need. Let us demonstrate this. First, we can apply

two F-moves to write

a b c d a b c d
m med
0 - Z Ff;pe m p
P
f /
(2.1)
a b c d

_ ab mcd p

- Z Ff;fme;pe q
P,q

f

16
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On the other hand, we can apply three F-moves to arrive at fusion trees of the same

shape as those above. This yields the expansion

b
mn Fe“ nm \<v/
e
d b
S Fpir, %/
a b c d
_ Fbcd FandFabc p
- § g;pn” fi;ge” e;nm q
n?q7p
f

and this should agree with 2.1. Accordingly, for each choice of labels a, b, c,d, e, f,m,p, q

S
=
o
S8

we must have

Z Fbcd F;mdFabc Fabp chd

g;pn~ fige” e;nm figm™ fipe
nerL

which is exactly the pentagon axiom for a 65 fusion system. Therefore the diagrammatic
choices we have made are a natural way to visualize the hom-spaces in a fusion category
and the data and axioms of a 65 fusion system. It is a theorem of Mac Lane that the
pentagon axiom is enough to guarantee that any two series of F-moves can be applied

to a fusion tree with more than four labels on the top and the results will be consistent.

Now we will incorporate the braiding into these diagrams. Naturally,

17
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S

/\/@

represents a map from X, ® X, to X, ® X, with its inverse

S

A

and so

S

—X

is another fusion tree for the labels (a, b, ¢). Since we are working with only multiplicity-

free fusion rules, the above tree must be a multiple of

a b

T

Indeed, the correct choice is

and

18
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a b
/ a b

— (Rl Y

where R is the R—symbol determined by the braiding.

c

Consider now the different ways of resolving a fusion tree with three nodes at the top
with braidings applied first to the two leftmost nodes and then to the two rightmost

nodes. On one hand we can first apply an R—move to write

b c a
AN b c a
k N
_ R |
d
d

Then an F'—move and another R—move give

b c a b c a
AN AN
3 - Y Rl
m eclL e
d d

b c a

o ca 1bac ba
- § Re Fd;emRm e

eelL

19
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On the other hand, we can first apply an F'—move and then isotope the fusion tree.

Indeed,

AN AN b c a

abc o abc
- E Fd nm E Fd nm n

neL nel

d d

We can then resolve these trees using an R—move followed by an F'—move to write

b c a
\< b c a
Fabc o RnaFabc
d;nm n - d;nm n
neL nel
d
d
b c a
_ bca na o abc
- E : d, enR dinm e
n,ecL
d
Then for all labels a, b, ¢, d,e,m € L we must have
ca p bac ba E bca na o abc
R d;em Rm d enR d;nm*

nelL

By exchanging the braiding for its inverse in the previous calculations, we are able to

derive

( Rga) Fbac Rba Z é)cgn Rna abc

d; em d nm*
nel

20
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so if we combine these two equations we have exactly the hexagon axiom for the braiding.
Accordingly, this tells us are can move and resolve crossings in the diagrams in different
orders as shown in the resolutions above and the resulting calculations will agree. We
will now show that the hexagon axiom will further imply that the braid relation for the
braid group holds and so the fusion trees are actually bases for vector spaces admitting

braid group representations whose coefficients are given by braiding and 65 symbols.

2.2.2 The braid group

First introduced by Artin ([Art47]), the braid groups are well-studied an ubiquitous
in various areas of mathematics and physics. Let us give the algebraic and geometric
definition. For each natural number n, the braid group on n-strands B, is given by the

famous presentation

B, = (01,...,0n-1 | 050 = 0j0; if |i — j| > 1, 0,0,410; = 0;410:0441).

The elements of B,, can also be described visually via the identification

1 2 i t+1 n-1 n
O'i: .X PR
1 2 A i+1 n-—1 n

and then the group multiplication corresponds to stacking diagrams from the bottom up.
Therefore if o and 7 are two braids then o7 is the braid with 7 at the bottom followed

by stacking o on top of this diagram and then resizing.

The first relation in the above presentation is often called far commutativity and the

21
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second is called the braid relation. Far commutativity can be visualized as

1 i i+1 J J+1 n 1 i i+1 J Jj+1  n
AN AN
1 z‘z‘+1j]\‘;1n 1 i>|—1jj+1n
which shows that we can move crossing past each other when they do not interact with the
same strands. The braid relation 0;0,,10; = 0,110;0,11 then translates to the equation

1 { i+1 i+2 p 1 i i+1 i+2

AN AN

N

O-lo-l—‘rlO-Z: P = P :O’Z+10'20'z+1

N

AN AN

1 7 i+1 142 n 1 i i+1 142 n

involving isotopy of three strands.

2.2.3 An action of braids on fusion trees

One of the main features of fusion trees and braided 65 fusion systems is the ability to
recover braid group representations from all of the data of the FF— and R— symbols. In
particular, denote by V;,, » the vector space spanned by trees withn nodes on top labeled
by ¢ and lone node on bottom labelled k. We claim that whenever this vector space is
nonzero, then the data of the 65 fusion system is exactly the matrix entries of a collection
of representations of the n-strand braid group B, on this vector space with respect to
the bases of admissibly labelled fusion trees. Suppose V;, ; has dimension m. Then a

basis of V; ,, ; consists of m fusion trees of form

22
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for interior labels x1, 2o, ..., z,_s such that each trivalent vertex is admissible. Let us

denote this tree by Y, .. .

Let us now define a collection of linear maps. For j =1,....,n—1,1et T, : Vi, p = Vinx
determined by applying the braiding to the j and j+1 leaves of the fusion trees Y, .. .
There are two scenarios. The map determined by 77 is necessarily diagonal in the basis

of admissibly labelled trees with vertices on the left. Observe that

(Y,

T1yeeesTn—2

_ Pt
- R11Y$1,...,x

n—2"°

For j > 1, the maps 7T} are determined by resolving the braiding on inner strands using
F— and R—moves. We will explicitly calculate the coefficients shortly. Each T is
invertible and is determined by apply the inverse braiding the j and j + 1 leaves of the
fusion tree. Indeed, let G; be the linear map determined by stacking the inverse braiding

on the j and j + 1 ends. Then

23
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and so G; = Tj_l. If we define a function p; 1 : By, — GL(V; k) by pink(o;) = T; then

we claim this gives a representation. Let us first prove this for the case of n = 3.

Lemma 2.2.1 Suppose V; 3 is nonzero. Then p; sy : Bs — GL(Visx) is a group repre-

sentation.

Proof: 1t is just a matter of showing that the braid relation holds for the

stacking action.

(010201) - Y, = => F, => F, \

a€l a€L

24
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where the second equality follows from the hexagon axiom. Then

Z i \ _ ZFW \ = \ = (090109) - Y,

k,ax
aclL a€L

and hence (010901) Y, = (020102) Y, which shows that p; 3 is a representation.
|

We can use this lemma to handle the general case.

Proposition 2.2.2 Let n > 3 and suppose V,, is nonzero. Then p;n : B, —

GL(V;’mk) 18 a group representation.

Proof: Write p = p; . If |j—k| > 1 then is it clear that p(o,01) = p(oko;)
since we can slide the crossings past each other as they involve disjoint pairs of
strands. Any pair ;, 0,41 generates a copy of Bs so the braid relation holds by
applying Lemma 2.2.1 locally to the j, 7+ 1, and j + 2 leaves of the fusion trees.

[
These representations arising from 65 fusion systems are what we will call quantum
representations of the braid group. The final result we will record in this section tells
us the coefficients for the action of each o; with respect to the basis of admissibly labelled

trees.

25
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Lemma 2.2.3 Suppose V; ,, i, is nonzero. Then

RY, ifj =

17 L1y sTn—2

Tj—21% 1yi5 aTj—210 ip -
Zz,weL ij%wz Rz ij?zxjflY$17---7$j—27w@j ----- Tp—2 Zf] > 1

where g = 1.

Proof: ~ The stacking action can be visualized with the diagrams below,

where x;_; denotes the interior label for j =1,...,n and zg = ¢.

and we can use F'— and R— moves to resolve this diagram and write down a

formula for the coefficents of the action of o; on Yy, .. Indeed,

26
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_ T 211 U [T 208
= N GuiRIEY

5wz ;52251
z,weL

Example 2.2.4 Recall the Ising fusion rule from the beginning of the section.

The label set is { 1,0, } and the fusion rules are

ocRo=1®0¢Y, vov=1 ocRYP=19YRo=o.

Observe that the vector space V, 3, is two-dimensional and admits basis vectors

and
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The action of o1 on these vectors is diagonally by the R—symbols, i.e.

Ry 0 e ™80
Po,3,0 (Ul ) = = ]
0 Rga 0 637”/8

The matriz F77° allows us to compute the action of o2. We can choose F7°7 to

be of the form

so therefore

I 6—7ri/8 0 o 1 6—7ri/8 + 637ri/8 6—7ri/8 _ e37ri/8
pa,3,0(02) = (FO' ) . FCT = 5 . . . .
0 e37rz/8 6771'7,/8 _ e37rz/8 e*ﬂ'l/s + e37rz/8

Example 2.2.5 The Fibonacci theory is the fusion system with label set L =

{1,7} together with the fusion rule T @ T =1& 1. Then V;3, has basis

T T T
i=
r
and
T T T
Y;-: T
.
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The representation p, 3 is determined by R = e 4mi/5 RT™ = e3™/5 and

¢—1 ¢—1/2
¢71/2 _gbfl

TTT __
Fm =

where ¢ = %5 is the golden ratio. One reason for interest in this representation
is that it is known (see [FLW00]) that the image of prs, is a universal gate set

for quantum computation.
Another example comes from the D(S3) fusion system described before.

Example 2.2.6 Recall the labels A, B,G of D(S3), presented in Example 2.1.6
and consider the vector space Vg sa. The fusion rules G @ G = A® B & G,
G®A=G, and G® B = G imply that Vi 3¢ is three-dimensional with basis

vectors

The R- and F- symbols for D(Ss) were determined in [CHW15]. They have

been chosen so that the representations derived therein are unitary. We have

REG — 64m/3, RgG — _€4m’/3’ and RgG — 2mi/3 Also,
1 1 L
2 2 V2
FGGG — | L L 1
G 2 2 V2
1 o_1
V2 V2

from which the representation can be computed.
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2.3 Categorical perspective

For completeness, we include the categorical definitions that go along side the vocabulary
of a 6 fusion system introduced in the previous sections. We will assume basic familiarity
with categories, functors, and natural transformations. For a category C and objects A

and B of C, denote by C(A, B) the set of morphisms from A to B.

Definition 2.3.1 Let k be a field. We say a category C is k-linear if for each pair of
objects A, B in C, the hom-space C(A, B) is a k-vector space. An object A of C is said to

be simple if C(A, A) is a one-dimensional k-vector space.

We will only consider C —linear categories.

2.3.1 Monoidal and fusion categories

The starting point for all of the categorical structures that we will consider is a discussion
of monoidal categories. All of the more complicated structures will have an underlying

monoidal structure.

Definition 2.3.2 A monoidal category is a category C together with a bifunctor
—®—:CxC—=C

called a tensor product, an object I of C called the unit object, and natural families
of isomorphisms
aapce  (A®B)®@C - A® (B ()

pAA(X)[—)A )\AI®A—)A
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called respectively the associator, the right unitor and the left unitor, such that the

diagrams
(A®B)@C)® D
aA,B,y WC,D
(A (Be(C)®D (A B)® (C® D)

QA BRC,D QA B,CQD

A®(B®C)o DYE5 @ (B (C ® D))
and

(A® 1) ®B—>A® (I ® B)
PAm A)\B

commute.

The term tensor category is reserved for those linear monoidal categories. One way to
simplify the investigation of monoidal categories is to consider those wherein the associ-

ators and unitors are all trivial.

When consider maps between monoidal categories, we want functors that also transport
the monoidal structure from one category to another. We can never have true equality
in categories; the correct addition to include is a natural transformation between the two

monoidal structures in the target category. We give the full definition below.

Definition 2.3.3 Let C be a monoidal category with associators a, left unitor X and right
unitor p. We say C is strict in the case that o, A\, and p are all equal to the identity

natural transformation.

31



Quantum representations of mapping class groups Chapter 2

Definition 2.3.4 Let C and D be monoidal categories with respective unit objects I and
Ip. A monoidal functor is a functor F : C — D together with a natural transformation
fap: F(A)® F(B) — F(A® B) and morphism f : Ip — F(I¢) such that for all objects
A, B,C of C the diagrams

QF(A),F(B),F(C)

(F(A)® F(B)) ® F(C) F(A)® (F(B)® F((C))

fa,B®idpc) idpay ®fB,c
F(A® B)® F(C) F(A)@ F(B® ()
fagB,c fa,BeC
F(A® B)® C) Poare) |, pAs (Be )
F(A) © Ip 9% pa) @ F(Ie)

J/pF(A) J/fA,IC

and

id
Ip® F(B) 2255, (1) @ F(B)

J/)‘F(B) J/fIC,B

commute. A monoidal functor is called a monoidal equivalence if the underlying func-
tor F is an equivalence of categories. In this case we say that C and D are monoidally

equivalent.

The following theorem allows us to simplify many discussions as we can speak only of
those strict categories but then transport the results back to the non-strict case. This is

due to MacLane.
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Theorem 2.3.5 ([Lan78]) Every monoidal category is canonically monoidally equiva-

lent to a strict monoidal category.

So far, it should be clear that we are generalizing the structure exhibited by, say, the
category of representations of some group or algebra. In this case, another piece to

include is the corresponding dual objects. The formal definition is provided next.

Definition 2.3.6 Let C be a monoidal category and let A be an object of C. A left dual

for A is an object A* of C together with morphisms
ea AAQA— I, da:l— AR A"

such that the diagrams

da®1p QA A% A

A0 T AP (A0 A @ AN A0 (A5 @ A% A0 T 24 A

1a

and

-1
A*®d g < AR 4

A0 40 @ 19 @ (A @ AT A @ A) @ AT @ AF 28 g

1A*
commute. In this case, we also say A is a right dual for A*. An object A is called left
(resp. right) rigid if it has a left (resp. right) dual. We say A is rigid if it has both
a left and right dual. A monoidal category C is left (resp. right) rigid if every object

of C is left (resp. right) rigid and C is rigid if every object of C is rigid.
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Continuing with the motivating example of the category of representations of a finite
group, recall that this category is semisimple and has finitely many isoclasses of simple
objects. This idea is incorporated into the following definition, which is the ultimate goal

of this section.

Definition 2.3.7 A fusion category (over a field k) is a rigid semisimple k-linear
monoidal category, with only finitely many isomorphism classes of simple objects, such

that the unit object is simple.

Before moving on to the next section, we connect the definitions here back to the begin-
ning of this chapter. Plainly, we want to express that fusion categories are the same as

6j fusion systems, up to the appropriate caveats.

Theorem 2.3.8 ([Yam02, ENOO05])

(i) There is a bijection between 65 fusion systems up to equivalence and fusion cate-

gories over C up to C-linear monoidal equivalence.

(i1) (Ocneanu rigidity) There are only finite many equivalence classes of fusion cate-

gories with a given fusion rule.

2.3.2 Ribbon and premodular categories

In the next few sections, we will describe some of the addition structures and properties
that monoidal and fusion categories can have, culminating with the definition of a modu-
lar tensor category. The first thing to discuss is braidings for monoidal categories, which

is a sort of commutativity condition on the tensor product in the monoidal category.

Definition 2.3.9 Let C be a monoidal category. A braiding for C is a natural family
of isomorphism

CA,BIA®B—)B®A
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such that the diagrams

(A B)®C
CABiQV X‘BC
(BA)C A® (B®C)
ap,A,c CA,BRC
®(A®C) (Be(C)®
1B®6Ax‘ %CA
B® (C® A)

and
A® (B®C)
1A®07 Y‘Bc
®(C®B) (A® B) ®
aZ,lC,B CA®B,C
(A2C)@ B C@(A® B)
N
(C®A)® B.

commute. A braided monoidal category is a monoidal category together with a chosen

braiding.

Let C be a braided fusion category. For each object X of C and natural number n,

the hexagon axioms for the braiding imply that there is a group homomorphism px,, :
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B, — End(X®") where px,(0;) = id¥ ' ®cx,x ®id$" """ (suppressing associators).
Then whenever Y is another object of C such that Hom(Y, X®") is nonzero, there is a

representation px ny : B, — GL(Hom(Y, X®")) determined by

pX,n,Y(Oi) = (f — pX,n(Oi) o f)

In this way, a braided fusion category provides a wealth of representations of the braid
groups. Under the correspondence between braided 6; fusion systems and and braided
fusion cateogries, these are the same quantum representations defined in the earlier sec-

tions.

To get from braided categories to modular categories, we need an another structure,

called a twist, which satisfies a certain compatibility condition with the braiding.

Definition 2.3.10 Let C be a braided monoidal category. A twist for C is a natural
family of isomorphisms

QAZA—>A

such that O agp = cpac (04a®@60p)ocap. A braided monoidal category with a chosen twist

15 called a balanced monoidal category.

The next definition generalizes the transpose map on dual vector spaces induced by a

linear map.

Definition 2.3.11 Let C is a left rigid monoidal category and let A and B be objects of
C. To each morphism f : A — B we can assign a morphism f*: B* — A* given by the
composition [* = Ag(ep @14 )(1p R f @ 1A*)a§17A7A*(13* ®da)ppe. The morphism f*
1s called the dual morphism of f.
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Definition 2.3.12 Let C be a balanced rigid monoidal category with twist 6. We say C
is a ribbon category if

04 = 07
for all objects A of C.

Definition 2.3.13 We call a ribbon fusion category a premodular category.

2.4 Modular categories and quantum representations

Definition 2.4.1 For a premodular category C with braiding ¢ and twist 8, we can define

a trace for morphisms f: A — A. Indeed, the composition

104 oA OO e A A pe e 4 A T

gives an elements of C(I,I) and since I is simple, this composition must be of equal
to tr(f)id; for some scalar tr(f) € C. For an object A of C we define the quantum
dimension of an object A, denoted dim A, to be tr(ids). Let Irr(C) be a complete set
of isomorphism classes of simple objects of C. Then we can define the global quantum

dimension of C, denoted by dim C where

(dim C Z dim (X

Xelrr(C)

Definition 2.4.2 Let C be a premodular category with braiding ¢ and twist 6 and let
{Xo=1,X1,..., X, } be a complete set of isomorphism classes of simple objects of C.
Define s to be the scalar tr(cx; x, © cx,x;). Since the vector spaces End(X;) are one-

dimensional, there are scalars 0; so that 0x, = 0;idx, for all 1 = 0,...,n. Then we can

define

s=(sij) t=(0:0;)
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fori,7 = 0,...n. These are respectively called the S—matriz and T—matriz of C. A

premodular category is called modular if s is invertible.

Proposition 2.4.3 In a modular category C with S—matriz s and T—matriz t,

s’ = (dim(C))e, e’ =1, (st)’=pis®, et=te

where pz = Y., 07 dim(X;) and e = (§;;+). In particular, s and t define a projective

representation of the mapping class group of the torus.

We call these representations defined above quantum representations. We have so far
demonstrated that we can define representations of the mapping class group of the n-times
punctured disc as well as the torus. It is natural to wonder if we can define representations
for the mapping class group of any surface. It turns out that in a modular category, the
projective representations of the mapping class group of the torus can be extended to any
surface with genus greater than one. Quantum representations of mapping class groups
has received considerable attention (see [And06, FK06, Fun99, LW05, FWW02, BW18,
Blo18]). We will be focusing on quantum representations of the three-strand braid group,

although similar problems could be formulated for other mapping class groups.
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A congruence subgroup problem for

quantum representations

Our main goal throughout this work is to explain a construction of congruence and
non-congruence subgroups associated to representation of the three-strand braid group,
especially quantum representations. In this section, we introduce the vocabulary for
finite index and congruence subgroups of the special linear groups. The fact that the
three-strand braid group admits SL(2,Z) as a quotient will then be the bridge between

braid group representations and congruence subgroups.

3.1 Finite index subgroups of the special linear groups

Let N be a positive integer at least equal to two and denote by SL(N,Z) the group of

N x N matrices with integer entries and determinant equal to one. This is a normal
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subgroup of GL(V,Z) as it is the kernel of the homomorphism

GL(N,Z) = Z

A — det A.

One way of understanding an infinite discrete group like SL(N,Z) is to understand its
finite quotients or more generally its finite index subgroups. There are obvious candidates
for finite index subgroups of SL(/NN,Z). For each positive integer d, denote by SL(V,d)

the finite group SL(N,Z/dZ). There is a surjective homomorphism

rq: SL(N,Z) — SL(N,d)

which is induced by the reduction mod d homomorphism Z — Z/dZ. As SL(N,d) is
a finite group, we can construct a finite index subgroup of SL(N,Z) by pulling back a
subgroup of SL(NV, d) along r,;. The simplest example would be to look at the preimage

of the identity i.e. the kernel of r;. These have a special name.

Definition 3.1.1 Let ry : SL(N,Z) — SL(N,d) be the homomorphism induced by re-
ducing entries modulo d. The kernel of this map is called the principal congruence

subgroup of level d.

We see that the finite index subgroups G of SL(N,Z) fall into two classes - those which
arise as the preimage of a subgroup of SL(NN,d) and those which do not. In the former

case, G must contain the principal congruence subgroup of some level.

Definition 3.1.2 A finite indezx subgroup G of SL(N,Z) is called a congruence sub-
group if G contains a principal congruence subgroup. The minimal integer d such that

G contains the principal congruence subgroup of level d is called the level of G. If G
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does not contain any principal congruence subgroups then G s called a non-congruence

subgroup.

It is natural to wonder to what extent congruence subgroups account for the finite index
subgroups of SL(N,Z). It turns out that this was answered by Bass, Serre, and Lazard

and separately by Mennicke.

Theorem 3.1.3 ([BSL64, Men65]) Every finite index subgroup of SL(N,Z) is a con-

gruence subgroup if and only if N is greater than two.

In particular, we see that SI(2,7Z) is the only special linear group which admits non-
congruence subgroups. For all other values of N, the only finite index subgroups of

SL(N,Z) arise via the construction outlined above.

3.2 SL(2,Z)

Let us narrow our attention to the case of SI(2,Z) and the congruence subgroup prob-
lem. The group SL(2,7Z) is ubiquitous in mathematics, appearing in numerous areas
including number theory, hyperbolic geometry, and topology. Abstractly, SI.(2,7Z) has
the presentation

SL(2,Z) = (z,y | 2* = (zy)*, 2* = 1) (3.1)

given by an amalgamated free product of Z, and Zg. This presentation can be realized

using the matrices

41



A congruence subgroup problem for quantum representations Chapter 3

by setting x = S and y = ST. Another set of generators (although for a different

presentation) is given by 7" and the matrix

and the two generators are related by the equation 7ST = U or S = T-*UT~'. The sub-
group { I,—1} of SL(2,7Z) is a normal subgroup and quotient group is called PSL(2,Z).
When no confusion arises we will denote the projective image of a matrix A by the

same letter. In particular, we can identity the matrices S and T above with elements of

PSL(2,7Z) as well. There is a well known isomorphism (see [Alp93])
Zy % Zy = PSL(2,Z)

which maps the order two generator of Zs x Z3 to S and the order 3 generator to ST'.

Historically (although not uniformly), the group PSL(2,Z) is often denoted I', and we
will use this abbreviation. Let us write ¢ : SL(2,Z) — I for the quotient map. We
shall introduce some special notation for the principal congruence subgroups of SL(2, Z)

and I". Denote by I'(d) the principal congruence subgroup of level d of SL(2,Z) and I'(d)

the principal congruence subgroup of level d of T (its preimage under the quotient map q).

Example 3.2.1 In this example we show that T'(2) = (T2, U2, —1I). Since
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and
e [1 0
2 1
it is clear that (T%, U2, —I) C T'(2). Now we need to establish the other inclusion.

This can be done essentially using the division algorithm. Suppose

is an element of f(2) First, if c =0 then A is necessarily of the form

+1 2m
0 =1

sincedet A=1and A=1 mod 2. Then A= +£T*™ is an element of (T?,U?, —1I).
Similarly, if b= 0 then A = +U?" for some n and so again A € (T?* U? —1I). So
assume that neither b = 0 nor ¢ = 0. Since a is odd and c is even and nonzero,
we know that either |a| > |c| or |a| < |c|. If |a] > |c|, we can write a = 2kc + 7

for some r such that |r| < |c|. Then

1 -2k a b a—2kc b—2kd r b—2kd
T2 A = = =

0 1 c d c d c d

and now |r| < |c|. Then write ¢ = 20r + s where |s| < |r| so that

SV

s d—20r
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and again the bottom left entry is of smaller absolute value than the upper left
entry. Continuing this way, we can multiply by appropriate even powers of T
and U until we arrive at a remainder of 0. Since each term in the product is an
element of f(2), we know that the 0 cannot be in the top left entry. Therefore

we arrive at a matriz of the form

+1 2m

0 =1

which we have already considered. Thus we see that any element of f(2) can be

written as a product of —I and powers of T? and U?.

Theorem 3.1.3 tells us that SL(2, Z) is the only special linear group which exhibits finite-
index subgroups not arising as preimages of subgroups of SL(2,d) for some d. In fact,
more is true. If we let n(r) be the number of index r subgroups of SL(2,7Z) and n.(r)

the number of those that are congruence subgroups, then

as r — 00. So it is the non-congruence subgroups of SL(2,7Z) which account for nearly

all of its finite index subgroups, (see [Sto84]).

Now, this leads to a natural problem: given a finite index subgroup of SI.(2,Z), determine
whether it is a congruence subgroup. This is sometimes referred to as the congruence
subgroup problem. We often pass back and forth between SL(2,Z) and PSL(2,Z) and

in general there is no harm here.

Proposition 3.2.2 If G is a finite index subgroup of SL(2,7Z) and q : SL(2,Z) — T is
44
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the quotient map then G is a congruence subgroup of SL(2,7Z) if and only if q(G) is a

congruence subgroup of PSL(2,7Z).

Proof: Suppose I'(d) C G C SL(2,Z). Then ¢(I'(d)) C ¢(G) C T. But
¢(T(d)) = T'(d) so ¢(G) is a congruence subgroup of I.Conversely, if G is a
subgroup of I" then let G be the corresponding subgroup of SL(2,7Z) so that
¢(G) = G. 1f ¢(T'(d)) C @ then taking the preimage under ¢ we see I'(d) C G.

|

3.2.1 A family of non-congruence subgroups of SL(2,7)

The purpose of this section is to give an example of an infinite family of non-congruence
subgroups of SL(2.Z) and I'. This family is interesting because its construction is similar
to the one we will provide at the end of the next chapter. Both families arise as kernels
of homomorphisms and are in that way a bit mysterious. The example here arises as
the kernels of the quotient maps from SL(2,7Z) to the alternating groups A,,. This is our

starting point.

Theorem 3.2.3 ([DW71]) For n > 3, the alternating groups A, are generated by an

element or order two and an element of order three.

In particular, since I' is isomorphic to the free product Zs * Zs, we can realize these
alternating groups as quotients of I' and therefore of SL(2,Z). Denote the kernel of
the quotient map SL(2,Z) — A, by K,. This is a family of finite index subgroups of
SL(2,Z) and we claim that each of these is a non-congruence subgroup. First, we need

the following lemmas.

Lemma 3.2.4 Let H =Gy x --- X G, where each G; is a finite group. If S is a simple

group quotient of H then S is a simple quotient of one of the Gj.
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Proof: Since S is a simple quotient of H, there is a composition series of H
with S as a composition factor. Also, if welet H; = Gy X --- X G; x 1 x --- x 1,
then

l1<Hd---dH,=H

is a normal series for H with factors H;/H; 1 = G; for i = 1,...,m. Therefore,
by the Jordan-Holder theorem, there is some ¢ so that S is a composition factor
of GG;. Equivalently, S is a simple quotient of G;. [ |

Next we need to identify the composition factors of SL(2, p").

Lemma 3.2.5 Let p be a prime and r > 1 an integer. If C' is a composition factor of

SL(2,p") then C is isomorphic to one of the following:
(i) a cyclic group.
(i1) PSL(2,p).

Proof:  There is a surjective map SL(2,p") — SL(2,p) given by reducing
entries mod p. The kernel K- of this map is known to be a p—group, whose
composition factors are all cyclic of order p. Therefore the composition factors of
SL(2,p") are cyclic of order p together with the composition factors of SL(2, p).
First consider when p is less than 5. There are isomorphisms SL(2,2) = S3 and
SL(2,3) = A4, which are both solvable and hence their composition factors are
all cyclic groups. Now for p at least 5, recall that the quotient SL(2,p)/{I,—1}
is the simple group PSL(2,p). Hence the composition factors are cyclic of order

2 and PSL(2,p). |

Lemma 3.2.6 Let n be a positive integer and p a prime. The solutions to

nl=(p—1)pp+1)
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are

Proof: When n < p there are no solutions since then n! is not divisible by

p. When n = p, we can reduce the equation to

p=2)=p+1

and the only prime solution is p = 5. This gives the solution n = p = 5. If

n = p+ 1 then we can reduce the equation to

(p—2)=1

so p = 2 or p = 3 giving the other two solutions above. When n > p + 1 we
claim there are no solutions. We can divide n! by (p — 1)p(p + 1) and the result
will be an integer greater than one, so there can be no solutions. |

We can bring these three lemmas together to prove the following proposition which

essentially proves our examples are non-congruence subgroups.

Proposition 3.2.7 For anyn > 6, the alternating group A, is not a quotient of SL(2, d)
for any d > 2.

Proof:  Suppose A, is a quotient of SL(2,d). If we write d = pi*---pim

then the Chinese Remainder Theorem implies
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SL(2,d) = SL(2,pj?) x - - - x SL(2. )

and since A,, is simple for n > 5, by by 3.2.4 there is some 7 so that A, is a
(simple) quotient of SL(2,p;"). Then A, is a composition factor of SL(2,p;").
Certainly A,, is not cyclic so by 3.2.5 there must be an isomorphism A, =

PSL(2, p;). Then considering orders,

so by 3.2.6 we see n < 5. This is a contradiction and so we se that A, is not a
quotient of SL(2, d). [ |

Finally, we can prove that each of the K, are non-congruence subgroups.

Corollary 3.2.8 For any n > 6, the kernel K,, does not contain any of the subgroups

[(d). Therefore, K,, is a non-congruence subgroup.

Proof: 1f K, contains I'(d) then we can denote by K,, the quotient K, /T'(d)

and write

A, = SL(2,Z)/K, = (SL(2,Z)/T(d))/(K,/T(d)) = SL(2, d) /&,

which shows that A,, is a quotient of SL(2,d), contradicting 3.2.7. [

So we have arrived at our family of non-congruence subgroups.
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3.3 The geometric level of a finite index subgroup

and the Fricke-Wohlfahrt theorem

Proposition 3.2.2 tells us that solving the congruence subgroup problem in SL(2,Z) or T’
are equivalent problems. With this in mind we will work primarily in I'. In the beginning
of this chapter we associated to each congruence subgroup GG a number called its level
which is the minimal integer d such that I'(d) is a subgroup of G. More generally, given
any finite index subgroup G of I', we can associate to it an integer called its geometric

level. Recall that T" denotes the image of the matrix

in I'. Now I permutes the cosets of GG, acting by left multiplication. If G is a finite index
then this action corresponds to a permutation representation on a finite set and therefore
induced a homomorphism to a finite symmetric group. The geometric level of G is the

order of T" under this homomorphism.

Definition 3.3.1 Let G be a subgroup of I' with finite index p and let p : I' — S, be
the coset representation afforded by G, where S, is the symmetric group on j elements.

Define the geometric level of G, denoted geolevel(G) to be the order of the element
p(T) in S,,.

The following lemma will be of use.

Lemma 3.3.2 Let G be a finite index subgroup of I'. Then

geolevel(G) =min { k> 1| ((T"")) CG }.
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In particular, if G = ker ¢ for some homomorphism ¢ then geolevel(G) equals the order

of p(T).

Proof:  Let geolevel(G) = d. Then T acts trivially on the G—cosets of
' so we have T99G = ¢G for all ¢ € G. Then g~ 'T% € G for all g and so
((T%) € G. We claim that d is minimal. Suppose k is the smallest positive
integer for which ((T*)) C G. Then given g € G, write ¢~ 'T%g = z € G and
observe that T%gG = goG = gG so T* € kerp. Since k is the smallest integer

for which this is true, it must be that k = d. Therefore, we see that
geolevel(G) =d=min { k> 1| ((T") C G }.
If further G is normal so that G = ker ¢ for some homomorphism ¢ then
geolevel(G) =d=min { k> 1 | T* € kerp } = |o(T)|.

|
Our goal will be to prove that when G is a congruence subgroup then geolevel(G) =

level(G). Lemma 3.3.3 will be our first step.
Lemma 3.3.3 Suppose G is a congruence subgroup. Then geolevel(G) < level(G).

Proof: Let n = level(G) and d = geolevel(G). Since I'(n) C G and I'(n) is
normal, we see that ((I")) C G. But since geolevel(G) = m, we know m is the
least integer for which this is true. Therefore m < n. [ |

It is a nontrivial theorem due to Fricke and Wohlfahrt that when G is a congruence
subgroup, then its level and geometric level agree. The following lemmas are a series of

reductions that will allow us to ultimately prove the Fricke-Wohlfahrt theorem.
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Lemma 3.3.4 Let k and n be positive integers and suppose A € U'(k). If the off-diagonal

entries of A are divisible by n then AB € T'(n) for some B € ({(T*)).

Proof: Let A € T' such that the off-diagonal entries of A are divisible by n.

Define a function ® : I' — I" by

a b a ad — 1
c d 1 —ad d(2-ad)

Note that if V = TU 'T3U T then

a b 1 —1
d = (ST'S) (Vvre—tv rdt
c d

hence ®(A) is an element of ((T%)) sincea—1=d—1=0 mod k. As both b and
c are divisible by n and ad — bc = 1, we have ad =1 mod n and so A = ®(A)
mod n. Equivalently, A®(A)~! € T'(n). Thus we can take B = ®(A)~1. |

Lemma 3.3.5 Let k and n be positive integers and suppose A € T'(k). If the diagonal
entires of A are relatively prime to n then there is a matriz C € ((T*)) so that the off

diagonal entries of C'A are divisible by n.

Proof: Let

A=
c d

where ged(a,n) = 1. Then a is a unit mod n say with inverse a’. We can write

o1
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¢ =mec and let p = —a’c. Then
1 0 a b a b
(ST™S)PA = =
mp 1 c d c+amp d+ bmp

and ¢+ amp = m(Z — a’a?) is congruent to 0 mod n. Let d = d + bmp. Taking
the determinant of (ST™S) P A, we see that d is relatively prime to n. Therefore

we can also choose £ so that b+ dmf = 0 mod n. In this case,

1 mf a b * b+ dm/l
T™(ST™S) A = =

0 1 c+amp d c+amp d

has both off diagonal entries congruent to 0 mod n. Take C = T™(ST™S)P.

Lemma 3.3.6 Let k and n be positive integers. For any A € T'(k) there is M € ((T*))

so that the diagonal entries of AM are relatively prime to n.

Proof: If the diagonal entries of A are already relatively prime to n are done.
Otherwise, ged(a,n) # 1 or ged(d,n) # 1. Suppose first that ged(a,n) # 1.
Since ad — bc = 1 we know ged(a, b) = 1. Then since a = 1 mod k, we also have
ged(a, bk) = 1. Recall Dirichlet’s theorem on primes in arithmetic progressions:

Suppose r and s are relatively prime integers. Then
{r+st|teZ}

contains infinitely many prime numbers. In particular, taking » = a and s = bk

we can choose an integer p so that a + bkp is a prime number larger than n.
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Then

ASTES) 7 = a b 1 0 B a+bkp b

c d mp 1 c+dkp d

has upper left entry relatively prime to n. If further ged(d, n) = 1 then A(ST*S)~P
has diagonal entires relatively prime to n and we are done, taking M = (ST*S)~?.
Otherwise, let @ = a + bmk, let ¢ = ¢ + dmk and note that ad — bc = 1 so
ged(e,d) = 1. As ged(d, k) = 1, just as above we can choose ¢ so that d + ¢ck( is

a prime number larger than n. Then

A(STkS)imeZI a b 1 ml _ a *

N
SH
e}
—_
o

¢ d+ckp

and A(ST*S)~PT™ has diagonal entries relatively prime to n. Hence we can set
M = (STkS)=PTm™*, |

These three lemmas together imply the following:
Lemma 3.3.7 Let k and n be positive integers. Then T'(k) C ((T*))T'(n)((T*)).

Proof: Let A € I'(k). Then by 3.3.6, there is some M € ((T*)) so that
AM has diagonal entries relatively prime to n. Lemma 3.3.5 tells us we can
choose C' € ((T*)) so that CAM has off-diagonal entires divisible by n. Lastly,
Lemma 3.3.4 implies CAM B € T'(n) for some B € ((T*)). Rearranging, we see
A€ (T ()(TH). C

The Fricke-Wohlfahrt now follows as a corollary of the previous Lemma.

Theorem 3.3.8 (Fricke-Wohlfahrt theorem) Suppose G is a congruence subgroup of

I'. Then the level of G equals the geometric level of G.
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Proof:  Let d = geolevel(G) and n = level(G). Then I'(n) C G and

{(T%) C G. By Lemma 3.3.7, I'(d) C ((T%))T'(n){(T%)), therefore I'(d) C G.

Since level(G) = n, it must be that d > n. However, by Lemma 3.3.3 we know

that n < d, so it must be that d = n. [ |
Our main use of the Fricke-Wohlfahrt theorem is Corollary 3.3.9, which gives us a way
to decide whether GG is a congruence subgroup as long as we can compute its geometric
level. In the cases we will be considering, GG will be the kernel of a representation and so

the geometric level of G will be the order of the image of T" under the representation.

Corollary 3.3.9 Suppose G s a finite index subgroup of I' with geometric level d. If

['(d) € G then G is non-congruence subgroup.

3.3.1 Generators for I'(d)

Corollary 3.3.9 can actually be put to practical use. If S is a generating set for I'(d) then
it is enough to check if S C G. Later, we will be interested exclusively in the case that
G = ker p for a finite-dimensional representation p with finite image and so it would be
sufficient to check whether the elements of .S are sent to the identity under p. Fortunately,
in [Hsu96], Tim Hsu was able to construct reasonably small normal generating sets for

all the principal congruence subgroups of I' and we record his results below.

Proposition 3.3.10 Let d be an integer greater than one. Write d = ek where e is a
power of two and k is odd and let G4 be the corresponding set of elements corresponding

to d listed below. Then in any of the above cases, I'(d) = ((Gq)).

(i) (d is odd) If e =1 then let t(d) be the multiplicative inverse of 2 mod d and

Gd — { f]’vd7 (UQTft(d))?) } )
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(ii) (d is a power of two) If k =1 then let f(d) be the multiplicative inverse of 5 mod

d and set Py = T2OU/DT-4U-1 Then

G, = { T, (PUPTU T, (TU 'T)"'Py(TU 'T)P, } .

(i11) (d even, not a power of two) If e > 1 and k > 1 then let a be the unique integer

mod d so that

a=0 mode

a=1 modk

and let b be the unique integer mod d so that

b=0 modk

b=1 mode.

Write t(d) for the multiplicative inverse of 2 mod k and f(d) for the multiplicative

inverse of & mod e,let

v=T" z2=T°
y=U" w=U"

and pg = 22w Dzt Then Gy is given by
{7 [ew], (g™ 2)", Gy~ 020 y)?, ey 022Dy ),

%)
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1 -1 _ -1 (-1 -1 -1 -1
(2w 2)*(paw’zw  2)7%, (2w 2) pa(zw  2)pg, wFpaw  py }

We can combine this with Corollary 3.3.9 to get the following result. This will be a

central tool for our main results.

Corollary 3.3.11 Let H be a finite group. Suppose ¢ : I' — H is a homomorphism and
let d be the order of o(T'). Then ker ¢ is a congruence subgroup if and only if G4 C ker .

In this case, level(ker @) = d.

Proof: By 3.3.2, ker ¢ has geometric level equal to the order of d. If ker ¢
is a congruence subgroup then level(ker ¢) = d by the Fricke-Wohlfahrt theorem
and we must have I'(d) C ker . So clearly G4 C ker ¢. Now suppose G4 C ker ¢.
Then since ker ¢ is normal, we see ((G4)) C ker ¢ as well. In particular, ker ¢
contains I'(d), so ker is a congruence subgroup of level at most d. If kery
contains T'(k) for some k < d then T* € ker ¢, which contradicts d being the

order of p(T). |

3.4 The Ng-Schauenburg theorem for quantum rep-
resentations and our main problem

The bridge between this and the previous chapter is the Ng-Schauenburg theorem, pre-
sented below. It establishes a connection between quantum representations of SL(2,Z)

and congruence subgroups.

Theorem 3.4.1 ([NS10]) Let C be a modular category and pe the quantum representa-

tion of SL(2,7Z) associated to C. Then the kernel of the pc is a congruence subgroup.
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This provides us with motivation for our main problem. We know from Chapter 2
that given any modular tensor category C we can associated to every surface a projective
representation of its mapping class group. If we replace the torus by the n-times punctures
disc, we obtain the quantum representations of B,, discussed in Chapter 2. Recall that
Bs/Z(B;) = T, so we can associate to subgroups of Bs the same congruence or non-
congruence property of subgroups of I'. In particular, given an irreducible quantum
representation of B3 with finite image, we can first replace it by a representation that
factors through the quotient map 7. This is because the center acts by some scalar by
Schur’s Lemma and so we can scale this away. In this case we end up with a finite
representation of I and so it makes sense to ask whether or not the kernel of this induced
representation is a congruence subgroup. Is there a way to compute the level or geometric
level in terms of the data of the representation. The corollary at the end of the previous
section gives us the first step towards answering these questions. Let G4 be the set of

generators of I'(d) in Hsu’s theorem.

Theorem 3.4.2 Let p: By — GL(n,C) be a representation with finite image that factors
through m and let d be the order of p(o1). Then w(ker p) is a congruence subgroup of I' if

and only if 771(Gy) C ker p.

Proof:  Since p factors through 7, there is an induced representation p of
', which also has finite image. Then by 3.3.11, we see that 7(ker p) = kerp is a
congruence subgroup if and only G, C ker p where d is the order of p(T). But
p(o1) = p(m(o1)), so taking preimages, the result follows. |
We now have a systematic approach to deciding whether or not a (quantum or otherwise)
representation of B3 gives rise to a congruence subgroup via the kernel of a possibly
scaled version of the representation. The next step, which is carried out in Chapter 4,

is to parametrize the space of two or three dimensional irreducible representations of
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B3 with finite image and for those which factor through 7, decide whether the induced
kernel is a congruence subgroup. We can specialize Hsu’s work to the case of a matrix
representation. Since the representations we will be concerned with have finite image,
the image of the generators 7' and U must have finite projective order and finite order.
So while they may seem quite specific, the two hypotheses in subsequent proposition are

actually quite generic to our situation.

Proposition 3.4.3 Let H be a finite group and p : I' — H a homomorphism and write
p(T) = A and p(U) = B™Y. Suppose A" is central and the order of A is an even composite

integer d that is not a power of 2 and let Gq,a,b,t(d), f(d),x,y, z,w, pg be an in 3.3.10.

(i) If d divides 24, a is a multiple of v, 12a is a multiple of d, 3at(d) is a multiple
of d and p(pg) is a central element of order at most 2, then ker p is a congruence

subgroup of level d if p((zw™12)?) = p(pag(w®zw=12)3).

(i1) If b is a multiple of v, 12b is a multiple of d, and (17 — f(d))b is a multiple of d

then ker p is a congruence subgroup of level d if p((xy~'x)?) = p((y?x~HD)3).

Proof: Let us consider each case separately. Note that A and B have the
same order since they are conjugate. According to 3.3.11, we know that ker p is
a congruence subgroup if and only if G; C ker p. Then we must show that each

element of

-1 -1

{1, [o,w), ey 2)", oy @)™ y)", (g

1 _
) (2" Dy )3,

5

(2w 22 (paw’zw 2)73, (2w 2) pa(zw 2)pa, w25pdw_1p:l1}.

is mapped to the identity under p. Since A has order d, we see that p(T) is

the identity, so we need only be concerned with the elements above other than

o8
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T<. First let us suppose the hypotheses of (i). As a is a multiple of r, the
element p(z) = A® is central so that [z,w] € kerp. Next, we can compute
p((zy~tz)*) = A'?* which must be the identity since 12a is a multiple of d.
Also p((zy~'z)? (2~ 1y)?) = A% A~% is the identity and p((zy~'z)? (21 Dy=2)3) =
Ar2a+3at(d) — A3at(d) Tyt since 3at(d) is a mutliple of d, we know this is trivial. We

1) pa(zw™12)pg) is the identity since p(pg) is central and

can compute p((zw™
of order at most 2. Finally, since d divides 24, we know that p(w?5paw='p;') =
p(w?) = B2 = (B?")7? is the identity since B** is. Hence, we can conclude
ker p is a congruence subgroup of level d if p((zw™12)?) = p(ps(w°zw'2)?), since

then G4 C ker p.

Now let us consider the second scenario described above. Since b is a multiple of r,
we know that A° is central in H. Then p(pg) = p(z%Pw/@z~4w=1) = AOT-F(A)P
which must be the identity since (17 — f(d))b is a multiple of d. Therefore
pa € ker p so that p((zw™'2) " pg(zw™'2)py) is the identity. We can then compute
p((zw ™ 2)2(pgwPzw ™ 2)™3) = A and this is the identity since 12b divides d.
This also implies p(w?®pgw=1pg) = p(w?) = B72% is the identity. As b is a
multiple of 7, we know that p(w) = A is central in H, so then [z, w] € ker p.
Again because 12b divides d we know that p((zy~tx)?) = A712(ABA)* is trivial.
Lastly, p((zy~12)?) = A%(ABA)? = A% and p((y~'2)3) = A=%(BA)? = A% o
that (zy~'z)*(z7'y)® € kerp. Thus, we are able to conclude that kerp is a

congruence subgroup of level d if p((zy~'z)?) = p((y22x~1D)3). |
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Chapter 4

Congruence subgroups and

low-dimensional representations of

Bs

This chapter is devoted to presenting the main results in our work in understanding the
congruence subgroup problem for quantum representations of Bs. It is broken up into
three sections. The first section examines our problem for two-dimensional representa-
tions. We are able to show through a series of reductions and lemmas that the space of
two-dimensional irreducible representations of Bs with finite image that factor through
the quotient map 7 : B3 — [ is parametrized by a finite set. The same holds in di-
mension three for the subset of representations with the projective order of the image of
o1 being between 3 and 5. The Tuba and Wenzl classification of low-dimensional rep-
resentations is our main tool here, together with the work of Rowell and Tuba. Tuba
and Wenzl showed that for two and three dimensional irreducible representations p of
Bs, the equivalence class of p is completely determined by the set spec(p(o7)). They also
provides us with a standard representative for each equivalence class, which is a function
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of the eigenvalues of p(oq). Rowell and Tuba provided a condition on the eigenvalues of
p(o1) which determined whether the image p(Bs) is a finite group. Our parametrization
is deduced by combining their results into an algebraic condition on eigenvalues of p(o;)
which determine when the representation p factors through 7 and has finite image. We
can then apply the corollary to Hsu’s theorem (3.3.11) to each representation. In di-
mension two, we find that all representations have kernels that project onto congruence
subgroups of I'. The same is true for the three dimensional representations with the the
projective order of the image of o; between 3 and 5. However, we are able to explicitly
provide examples of irreducible three-dimensional representations with finite image that
factor through 7 such that the projective order is any odd integer greater than or equal
to 5 and 7(ker p) is a non-congruence subgroup of I'. In particular, the Ng-Schauenburg
Theorem does not generalize to quantum representations of Bs under this formulation.
Nonetheless, we are still able to classify many representations and construct interesting
examples of non-congruence subgroup of I'.  Moreover, we can show that some of our

examples arise via quantum representations.

4.1 Two-dimensional representations

Let us first examine the situation for two-dimensional representations. First, we have

the following easy proposition.

Proposition 4.1.1 Let A\; and Ay be nonzero complex numbers. Then py, », : Bz —

GL(2,C) given by

AN A 0
P12 (Ul) - ) Pri )2 (02) -
0 )\2 _>\2 /\1
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defines a representation of Bs.

Proof: Let
A AN
0 Ao
and
B A 0
—Aa A

Then we need to show that ABA = BAB. It is an easy calculation to show that

0 A2,
ABA = = BAB
—MA2 0
so that py, , does indeed define a representation. [ |

We will use the notation py, , throughout the rest of this work. Tuba and Wenzl were
able to classify irreducible representations of B3 and SL(2,Z) by the spectrum of the im-
age of the braid generator. In dimension two, their result takes the following form. From
the above we can see that spec(py, a,(01)) = { A1, A2 }. The Tuba-Wenzl (TW) classi-
fication tells us that in fact irreducible two-dimensional representations are determined
by the spectrum of the image of o; and (almost) any two non-zero complex numbers
determine an irreducible representation, namely py, »,. Moreover, we get a condition on

the eigenvalues to ensure that the representation factors through the quotient map .

Theorem 4.1.2 ([TWO01])

(i) Let Ny be the zero set of A} + M)Ay + \3. There is a bijection between conjugacy

classes of irreducible 2-dimensional representations of By and Sy-orbits of C*\ Ns.
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(i1) Suppose p : By — GL(2,C) is irreducible and spec(p(o1)) = { A1, A2 }. Then p is

equivalent to py, ,. Furthermore, p factors through 7 if and only if —(A\A2)® = 1.

Example 4.1.3 The representation p1, @ By — GL(2,C) is the composition of
the projection

0'1'—>T, 0'2'—)U71

followed by the inclusion SL(2,7Z) — GL(2,C). Observe that

11 1 0
/)1,1(01) = ) P1,1(02) =
0 1 -1 1

which are T and U~ respectively.

Rowell and Tuba provided criteria to determine when the image of an irreducible repre-
sentation of Bj is finite from the eigenvalues of o;. We provide the version of their results
for dimension two below. In this case, the finiteness is guaranteed whenever the projec-
tive order of the matrix assigned to oy is between 2 and 5. First, recall the definition of

projective order.

Definition 4.1.4 Let A be an n X n matriz with eigenvalues Ay, X, ..., \,. Define the

projective order of A to be
po(A) =min{t>1|A[=---=),}

where this is allowed to be infinite. The projective order of a matrix is invariant under
scaling. That is, po(A) = po(0A) for all 6§ € C*. Equivalently, po(A) can be defined to
be the order A viewed as an element of PGL(d, C).
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Theorem 4.1.5 ([RT10]) Suppose p : By — GL(2,C) is an irreducible representation.
Write spec(p(o1)) = { M1, A2 }. Then p(Bs) is finite if and only if \y and \g are distinct

roots of unity and 2 < po(p(o1)) < 5.

Example 4.1.6 We know that the image of p11 cannot be finite since its image
is SL(2,Z). As po(p11(01)) =1, this confirms the sharpness of the lower bound

above.

Example 4.1.7 Let us revisit the representation p, 3, from Evample 2.2.4 as-
sociated to the Ising fusion rule. We have
€—7ri/8 0 1 e—7ri/8 4 e37ri/8 e—Tri/8 _ e37ri/8
pO',S,U(O-l) - ) p0,3,a(02) — 5
0 6371’1'/8 e*ﬂ'i/S _ 6371’1'/8 e*ﬂi/S + 6371'1'/8
s0 that spec(pys.(01)) = {e™™/8 e3™/8 Y. Then we see that pys, is equivalent

t0 periss eamiss, 15 irreducible, and has finite image since po(pe3.(01)) = 4.

Example 4.1.8 Recall the Fibonacci representation p;s.. Since R]T = emi/b
and RT™ = &*™/5 we see that po(pr3.(01)) = 10. This is consistent with what

we should expect since the image of prs, is dense in SU(2) (so certainly not

finite).

If we combine the above result with Theorem 4.1.2 then we can derive an algebraic
condition on the eigenvalues of the image of ¢; under an irreducible representation to
determine when the image image is finite and the representation factors through the

quotient map 7 : By — I.

Corollary 4.1.9 Suppose p : B3 — GL(2,C) is an irreducible representation with finite

image that factors through w. Then p is equivalent to py c2=ij/ry for somer with2 <r <5,
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] €LY, and some A such that

T

A6 6T/ — ), (4.1)

Proof:  Since p(Bs) is finite, by 4.1.5, we can write spec(p(cy)) = { X, e?™/"\} for
some 1 between 2 and 5 and j € Z). In particular, p is equivalent to p, ,2xij/ry, by the
Wenzl classification. Tuba-Wenzl also implies —(\e?™/"\)? = 1 since p factors through
m. Then

)\6 + 6767rij/r =0

as claimed. [ |

4.1.1 Projective order lemmas

The Tuba-Wenzl classification and the above lemma tell us that for each r between 2
and 5 and j € Z) and each solution to A% + e~™9/" = 0, the representations py corij/ry
factor through 7. Accordingly, there is an irreducible representation p, ; of I' so that
Paezrii/ry = prirom. However, Corollary 4.1.9 does not provide an exact parametrization,
as their is some redundancy. Here we give a series of lemmas with the goal of parametriz-
ing the space of (equivalence classes of) irreducible two-dimensional representations of
I' that have finite image. By applying the above results and few more reductions, we
are able to show that there are just finitely many options and list them all. These rep-
resentations are in bijection with a complete list of isomorphism classes of irreducible
two-dimensional representations of Bs with finite image that factor through 7, so we will
have obtained a complete list of all representations we need to inspect. The strategy
is to classify the representations according to the projective order of the image of o;.
Following Rowell and Tuba, we need only consider projective orders between 2 and 5.

Let us start with projective order 2.
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Lemma 4.1.10 Suppose p : I' — GL(2,C) is an irreducible representation with finite im-

age such that po(p(T)) = 2. Then p is equivalent to py 1 » for some X € {1,e2™/6 4mi/6}

Here we continue with those representations mapping o; to a matrix of projective order
3,4, or 5.
Proof: Let A = p(T'). Since po(A) = 2, we know that spec(A) = {\, =}
for some eigenvalue A of A. By Tuba-Wenzl, we see that A = 1 so that ) is a
6th root of unity. If A is a 6th root of unity, then so is —\, hence the only unique

cases are \ = 1,e?™/6 or e*i/6, [ |

Lemma 4.1.11 Suppose p : ' — GL(2,C) is an irreducible representation with finite im-

age such that po(p(T)) = 3. Then p is equivalent to p3 1. for some A € { 1+20)™/6 | 0 <k <5},

Proof: Let A = p(T) and let A € spec(A). Since po(A) = 3, we know
that the other eigenvalue of A is either e2™/3) or e*™/3)\. If it is e*/3 ), write
p = e*™/3)\ so that spec(A) can be written { 1,e*™/3}. By the Tuba-Wenzl
classification, we see that u® + 1 = 0 so therefore p is equivalent to a represen-

tation of the form p3; \ where A € {e(H2R)mi/6 | 0 <k <5}, [ ]

Lemma 4.1.12 Suppose p : I' — GL(2,C) is an irreducible representation with finite im-

age such that po(p(T)) = 4. Then p is equivalent to py1 x for some X € {eBT4I™/12 |0 < |k <5},

Proof: Let A = p(T'). Similarly to the previous lemma, we can arrange is so
that spec(A) = { A4\ } for some \ satisfying A\®4i where A € {e@®TR)™/12 | 0 < | <5},

Lemma 4.1.13 Suppose p : T' — GL(2,C) is an irreducible representation with finite im-
age such that po(p(T)) = 5. Then p is equivalent to ps 1 for some A € { O+100T/30 | 0 < | <5}

or psax for some X € { B3HIORT/30 | 0 < | < 57
66



Congruence subgroups and low-dimensional representations of B3 Chapter 4

Proof: Let A = p(T'). Again applying the technique in the proof of Lemma
4.1.11, we can always arrange it so that spec(A) is of the form {\, e/} }
where A satisfies \® 4+ ¥/ = 0 or {\,e*™/°)\} for some A such that A5 +
e®™® = () and these exhaust all possibilities when po(4) = 5. Thus p is
equivalent to ps for some A € {e®F10K/30 | 0 <k <5} or psqn for some
A€ {eU3HONTI/R0 | g < | < 5}, -

This in fact completely classifies all two-dimensional irreducible representations of I' with

finite image, which we have summarized below.

Theorem 4.1.14 Suppose p : I' — GL(2,C) is an irreducible representation with finite
image. Then p is equivalent to one of the representations in the conclusions of Lemmas

4.1.10, 4.1.11, 4.1.12, and 4.1.13.

Proof: Since p o 7 is an irreducible 2-dimensional representation of B3 with finite
image that factors through 7, we can apply Corollary 4.1.9. Then we see 2 < po(p(7T)) <
5, so that p must be equivalent to one of the representations in the four lemmas above.

4.1.2 Congruence kernels for two-dimensional representations

Now that we have a list of all relevant representations in dimension two, we can apply
Hsu's work to decide which representations give rise to congruence subgroups. There
are essentially three cases: when the order of the image of oy is 2, 8, or even composite

but not a power of two. First, recall that ((T?)) = I'(2).

Proposition 4.1.15 If p is equivalent to one of pa11 then p(T') is of order 2 and ker p

s a congruence subgroup of level equal to the order of 2.
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Proof: 1If p is equivalent to ps 1 then the order of p(T) is 2 and so ker p is
a congruence subgroup since I'(2) is normally generated by T2. [ |

The other outlying case if when d = 8, considered below.

Proposition 4.1.16 If p is equivalent to one of pyy gsminz 0T pyq e1sxiy2 then the order

of p(T) 1s 8 and ker p is a congruence subgroup of level equal to the order of 8.

Proof: 1t p is equivalent to one of py .sri/12, OT Py c15mi12 then we can cal-
culate the order of p(T') to be 8. Thus, by 3.3.11, we see ker p is a congruence sub-
group if (in the notation of 3.3.10) { (BU°TU 'T)?, (TU 'T) 'Ps(TU 'T)Ps} C

ker p. Let us write A = p(T) and B = p(U~!'). Then in either case,
p(Ps) = ABf® A= = B=/® = g~ — |

so clearly (TU 'T) ' Ps(TU 'T)Ps € ker p. Finally we can compute
p((PUPTU 'T)*) = (BT'ABA)® = (AB)* = I

since p is a representation. Thus we see that the kernel of each of the represen-
tations above is a congruence subgroup of level 8. [ |
The most encompassing case if when d is a composite integer that is not a power of 2.

This allows us to apply Proposition 3.4.3.

Proposition 4.1.17 Suppose p : I' — GL(2,C) is an irreducible representation with
finite image such that the order of p(T) is an even composite integer d that is not a

power of two. Then ker p is a congruence subgroup of level d.

Proof: By 4.1.14, p is equivalent to one of the representations in the con-

clusions of the four projective order lemmas above. Of those that map T to a
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matrix of even composite order which is not a power 2, we have recorded the data

in the hypothesis and conclusion of 3.4.3. In particular, in each case we see that

the kernel of the representation associated to each row is a congruence subgroup

of I'. First, in the notation of Hsu’s theorem (3.3.10), we list the data for the

representations such that d divides 24, a is a multiple of r, 12a is a multiple of d,

3at(d) is a multiple of d and p(py) is a central element of order at most 2, Then,

we can compute p((zw™12)?) and p(pg(w®zw*™2)?) and compare the results, as

in the conclusion of 3.4.3.

T A d | a | 12a | t(d) | 3at(d) | p(pa) | p(zw™12)? | p(pgw’zw=12)?
21 /6 | 6| 4| 48| 2 24 I I —1
21| e/t 6 | 4 | 48 2 24 1 —1 —1
411 | ™12 124116 | 192 2 96 -1 I I
411 [ eM™/12 124116192 2 96 —1 I I
411|121 924116 | 192 2 96 -1 I I
411 | e®m/12 124 116 | 192 2 96 -1 I I

Next we list collect the data for the representations such that b is a multiple of

r, 12b is a multiple of d, and (17 — f(d))b is a multiple of d. We then compare

p((zy~'x)?) and p((y?a~"D)?).
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rljl A [d b [120] f(d) | (AT — f(d)b | t(d) | plzy'x)* | py*z—"P)?
311] e 129 [108] 1 144 2 iy iy
311] /6 1129 [108] 1 144 2 iy iy
311] /6 [12] 9 [108] 1 144 2 .y .y
311] ™/ |12 9 [108] 1 144 2 iy iy
311] /6 112 9 [108] 1 144 2 iy iy
311 ] ™6 1129 [108] 1 144 2 .y iy
511] /30 [20] 5| 60 | 1 80 3 .y .y
511330120 560 | 1 80 3 .y .y
5113016045540 1 720 8 .y .y
511 [e2m/30 16045540 | 1 720 8 .y .y
511 e300 16045540 | 1 720 8 iy iy
51173016045 540 | 1 720 8 .y iy
512] ™30 120 5| 60 | 1 80 3 .y .y
512 [e3 /30120 5| 60 | 1 80 3 .y .y
5123016045540 | 1 720 8 .y iy
512 ]e®m/B30 160 |45 [ 540 | 1 720 8 .y .y
512 e300 160 |45 | 540 | 1 720 8 .y .y
512530160 [ 45| 540 | 1 720 8 .y iy

Thus we see each corresponding representation must have a kernel which is a
congruence subgroup of level d.

We can now piece together the three previous results to prove the following result.

Theorem 4.1.18 Suppose p : I' — GL(2,C) is an irreducible representation with finite

image and let d be the order of p(T). Then ker p is a congruence subgroup of level d.

Proof: If d is a composite integer that is not a power of 2, then by the above
proposition we see that ker p must be a congruence subgroup of level d. The only other
cases are when p is equivlanent to ps1; or one of p,; y.sri12 but these representations
also have kernels that are congruence subgroup by 4.1.15 and 4.1.16. |
As a corollary, we obtain our main result for two-dimensional representations of Bs. First

we make a definition.
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Definition 4.1.19 Let p : G — GL(d,C) be a representation of a group G. Another
representation p' is called a scaling of p there is some scalar 0 € C* so that for all g € G
we have p'(g) = 0p(g). In this case we write p' = Op and we say a representation is
essentially finite if it has a scaling with finite image. Clearly if p is irreducible then so

s Op for any 6.
We have:

Corollary 4.1.20 Suppose p : B3 — GL(2,C) is an irreducible representation with finite
image. Then there is a scaling p' of p factoring through m so that w(ker p') is a congruence

subgroup of T'. In this case, m(ker p') is of level equal to the order of p'(o1).
We can also apply our results to fusion systems and quantum representations.

Corollary 4.1.21 Let (L, ®, F, R) be a braided 65 fusion system such that the R-symbols
are distinct roots of unity. Suppose for some labels i and k in L the map pisr is a
two-dimensional irreducible representation of Bs. Then there is a scaling p of the rep-

resentation p;sy of Bs so that w(ker p) is a congruence subgroup equal to the order of

p(o1).

Example 4.1.22 Let us revisit the two-dimensional representations from the

Ising fusion system. We have spec(pys..(01)) = { e ™78 e3™/8} and since — (e~ ™/8e3™/8)3 =
e/ we see that p3 .3 does not factor through w. If § is a 6% root of e=™™/* then

0p3.3 does factor through m. For example, take 6 = emi/24

. Then spec(0ps3) =
{2312 jeBm2Y 50 that Ops 45 is equivalent to pyy g2swin2. Therefore the kernel

of 0ps 3 is a congruence subgroup of level 24.

71



Congruence subgroups and low-dimensional representations of B3 Chapter 4

4.2 Three-dimensional representations

The structure of this section mirrors the previous one. We first reduce the problem to
studying representations of I' which we can then lift back to Bs;. We start with the

three-dimensional version of the TW classification.

Proposition 4.2.1 Let A\i, X2, and A3 be nonzero complex numbers. Then px, a,as :

B3 — GL(3,C) given by

A A, A Ao A3 0 0
Pr1,22,73 (01> - 0 A2 Al P (02) =1 -\ A2 0
0 0 A3 A —Adshy — A A

defines a representation of Bs.

Proof: 'This is again a straightforward calculation. Let

AMoAAA A Ao

A=10 Ao Ao
0 0 A3
and
A3 0 0
B = —>\2 )\2 0

Then we can compute

0 0 1

1 0 1
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so indeed py, x,,x,; IS a representation. [
Again we find that the set of eigenvalues of a three-dimensional irreducible representation
determines its equivalence class. Also, almost all choices of three non-zero complex
numbers produce an irreducible representation and there is a condition on the eigenvalues

to ensure the image of the representation is finite.

Theorem 4.2.2 ([TWO01])

(i) Let N3 be the zero set of { /\§ + Ao ‘ {j,k,1} ={1,2,3} } Then there is a bi-
jection between conjugacy classes of irreducible 3-dimensional representations of B3

and Ss-orbits of C*\ Ns.

(i1) Suppose p : By — GL(3,C) is irreducible and spec(p(o1)) = { A1, A2, A3 }. Then p is

equivalent to py, x, ns- Furthermore, p factors through 7 if and only if (A Aa)3)* = 1.

The next step is to determine which eigenvalues correspond to representations with finite
image. Along with their result in dimension two, Rowell and Tuba also provided a
necessarily and sufficient conditions for a three-dimensional irreducible representation to
have finite image. Their result eliminates more degree of freedom and so we are able
to finally parametrize the space of representations that we are interested in. We will
only consider the situations described in () and (ii7) below. Case (i) is analogous to the
scenario for two-dimensional irreducibles but the extra dimension allows for some more

freedom, demonstrated in cases (i7) and (ii7).

Theorem 4.2.3 ([RT10]) Suppose p : By — GL(3,C) is an irreducible representation.
Write spec(p(o1)) = { A1, A2, A3 }. Then p(Bs) if finite if and only if one of the following

occurs:

(i) A1, A2, and A3 are distinct roots of unity and 3 < po(p(o1)) < 5.
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(ii) po(p(o1)) =7 and % spec(p(01)) is Galois conjugate to { 1,e*™/7 e**/TY for k =3

or k =05.

(111) po(p(o1)) > 5 and spec(p(o1)) = { A\, =\, u } for some distinct roots of unity X\ and

L.
As a corollary we have:

Corollary 4.2.4 Suppose p : By — GL(3,C) is an irreducible representations with
finite image and 3 < po(p(o1)) < 5. Then p is equivalent to py zxiijry2niv/ry where

r =po(p(o1)), j,k € Z) are distinct, and X satisfies
AG — e—47ri(j+k)/7" (42)

This gives us an explicit equation to work from to classify three-dimensional irreducible

representations with finite image that factor through .

Example 4.2.5 The three-dimensional representation pc s associated to the
D(S3) fusion system has spec(pasa(or)) = { £e*™/3 e¥/3} so the above theo-

rems tells us that it has finite tmage and is irreducible.

4.2.1 More projective order lemmas

According to 4.2.3, we should consider those representations mapping o; to an element
of projective order between 3 and 5. Working in the other direction, if we let r be an

integer between 3 and 5, let j and k be distinct elements of Z, and A a solution to

)\6 — e—47ri(j+k)/r
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then there is an irreducible representation py .zrij/rye2nit/ry a0d Py g2mij/ryg2nin/ry = Prj e OT
where p, k1 I' = GL(3,C) is irreducible and has finite image. Thus, we will classify
the representations p, ;. » which then gives us a classification for the corresponding ir-
reducible representations of B3. We begin with the case of projective order equal to

3.

Lemma 4.2.6 Ifp: T — GL(3,C) is an irreducible representation with finite image and

po(p(T)) = 3 then p is equivalent to p319.x where A € {1,e™/6 1.

Proof: Let A = p(T). Since po(A) = 3 and the eigenvalues of A are
distinct, then spec(A) is necessarily of the form { X, e>™/3), e*™/3)\ } where A6 =
1. However, to account for only distinct cases, we can take A = 1 or \ = e2™/6,

Here we continue with the case of projective order 4 or 5.

Lemma 4.2.7 Ifp: T — GL(3,C) is an irreducible representation with finite image and

po(p(T)) = 4 then p is equivalent to py13.x where X € {e**/6 10 <k <5},

Proof: Let A= p(T) and let spec(A) = { A1, Aa, A3 }. Since po(A) =4 and
each of the \; are distinct, we can say without loss of generality that \s must
be either iA\; or —iA;. If it is —¢A; then write u = —i\; so that A\; = iu. Then,
renaming elements, we can say that spec(A) is of the form { u,iu, us } and us
can be either —p or —iu. If it is —p, then set n = iy so that —p = in and
p = —in. Thus spec(A) = {n,in, —in } where u satisfies n° = 1 and therefore, p

is equivalent to one of the p, ;3. for some A € {e?™#/6 |0 <k <5} u

Lemma 4.2.8 If p : I' — GL(3,C) is an irreducible representation with finite im-
age and po(p(T)) = 5 then p is equivalent to p is equivalent to psi2\ where X €

{eWHSRm/I5 | 0 <k <5} or ps13a where A € { e@HORT/15 1 < | <5},
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Proof: 'We can use the same technique as in the proof above so that spec(A)
is of the form { X, e>™/2) e*™/5X} or { X, e?™/5),e™/5\}. Applying Corollary
4.2.4, we see that p is equivalent to ps 2 Where A € {e@0)™/15 10 < | <51

or ps13.x where A € { eF5R)™/15 | 0 < k< 57, u

4.2.2 Congruence kernels for three-dimensional representations

of small projective order

According to 3.3.11, whenever p is an irreducible representation of I' with finite image
such that the order of p(T') is an odd integer d, in order to show that ker p is a congruence
subgroup of level d, it is enough to show that (U?T~%?)3 is in the kernel of p, where #(d)
is the multiplicative inverse of 2 modulo d. We shall use this line of reasoning for the

three following propositions, which consider the cases of d = 3,5, or 15.

Proposition 4.2.9 If p:I' — GL(3,C) is equivalent to ps121 then the order of p(T') is

3 and ker p is a congruence subgroup of level 3.

Proof: We need to show that (U*T~2)3 is in the kernel of p. Equivalently, we
need to show that (B~2A472)3 is the identity, where A = p(T) and B = p(U™').
Since the orders of A and B are both 3, we can rewrite (B~2A72)% as (BA)?

which is necessarily the identity since p is a representation. |

Proposition 4.2.10 If p : I' — GL(3,C) is equivalent to ps o sxiss OT P51 3camiss then

the order of p(T) is 5 and ker p is a congruence subgroup of level 5.

Proof: Similar to the above proof, we need only show that p(U?T3)3 =
(B3A?)3 is the identity. This can be done explicitly, for example, with Mathe-

matica. ]
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Proposition 4.2.11 Ifp: ' = GL(3, C) is equivalent to ps ; 5 canijis, P51 2 crani/is, P51 3.627i/15,

OT ps1.3c22ni/15 then the order of p(T') is 15 and ker p is congruence subgroup of level 15.

Proof: In each case we are to show that (U?T8)% maps to the identity. Let

A= p(T)and B = p(U™'). Then p(U*T~8)® = (B~2A7%)3 = (B3A?)3 since A°

and B® are scalar matrices and of order 3. Then, again using Mathematica, we

can compute directly that in each case (B*A?%)? is the identity.

We can apply Proposition 3.4.3 to consider the case where d is an even composite integer

that is not a power of 2, which then exhausts the rest of possible representations with

projective order between 3 and 5.

Proposition 4.2.12 Suppose p : I' — GL(3,C) is irreducible with finite image and

3 < po(p(o1)) <5 and let the order of p(T) be an even composite integer d that is not a

power of 2. Then ker p is a congruence subgroup of level d.

Proof: We know that p is equivalent to one of the representations in the

conclusion of 4.2.6, 4.2.7, and 4.2.8. Of those that map T to a matrix of even

composite order which is not a power 2, we have recorded the data in the hypoth-

esis and conclusion of 3.4.3. In particular, in each case we see that the kernel of

the representation associated to each row is a congruence subgroup of I'. First,

following our corollary to Hsu’s theorem (3.3.10), we list the data for the rep-

resentations such that d divides 24, a is a multiple of r, 12a is a multiple of d,

3at(d) is a multiple of d and p(py) is a central element of order at most 2, Then,

we can compute p((zw’'2)?) and p(pg(w®zw™2)3) and compare the results, as in

the conclusion of 3.4.3.

rlj|k A d | al|12a | t(d) | 3at(d) | p(pa) | plzw™2)* | p(paw®zw™'2)?
4113 | /6 | 1214 | 48 2 24 I 1 1
411 (3] ™06 [ 12]4| 48 2 24 1 1 1
4113|806 [ 1214 48 2 24 1 1 1
4113|061 1214 48 2 24 I 1 1
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Next we list collect the data for the representations such that b is a multiple of

r, 12b is a multiple of d, and (17 — f(d))b is a multiple of d. We then compare

p((zy~'x)?) and p((y2z"D)3).

rldlkl X [d b 120 f(d)]| (A7~ f(d)b ] td) | play '2)* | ply’z"D)?
3112 & [6 ]3] 36 1 18 2 i i
5112 5 [10] 5 | 60 | 1 80 3 i i
512 |e™/ 3015180 | 1 80 8 i i
5112 | e®/5 3015|180 | 1 80 8 i i
5113 | ™/ 3015180 | 1 80 8 i i
513 | e/ 3015180 | 1 80 8 i I
51135 [10] 5 | 60 | 1 80 3 i i

Thus we see each corresponding representation must have a kernel which is a

congruence subgroup of level d.

We can summarize the results of this section so far with the following result.

Theorem 4.2.13 Suppose p : I' — GL(3,C) is an irreducible representation with finite
image such that 3 < po(p(T)) < 5 and let d be the order of p(T). Then kerp is a

congruence subgroup of level d.

Proof: 1f d is a composite integer that is not a power of 2, then by the above propo-
sition we see that ker p must be a congruence subgroup of level d. The other possibility is
that p is equivalent to one of p312.1, 51,2, e57i/5, P5.1,2,e476/15, P5,1,2,147i/15, P5,13,47i/5 5 P5.1,3,6275/15 5
OT P51 3e22n/5, all of which have kernels that are congruence subgroups of level equal to
the order of the image of T" by 4.2.9, 4.2.10, 4.2.11. |
As a corollary, we obtain our main result concerning three-dimensional representations

giving rise to congruence subgroups.

Corollary 4.2.14 Suppose p : B3 — GL(3,C) is an irreducible representation with finite

image such that 3 < po(p(o1)) < 5. Then there is a scaling p' of p factoring through m
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so that w(ker p') is a congruence subgroup of I'. In this case, w(ker p') is of level equal to

the order of p'(o1).
Again, we can apply this result to fusion systems and quantum representations.

Corollary 4.2.15 Let (L, ®, F, R) be a braided 65 fusion system such that the R-symbols
are distinct roots of unity. Suppose for some labels i and k in L the vector space Vi3 s
a three-dimensional irreducible representation of Bs such that o1 acts by an element of
projective order between 3 and 5. Then there is a scaling p of the representation p;sy of

Bs so that w(ker p) is a congruence subgroup equal to the order of p(oy).

4.3 Non-congruence subgroups from finite braid group
representations

This section is devoted to providing a construction for an infinite family of non-congruence
subgroups of I' associated to three-dimensional irreducible representations of Bs. Our
strategy for this construction is again a consequence of the TW classification, the finite-
ness result of Rowell and Tuba, and Hsu’s generator theorem. More specifically, we will
provide an explicit family of irreducible three-dimensional representations p,, each of
which factor through m and whose images are all finite. However, we can show if d,, is
the order of p,(c7) then the generating set G4, is not contained in the kernel. In fact, we
will show that one of the elements of G4, has an eigenvalue that is not equal to 1. Our
first easy lemma is more of an observation about a certain collection of three-dimensional

irreducible representations of Bj.

Lemma 4.3.1 Let a = e*™/" where r is an odd integer greater than 4 and j € 7).
Then the representations py —aa-2 and Py —a—a-2 0f By factor through ™ and have finite

1mage.
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Proof: Applying the Tuba-Wenzl classification, we see that since a(—a)(+a™2) =

F1, the representations both factor through 7. Then we can apply the re-

sults from Tuba and Rowell to see that since spec(pa,—a,+a-2(01)) is of the form

{\, =\, u} for distinct roots of unity A and pu, the image of both representations

must be finite. We can be sure that the spectrums consist of distinct elements

since r is odd and at least 5. |
Now that we know p, _a.a-2 and p,,_a,_o-2 for a = €*™/7 have finite image, we will
consider the image of [0}, o, "] under these representations. Recall that w(cy) = T and

m(oy) = U™! so that w([o}*!, 057] = [T",U"]. Tt will turn out that this is an element

of G5, with which we should be concerned.

Lemma 4.3.2 Let a = e*™/" where r is an odd integer greater than 4 and j € 7. Let

p be one of pa.—aa-2 O Pa.—a,—a-2. Then e=™9/" € spec(p([o7t!, 057])).

Proof:

First of all, since r is odd we can write

P[0, 057]) = plor) ™ p(o2) " p(ar) "+ p(ow)”

r+1 (r—l)[

= plo1)" p(o2)” p(a2) "' p(01)?p(02)]

1 1 2

p(o1)?p(o2) each have

and we claim that each of p(c1)™*, | p(02)" !, and p(os)~
(0,0,1) as a left eigenvector. If this is the case, then call the corresponding eigen-
values A1, Az, \3. The product p([o]™, 057]) then has A\ AAsA;! = A )3 as an
eigenvalue.

r4+1

Now, by construction, the matrix p(c1)"*' is upper triangular with bottom right

entry equal to (£a~2)" ! = a=?*2) = o2 since r is odd and " = 1.
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A straightforward calculation shows

a~? 0 0
plog)" =1 —a2+a! a2 0
0 0 a?

which we note is block diagonal, consisting of one 2 x 2 block and one 1 x 1 block.
Since 7 — 1 is even, we see p(dy)" "1 also shares this block form. In particular,

. . r—1 . .
» Yy 2 .
(0,0,1) is also a left eigenvector of p(o3) Another calculation yields

p(o2)'p(o1)’p(o2) = | 2 Fat at —a2+a?

so again (0,0,1) is a left eigenvector of p(o2) *p(01)?p(cs) with corresponding
eigenvalue a?. Accordingly, we can be sure that p([o7", 05"]) has (0,0,1) as a

left eigenvector with corresponding eigenvalue a=2(a?)~"+1/2 = o3, [ |

Lemma 4.3.3 Let r be an odd integer. Then the commutator [T U] is an element

of I'(2r).

Proof: This follows from either Hsu’s theorem or directly computing ele-
ments. Note that since r is odd, r 4+ 1 is the unique integer taken modulo 2r
which is congruent to 0 modulo 2 and 1 modulo . Therefore, Hsu tells us that
[TT+1, U] is an element of Gy,. Of course Gy, C T'(2r). |

We can now collect the three lemmas above into our main theorems for this section,
which tells us about an association between irreducible representations of B3 and non-

congruence subgroups.

Theorem 4.3.4 Let o = e*™/" where r is an odd integer greater than 4 and j € 7.0 If p
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is equivalent to one of pa,—a.a—2 OT Pa—a—a-2 then m(ker p) is a non-congruence subgroup

of I' with geometric level 2r.

Proof: ~We know that p has finite image and factors through 7. Denote
by p the induced representation of I'. Since r is odd we can compute the order
of p(T) to be 2r. Then by 3.3.11, we know that ker p is a congruence subgroup
if and only if it contains ['(2r). The above lemma tells us that M, € ['(2r)
but we can compute p(M,) = p([o]™, 05"]) which, by Lemma 4.3.2, has e=64/7
as an eigenvalue. In particular, p(M,) cannot be the identity matrix and so
['(2r) is not contained in the kernel of p. Thus we see that 7(ker p) = kerp is a

non-congruence subgroup of I' with geometric level equal to 2r.

Now we can lift this theorem to Bs.

Theorem 4.3.5 Let p : By — GL(3,C) be an irreducible representation such that
spec(p(Bs)) is of the form { \e?™3/T —\e2™3/T \e=4mi/m Y} op { Ne?TU/T N7 \e~4m/T Y
for non-zero complex number \, some odd integer r greater than 4 and j € Z). Then
there is a scaling p of p such that p factors through © and mw(ker p) is a non-congruence

subgroup of T".

Proof: Let a = e*/". Then the representation A\~'p is equivalent to
Po—aa-2 O Po—a—a-2, Which, by the above theorem, has finite image, factors
thorugh 7, and has a kernel that projects onto a non-congruence subgroup of I'.

Example 4.3.6 Let us again return to the representation pg s determined by

the D(Ss) data. Recall that spec(pas (o)) = {e'™/3, —etmi/3 231 Rear-
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ranging, we can write
{647”/37 —647”/3, 62%1/3} _ e—27rz/9 { 614#1/9’ _6147rz/97 68%1/9}

2mi/9

so that e pGa.c s equivalent 10 poan/o _gianiso swiso.  This spectrum is of the

form

{ )\627”']'/7“’ _)\627rij/r’ )\6—471'1']'/7“ }

with A = e72™/9 1 = 9, j = 7 so the kernel of €*™/°pg 3¢ projects onto a non-

congruence subgroup of I' of geometric level 18.
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Chapter 5

Congruence anyons

5.1 Property F and the Property F conjecture

Let C be a strict premodular (or even just braided fusion) category with braiding ¢ and let
Irr(C) ={ Xo=1,X1,..., X, } be a complete set of representatives of simple of objects
of C.

k
Definition 5.1.1 For each i and j we can write X; @ X; = @X?N’U. Then denote by

N; the matriz with kj entry equal to NZ This is called the fusion matrixz of X;. Fach

matrix N; is nonnegative; that is, all of their entries are nonnegative.

The next theorem is very important in the theory of fusion categories. A proof can be

found in [Gan60].

Theorem 5.1.2 (Frobenius-Perron) Let A be a square matriz with nonnegative en-
tries. Then A has a nonnegative real eigenvalue A(A) such that |A(A)| > X for all

A € spec(A). If A is not nilpotent then A(A) > 0.

This allows us to associate to each simple object in C a positive number. This gives us

a notion of dimension for each object.
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Definition 5.1.3 Let Irr(C) = { Xo =1, X1,..., X, } be a complete set of representa-
tives of isomorphism classes of simple of objects of a fusion category C with respec-
tive fusion matrices N;. For X; € Irr(C), let FPdim(X;) = A(V;). This is called the

Frobenius-Perron dimension of X;. Further define

FPdim(C) = Y FPdim(X)".
X Irr(C)
We say X; is integral if FPdim(X;) € Z and we say X; is weakly integral if FPdim(X;)? €

Z. We say C is (weakly) integral if each X; is.

Proposition 5.1.4 ([EGNO16]) LetC be a fusion category and let Irr(C) be a complete
set of representative of isomorphism class of simple objects of C. If X € Irr(C) then
FPdim(X) > 1.

In particular, we see that FPdim(X) is nonzero whenever X is a simple object of a
fusion category C. When C is braided, a fascinating connection between the braid group
representations afforded by C and Frobenius-Perron dimensions has been observed. First,

we need another definition.

Definition 5.1.5 We say an object X has Property F if the image of px » is finite for
all n. If i is the label in a braided 65 fusion system corresponding to the simple object X

then we say that i also has Property F.

Although is has not been proven in general, the following conjecture is true is all known
examples. This is perhaps one of the biggest open questions in the theory of fusion

categories.

Conjecture 5.1.6 ([NR11]) Let X be an object of a braided fusion category C. Then

X is weakly integral in and only if for each n the image of px , is finite.
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In particular, evidence suggests that anyons corresponding to weakly integral simple
objects would never be able to provide a universal gate set and hence their braiding
alone cannot be used to achieve universal quantum computation. However, it is possible

to alter the gate set of a Property F anyon to achieve a universal gate set ([CHW15]).

5.2 Congruence anyons
Here we will define a special class of labels in a braided 65 fusion system.

Definition 5.2.1 Let i be a label with Property F. We say i is congruence type if
for all labels k such that V; . i is nonzero, the representation p;sj has the property that
any irreducible summand 1s either one-dimensional or can be scaled to be equivalent to
a representation whose kernel projects onto a congruence subgroup of I'. Otherwise, we
say 1 1s of non-congruence type. If a label is of congruence type then we will call it a

congruence anyonmn.

We are able to use our results from the earlier chapters to provide a sufficient condition

for a label to be congruence anyon.

Theorem 5.2.2 Let (L, x, F, R) be a braided 6 fusion system and leti € L be a Property

F label. Suppose for all labels k and all irreducible summands p of p; s are either:
(a) one-dimensional,

(b) two-dimensional,

(c) or three-dimensional and 3 < po(p(o1)) < 5.

Then 1 is congruence type.
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Proof:  If every irreducible summand of p; 3, satisfies one of the three
conditions above, then it follows from the definition of congruence type label

and Theorems 4.1.20 and 4.2.14 that ¢ is a congruence type label. [ |

Example 5.2.3 Let L ={1,0,¢ } be the Ising fusion system. Then

C?* ifr=o.

VJ,S,I =

0 otherwise.

We know that some scaling of ps3., ts trreducible and its kernel projects onto a

congruence subgroup of I'. Therefore, o is a congruence anyon.

We can also identify one case where we can be sure that a label is of non-congruence

type.

Theorem 5.2.4 Let (L, ®F, R) be a braided 65 fusion system and leti € L be a Property
F label. Suppose for some k € L, there is an irreducible summand p of p;sr so that

spec(p(oy)) is of the form
A { 627rij/r’ _627rij/r7 e—47rij/r}

or

A { 6271'23/1“7 _627mj/7“7 _6—47”]/7" } )
Then 1 is of non-congruence type.

Proof: 1f spec(p(o1)) is of one of the above forms, then by Theorem 4.3.5,
we see that some scaling of ker p projects onto a non-congruence subgroup of I'.
In particular, ¢ is of non-congruence type. [ |
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Example 5.2.5 Consider the label G from the D(S3) fusion system. We com-

puted spec(pgs,a(o1)) = e 270 { 479 _el4mi/9 8T/ and pe 5 o is irreducible

so we see that G a mon-congruence anyon.
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Chapter 6

Further directions and applications

In this last chapter we will discuss some variations on the problem we discussed and

somepossible applications in other fields.

6.1 Congruence subgroups of mapping class groups

In chapter 4, we saw that the direct analogue of the Ng-Schauenberg Theorem for Bj is
not true. One remedy for this could be to adjust our notion for congruence subgroups of
Bs. This definition relied on being able to pull back congruence subgroups of SL(2,Z)
to B3 and the definition of congruence subgroups of SL(2,7Z) rely on its description as
a matrix group, rather than as the mapping class group of a surface. Generalizations of
congruence subgroups to other mapping class groups are discussed in [Sty18] and [FM11].
Perhaps it would be possible to find “the correct” version of the NS Theorem for the braid

groups using the definitions from these other sources.
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6.2 Vector-valued modular forms

Representations of I' are a main ingredient in the theory of vector-valued modular forms.
It would be interesting to understand what role of the congruence subgroup property of
Bj discussed in this work plays in the theory of vector-valued modular forms. Let H be

the upper-half plane.

Definition 6.2.1 Let p: SL(2,Z) — GL(d, C) be a function and w € C. We call the pair
(p,w) an admissible multiplier system of rank d if p(I5) is the identity, e ™ p(—1>)

is the identity, and the associated automorphy factor p determined by

Pu(7,T) = p(y)(cT +d)*

for v € SL(2,Z) and T € H satisfies

Pw(M172:T) = Puw(V1572 - T)Pw (2, T)

for all v1,ve € SL(2Z) and 7 € H. In this case, we call w the weight and p the mul-

tiplier of the system. Equivalently, (p,w) is admissible if there exists a representation

p: B3 — GL(d,C) such that p(c102)® = e™"1.
One can then define a vector-valued modular form for the multiplier system (p, w).

Definition 6.2.2 Let (p,w) be an admissible multiplier system of rank d. A function

X :H — C? is called a vector-valued modular form of weight w with multiplier p if

X(y7) = puw(y, 7)X(T)

for all v € SL(2,Z) and T € H and each component function X; is meromorphic on H.
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Then there are two ways in which to investigate the connections between VVMEF and
quantum representations of Bz. We have parametrized possible multipliers for rank 2
and 3 multiplier systems. One could study the different properties of VVMF's associated
to multipliers with congruence and non-congruence subgroups as kernels. In another
direction, each the representations we considered in this work give rise to finite index
subgroups of I'. Similar to the classical case, there is a theory of vector-valued modular
forms for subgroups of I" and this theory splits naturally into the case of a congruence

Oor non-congruence subgroup.

91



Bibliography

[Alp93]

[And06]

[Art47]
Blo1§]

[BSL64]

[BW18]

[CHW15]

[Dri90]

[DW71]

[EGNO16]

[ENOO5]

[FKO6]

Roger Alperin. PSL(2,Z) = Zs % Zs. American Mathematical Monthly,
100(4):385-386, 1993.

J.E. Andersen. Asymptotic faithfulness of the quantum SU(n) representations
of the mapping class groups. Annals of Mathematics, 163(1):347-368, 2006.
Emil Artin. Theory of braids. Annals of Mathematics, 48(1):101-126, 1947.
Wade Bloomquist. Asymptotic faithfulness of quantum sp(4) mapping class
group representations. ArXiv e-prints, 2018.

H. Bass, J.-P. Serre, and M. Lazard. Sous-groupes d’indice fini dans SL(n, 7).
Bulletin of the American Mathematical Society, 70:385-392, 1964.

Wade Bloomquist and Zhenghan Wang. Comparing skein and quantum group
representations and their application to asymptotic faithfulness. Pure and
Applied Mathematics Quarterly, 2018.

S. X. Cui, S.-M. Hong, and Z. Wang. Universal quantum computation with
weakly integral anyons. Quantum Information Processing, 14(8):2687-2727,
August 2015.

V. Drinfeld.  Quasi-hopf algebras.  Leningrad Mathematical Journal,
1(6):1419-1457, 1990.

[LM.S. Dey and James Wiegold. Generators for alternating and symmetric
groups. Journal of the Australian Mathematical Society, 12(1):63-68, 1971.

P. Etingof, Shlomo Gelaki, D. Nikshych, and V. Ostrik. Tensor categories.
American Mathematical Society, 2016.

P. Etingof, D. Nikshych, and V. Ostrik. On fusion categories. Annals of
Mathematics, 2(162):581-642, 2005.

M.H. Freedman and V. Krushkal. On the asymptotics of quantum SU(2)
representations of mapping class groups. Forum Mathematicum, 18(2):293—
304, 2006.

92



[FLWOO]

[FM11]

[Fun99]

[FWW02]

[Gan60]

[Gan14]

[Hsu96]

[Lan78]

[LWO05]

[Men65]

INR11]

[NS10]

[RT10]

[Sto84]

M.H. Freedman, M.J. Larsen, and Z. Wang. A modular functor which is uni-
versal for quantum computation. Communications in Mathematical Physics,
227(3), 2000.

Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton
University Press, 2011.

L. Funar. On the TQFT representations of the mapping class groups. Pacific
Journal of Mathematics, 188(2):251-274, 1999.

M.H. Freedman, K. Walker, and Z. Wang. Quantum SU(2) faithfully detects
mapping class groups modulo center. Geometry and Topology, 6:523-539,
2002.

Feliks Gant. The theory of matrices. Chelsea Publishing Company, 1960.

Terry Gannon. The Theory of Vector-Valued Modular Forms for the Modular
Group, pages 247-286. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
ISBN 978-3-662-43831-2. doi:10.1007/978-3-662-43831-2_9.

T. Hsu. Identifying congruence subgroups of the modular group. Proceedings
of the American Mathematical Society, 5(5):1351-1359, 1996.

Saunders Mac Lane. Categories for the Working Mathematician. Springer-
Verlag New York, 1978.

M.J. Larsen and Z. Wang. Density of the SO(3) TQFT representation of
mapping class groups. Communications in Mathematical Physics, 260(3):641—
658, 2005.

J. L. Mennicke. Finite factor groups of the unimodular group. Annals of
Mathematics, 81:31-37, 1965.

D. Naidu and E. Rowell. A finiteness property for braided fusion categrories.
Algebras and Representation Theory, 14(5):837-855, 2011.

S.-H. Ng and P. Schauenburg. Congruence subgroups and generalized
Frobenius-Schur indicators. = Communications in Mathematical Physics,
300(1):1-46, 2010.

E. Rowell and I. Tuba. Finite linear quotients of Bs of low dimension. Journal
of Knot Theory and its Ramifications, 19(5):587-600, 2010.

W. W. Stothers. Level and index in the modular group. Proceedings of the
Royal Society of Edinburgh. Section A., 99(1-2):115-126, 1984.

93



[Sty18]

[TWO1]

[TY98)

[Wan10)]

[Yam02]

Charalampos Stylianakis. Congruence subgroups of braid groups. Interna-
tional Journal of Algebra and Computation, 28(345), 2018.

I. Tuba and H. Wenzl. Representations of the braid group Bz and of SL(2,7).
Pacific Journal of Mathematics, 197(2):491-510, 2001.

Daisuke Tambara and Shigeru Yamagami. Tensor categories with fusion rules
of self-duality for finite abelian groups. Journal of Algebra, 209(2):692-707,
1998.

Z. Wang. Topological quantum computation, volume 112 of CBMS Regional
Conference Series in Mathematics. American Mathematical Society, Provi-
dence, RI, 2010.

Shigeru Yamagami. Polygonal presentations of semisimple tensor categories.
Journal of Mathematical Society of Japan, 54(1):61-88, 2002.

94



	Abstract
	Introduction
	Quantum representations of mapping class groups
	6j fusion systems
	Braid group representations from braided 6j fusion systems
	Fusion trees
	The braid group
	An action of braids on fusion trees

	Categorical perspective
	Monoidal and fusion categories
	Ribbon and premodular categories

	Modular categories and quantum representations

	A congruence subgroup problem for quantum representations
	Finite index subgroups of the special linear groups
	SL(2,Z)
	A family of non-congruence subgroups of SL(2,Z)

	The geometric level of a finite index subgroup and the Fricke-Wohlfahrt theorem
	Generators for (d)

	The Ng-Schauenburg theorem for quantum representations and our main problem

	Congruence subgroups and low-dimensional representations of B3
	Two-dimensional representations
	Projective order lemmas
	Congruence kernels for two-dimensional representations

	Three-dimensional representations
	More projective order lemmas
	Congruence kernels for three-dimensional representations of small projective order

	Non-congruence subgroups from finite braid group representations

	Congruence anyons
	Property F and the Property F conjecture
	Congruence anyons

	Further directions and applications
	Congruence subgroups of mapping class groups
	Vector-valued modular forms

	Bibliography



