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Score-based Generative Models for Calorimeter Shower Simulation

Vinicius Mikuni1, ∗ and Benjamin Nachman2, 3, †

1National Energy Research Scientific Computing Center, Berkeley Lab, Berkeley, CA 94720, USA
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA

Score-based generative models are a new class of generative algorithms that have been shown to
produce realistic images even in high dimensional spaces, currently surpassing other state-of-the-art
models for different benchmark categories and applications. In this work we introduce CaloScore,
a score-based generative model for collider physics applied to calorimeter shower generation. Three
different diffusion models are investigated using the Fast Calorimeter Simulation Challenge 2022
dataset. CaloScore is the first application of a score-based generative model in collider physics
and is able to produce high-fidelity calorimeter images for all datasets, providing an alternative
paradigm for calorimeter shower simulation.

I. INTRODUCTION

Detailed detector simulations are an essential compo-
nent of data analysis in particle and nuclear physics.
These simulations are used to fold particle-level predic-
tions for comparisons with data and are used to unfold
data for detector-effects in order to compare with pre-
dictions and other experiments. Simulations are also a
critical input for the design of future experiments.

The most widely used detector simulations are built
on the program Geant [1–3]. Achieving precision re-
quires significant computing time as propagating parti-
cles through materials results in a large number of sec-
ondary particles each undergoing electromagnetic and/or
nuclear interactions. For this reason, the most complex
detectors to emulate are calorimeters, whose purpose is
to stop particles and measure the deposited energy. An
O(1) fraction of all computing in HEP goes towards sim-
ulating particle propagation inside dense materials with
Geant.

The experiments at the Large Hadron Collider (LHC)
generate billions of events per run, each of which has
hundreds to thousands of individual calorimeter show-
ers. Within the experiments’ computing budgets, it is
not possible to run Geant-based (‘full’) simulation for all
events. Therefore, all of the experiments have developed
fast simulation methods that replace physics models with
simpler parametric models that are tuned to the full sim-
ulation. The fast simulation models are constructed with
relatively few parameters in order to facilitate efficient
optimization and validation. This fundamentally limits
their precision, in particular in the ability to model com-
plex correlations in high-dimensions. These correlations
may also not be explicitly part of an optimization that
uses only a relatively small number of one-dimensional
observables.

Deep learning offers a complementary approach to en-
gineered parameteric models. Flexible neural networks

∗ vmikuni@lbl.gov
† bpnachman@lbl.gov

are used to transform random numbers (called a latent
space in machine learning) into structured data. So far,
there have been three main strategies for deep generative
modeling. Generative Adversarial Networks (GANs) [4]
optimize the generator network by means of an auxil-
iary network (‘discriminator’) that tries to classify gen-
erated examples from real examples. Variational Au-
toencoders (VAEs) [5] learn a stochastic map from the
data space to a latent space and back, preserving the
statistics of the latent space and data space. Normaliz-
ing Flows (NFs) [6] use invertible transformations so that
the probability density can be computed and the gener-
ator is optimized using the log likelihood. A number of
deep generative models have been proposed for emulating
calorimeter showers and other particle detectors [7–45].

The first proposals for generating calorimeter showers
with deep generative models used GANs (starting with
CaloGAN [7–9]). The evaluation of GANs is fast and
there are no constraints on the form of the generator
function. However, GAN optimization is challenging as
it is a minimax problem due to the competition between
the generator and discriminator networks. Furthermore,
GANs are known to suffer from mode collapse where the
generator learns to produce only a subset of the possible
showers. Despite these challenges, the ATLAS Collabo-
ration become the first experiment to replace part of their
fast simulation with a GAN [46] and are already using it
to generate billions of events for Run 3. Other experi-
ments are also exploring the use of GANs for detector
simulation [12, 18, 20].

Since the first GAN studies, there have been a num-
ber of innovations to improve the precision of deep
generative calorimeter simulation. This includes varia-
tions/modifications to the GAN setup including Wasser-
stein GANs [20, 47] to help with training stability and
mode collapse and refining networks [25, 26] to correct
the spectra of an initial generative model. Beyond GANs,
recent work with NFs has shown great promise [44, 45].
Normalizing flows tend to be robust to mode collapse
and are minimized with a convex loss function. Further-
more, the normalization of the resulting generative model
seems to have beneficial regularization properties for the
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training. The authors of the CaloFlow model [44, 45]
showed that a post-hoc classifier struggled to distinguish
showers generated from their neural network and showers
from Geant 4, a critical milestone in this field.

While NFs show great promise for fast calorimeter sim-
ulation, they have difficulty scaling to higher-dimensional
datasets. Such datasets are important for the up-
graded CMS forward calorimeter [48] as well as ultra-fine
calorimeters proposed for future detectors [49]. Two of
the three datasets in the recent Fast Calorimeter Sim-
ulation Challenge 2022 [46, 50–52] have dimensionality
at least an order of magnitude beyond what has been
studied with NFs. The NF training time for these data
is prohibitive and would require significant research and
development.

In this paper, we examine the potential of a new class of
deep generative algorithms named score-based generative
models [53–55]. Like NFs, score-based models minimize
a convex loss function with a single generator network
that also provides access to the full data likelihood after
training (see App. A). However, unlike NFs, the gradi-
ent of the data density (the ‘score’) is learned instead of
the density. This choice introduces more flexibility to the
network architecture, since the Jacobian of the transfor-
mation does not need to be computed during training.
This additional flexibility, contrary to normalizing flows,
also allows the introduction of bottleneck layers (layers
with fewer neurons than the previous layer), greatly re-
ducing the number of trainable parameters and improv-
ing the scalability of the model. We demonstrate this
explicitly on the Fast Calorimeter Simulation Challenge
2022 datasets.

This paper is organized as follows. Sec. II introduces
how deep generative models can be constructed using the
likelihood gradients instead of likelihoods directly. Differ-
ent choices of drift and diffusion functions investigated in
this work are introduced in Sec. III. Section IV describes
how new samples are generated from the trained model.
Description of the Fast Calorimeter Simulation Challenge
2022 datasets and network architecture are presented in
Secs. V and VI. Finally, numerical results are discussed
in Sec VII. The paper ends with conclusions and outlook
in Sec. VIII.

II. GENERATIVE MODELS USING
GRADIENTS OF THE DATA

Our approach most closely follows Ref. [55]. Before
providing the technical details, we briefly describe the key
method components. First, a neural network is learned
to approximate the data score, ∇x log pdata. In many
high energy physics examples, including calorimeter sim-
ulation, we do not have access to pdata analytically - we
can only sample from it. Without access to pdata, we
cannot use a loss function like the mean squared error
to directly approximate (‘match’) the score. NFs cir-
cumvent this problem by maximizing the likelihood of

the data. There is no analog of maximum likelihood for
score matching and so a different innovation is required.

For data that are smeared, it can be shown that match-
ing the score of the smeared data is equivalent to match-
ing the score of the smearing function [56]. For data
purposefully smeared by an analytically tractable smear-
ing function (e.g. a Gaussian), this means that all of
components required to compute the loss function are
known. The methods explored in this paper make use
of purposeful smearing, where the amount of smearing is
increased/decreased to estimate the density or generate
samples, respectively. A schematic of the idea is shown
in Fig. 1.

A stochastic process that continuously corrupts data is
described by the following stochastic differential equation
(SDE):

dx = f(x, t)dt+ g(t)dw. (1)

The initial data x(t = 0) := x0 ∈ Rd sampled from the
distribution pdata evolve over time given a set of drift and
diffusion coefficients f(x, t) : Rd → Rd and g(t) : R→ R,
respectively. The Wiener process w(t) is indexed by the
time parameter t ∈ [0, 1]. The goal of the generative
model is to reverse this process, generating new observa-
tions starting from a noise distribution and solving the
reverse SDE defined as:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄, (2)

where w̄ is the Wiener process in the reverse time direc-
tion [57] and the time-dependent gradient ∇x log pt(x) is
named the data score. For fixed choices of the drift and
diffusion coefficients, the only term in Eq. 2 that needs
to me estimated is the time-dependent score function.
However, since the score-function is not tractable, we use
neural networks that aim to minimize the difference

1

2
Epdata(x)

[
‖sθ(x)−∇x log pdata‖22

]
, (3)

with sθ(x) the output of a network with trainable pa-
rameters θ. Since the true score function is not known,
Eq. 3 cannot be readily computed. Instead, a denoising
score matching [56] strategy is used. In this strategy, in-
stead of learning the score function of the data, we aim to
learn the score function of data that have been perturbed
with a known perturbation function since it is sufficient
to match the score of the perturbation function. Note
that while matching the score of the smeared data re-
quires computing an expectation value over the smeared
data, matching the score of the smearing function re-
quires computing an expectation value over the smeared
data and the smeared data.

Given a Gaussian perturbation kernel pσ(x̃|x) :=
N (x, σ2) and pσ(x̃) :=

∫
pdata(x)pσ(x̃|x)dx, the proba-

bility density of the perturbed data, the loss function
minimized during training is:

1

2
Epσ(x̃|x)pdata

[
‖sθ(x̃)−∇x̃ log pσ(x̃|x)‖22

]
. (4)
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t=1t=0 t=0.75t=0.25

Forward diffusion (training)

Reverse-time diffusion (data generation)

FIG. 1. The score-based generative model is trained using a diffusion process that slowly perturbs the data. Generation of new
samples is carried out by reversing the diffusion process using the learned score-function, or the gradient of the data density.
For different time-steps, we show the distribution of deposited energies versus generated particle energies (top) and the energy
deposition in a single layer of a calorimeter (bottom), generated with our proposed CaloScore model.

The advantage of this strategy is that we can directly
estimate the last term in Eq. 4, since:

∇x̃ log pσ(x̃|x) =
x− x̃
σ2

∼ N (0, 1)

σ
(5)

The time component can be made explicit by rewriting
the loss function in Eq. 4 as:

1

2
EtEp(xt|x0)p(x0)

[
λ(t) ‖sθ(x, t)−∇xt log pt(xt|x0)‖22

]
.

(6)

The weighting function λ(t) : R → R ensures
the loss function has the same order of magnitude at
all times and is chosen to be inversely proportional

to E
[
‖∇xt log pt(xt|x0)‖22

]
. When the drift coefficient

f(x, t) is chosen to be an affine function of x, the result-
ing perturbation kernel is always Gaussian [58] and can
be chosen such that both mean and variance are known
in closed form, making Eq. 6 efficient to compute during
training.

III. CHOICE OF DRIFT AND DIFFUSION
COEFFICIENTS

In this work we investigate three different choices of
drift and diffusion coefficients that result in perturbation
kernels that are easy to calculate in closed form. The
first SDE, initially proposed in [53], is defined as:

dx =

√
d[σ2(t)]

dt
dw. (7)

The parameter σ(t) = σmin

(
σmax
σmin

)t
is defined with

σmin = 0.01 and σmax = 50 to ensure x(1) ∼ N (0, σ2
max)

is independent from x(0). Since the time-dependent vari-
ance of the resulting perturbation explodes when t→∞,
this SDE is often referred to variance exploding (VE)
SDE.

The second SDE is a continuous version of the discrete
perturbation introduced in [54], defined as:

dx = −1

2
β(t)xdt+

√
β(t)dw. (8)

The parameter β(t) = βmin + t (βmax − βmin) with
βmin = 0.1 and βmax = 20 is used, resulting in x(1) ∼
N (0, 1). The variance of this process is fixed to one when
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the initial distribution also has unit variance, hence re-
ferred to as variance preserving (VP) SDE.

The last SDE, introduced in [55], is defined as:

dx = −1

2
β(t)xdt+

√
β(t)(1− e−2

∫ t
0
β(s)ds)dw. (9)

When the parameter β(t) is chosen to be identical as the
one used in Eq. 8, the variance of the stochastic process
is always smaller than the variance of the VP SDE, hence
receiving the name subVP. Similarly to Eq. 8, x(1) also
follows a normal distribution.

The resulting perturbation kernels induced by each
SDE are listed in Tab. I.

TABLE I. Perturbation kernel induced by different SDE
choices.

SDE Perturbation kernel
VE N (x(0), σ2(t)− σ2(0))

VP N (x(0)e−
1
2

∫ t
0 β(s)ds, 1− e−

∫ t
0 β(s)ds)

subVP N (x(0)e−
1
2

∫ t
0 β(s)ds, (1− e−

∫ t
0 β(s)ds)2)

IV. SAMPLE GENERATION

New samples are generated by solving the reverse dif-
fusion process defined in Eq. 2 using a numerical SDE
solver. In this work, we use the Euler-Maruyama algo-
rithm [59] followed by an additional corrector step that
uses the Langevin MCMC approach [60, 61] to increase
the sampling quality. For each time decrement ∆t, the
updated state of the system is described as:

xt−∆t = xt + [f(xt, t)− g2(t)sθ(xt, t)]∆t+ g(t)
√
|∆t|z,

(10)
where z ∼ N (0, 1) is sampled at each time step. The
corrector step takes the updated state from Eq. 10 and
applies the correction

x′t−∆t = xt−∆t + εsθ(xt−∆t, t)g(t) +
√

2εz, (11)

where ε is a tunable parameter that determines the
strength of the correction applied. A dimension-
independent expression for ε is defined as a function of a
signal-to-noise ratio r parameter as:

ε = 2r2 ‖z‖
2
2

‖sθ‖22
, (12)

where ‖z‖2 and ‖sθ‖2 are the batch-average norms of the
Gaussian noise and trained score function.

High fidelity samples require the time interval ∆t to be
small, possibly leading to hundreds of iterative steps and
consequently hundreds of network evaluations. We de-
crease the number of function evaluations by reusing the
score function evaluated in Eq. 10 during the calculation
of the corrector step in Eq. 11. This approach effectively
decreases the number of function evaluations by a factor
two while no decrease in generation quality is observed.

V. FAST CALORIMETER SIMULATION
CHALLENGE 2022

CaloScore is trained on the datasets created by
the Fast Calorimeter Simulation Challenge 2022 [46, 50–
52]. A total of three datasets are provided, representing
calorimeter shower simulations with Geant of different
geometries and granularities. Dataset 1 [51] is based on
the ATLAS open dataset [46, 62] and is similar to the
current ATLAS detector calorimeter geometry. Showers
are generated at the calorimeter surface in the pseudo-
rapidity range η ∈ [0.20, 0.25]. While samples consisting
of both photons and pions are provided, we evaluate our
model using only the photon dataset. The voxelization
procedure is defined such that it minimizes the amount of
empty voxels, while maintaining high fidelity compared
to the full simulation. This strategy results in different
number of voxels per calorimeter layer and a total of 368
voxels to represent the full detector slice. Photon en-
ergies are provided in this configuration for 15 incident
energies from 256 MeV up to 4 TeV in steps given by
powers of two. For each generated energy, 10k samples
are provided with this number reduced at higher energies
due to long simulation times, resulting in a total of 121k
used during training.

Datasets 2 [52] and 3 [50] contain each 100k examples
and are simulated using a common detector layout but
with different voxelization granularity. The detector sim-
ulated has a concentric cylinder geometry with 45 layers,
where each layer consists of active (silicon) and passive
(tungsten) material, simulated with Geant4. Electrons
are generated at the detector surface with initial energy
sampled from a log-uniform distribution ranging from
1 GeV to 1 TeV. In dataset 2, each layer consists of 144
readout cells, with 9 in the radial and 16 in the angular
directions. Dataset 3 is more granular, consisting of 900
readout cells in each layer, with 18 in the radial and 50
in the angular directions.

Even though the initial voxelization is provided in
Cylindrical coordinates, we found it beneficial to convert
the voxels in datasets 2 and 3 to Cartesian coordinates.
This change allows the effective usage of 3D convolutional
neural networks (CNNs) to build the score model. While
CNNs are applicable in polar coordinates, they struggle
to learn periodic boundary conditions. Convolutional op-
erations are also less effective, since the majority of the
energy depositions are located near r = 0, or near the
corners of the image. Since the datasets are only avail-
able after voxelization, the transformation from Cylin-
drical to Cartesian coordinates inevitably leads to loss of
information1. Nevertheless, we observe improved gener-
ation quality after changing the coordinate system. See

1 A one-to-one assignment between the two sets of coordinates is
possible, but requires the distance interval in Cartesian coordi-
nates to follow a non-linear function since the transformation of
coordinates is itself non-linear.
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App. B for more details of the transformation. The total
number of voxels after the transformation is chosen to be
similar to the original number, resulting in 12×12 = 144
and 32× 32 = 1024 voxels per layer for datasets 2 and 3,
respectively.

Energies deposited in each voxel span multiple orders
of magnitude, motivating yet another transformation of
the inputs before training the generative model. First,
each voxel energy Ev is normalized by the value of the
generated energy of the particle E0 times a factor f that
ensures the normalized voxel energy E′v = Ev

fE0
lies be-

tween 0 and 1. Naively, the factor f could be taken as
1, since energy conservation should ensure the sum of
deposited energies to not exceed the initial particle’s en-
ergy. However, the sampling fraction of the calorimeter
may lead to a mismatch between these numbers. This
effect is particularly important in dataset 1, when parti-
cle energies as low as 256 MeV are considered. We take
f as the highest deviation between total deposited and
generated energies, fixed to f = 3.1 for dataset 1 and
f = 2 for datasets 2 and 3.

The normalized energy depositions are then trans-
formed to log-space, similarly to the strategy used in
CaloFlow. The log-transformed value uv is defined as:

uv = log

(
x

1− x

)
, x = α+ (1− 2α)E′v. (13)

The value α is set to 10−6 and avoids a discontinuity
when E′v = 0. The generated particle energy, used as a
conditional input to the model, is also transformed be-
fore training. The transformed conditional energy u0 is
defined as:

u0 =
e0 − emin

emax − emin
, (14)

where emin and emax are the minimum and maximum
energies available in the dataset.

Finally, dataset 1 is also modified by adding an extra
dimension that encodes an overall energy normalization.
Before applying the log-transformation in Eq. 13, the to-
tal deposited energy is calculated. Instead of normalizing
each voxel by the generated energy, the total deposited
energy is used, ensuring the sum of all voxels is equal to
1. The additional entry is then defined as the total de-
posited energy normalized by the initial particle energy
times the factor f . This strategy improves the estima-
tion of the total energy deposition during training, now
encoded as a single entry rather than the sum of all vox-
els.

VI. MODEL ARCHITECTURE AND TRAINING
DETAILS

The score function is built from a modified version of
the U-net model [63] where and encoder-decoder archi-
tecture with skip connections is used. 3D convolution op-
erations are used as the basic layers in CaloScore for

datasets 2 and 3, leveraging the regular geometry.
Dataset 1, on the other hand, is irregular and consists
of different number of voxels per detector layer. In this
case the score function is built based on 1D convolutional
operations. This approach leads to dataset 1 requiring
bigger kernel and layer sizes compared to datasets 2 and
3, resulting in a bigger model architecture.

Each convolutional operation uses the swish [64] non-
linear activation function, with a kernel size of 5 (dataset
1) and 3 (datasets 2 and 3). The number of dimensions
is reduced in the encoder section of the network through
average pooling operations, reducing the total number
of dimensions by a factor 4 for dataset 1 and a factor
3 × 2 × 2 = 12 for datasets 2 and 3 after each pooling
layer. In the opposite direction, upsampling layers are
used to increase the dimensionality by repeating entries
multiple times.

The different network architectures used for each
dataset are shown in Fig. 2.

Conditional inputs used to train the model, namely the
time component and generated energy, are first trans-
formed using random Fourier features [65]. The trans-
formed features for each conditional input are then con-
catenated and passed over 2 fully connected layers of sizes
256 (dataset 1) or 128 (datasets 2 and 3), both followed
by a swish activation function. This set of conditional
embeddings are used during multiple stages of the model
architecture. In particular, conditional convolutional op-
erations are created by adding the conditional embed-
dings as an additional bias at the output of convolutional
layers.

The implementation is carried out with Tensor-
flow [66] optimized with Adam [67] with initial learning
rate set to 10−4. The learning rate is reduced by a factor
2 if the loss function does not improve for a period of
100 consecutive epochs, evaluated using an independent
dataset. The evaluation dataset is taken as 20% of the
total amount of available training events. The models
are trained for a total of 2000 epochs. The epoch with
lowest evaluation loss is saved for further inspection. For
all models, 16 NVIDIA A100 GPUs are used simultane-
ously interfaced with the Horovod package [68] on the
Perlmutter supercomputer. The batch size in each GPU
is set to 128 (datasets 1 and 2) and 64 (dataset 3).

Sample generation is performed as described in Sec. IV,
with signal-to-noise ratio fixed to 0.2 and total number of
time steps set to 100, in dataset 1, and 200, in datasets 2
and 3. See App. C for differences in generation quality for
other parameter choices. The total number of trainable
weights and the time required to generate 100 calorimeter
showers in a single GPU with batch size fixed to 100 are
listed in Tab. II.

The lack of a regular geometry resulted in
CaloScore requiring almost 20 times more train-
able parameters for dataset 1 compared to datasets
2. On the other hand, dataset 3 has only ∼20% more
trainable weights than dataset 2, even though dataset
3 has 7 times more voxels. This observation suggests
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FIG. 2. Network architectures used for datasets 1 (left), 2 and 3 (right) based on the U-Net architecture. Values in parentheses
represent the dimensionality of the data at each layer of the network. Parenthesis after convolutional operations represent the
kernel size used. The swish non-linear activation function is used after each convolution operation. Conditional inputs (time
and energy) are used multiple times in the model to define conditional convolution operations described in the middle.

TABLE II. Number of dimensions, trainable parameter, and
time to generate 100 new calorimeter showers for each dataset
studied in this work.
Dataset N. of voxels N. of weights Time to 100 showers [s]
dataset 1 384 32M 4.0
dataset 2 6480 1.4M 5.8
dataset 3 46080 1.7M 33.4

that the model complexity is mostly determined by the
network architecture rather than the number of voxels
in the dataset, contrary to normalizing flows where the
complexity from the Jacobian determinant calculation
increases at least linearly with the number of voxels.

Although the ultimate goal is for the generation time to
be significantly faster than for Geant, the time to gen-
erate new calorimeter showers with CaloScore is com-
paratively slow to other machine learning-based models
as a result of the hundreds of function evaluations. In
this paper, we have focused on modeling the complex
data distributions and we leave explorations of acceler-
ating inference to future studies.

VII. RESULTS

Multiple distributions are used to evaluate the quality
of generated samples using different CaloScore SDE
implementations. The total energy deposited in the de-
tector and the number of calorimeter hits are shown in
Fig. 3. A hit is defined as any voxel with energy de-
position above a certain energy threshold. The energy
thresholds are taken as the minimum energy observed in

each challenge dataset, set to 0.01 keV for dataset 1 and
15.1 keV for datasets 2 and 3.

A good agreement between the Geant and gener-
ated samples is observed for all diffusion models and
datasets. At low deposited energies, the difference be-
tween CaloScore and Geant increase and is most no-
ticeable for dataset 3. The subVP implementation shows
a better agreement overall, followed by VP and VE, indi-
cating that bounding the variance of the diffusion process
is beneficial, specially as the number of voxels increase.

A similar conclusion is derived from the average en-
ergy deposition as a function of the layer number and
Cartesian coordinates x and y shown in Fig. 4.

While the VE implementation agrees with the simula-
tion response in dataset 2, the prediction for dataset 3 is
shifted as seen from the layer-dependent distribution.

Similarly, the maximum energy deposited in a single
voxel normalized to the total deposited energy is shifted
in the VE implementation for dataset 3 as shown in Fig.
5. While the low energy fraction region for dataset 1 is
well described by all CaloScore implementations, the
high energy fraction region starts to show deviations from
the Geant predictions. The maximum energy fraction as
a function of the layer number for datasets 2 and 3 shows
a good agreement between the different CaloScore im-
plementations, with most of the distributions showing
deviations within the 10% interval.

The angular distribution of the calorimeter shower is
investigated in datasets 2 and 3 in terms of the shower
width, shown in Fig. 6. The shower width σi with xi, i ∈
[1, 2] representing the x- and y- coordinates is calculated
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FIG. 3. Comparison of the sum of all voxel energies (top) and number of hits (bottom) for datasets 1 (left), 2 (middle), and 3
(right). Dashed red bands represent the 10% deviation interval of the generated samples when compared to Geant predictions

as:

σi =

√
〈x2
i 〉 − 〈xi〉

2
, (15)

with energy-weighted mean defined as

〈xi〉 =

∑
j xi,jEj∑
j Ej

. (16)

A good agreement between all CaloScore implemen-
tations and Geant predictions is observed in dataset 2,
with all implementations showing less than 10% devia-
tion in all calorimeter layers. However, for dataset 3, the
VP implementations shows a disagreement at the last
layers of the detector while the shift observed in Fig. 4
for the VE implementation leads to a similar shift in
the shower width. Nevertheless, the subVP implemen-
tation maintains the same level of agreement as observed
in dataset 2.

A qualitative assessment of the generation is shown
in Fig. 7 for datasets 2 and 3. The 2-dimensional dis-
tribution of the average energy deposition is shown in
the detector layers with highest (layer 10) and lowest
(layer 44) mean energy depositions. Empty entries in the
Geant simulation are a result of the initial voxelization
combined with the following transformation to Cartesian
coordinates. All voxels with an expected energy deposi-

tion above 0 are populated in all CaloScore implemen-
tations, an indication that CaloScore is able to repro-
duce the shower diversity from the training set. Images at
layer 10 are identical for all diffusion models, dominated
by the central voxel. Layer 44; however, has more vox-
els sharing a significant fraction of the layer energy. The
subVP implementation shows a visually similar average
to Geant compared to the other diffusion implementa-
tions, capturing the high energy depositions along the
y-axis in dataset 2 and the isotropic pattern around the
center in dataset 3.

Finally, the assessment of generated samples using dif-
ferent conditional energies is investigated in Fig. 8, by
comparing the total deposited energy versus the gener-
ated particle energy.

All CaloScore models show similar mean and spread
compared to Geant, with the exception of the VE im-
plementation that shows a wider spread for dataset 2 and
higher mean in dataset 3.

We have also explored the classifier metric introduced
in CalowFlow whereby a post-hoc classifier is trained
to distinguish generated showers from Geant 4 exam-
ples. While the classifier could not exactly identify fake
from real showers, it did have an area under the receiver
operating characteristic curve (AUC) of about 0.98 for all
three models. While this suggests that further (hyper-
parameter)optimization would be beneficial, it already
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FIG. 4. Comparison of the average deposited energies in the x- (left), y- (middle), and z-coordinates (right) for datasets 2
(top) and 3 (bottom). Dashed red bands represent the 10% deviation interval of the generated samples when compared to
Geant predictions
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FIG. 5. Comparison of the maximum deposited energy in a single voxel divided by the sum of deposited energies in datasets
1 (left), 2 (middle), and 3 (right). Dashed red bands represent the 10% deviation interval of the generated samples when
compared to Geantpredictions

serves as an important baseline for other methods. It
should also be noted that compared to the dataset intro-
duced in the CaloGAN paper, the datasets considered
in this work are either more realistic (dataset 1) or higher
dimensional (a factor 10 for dataset 2 and 100 for dataset
3) and would be interesting to see the classifier metric ob-
tained from models such as CaloFlow.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we introduced CaloScore, a novel gen-
erative model for calorimeter shower simulation based on
score-matching, applied for the first time in the context
of collider physics.

The performance of CaloScore is studied using the
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FIG. 6. Comparison of the particle shower width in the x- and y- directions in datasets 2 (first two figures from the left)
and 3 (last two figures from the left). Dashed red bands represent the 10% deviation interval of the generated samples when
compared to Geantpredictions
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FIG. 7. Deposited energy versus generated energy in CaloScore(blue) and Geant(orange) for the three different diffusion
models: VP (left), subVP(middle), and VE (right). First row samples generated energies from dataset 1, second row from
dataset 2 and third row from dataset 3.

Fast Calorimeter Simulation Challenge 2022 datasets and
compared to three different model implementations based
on different drift and diffusion coefficients. This is the
first method to produce results for all three datasets of
the challenge and we look forward to comparisons with
other models as they become available.

For lower number of voxels, all models are capable of
producing realistic calorimeter showers, showing a good
agreement with the Geant simulation in all datasets and
for a variety of observables. At the highest dimensional
dataset, CaloScore with diffusion process described by

the subVP stochastic differential equation is able to pro-
duce realistic calorimeter showers while VP and VE SDEs
show larger deviations. CaloScore is also shown to be
scalable, with number of trainable parameters sensitive
to the overall model architecture rather than the total
dimensionality of the dataset.

While the voxelization strategy used in dataset 1 min-
imizes the number of empty voxels, the irregular vox-
elization reduces the geometrical information present in
the calorimeter shower. The geometrical information is
included as an important inductive bias for datasets 2
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FIG. 8. Deposited energy versus generated energy in CaloScore (blue) and Geant (orange) for the three different diffusion
models: VP (left), subVP(middle), and VE (right). First row samples are generated using energies from dataset 1, second row
from dataset 2 and third row from dataset 3.

and 3 and leads to an order of magnitude fewer train-
able parameters in the model compared to the one used
in dataset 1. Moreover, a regular voxelization amenable
to convolutional operations is obtained in datasets 2 and
3 only after an additional transformation of coordinates.
Since the transformation is applied on the voxelized in-
puts, nonphysical artifacts are introduced, such as empty
voxels in regions that are not expected to be empty. All
of these issues could be addressed if alternative voxeliza-
tion schemes were available or if access to the datasets
prior to any voxelization was possible.

The addition of inductive biases to the model is
also expected to improve the generation capabilities of
CaloScore, possibly leading to better and even smaller
model architectures. Energy conservation in particular
is challenging to enforce, since generated samples are not
produced during training time, but only at generation
time when the reverse stochastic differential equation is
solved. We partially address this issue by increasing the
dimensionality of dataset 1, introducing an additional en-
try that stores an overall normalization. Since datasets
2 and 3 rely on the geometrical description of the voxels,

this strategy is not readily applicable and would instead
benefit from a two-step approach as used in CaloFlow,
where the overall normalization is determined separately
and used as a conditional input to a second model that
learns the normalized detector response.

The major challenge to be addressed in CaloScore is
the generation time, currently requiring hundreds of
model evaluations to solve the reverse SDE. While the
total generation time of CaloScore is still faster com-
pared to the Geant simulation, we envision future works
targeting high fidelity generation with lower number of
function evaluations. Indeed, since this limitation is also
observed in applications of diffusion models in general,
a number of different attempts are currently being pro-
posed to accelerate the generation procedure [69–73],
with feasibility for collider physics applications yet to be
studied.

Finally, CaloScore introduces a new generative
paradigm to collider physics with scalable training strat-
egy and able to generate realistic calorimeter showers
consisting of tens of thousands of dimensions. While
the generation time represents the main challenge to be
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overcome, CaloScore is able to incorporate different
advantages from other generative models while address-
ing some of their limitations. These include scalable and
stable training schedule, based on the minimization of
the convex score-matching loss, and exact likelihood es-
timation, previously only available with methods such as
normalizing flows.
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Appendix A: Score function and the connection with
continuous normalizing flows

Full data likelihood access is obtained from the trained
score-matching model by first identifying the determin-
istic ordinary differential equation (ODE) associated to
the SDE in Eq. 2 that reads:

dx = [f(x, t)− 1

2
g(t)2sθ(x, t)]dt = f̃θ(xt, t)dt. (A1)

This ODE, named probability flow ODE by [55], has
the property of having all trajectories sharing the same
marginal probability densities as the SDE in Eq. 2 and is
fully determined once the score function is estimated by
the generative model. The time evolution of the density
is given by the instantaneous change of variables defined
in [74]:

log p0(x0) = log pT (xT ) +

∫ T

0

∇.f̃θ(xt, t)dt. (A2)

Eq. A2 is equivalent to the change of variables often used
in continuous normalizing flows. This expression can be
estimated efficiently by first noticing that

∇.f̃θ(xt, t) = Tr
(
∇f̃θ(xt, t)

)
, (A3)

where ∇f̃θ(xt, t) represents the Jacobian of f̃θ and using
algorithms such as the Skilling-Hutchinson trace estima-
tor [75, 76] to approximate the trace calculation.

Appendix B: Cylindrical to Cartesian coordinate
transformation

The initial voxelization provided for datasets 2 and 3
are in Cylindrical coordinates (r,α,z′). While this set
of coordinates reflect the detector symmetry, we found
beneficial to convert the voxelization to Cartesian coor-
dinates (x,y,z). A voxel initially described in Cylindrical
coordinates (ri,αi,zi) is then converted as:

xi = ri cosαi (B1)

yi = ri sinαi (B2)

zi = z′i, (B3)

where for simplicity we assume ri ∈ [0, 1] and αi ∈ [0, 2π],
resulting in x ∈ [−1, 1] and y ∈ [−1, 1]. Since the overall
transformation is not linear, some voxels of the new set
of coordinates will always be empty, while others contain
the sum of multiple voxels in the initial set of coordinates.

Appendix C: Generation quality for different
sampling parameters

Results presented in this work are derived using the
value of 0.2 for signal-to-noise-ratio r of the Langevin
corrector (Eq. 11) and fixed number of times steps of 100
for dataset 1 and 200 for datasets 2 and 3. This choice
of parameters are used to balance the generation qual-
ity and the generation time. In Fig. 9 different choices
of r are compared while maintaining the same number of
steps as before for all datasets and diffusion models, eval-
uated on the distribution of maximum energy fraction in
a single voxel for dataset 1 and average energy deposi-
tion per layer for datasets 2 and 3, the distributions that
show were observed to be more sensitive to the choice of
generation parameters used.

Different choices of r yield similar results for all dif-
fusion models in both datasets 1 and 2. On the other
hand, the corrector step has a stronger effect on dataset
3 and is crucial to achieve good generation quality with
minimal additional computational complexity.

Contrary to the corrector step, increasing the number
of time steps directly affect the generation time, domi-
nated by the number of score function evaluations. Dif-
ferent choices of number of times steps are shown in
Fig. 10 with r value fixed to the baseline value.

In all cases using fewer time steps deteriorate the agree-
ment with Geant while additional steps are able to
improve the agreement in both datasets 1 and 3 while
dataset 2 shows similar results compared to the baseline.
In Tab. III, the time required to generate 100 calorime-
ter showers using different number of time steps is listed.
Even though the additional time steps improve the sim-
ulation quality, the time to generate the same amount of
new observations increase by more than a factor 2.

TABLE III. Time comparison to generate 100 calorimeter
showers using the baseline model and different number of time
steps

Dataset Baseline [s] N=50 [s] N=500 [s]
dataset 1 4.0 2.9 14.8
dataset 2 5.8 2.7 13.1
dataset 3 33.4 10.3 80.2
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FIG. 9. Comparison of different signal-to-noise choices on the maximum energy fraction deposited in a single voxel for dataset
1 (top) and average energy deposition per layer for datasets 2 (middle) and 3 (bottom) for the three different diffusion models:
VP (left), subVP(middle), and VE (right).
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FIG. 10. Comparison of different number of time steps on the maximum energy fraction deposited in a single voxel for dataset
1 (top) and average energy deposition per layer for datasets 2 (middle) and 3 (bottom) for the three different diffusion models:
VP (left), subVP(middle), and VE (right).
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