
UC Berkeley
UC Berkeley Previously Published Works

Title
Sorghum biomass production in the continental United States and its potential impacts 
on soil organic carbon and nitrous oxide emissions

Permalink
https://escholarship.org/uc/item/0pm229f4

Journal
GCB Bioenergy, 12(10)

ISSN
1757-1693

Authors
Gautam, Sagar
Mishra, Umakant
Scown, Corinne D
et al.

Publication Date
2020-10-01

DOI
10.1111/gcbb.12736
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pm229f4
https://escholarship.org/uc/item/0pm229f4#author
https://escholarship.org
http://www.cdlib.org/


878  |   	﻿�  GCB Bioenergy. 2020;12:878–890.wileyonlinelibrary.com/journal/gcbb

Received: 29 April 2020  |  Revised: 16 June 2020  |  Accepted: 24 July 2020

DOI: 10.1111/gcbb.12736  

O R I G I N A L  R E S E A R C H

Sorghum biomass production in the continental United States 
and its potential impacts on soil organic carbon and nitrous oxide 
emissions

Sagar Gautam1,2   |   Umakant Mishra1,2  |   Corinne D. Scown2,3,4   |   Yao Zhang5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2020 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd

1Environmental Science Division, Argonne 
National Laboratory, Lemont, IL, USA
2Joint BioEnergy Institute, Lawrence 
Berkeley National Laboratory, Emeryville, 
CA, USA
3Energy Analysis & Environmental Impact 
Division, Lawrence Berkeley National 
Laboratory, Berkeley, CA, USA
4Biological Systems and Engineering 
Division, Lawrence Berkeley National 
Laboratory, Berkeley, CA, USA
5Natural Resource Ecology Laboratory, 
Colorado State University, Fort Collins, 
CO, USA

Correspondence
Sagar Gautam, Environmental Science 
Division, Argonne National Laboratory, 
Lemont, IL 60439, USA.
Email: sgautam@anl.gov

Funding information
US Department of Energy, Grant/Award 
Number: DE-AC02-05CH11231

Abstract
National scale projections of bioenergy crop yields and their environmental impacts are 
essential to identify appropriate locations to place bioenergy crops and ensure sustainable 
land use strategies. In this study, we used the process-based Daily Century (DAYCENT) 
model with site-specific environmental data to simulate sorghum (Sorghum bicolor  
L. Moench) biomass yield, soil organic carbon (SOC) change, and nitrous oxide emis-
sions across cultivated lands in the continental United States. The simulated rainfed 
dry biomass productivity ranged from 0.8 to 19.2 Mg ha−1 year−1, with a spatiotem-
poral average of 9. 7

+2.1

−2.4
  Mg  ha−1  year−1, and a coefficient of variation of 35%. The 

average SOC sequestration and direct nitrous oxide emission rates were simulated as 
0. 79

+0.38

−0.45
  Mg  CO2e  ha−1  year−1 and 0. 38

+0.04

−0.06
  Mg  CO2e  ha−1  year−1, respectively. 

Compared to field-observed biomass yield data at multiple locations, model predictions 
of biomass productivity showed a root mean square error (RMSE) of 5.6 Mg ha−1 year−1. 
In comparison to the multi State (n = 21) NASS database, our results showed RMSE of 
5.5 Mg ha−1 year−1. Model projections of baseline SOC showed RMSE of 1.9 kg/m2  
in comparison to a recently available continental SOC stock dataset. The model- 
predicted N2O emissions are close to 1.25% of N input. Our results suggest 10.2 million 
ha of cultivated lands in the Southern and Lower Midwestern United States will produce 
>10 Mg ha−1 year−1 with net carbon sequestration under rainfed conditions. Cultivated 
lands in Upper Midwestern states including Iowa, Minnesota, Montana, Michigan, and 
North Dakota showed lower sorghum biomass productivity (average: 6.9 Mg ha−1 year−1) 
with net sequestration (average: 0.13  Mg  CO2e  ha−1  year−1). Our national-scale spa-
tially explicit results are critical inputs for robust life cycle assessment of bioenergy  
production systems and land use-based climate change mitigation strategies.
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1  |   INTRODUCTION

Bioenergy crops can help mitigate anthropogenic green-
house gas (GHG) emissions as the carbon emitted during 
combustion of biofuels is balanced by the uptake from 
atmosphere through photosynthesis (Hughes, Lloyd, 
Huntingford, Finch, & Harding,  2010; Mishra, Torn, 
& Fingerman,  2013). Prior studies have estimated that 
biomass can be used to meet 15%–20% of the global 
predicted energy demand by 2050 (Beringer, Lucht, 
& Schaphoff,  2011), and about 25% by 2100 (Dale 
et  al.,  2014). The US Energy Independence and Security 
Act (EISA) of 2007 mandates an increase in the produc-
tion of clean renewable fuels through the Renewable Fuel 
Standard, which requires 36 billion gallons of biofuels to 
be used in transportation fuel per year by 2022. Meeting 
the EISA goals requires substantial changes in land use 
patterns across the United States, which can impact the 
energy balance and biogeochemical cycles. Quantifying 
changes in soil organic carbon (SOC) and GHG emissions 
due to adoption of bioenergy crops at large spatial scales 
remain as grand challenges in conducting robust life cycle 
assessment of biofuels (McKone et al., 2011). National 
scale simulation of the bioenergy landscape using agro-
ecosystem models capable of incorporating management 
practice and environmental effect can help (a) identify 
suitable locations to cultivate bioenergy crops; (v) assess 
soil- and site-specific environmental impacts of cultivat-
ing bioenergy crops at large spatial scales; and (c) reduce 
modeling uncertainties in downstream analysis such as life 
cycle assessments of biofuels and bioproducts.

Bioenergy sorghum [Sorghum bicolor (L.) Moench] is 
a promising bioenergy crop because it is a drought-toler-
ant and high-yielding forage sorghum (Liu, Ren, Spiertz, 
Zhu, & Xie,  2015). Bioenergy sorghum maintains high 
biomass productivity under a wide range of environmental 
conditions and low inputs (Cui, Kavvada, Huntington, & 
Scown, 2018; Rooney, Blumenthal, Bean, & Mullet, 2007). 
Bioenergy sorghum can also be grown on marginal lands 
under constraints such as soil water deficits, soil salinity, 
and alkalinity without competing with food production 
(Dalla Marta et  al.,  2014; Regassa & Wortmann, 2014). 
High biological productivity, lower input requirements, and 
a wider range of adaptability to environmental conditions 
make sorghum an attractive feedstock option compared to 
other candidate annual bioenergy crops (Yu, XuZhang, & 
Tan, 2008).

Despite substantial research investments in developing 
sorghum as a bioenergy feedstock (e.g., the US Department 
of Energy ARPA-E TERRA program), little is known about 
the regional scale impact of sorghum cultivation on SOC 
change and nitrous oxide (N2O) emissions. Field studies 
focused on identifying the optimal nitrogen application and 

crop residue removal rates to optimize the biomass yield 
and minimize soil GHG emissions. Storlien, Hons, Wight, 
and Heilman (2014) reported that nitrogen addition signifi-
cantly increased N2O emissions, and incorporation of 50% 
sorghum crop residues to soil increased cumulative CO2 
emissions. The studies that focused on simulating sorghum 
biomass production using process models are limited to the 
field scale (Dou, Wight, Wilson, Storlien, & Hons, 2014; 
Wang et  al.,  2017), or used a coarse-scale land surface 
model that lacks a robust representation of the bioenergy 
crop and crop management conditions (Lee et  al.,  2018). 
More recently, a data-driven machine learning approach has 
been applied to predict the sorghum biomass productivity 
(Huntington, Cui, Mishra, & Scown, 2020). In this study, 
we quantify potential changes in SOC and N2O emissions 
due to cultivation of biomass sorghum across cultivated 
lands of continental United States using a process-based 
model. Our findings may help to identify suitable lands 
across continental United States to place bioenergy sor-
ghum where economic biomass yield can be harvested with 
lower environmental impacts. Our results can also be used 
as input to life cycle assessments for biofuels to understand 
the net climate impacts of bioenergy production systems 
(McKone et al., 2011; Scown et al., 2012).

A wide range of process-based models are used to 
predict biogeochemical processes as a function of land 
management, soil properties, and climatic conditions to un-
derstand the SOC dynamics and GHG emissions from ag-
ricultural systems (Brilli et al., 2017; Coleman et al., 1997; 
Farina et al., 2011; Giltrap, Li, & Saggar, 2010). We used 
the Daily Century (DAYCENT) agroecosystem model (Del 
Grosso et  al.,  2001), which allows for a robust represen-
tation of diverse agricultural management practices while 
projecting biogeochemical changes both spatially and tem-
porally. DAYCENT has been widely implemented to simu-
late the biomass yield, SOC changes, and GHG emissions 
from agricultural systems (Del Grosso et al., 2002, 2006, 
2008). However, most of the DAYCENT model applica-
tions are limited to field scales due to the extensive data 
and computational power needed to run the model at large 
spatial scales. We applied the DAYCENT model over the 
continental United States at a 4 km grid resolution to under-
stand the environmental impacts of cultivating bioenergy 
sorghum in the croplands and pasture and grass lands over 
the continental United States. The major objective of this 
study is to identify optimal locations in continental United 
States to cultivate sorghum with higher biomass yield and 
lower environmental impacts. The specific objectives of 
this study were to (a) predict the rainfed biomass produc-
tivity of sorghum on US cultivated lands; (b) quantify the 
potential changes in direct N2O emissions and SOC stocks 
due to sorghum adoption; and (c) identify the cultivated 
lands where sorghum adoption will provide economic 
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biomass yields and net carbon sequestration under rainfed 
conditions.

2  |   MATERIALS AND METHODS

2.1  |  DAYCENT model description

DAYCENT is a daily time step process-based agroecosys-
tem model designed to simulate the biogeochemical cycles 
at a point scale (Del Grosso et al., 2001). DAYCENT is the 
extended daily version of the CENTURY model (Parton, 
Hartman, Ojima, & Schimel,  1998). It has the capability 
to simulate exchange of carbon and soil nutrients (nitro-
gen, phosphorus, and sulfur) between the atmosphere and 
terrestrial ecosystem, and other processes including soil 
water and soil temperature dynamics (Schimel et al., 2001). 
DAYCENT has been widely used to predict SOC change, 
GHG emissions, and plant productivity. Model inputs in-
clude climatic inputs; daily temperature and precipitation 
datasets, soil factors; texture, pH, hydraulic properties, and 
agricultural management; historic details on land use; and 
fertilizer, tillage, and other management activities. The 
DAYCENT model simulates decomposition and nutrient 
mineralization of plant litter and soil organic matter. The 
crop submodule in DAYCENT simulates plant growth 
and phenology, net primary productivity and its allocation 
to different compartments (grain, root, and shoots), and 
the C:N ratio of these plant compartments. The growing 
degree-day approach is used for management scheduling. 
This approach enables scheduling agricultural management 
as a function of surface air temperature, known as the heat 
unit approach. The heat unit for the plant is determined in 
the model based on long-term climate data and the crop-
specific base temperature.

2.2  |  Study area, weather, and soil input

We included three land cover types (croplands, pastures, 
and grasslands; hereafter “cultivated” lands) based on the 
National Land Cover Database (Yang et  al.,  2018) that 
could be converted to bioenergy crop production in the 
continental United States. The model simulation was con-
ducted at a 4 km grid scale and limited to areas where the 
land cover type in each grid is more than 50% cropland, 
grassland, and/or pasture (Figure S1). The 30 year (1989–
2018) daily precipitation and minimum and maximum air 
temperature data were extracted from the Global Historical 
Climatology Network (GHCN) datasets of National Centers 
for Environment Information and used for weather input to 
the model (Menne, Durre, Vose, Gleason, & Houston, 2012). 
There are over 4,161 weather stations with 30 year datasets 

across the continental United States. The average annual  
daily temperature and average annual precipitation during 
1989–2018 are presented in Figure S2. The weather generator- 
simulated weather data based on 30 year historic data were 
used for the long-term historic simulation of the native 
vegetation. For assigning the weather station data to each 
grid, the nearest weather station based on haversine distance 
from the centroid of the grid was used. The major soil pa-
rameters for the model include the multilayer soil texture, 
bulk density, soil moisture characteristics curve data, hy-
draulic conductivity, soil organic matter, and soil pH. The 
Soil Survey Geographic (SSURGO) database was used to 
build the model input database, and calculations were made 
for the soil water characteristics curve data (wilting point 
and field capacity) using the pedotransfer function (Saxton 
& Rawls, 2006; Soil Survey Staff, 2015). A summary of the 
data types and the sources used in this study is presented in 
Table S1.

2.3  |  Regional simulation, land use, and 
DAYCENT model setup

The study area was divided into 4  km grid cells, and the 
simulations were conducted at the centroid of the grid cell. 
The DAYCENT model is designed to explicitly run at a 
point scale with no horizontal connections among the cells. 
Considering the number of available GHCN weather sta-
tions and computational efficiency for processing the daily 
timescale regional input/output of the model, this study 
was conducted at a 4  km grid, which is common across 
the environmental modeling community for regional scale 
applications (Daly et al., 2000; Oubeidillah, Kao, Ashfaq, 
Naz, & Tootle, 2014). The DAYCENT model was run for 
4,000 years to achieve the steady-state values for soil car-
bon and nitrogen pools to reflect the natural conditions 
of land prior to start of agriculture (Basso et  al.,  2011). 
Region-specific grass types were used for the equilib-
rium run based on the data used in the US Environmental 
Protection Agency Inventory of US GHG emissions and 
sinks (USEPA, 2015). Land use and management history 
for the past and present were compiled from different data 
sources. Historical management from initial tillage to the 
modern agricultural period was simulated with crop rota-
tion and a management scheme compiled at the Major Land 
Resource Area level from different historical data sources 
(Ogle et  al.,  2010). Modern day agriculture management 
representation was based on the multiyear National Land 
Cover Database analysis. The historical database was used 
to represent the average annual nitrogen fertilizer rates for 
each of the agricultural crops (USEPA, 2005). Bioenergy  
sorghum was cultivated in 2008 to study the impact of decade- 
long cultivation of the bioenergy crop. The assumptions for 
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large-scale cultivation of sorghum included (a) use of heat 
unit-based agricultural management; (b) the same cultivar 
of sorghum across the study area; (c) rainfed conditions; 
(d) common fertilizer application rate of 120 kg N/ha; and 
(e) an aboveground biomass removal rate of 90%. Sorghum 
is commonly grown in Southern region of United States, 
as a result, agricultural management data across continen-
tal United States were not available. The fertilizer rate that 
we applied was based on the recommendation for eco-
nomic yield of sorghum for southern region, and this rate 
will not limit the crop growth in other regions of United 
States (Contreras-Govea, Lauriault, Marsalis, Angadi, & 
Puppala, 2009; Cotton, Burow, Acosta-Martinez, & Moore-
Kucera, 2013; Han et al., 2012). We used uniform agricul-
tural management and model parameters across the study 
region to understand the variability in sorghum biomass 
productivity across region as a function of land use history, 
weather, and soil properties.

The model setup was automated using an R script (R Core 
Team, 2018), which enabled reading the weather data from 
the GHCN database and generating weather files, reading the 
data from the SSURGO database and generating the soil data 
files and updating the site-specific and crop parameters for 
each grid cell across the study area. The results are presented 
as the spatial mean with prediction range due to interannual 
climate variability and soil properties represented as the first 
and the third quartile.

2.4  |  Model calibration and 
parameterization

Model calibration for bioenergy sorghum has been con-
ducted in an earlier study for simulating field-scale meas-
urement of water content, SOC, and soil temperature (Wang 
et al., 2017). In our study, the crop parameters were changed 
to represent the field-scale sorghum biomass yield for the 
multiple locations. Manual calibration was preferred over 
autocalibration, as DAYCENT parameter sensitivity and 
ranges were well understood based on previous studies of 
sorghum (Duval et al., 2013; Duval, Ghimire, Hartman, & 
Marsalis, 2018; Wang et  al.,  2017). We attempted to rep-
resent the variability in sorghum yield due to change in 
environmental factors (soil properties, temperature, pre-
cipitation, and solar radiation) across the study domain. 
The observed yield from a 5 year study (2008–2012) under 
multiple rainfed locations with standard agronomic prac-
tices was used for the model calibration (Gill et al., 2014). 
Our DAYCENT predictions were validated using sorghum 
yield values from the literature (Chaganti et al., 2020; Wang 
et al., 2017; Wight et al., 2012). The geographic distribu-
tion of the validation sites represents major rainfed sor-
ghum growing regions in the continental United States. 

Furthermore, the predicted biomass yield was compared 
with the time series multi State sorghum biomass yield data 
from the National Agricultural Statistics Services (NASS) 
survey dataset (NASS,  2018). Model performance was 
evaluated using root-mean-square error (RMSE). RMSE is 
a square root of the average of squared differences between 
the observation and model prediction values.

The baseline SOC prediction of the DAYCENT model 
was compared with observed SOC data points (n  =  654) 
across continental United States using Rapid Carbon 
Assessment database (West, Wills, & Loecke,  2013). 
Due to a lack of experimental data on trace gas fluxes on 
fields growing bioenergy sorghum, we validated our N2O 
emission predictions based on the biomass productivity 
and SOC. This approach has been well documented to 
provide reliable validation of gas fluxes (Adler, Grosso, 
& Parton,  2007; Del Grosso et  al.,  2002, 2006; Duval 
et al., 2013). After calibration, the model was updated with 
a calibrated set of parameters and simulation was executed 
in the nine-node, 324-core cluster computing system at 
Argonne's Laboratory Computing Resource Center in the 
parallel environment. Parallel execution was implemented 
in R (https://www.r-proje​ct.org/) using the parallel package. 
The schematic for implementation of the entire modeling 
steps is presented in Figure 1.

The objective function of the model parameterization 
was to reduce the RMSE of the sorghum dry biomass pre-
diction across the calibration sites to find representative 
sets of parameter combination. A list of the model pa-
rameters with default values and selected values is pro-
vided in Table  S2. The model parameters which control 
the crop production due to solar radiation and the water 
stress multipliers were the two most sensitive parameters 
regulating the biomass yield (Table S2). The crop-specific 
energy-biomass conversion factor (PRDX (1)) represents 
the genetic potential of the crop, PRDX (1) was adjusted 
to 3.0 to represent the higher yield potential of bioenergy 
sorghum (Table  S2). The crop-specific energy-biomass 
conversion factor was a sensitive parameter for biomass 
yield prediction. Other parameters (PPDF (1) and PPDF 
(2)) relating to the curve defining temperature were also 
found to be sensitive to biomass yield. The parameter to 
represent the water stress coefficient on potential growth 
was decreased to 0.2 to fit the water stress curve for sor-
ghum to the relationship described in the FAO Irrigation 
and Drainage paper no. 56 (Allen, Pereira, Raes, & 
Smith, 1998). Zhang, Hansen, Trout, Nielsen, and Paustian 
(2018) demonstrated that the crop-specific water stress co-
efficients in the FAO 56 method can be used for deriving 
the DAYCENT parameters. This parameter resulted in the 
yield difference between the eastern and western regions 
of the United States where rainfall patterns are different, 
regulating the biomass yield.

https://www.r-project.org/
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3  |   RESULTS

3.1  |  Biomass yield prediction

The simulated rainfed dry biomass yield (hereafter referred 
to as biomass) values for continental United States ranged 
from 0.8 to 19.2 Mg ha−1 year−1, with a spatiotemporal av-
erage of 9. 7

+2.1

−2.4
 Mg ha−1 year−1 and a coefficient of vari-

ation of 35% (Figure 2). The positive and negative values 
in the upper- and lowercases represent uncertainty ranges 
based on an interquartile range of predictions. The range 
of simulated yields, including first (Q1) and third quartile 
(Q3) of the yield map based on 10 year simulations, is pre-
sented in Figure S3. The spatial variations in the projected 
yields are attributed to the environmental conditions of the 
study area. The yield response was primarily governed by 

precipitation and temperature (Figure S2). Cultivated lands 
in the Southern United States and Kansas have higher daily 
average annual temperature and precipitation, and thus are 
projected to have higher average sorghum biomass yield 
(12. 5

+2.0

−2.3
  Mg  ha−1  year−1). The comparison of simulated 

and observed biomass yield across multiple years is pre-
sented in Figure 3a. The model was able to represent year-
to-year variability in yield and multiyear average yield for 
each of the six locations. The RMSE value for the projected 
biomass yield for the selected year is 5.6 Mg ha−1 year−1. 
Model predictions are close to observed yields in the valida-
tion data for the average yearly yield across all locations. In 
2009, the average yearly predicted yield across all locations 
was 13.1 compared to observed yield of 15 Mg ha−1 year−1 
(Figure  3a). For individual locations, the average yearly 
yield is well aligned to the validation data for all locations 

F I G U R E  1   Schematic showing steps included for large-scale application of Daily Century (DAYCENT) model
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except Corpus Christi, Texas. In Corpus Christi, the model 
over-predicted biomass yield compared to the observed 
yield; however, the model was able to simulate the year 
with a higher biomass yield (Figure 3a). The model was un-
able to predict the wide range of observed variability in bio-
mass yield for Texas. The model underpredicted the yield 
for Ames, IA. The model prediction closely represented 
the observed multiyear yield trend in biomass for all other 
four locations (Figure  3a). The time series comparison of 
DAYCENT yield with NASS dataset shows close year-to-
year match in ensemble mean and range of predictions with 

RMSE of 5.5 Mg ha−1 year−1 (Figure 3b). The comparison 
statistics of the NASS yield and DAYCENT prediction are 
presented in Table S3.

3.2  |  Soil organic carbon change, direct 
nitrous oxide emissions, and hotspot analysis

The DAYCENT model was set up to simulate the SOC dy-
namics for the topsoil (0.2 m). The baseline SOC prediction 
of DAYCENT model showed r2 of .43 and RMSE of 1.9 kg/

F I G U R E  2   Rainfed biomass yield 
of sorghum across the continental United 
States simulated using the Daily Century 
model; locations of the Regional Feedstock 
Partnership Trails (black triangles) used for 
validation

F I G U R E  3   Comparison of the Daily 
Century (DAYCENT) model sorghum 
biomass yield with (a) multilocation 
bioenergy field trail (Gill et al., 2014) 
and (b) multi State (n = 21) National 
Agricultural Statistics Services (NASS) 
Sorghum yield datasets (NASS, 2018)
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m2 when compared with 654 observed point across continen-
tal United States (Figure 4).

Simulated SOC change for the continental United States 
ranged from −0.76 to 3.0 Mg CO2e ha−1 year−1 with a spatial 
mean of 0. 79

+0.38

−0.45
  Mg  CO2e  ha−1  year−1 for decade-long 

sorghum cultivation (Figure  5). The spatial mean SOC 

sequestration for the Southern region plus Kansas was 
1. 54

+0.33

−0.27
 Mg CO2e ha−1 year−1. A few states in the Upper 

Midwest showed net soil carbon emissions resulting from 
long-term sorghum cultivation (Table S4). The SOC map 
before and after decade-long cultivation of bioenergy sor-
ghum is presented in Figure S4. The spatiotemporal average 

F I G U R E  4   Comparison of Daily 
Century (DAYCENT) predicted baseline 
soil organic carbon (SOC) stocks with Rapid 
Carbon Assessment (RaCA) SOC database 
(West et al., 2013) across continental United 
States

F I G U R E  5   Simulated mean soil 
organic carbon stock change for topsoil 
(0.2 m) due to decade-long (2009–2018) 
sorghum cultivation across the continental 
United States
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direct N2O emission due to sorghum cultivation was sim-
ulated as 0. 38

+0.04

−0.06
  Mg  CO2e  ha−1 (Figure  6). The range 

of direct N2O emissions including the first (Q1) and third 
quartile (Q3) of the emission map based on decade-long 
simulations is presented in Figure  S5. Higher N2O emis-
sions are simulated in the states of Arkansas, Louisiana, 
Mississippi, and Missouri (Table S4). Simulated direct N2O 
emissions are lower for the Western states, intermediate for 
Midwestern states, and highest for the Southeastern states. 
We also compared N2O emission values with bulk density  
data from the data basin project (https://datab​asin.org/maps/)  

which uses the National Resources Conservation Service 
soil water holding capacity and soil texture data to predict 
the soil bulk density. The croplands with a bulk density 
range of 1.29–1.36  g/cm3 showed more N2O emissions. 
Lower N2O emissions were predicted in the areas where 
bulk density ranged from 1.37 to 1.55 g/cm3.

Results based on overlay of productivity and emission 
maps showed that the states including Lower Midwest and 
Southern US states can produce more than 10  Mg/ha dry 
rainfed biomass with net carbon sequestration (Figure 7). The 
area with economic biomass yield had simulated biomass 

F I G U R E  6   Simulated mean emission 
of direct nitrous oxide as carbon dioxide 
equivalent during decade-long (2009–2018) 
sorghum cultivation across the continental 
United States

F I G U R E  7   Cultivated lands of the 
continental United States that will produce 
different sorghum biomass yields with net 
carbon sequestration and emission; different 
classification criteria are defined in the 
legend

https://databasin.org/maps/
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yield and net carbon sequestration of 11. 9
+2.3

−1.9
 Mg ha−1 year−1 

and 1. 2
+0.4

−0.4
  Mg  CO2e  ha−1  year−1, respectively. The Upper 

Midwest states showed less than 10  Mg/ha biomass yield 
with net carbon emission, and Western states showed lower 
biomass yield with net carbon sequestration (Figure 7). Our 
results suggest that 10.2 million ha of cultivated lands of the 
Southern and Lower Midwestern states will produce sorghum 
biomass yield >10 Mg/ha with net carbon sequestration. The 
spatial average biomass yield, SOC change, and N2O emis-
sions of all the simulated states are presented in Table S4.

4  |   DISCUSSION

We generated spatially explicit estimates of potential bio-
mass sorghum productivity, SOC change, and N2O emissions 
across cultivated lands of the United States. The point scale 
process model was scaled up using detailed environmental, 
soil, and management representations to identify suitable lo-
cations for production of biomass sorghum across the con-
tinental United States. Our national-scale results are critical 
inputs to life cycle assessments, which require full GHG ac-
counting and form the basis of important biofuel policies in-
cluding the Low Carbon Fuel Standard and Renewable Fuel 
Standard. Yield predictions are also crucial for technoeco-
nomic analyses, as the tonnage-normalized cost of farming 
inputs and average transportation from the field to the biore-
finery are all dependent on feedstock yields.

Sorghum biomass yield is sensitive to crop parameters 
relating to the radiation use efficiency, temperature, water 
stress, and carbon-to-nitrogen ratio. Our findings are con-
sistent with the findings of earlier studies (Dou et al., 2014; 
Field, Marx, Easter, Adler, & Paustian,  2016; Necpálová 
et  al.,  2015; Stehfest, Heistermann, Priess, Ojima, & 
Alcamo, 2007; Wang et al., 2017). Earlier studies predicted 
sorghum biomass yields ranging from 1 to 25 Mg ha−1 year−1, 
with higher yields in the Southeastern United States. Our 
predicted average sorghum biomass yield and its spatial dis-
tribution are consistent with the observations/predictions of 
(Dou et al., 2014; Lee et al., 2018). Lower yield predictions 
in the Western United States are due to water-limiting con-
ditions (Lee et al., 2012). The yield variability is higher in 
sorghum, and our predictions also represent those yield vari-
abilities. The county-level data show a 69% coefficient of 
variation in rainfed sorghum yield (Kukal & Irmak, 2018); 
our results predict a 35% coefficient of variation in predicted 
biomass yield. The greater variability in sorghum biomass 
yield in the drier regions under rainfed conditions is due 
to variability in soil moisture availability for crop growth, 
which is very common in the Western United States (Gill 
et  al.,  2014). The model simulates crop production based 
on incoming photosynthetic radiation and the radiation use 
efficiency of a crop, where water stress based on available 

water and potential evapotranspiration represents biomass 
yield decline. In this study, parameters for higher genetic po-
tential dominated the yield response in the Southern region 
with optimum temperature, precipitation, and solar radia-
tion. Biomass productivity in the Upper Midwestern United 
States was lower due to lower temperature and shorter grow-
ing seasons. The optimum temperature requirement for the 
vegetative growth and development of sorghum ranges from 
26 to 34°C (Maiti,  1996). A previous experimental study 
documented a decrease in growth rate of sorghum under 
lower temperature treatments (Lyons, 2012). An earlier study 
has also documented the sensitivity of sorghum to chilling 
temperature, making sorghum cultivation challenging in 
higher latitude (Ercoli, Mariotti, Masoni, & Arduini, 2004). 
Chilling significantly affects plant growth in early spring, re-
sulting in reductions in sorghum biomass yields. The yields 
in the Southeastern states are higher and correlated to higher 
temperature and precipitation in the region (Lee et al., 2018; 
Regassa & Wortmann,  2014). Lower biomass yield in the 
croplands of Western states is due to a lack of sufficient pre-
cipitation to support optimal crop growth. The model repre-
sentation for high-yielding varieties and the yield response 
to extreme weather events need to be further improved to 
better represent new advancements in the genetic engineer-
ing. The average yield of 12. 5

+2.0

−2.3
  Mg  ha−1  year−1 in the 

Southern states can produce ethanol yields up to around 
2,856–3,920 L ha−1 year-1 (Tang, Li, Li, & Xie, 2018).

The spatial pattern of the SOC stock predicted from 
our study across cultivated lands in the continental United 
States represents the general observed spatial pattern of 
SOC in the agricultural region of the United States (Tifafi, 
Guenet, & Hatté, 2018). SOC increased after decade-long 
cultivation of sorghum in most of study locations except 
in very few locations at higher latitudes. Bioenergy sor-
ghum favors SOC sequestration due to higher root biomass  
(15%–20% of total biomass) resulting in increased annual 
input of organic matter to soil (Olson et al., 2012). Carbon 
flux from soils is sensitive to variability in temperature 
and precipitation (Lucht et  al.,  2002; Poulter et  al.,  2014; 
Schwalm et  al.,  2012). Temperature and precipitation are 
the major drivers governing yield response which defines 
the carbon sequestration.

Our predicted mean N2O emission over continental 
United States is close to 1.25% of N input, which is con-
sistent with IPCC recommendations (IPCC, 2006). In addi-
tion, our model projection shows variation in N2O emission 
across study region due to variation in soil texture. Direct 
N2O is produced from the nitrogen cycle due to denitrifi-
cation and nitrification of the organic nitrogen. DAYCENT 
simulates the nitrification process based on soil ammonium 
concentration, volumetric soil water content, relative sat-
uration, soil temperature, soil pH, and soil bulk density. 
The denitrification process is simulated based on the soil 
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nitrate concentration, labile C, O2, and soil texture. Soil 
moisture is the major driver of N2O emissions, as it defines 
the availability of oxygen in soil (Butterbach-Bahl, Baggs, 
Dannenmann, Kiese, & Zechmeister-Boltenstern, 2013). In 
the croplands with high moisture (more than 60% of water- 
filled pore space), the end product of denitrification is N2 
gas (Bouwman, 1998). Our predictions of N2O emissions 
are also correlated with the soil bulk density. The bulk 
density can also be related to the soil moisture, and studies 
have used bulk density to predict soil moisture (Vereecken,  
Maes, Feyen, & Darius, 1989). In other words, the croplands  
with fine-textured soil resulted in higher N2O emissions 
in comparison to croplands with coarse textured soil. Our 
findings of the soil texture dependence of N2O emissions 
are consistent with findings of earlier studies which also 
reported higher N2O emission from fine-textured soil com-
pared to coarse-textured soil (Gaillard, Duval, Osterholz, & 
Kucharik, 2016). Del Grosso et al. (2006) reported 2%–2.5% 
N2O emissions for fine-textured clay soil in comparison to 
0.8%–1% for coarse-textured sand soil. DAYCENT model 
assumes higher SOC in fine-textured soil slows decom-
position of plant residue compared to coarse texture soil. 
The higher SOC provides the C for denitrifying microbes 
leading to increased N2O emission (Bouwman, Boumans, 
& Batjes, 2002).

Our study comes with some limitations and assump-
tions. Sorghum is dominantly grown in Southern United 
States as a result, there is lack of data on agricultural man-
agement for sorghum over continental United States. We 
used a constant fertilizer application rate of 120 kg N/ha 
based on the recommendation for the economic yield of 
dryland sorghum cultivation (Ogunlela, 1988; Restelatto, 
Pavinato, Sartor, Einsfeld, & Baldicera, 2015). Other 
limitations of this study include the use of constant 
phenotype and parameter representation over space and  
time.

In summary, our study made reasonable predictions of 
the average annual biomass sorghum yield across cultivated 
lands of the continental United States. The spatial average 
of simulated biomass sorghum yield for the continental 
United States was 9. 7

+2.1

−2.4
 Mg ha−1 year−1. The spatial aver-

age of simulated biomass sorghum production for locations 
with economic productivity and net carbon sequestration 
was 11. 9

+2.3

−1.9
 Mg ha−1 year−1. The productivity of biomass 

sorghum was found to be sensitive to temperature and pre-
cipitation; sorghum yield was lower in the upper latitude 
due to the sensitivity of sorghum to chilling temperature. 
The cultivated lands of Southern and Lower Midwest states 
with higher daily average annual temperature and precipi-
tation are projected to have higher sorghum biomass yield. 
Our results of SOC sequestration showed the suitability 
of Southern states for sorghum cultivation with a net car-
bon sequestration of 1. 54

+0.33

−0.27
  Mg  CO2e  ha−1  year−1. Our 

result predicts higher N2O emissions for the locations with 
fine-texture soils. Based on the biomass yield and the emis-
sion trends of N2O, the Southern states excluding the loca-
tions with fine-textured soils are ideal places for cultivating 
sorghum. Midwestern states including Kansas, Missouri, 
and Illinois predicted sorghum yield benefits with lower 
N2O emissions. Overall, our results indicate that an area 
of 10.2 million ha of cultivated lands of the Southern and 
Lower Midwestern states can sustain economic biomass 
sorghum yield with net carbon sequestration under rain-
fed conditions. Future studies on biomass sorghum pro-
ductivity and its environmental impacts should focus on 
region-specific sorghum genotype and crop management 
representations.
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