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ON THE STRONG INTERACTIONS OF THE STRANGE PARTICLES
R. H. Dalitz-l-
v Lawrence Radiation Léberatory
University of California
W Berkeley, California

January 27, 1961

I. INTRODUCTION

It has now become apparent that the strength of the. '"strong nuclear
interactions” of the strange particles must be considered comparable to that
of the pion-nucleon and nucleon-nucleon interactions, despite the fact that
strange-particle production occurs with relatively small branching raticd
even at the highest energies studied. This conclusion is particularly |
evident from the data on A-hypernuclear binding energiesl and on the
low~-energy reaction processes? for strange particles, as will be pointed
out again in Sections IIT and V. It is alsé indicated by the occurrence of
resonances with substantial half-widths in a numbgrvof strange-particle

5 at approx 1850 Mev, the K-x

sys*l:emLL at approx 875 Mev, and the n-A system5’6’7

systems, for example in the K -p system
at appféx 1485 Mev.
With such strong interactions, the restrictions of the unitarity condition
- -~that is, of prébability conservation--on‘the cross sections for competing
processes and on their energy dependence are of the greatest importance, as
we know from experience in the nonrelativistic domain of low-energy nuclear
' | reaction phenomena. Their effect on the energy dependence of reaction

w amplitudes and cross sections is especially marked in the neighborhood of

* .
‘Work done under auspices of the'U. S. Atomic Energy Commission.

-\-

Permanent address: Enrico Fermi Institute for Nuclear Studies, University

of Chicago.
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new two-particie fﬁresholds wheréL for example, they give rise to the cusp
behavior now pbserved8 particularly;in thé.angular distribution of the
. + p A +}KO' reaction ét the. I + K threshold.

| In this situation it is particularly appropriate to describe these
reaction processes in terms of the elements of the reaction matrix K,
since the scattering matrix constructed from them necessarily satisfies the
unitarity conditions.  The theory appropriate to the definition and
application of the reaction matrix is reviewed briefly in Section II, with .
épecial¥reference‘to coupleq two-particle systémg and to the occurfence of
and description of resonant stateé in this formalism. In Section ITI (and
Appendix A), the analysis of the low-energy K ~proton data is reviewed in
terms of this formalism, and the "K-nucleon virtual bound state" interpre-
tation of the =-A resonance is compared with the expérimental déta.

- Although the reaction-matrix formalism is quite general, it.has

9,10, 11 of elementary

proved conveniert in the dispersion-theory treatment
particle processes to adopt a specific method of solution, which involves
separating the‘scattering.matrix for a state of definite angular momentum
and parity into two factors NDnl; each with characteristic analytic
properties as functions of the barycentric energy. The function D may

be determined explicitly from N, and the singularities of N are directly
related to the dynamical mechanisms which lead to the observed processes.
The function N either may be regarded as a function to be determinéd
experimentally or, more satisfactorily, it may be used to include in the -
form of the scattering amplitudes those specific features wﬁich woﬁld arise
from pérticular mechanisms that could influence these reaction processes.

The use of this formalism, and its relationship with the reaction-matrix

formalism, is discussed briefly in Section IV, with special reference to
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the description of resonant states. These remarks are illustrated in
Appendix B by discussion of a simple example.
In Sec. V, the present evidence bearing on the validity of the

global symmetry hypothesis of Gell-Mann12 and Schwingerl3

is reviewed, and
the interpretation of the =-A resonance as an analogue of the (3,3) isobar

state in the =n~N system is discussed and compared with the data.
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ITI. THE REACTION MATRIX AND RESONANCES FOR'MULTICHANNEL SYSTEMS

We consider explicitly a system with n twqeparticle channels
labeled i =_l,05o,n,:channel 1 describing a spinless and a spinor particle
of rest masses .mi,’Mi zespectively, with c.m. momentum ki’ For the total

energy E we have, then,,
.  (2.1)

The elements of the reaction matrix K are now defined in terms of
the asymptotic form of the  wavefunction for an incident wave of unif
amplitude in one channel, together wiﬁh standing waves in all channels.
Explicitly, with orbital aﬁgular‘momentum ﬂi for channel i, the elements
of K_ are defined by the form of the Wa&gfunction Wj(i) for the Qﬁ?“
channel: | |

: T . 7

in(k, r-4, =) cos (k.r = £, =)

(1) sin ( j2 (k& 5D
. r) ~ B, J_ + A, K., A

"FJ ( ) ij kjr . J Ji i r

(2.2)

where Ai is 'a normalization coefficient given by (=x pii/ki)l_/2 and 0y
is the Jith diagonal element of the phase=space density (which is diasgonal

in the present representation), namely:

! i
iy = TR T o - (2.3)

The wavefuﬁction (2.2) corresponds to a configuration in which:there is an

incident wave (the part of exp(iki + r) with orbital angular momentum 21)
e - \

in channel i, together with a standing wave of cosine form in all channels.

The matrix element Ki may be written in the form

3

V
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K = .
13 k, RiJ kj s (2.4)
where the two energy-dependent factors remove the leading term of the energy
dependence of Kij in the neighborhood of the threshold energies Ei’ Ej
for channels i and j. When both channels i, Jj are open, that is
when E > Ei’ Ej’ we have; from the hermiticity of the Hamiltonian,

If, in addition, the Hamiltonian is invariant with respect to time reversal,
the elements of the K matrix are real, and K is é real symmetric matrix in
this region.16 |

The K-matrix elements are analytic functions of the total energy,
with a branch cut at each threshold energy Ei where Zi is odd. The
elements Rij are real and do not have thesg branch cuts at threshold
energies. When the energy is sufficiently far below threshold in channel 1,
even the Rij will generally become complex wheﬁ the dynamical singularities

17

are reached: this last point is brought out rather clearly in the
dispersion formalism discussed in Section IV. It is in déaling with this
region of unphysical energy values that the dispersion formalism has'great-
advantage over the present discussion and £here is ho doubt thai this
formalism, or some modification of it in the same spirit, will become the
more approﬁriate procedure for the discussion of the more comblicated
situations which will arise-in the future.

For mmltiparticle channels, the defining boundary conditions are -

more conveniently expressed in momentum-space variables (see Ref. 14). The

energy E, the angular momentum, and the parity are then no longer sufficient

5
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to‘characterize the configuration completely, and further continuous variables
are necessary to characterize the sharing of the total energy and the total
angular'momentum among the perticles. In this case the label 1 becomes
continuous and the reactlon matrix becomes an integral operator.

vIn principle, for complete theoretical;expressions with the correct
analyticity propertles, it is necessary to.give_the K—mstrix elements for all
possible channels, open or closed? In practice, however, we aim only to
obtain expressions valid over some limited energy range; in this case,’
attention may be confined to the 0pen channels and to those channels whose
thresholds lie close to thls energy range, as discussed by Dalltz and Tuanoe
In the cases dlscussed here, the three—partlcle channels either are weak or
have thresholds outside the range of interest,'and we shall not have to
consider multiparticle channels explicitly° Fon this reason, and because
of the mathematlcalAcomplex1ty of s1tuatlons 1nvolv1ng mnltlpartlcle channels,
we shall not go 1nto further detall about this here,18

The formal relatlon of the scatterlng matrlx T to the reaction

matrix K 1is given by the equation
. . =1 .
T = K[1 - ix p K] 5T : : - (2.6)

where p denotes the matrix of phase-space densities. In terms of T, the
cross section for the reaction i+ jJ in a state of total angular momentum

J and definite parity is then given by

2 M 2 .
o(i»j):%’f—--(J+-E,l- fi-l(i'lTlJ>|Ojj° - (2.7)
i i '

For any two-particle channel i, the elastic scattering in this

channel may be described by a complex phase shift Si, such that

.,

«
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' ‘ . i&i ‘ ‘ _

(1] ]i) = e sin Si/n CIP : _ (2.8)

or by a complex scattering length Ai = a, + ibi , such that
‘ -1 -1 ‘ s

k, cot 8, = A, = (ai + ibi) , (2.9)
and

(1] T|1) = A /(3 - ik, A)) . | | (2.10)

We will now distinguish channel i from the other channels f and subdivide

the reaction matrix K as follows,

K = , , (2.11)
i i
where ai denotes ( i | K | i), Bi denotes the row matrix whose
elements end ( i | K | £ ) for £ # i, Bif its Hermitian conjugate
(equal to the transpose of Bi , if time-reversal invariance holds), and

7 denotes the submatrix obtained by excluding from K the row and column

i
labeled i. In other words, Bi includes the elements of K describing
transitions from i +to all other channels, and 7i congists of all those

elements describing transitions between the channels f . Then the

following expression21 relates a; + ibi to these matrices,

M ' o .
_i . Cy=1 T . .
CH +»iﬂ,Bi(l - i pf_7j) pe 8,71, (2.12)

a, + ib, =
i i

In a similar way, the transition amplitude may be expressed in the form

<i'IT|f>=T—_——%gi7;i-'-<il7¢z'ilf>, - (2a03)
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where the first factor results from the damping effect of the competing

channels on the incident channel, and the second factor is the appropriate

<«

element of the transition matrix 77zi from initial state i  to all final

<

. states, which includes the effects of the scattering processes in the final

states, namely:

75%3 = Bi(l - ;n Pe 71) . , o (2.14)

The imaginary part of A, is directly related to ;%Zi , since

M

_ i -1 . . PR S
A, = {ai + in Bi(l - ix pf7i) pf(l +iny, pf)(l +iney, pf) B,")
M (2.15)
. 1 : 1 :
= 5 lo, + 1wz (o, +ix o, 7, P )TY
so that we have
M M . . .
= o it US S T § i 2
Finally, an important expression for the partial cross section for the
reaction i - f may now be obtained, using (2.13) and (2.7),
o M | 2
1 bx i 1 .
o(i=f) = (J+ 5 )-E- cFt 5 s+ (1 IZ%Zi | £)] Pp 5
i i (1 +k,b.)° + (x,a,)
. Tivi } i’i ‘
(2.17)

| fi ' l i |2
L1722, 1£) »
i 1 2 E ! i f
L@+ Ha -5 -
ki? -2 o .1 | o b,

i

where the. last bracket may be abbreviated as {bif/bi} 5 an@ bi = Zf#i bif .

This expression (2.17) has a simple physical interpretation. The first

factor is the total absbrption cross section for inecident particles in
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channel i, for n; denotes the usual absorption parameter

ny = exp(-2 Im ai) = (1 + ik, Ai)/(l - ik, Ai)l2 . L (2.18)

The second factor then gives the fraction of the‘absorption trénsifions out
of channel i which legd to the final channel f. |

}We shall now restriéﬁ'dur discussion to the‘cése of coupled K-nucleon
and m-hyperon channels of definite J, parity,'and isotopic spin I. For

channel i, we take the K-N channel, so that « denotes the diagonal

‘eTement of K for the K-N channel, B is the row matrix (Bz, BA) for

the transitions K + N = x + Y, and 7 is the sutmatrix of K referring
to the =n-Y channels. The scattering length a + ib ndw refers to the

K-N channels. - According toy(2.16), its imaginary part, b, is proportional
to the square of ;ez, the transition amplitude defined by (2.14) garrying

the K-N channel to the =-Y channels. Its real part, a, is given by

a = %‘}{a - ng(%pY7pY7yzf)} . (2.19)

Unlgss 7 1is particularly large, the values of a and MNQ/E are rather
close when the imaginary part b 1is small.

In the low-energy fegion fqr ﬁhe -ELN system, the simplest possible
assumption for the s-wave interaction is.that (a + ib) is‘constant. This is
generally referred to as the "zero-raﬁge approximation" and corresponds to
the assumption of a.consiant K matrix and the neglect of the variation éf

" 7
Py With emergy. This is not unreasonable if the (KA) and (K=) parities

are odd, since the =-Y channels are then s-wave; however, for odd (KY)

parities, the centrifugal barrier effect causes the elements of BY to

’

have the energy dependence BYqY (at least for sufficiently low momentum qY)
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where Uy is the c.m. momentum in the relevant =n-Y channel, and the

elements 7YY; to have the form CYY‘ Uy Gy where B and C denote

smoothly varying real functions of E. In the latter case, it would be
surprising if the imaginary part of A did not have quite appreciable
energy dependence. |

An effective'range théory has been developed for the representation
of the K matrix by Ross an@ Shaw.22 AFor this purpose, the appropriate
quantity to consider is the reciﬁrocal matrix Kﬁl. Assuming first that
2i = 0 for all channels,_the effective rgnge expansipn improves on the
assumption of a gopstant K matrix by making a linear approximation to the

energy dependence of K-l,

k' = k™' 4 BE-E) = A+BE. | (2.20)

The discussion given by Ross and Shaw mekes it apparent that the symmetric

matrix R, given by

-1/2 -1/2 ;

R = M “/“BM (2.21)
I'_ r

where the matrix M% of reduced massés.for eéch channel has been introduced
for dimensional reasons, may be interpreted as an effective raﬁge matrix in
exactly the same sense as is well known for the one-channel case, and also
mekes it plausible fhat the>off-diagonal elemeﬁts of R are generally
somewhat smaller than thé diagonal elements in the repfeséntation in which ' ‘
the phase-space density p 1is diagonal. “With (2.6), the T matrix is then “

GY
given by

T = (A +BE - ip)"T . | (2.22)
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More generally, the quantity appropriate for'exPansion in ﬁoWers of B is
the matrix (kz)K'l(kz); where (kz) denotes the diagonal matrix with

b,
elements ‘(ki) *, thus
-l . -1 - ' -l‘ . . . P
Ko=) s m)hTt . ) (2.23)

We remark next that the discussion given above (following Eq. 2.11)
of the structure of transition amplitudes (i I T | j)  is equally valid if
the label i 1is extended to refer to a group of channels; in this case the
label - £ refers to all the remaining channels. For the channels i, the
submatrix Tii of the scattering matrix T may be obtained by exactly the

same methods (see Ref. 21), with the form
T, = (Z(1-1in0,2)7" ,, B  (2.24)
ii i ’
where (Z is the matrix analogous to (2.12),
- a + inp(1-ine. 7)) o BT . o (2.25)
i i e 73/ Pe Py v |

It is of interest to note that the expression (2.24) has again the form (2.6),
and that_cza plays the role of an "eqnivélent reaction matrix" for the chan-
nels i considered alone. In general, this "equivalent reaction matrix"

(Ql has complex elements, although it remains a symmetric matrix. Physically,
this feature corresponds to the use of a different boundary condition for the
channels f from that used for channels- 1 in the definition of the
‘reaction matrix K, namely that there are now only outgoing waves in all

the channels f. For energies such that some of .the channels f are open,
this modification has no particular viritue.23 However, if group - i is
chosen such that at energy E all the channels 1 are open and all the -

channels f are closed, then this modified boundary condition is especially
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appropriate to the physical situation. In each channel £, the c.m. momentum
is then imaginary, with the value kf =1 | kf_l, and the condition of

outgoing waves becaomes the condition that the wavefunction falls off
by

exponentially with increasing distance in the closed channels f. Further,

since ipf = - E% in this energy range,'the matrix 422 is real and symmetric
and does han the form of a reaction matrix for the channels i. We shall
24

refer” to (Z  as the "reduced reaction matrix" for chamnels i. Finally,

we remark that, if the channels f were isolated from the chamnels i
(that is, the off-diagonal elements 'Bi of the K matrix were replaced by
zeros) and with interactions corresponding to & reaction matrix 747 the
eondition for a bound state in the system of channels f . is given by the

eigenvalue equation
det(1 + wp,7,) = 0 _ - (2.26)

This may be seen in a number of ways. For example, in the case that matrix

.61 1s taken zero, the scattering matrix Tff reduces to

Tff - 71(1 - iﬂ pf 71) . > ) . (2'27)

and Eq. (2.26) is the condition for T.. to have a pole on the real axis

f
below all the thresholds E_, for the channels f. Alterhatively; Eg. (2.26)

by
represents the condition that it is possible, for an energy value E>< Ef B
to form & linear COmbination ¥ = Zf cf W(f) of the states w(f) given by
Eq. (2.2), such that the asymptotic form of V¥ is exponentially damped in v
all channels f. We note that Eq. (2,26) is also the condition. for the

vanishing of ‘the denominator of the second term of expression (2.25) in the

energy region E < Ef °
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In our present example of coupled K-N and =n<Y channels, this
transformation to the reduced reaction matrix is appropriate for the discussion
of the ==Y channels below the K-N threshold Et = MN + MK. The scattering
metrix for the. mn-Y system then tekes the form

Tyy = (1 - ‘istpYI‘)-l s ' | (2.28)

where, in terms of the matrices. o, B, 7 defined above for the K-N and

n-Y channels, the reduced reaction matrix I'. has the form
. t . -1 '
P = » + ix gl (1 - ix qu) pc B - (2.29)

The eigenphases of the scattering matrix are most conveniently
defined in terms of a modified matrix T' , directly related to T by the

equation

-1

12 g2 | ogir - )t (2.0

T = =xp Tp

‘ where the matrix K' = ﬁpl/g Kpl/2 is again a symmetric matrix and the

submatrix of K' referring to open channels is both real and symmetric.
id

The eigenvalues of T' may be written in the form e  sin 68: for the

submatrix of T' referring to the i open channels, these 1 eigenphases

are all real. In the present review, we define a resonance energy E  as

an energy E at which one of these eigenphases passes through a value
(n + % )t , for some integer n. From the relation between K and T,
it then follows that, at theSe,energies.‘Er? the reduced reaction matrix
Kﬁ for the open channels becomes infinite. The corresponding resonant
state is the eigenétate of the scattering matrixﬂcorresponding,to_this

pérticular eigenphase,
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For a multichannel system, these resonances can arise .in two distinct
ways:

(a) The complete reaction matrix may have a pole in E at the real
energy value Er‘ This is the situation usually discussed in nuclear
ureactidn theory. In this case, each of the matrices 7, B, and a in
Eq. (2.25), for example, will have a pole at the same energy value Ef.

A simple example of this situation is given at once by the effective-

range approximation of Ross and Shaw.22 The matrix
K = (A + BE)'l

has poles only on the real axis, since (A + BE) "is a symmetric real matrix;
these poles occur at energy values for wﬁich “det(A + BE) = 0, and are then
common to all elements of K. OF course, only those enefgy eigenvalues
which lie within the region of validity of the effective range expansion

may be expected to represent physical reéonances.

A well-known exemple of such a resonance is the (3,3) =n-N resonance,

for which .
K = -E- ( -l;;é‘ - : r(E - MN) 9 l (2°51>

where f2 ~ 0,08 denotes the pionﬂnucleen coupling constant and the effective
range parameter 'r has béen determined empirically.

(b) The reduced reaction matrix K, may have a pole occurring in
the terms whichnerise from the closed channels, that is, et energies for

p

which det(l + =« 5} 71) is zero. At these energies, elements a, By

and 7i of the complete reaction matrix K do not become infinite. The

physical interpretation of these resonances is that they would:correspond
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to bound states in the closed channels f if it were not for their coupling
- to the open channels 1, as a result of which they appear as resonances in

the open channels i. For this reason we have referred to these resonances

25

as "virtual bound-state resonances". The possibility of such resonant

states obviously arises only in multichannel situations. Their occurrence
is due primarily to interactions existing between the particles in the
closed channels and they will generally be located not too far below the
threshold energy for & new channel.

These possibilities can be illustrated conveniently by reference to
the coupled K-N and =n-Y systems. For E < Et = MN +me, the reduced

reaction matrix I' of Eg. (2.28) becomes
. . ) - - — ~l _
' = v - aB(l+nxn oy a) Py B , (2.32)

where EK denotes the modulus of Pk and we have assumed that tiﬁé reversal
invariance holds in replacing BT by E « A resonance of the first type
"will occur in this energy region if «, B, y have a commm pole on fhé‘reél

axis in E. This would occur for the I = 1 P n-Y state (ef. Section V),

3/2 |
if the =n-Y interaction is analogous to the =n-N isobar interaction, as
envisaged in the global symmetry hypothesis. This situation could occur
either above or below the K-N threshold. Although there would, in either
case, be é cbmpéneﬁt of the K-N state in the resonant state, this would

not be a dominant coﬁpénent here. A resénancé'of the second type is possible
only below the K-N ‘threshold and will then appear as a pion-hyperon
resonancé. It caﬁ occur‘only if a is such that (1 + =x BK_a ) vanishes
between the x=A and the K-N thresholds. This requires that a be
negative and sufficiently large..‘If the imaginary part of the K-N

scatterihg length A is small, this condition is essentially equivalent to

¥
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the requirement that the real part of A be large and negative, In order
that the resonant phase shift pass through 90 deg rapidly enough to give rise .
‘to & marked resonance bumpin xn=Y scattering, it is necessary that the
coefficient (= E‘EK a)_éfvthe resonaﬁcevterm in (2.%2) be sufficiently .
small: this is equivalent to the requirement of a sufficiently small valgé
for the imaginary part of A at the resonance energy.

The eigenphases of the =Y system are most conveniently obtained

by the diagonalization of
reo- w21, | (2.33)

whose eigenvalues give the values of tan Ss . Near a resonance of the
second type, where the term 7 may be neglected in first approximation,
this diagonalization is particularly simple. In the neighborhood of reébnance,
the resonant eigenstate has the form
' - 1/2 . pl/2
v, = By (pz)_l-_’ivf)+BA (o)~ hax) ), (2.34)
and the resonant phase shift is given by

( 622. Py * B:AEI oy B

tan & =
S o

- = - +C. (2.35)
1+x Py 7 a -
The correction term ‘C‘ may be,6btained_near_résonance by taking the

expegtation value of I'* in the resonant state (2.34), thus <

v

2 - | \1/2 2. 2 2 .
Cp = #(rgy By oy + 275y By Byley A)‘/ * T By o) /(By e BT R -

(2.%6)

\

In this region, the nonresonant phase shift is given by
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2 . ; i
tan 8 = w(pg ‘pA)vl/e(BA Tos + 622 Tpp ¥ 2.BABZ7AZ)/(B; ps + 3,\2 py)
(2.37)

These expressions are-valid, of course, only.when the reéonance energy lies
ébove the n-% threéhold, If £he reéonéneévenergy iay below thisnthreshold,
it woﬁld be necessary to také“ Py ; + 1 BZ and to’incl?de the n-Z vchannel
amdng thé closed channels £. o )

if Bz aﬁd BA are relatively small, andl o rglatively_large‘(énd
\pegativé){ the phase shift Sr passeé rapidly through 96 deg at thé»resonance
enérgy defined'by,thé,relatidn' (l.+ 14 EK a) = O. The shape'ofrthé cross
sectiop in the resonant state then depends_bn the value of Cr s as is well
known in the paraiiel gase»of resonances observed in the scattering of low- ’
energy neutrons. by nuclei. "Potential scattering” in the pion-hyperon
sygtem,'which the ?grm Cr represeqts,lwould have quite a marked effect on
the symmetry of the resonance curve. It ?r. were largge the cross section
would generally_fall 1o zero for an energy near the resonance energycbefore -
rigipg‘to the resonance maximum. For the observed mn-A ‘resonance, the
degree of symmetry in the resonance curve spovs»that there can be at most
quite mo@eratg potential scattering, indicating that the term Cr (and
correspondingly the elements of 7) corresponds_to quite a small phaée
ahgle. The curves shown in Fig. 1 illustrate the effect of potential '
scattering on the =n-A scattering for a particular siltuation.

At resonance, the structure of the resonant state is given by the
wavefunction (2.34), from which we conclude the following expression for the

branching ratio- Z/A‘ for the resonant state,
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2.
(z/a), = (B /B) (g /o)) - : (2.38)

When the resonant state is produced, the nonresonant =n-Y state orthogonal
to (2.34) will generally be produced also. At resonance the matrix elements

fbr these two contributions will be approximately 90 deg out of phase so that,

provided the resonance is reasonably sharp, there will be little interference

beﬁween the resonant énd ﬁonresonant A (or Z)_production, and production
through the resonant state.vill generally be dominant; In this case, the

(Z/A). ratio.obéerﬁed in-érédubtion processes may be generally expected to
be givgn;by the ratio (2.38),,although4it,iskqpite possible for deviations

to occur in special circumstances.
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IITI. THE K-NUCLEON INTERACTION AND THE INTERPRETATION OF THE Y  RESONANCE
AS A K-N BOUND STATE.

The data available on the scattering and reaction cross sections for

K -p collisions at low energies (lab momentum < 200 Mev/c) are still rather
o :

limited.2 For the K~ mesons that come to rest in liquid hydrogen, the

branching ratios for the reactions

K" + p » = + = | | | | (3.1a)
» 22+ «° | , A (3.1b)
- s 7 S - (3.1e)
- A+ 22 | (3.14)

are_known. From the arguments concerning the role of the Stark distortionl
of the K"-p atom in these K -p capturevprocessés,_as discussed by Day, Snow,
and Sucher,BO'we assume that thesevratios_are.charaéteristic of the RFN
s~wav¢.interaction atlzero energy,‘ From these, we obtain three parameters:
of interest,

cl/oo = (=« 5 - o5 + A)/a,zo s SR (3.2)

vthe relative intensity of the I=1 and I=0. final pion-hyperon states

in zero-energy K -p capture, .

€ = (A/Z.+-A)l = A/(Z+v 2o 220 4 A), ' (3.3)

the proportion of I = 1 absorptions which lead to A hyperons, and ¢t B
the relative phase between the I =0 and. I : 1, amplitudes for the ‘2.+ 14
reactions. As discussed in Appendix A, the” parameters e and ¢t are

rather poorly determined, mainly because of the dominance of the I = 0
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reaction channel over the I = 1 channel.
In the (lab) momentum range 100 to 200 Mev/c, totael cross sections

are available for. K-ep elastic scattering, for the charge-exchange reaction

K~ >+ P - ¥° ¥v n, | (3.4)
and for the absorptive reactions (3.la) and (3.lc) leading to charged hyperons.
The total absorption cross section is not yet available; separation between
reactions (3.1b) and (3.1d) is difficult and has not yet been achieved in

this energy range. For elastic scattering, the statistics are sufficient to
show that the angular distribution is quite isotropic, éxcept at forward
angles where the Coulomb écattering becomes important. In the angular
distribution at 175 Mev/q the Coulomb-nuclear interference is quite weak,
showing that the real part of the elastie scattering‘amplitude is rather

‘small at this energy. The value obtained at 175 Mev/c is Re(f) = 0.3 & 6;3
fermi, corresponding to a weakly constructive interference, bﬁt a more
careful analysis of the data is necessary and is at present under way;Bl
Within statistics, the other angular distributions are all consistent with
isotropy. Since the absorption cross sections show the rapid deerease with 
increasing energy characteristic of s-wave absorption, and since the elastic
cross seétion véries slowly over this energy range, the evidence is strong

3

that the Kb»p interaction is predominantly s-~wave 2 below 200 Mev/c.

These data on total cross sections in the region 100 to 200 Mev/c
and on the zero-energy reactions is just sufficient for a rough determination .

of the s-wave scattering leniths A. and A,, provided that these are

0]

assumed to have negligible energy dependence between zero and 175 Mev/c

momentum (lab)., In this analysis (discussed in Appendix A), the(K", )
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mass difference must be taken into éccount, as it hag a quite strong effect
on the expressions for the reaction rates in the 1ow-energy reglon 33,34,2
The four sets of scattering amplltudes (AO, A ) obtained are 1isted in

Table I. It Will be sekn that their values are not yet accurately determined.
On the other hand, for each set, the 6utstanding qualitative features are

nqw rather definite. For example, for the (a-) set, AAl has'a large negative

real part ah& a small imagihary part; AO has a large imaginary part, whereas
its real pert is rather poorly determined and may be either. large or small.

From the discussion in Sectiop IT, it is apparent that an interpretation
of the Y resonénce in terms of an i = 1 K-N bound state requires that
the (a-) set, the only set for which the I = 1 amplitude A, bhas a large
negative real part, be the phy51cally correct set. We hote that the (a-)

amplitude A gives & low rate for the absorptlon process K +N-=>Y + 1,

1
which is 1n good correlation with the relatively narrow width (P/2 20 Mev)
repoited for the Y resonénce,5’6. (We note also that,-with the (a-)
amplitudes; it is-c§nceivable that thefe might.eiist also an I = 0 K-N
bound state which would appear as a ﬁ - Z reéonance. Because of the
large value of O s, this resonance would necessarily be rather broad and
correspondingly difficult to detect. Although this possibility exists, there
is no compelling reason at present to expect this to be the case; ao may
well be quite small, and may correspond to a repulsive interaction.)

Since the resonance is narrow, it is sufficient for the determination

of the parameters of this resonant state to consider the I = 1 elastic

scattering amplitude (2.8),

in 3 E ' '
R e I el (3.5)

E
My
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TABIE I. R-N Scattering Lengths ™

Set | A, (fermis) | A (fermis)

| % 0.2 fn 2e + 0.09
(a+) 0.05 * 0.2 + 1(1.10 ~ 0.3) 1.45 % 0.2 + i(0.35 i 0.07)
(a-) -0.75 f'g‘zg + 1(2Qo_¢ﬂo,55) -0.85 * 0,15 + 1(0.21 * 0.0k4)
(b+) 1,25 % 0.4 + 1(2.0 * 0.3) 0.75 + 0.2 + i(0.24 % 0.05)
(b-) -1.85 % 0.15 + 1(1.1o'f 8°§) ' 0,10 * 0.2 + 1(0.65 £ 0,15)

(a) Note that the sign convention is chosen such that
k cot 8= 1/A, so that a pbsitive real part for A
corresponds to constructive interference with Coulomﬁ.
; scattéring, a negativé fedi pért to destructive inter-
ferénce, and.the imagihary part of A 1is necessarily

positive,
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in the unphysical fegion of negative K-N kinetic energy. "In this region we

1/2', E, = M +m , and e 1is

have k = +ik, where K = [zp.K'(Et - E)]

“the K-N reduced mass. We meke & linear approximation of the Breit-Wigner

resonance form (E - E, + iP/Q)hl to the denominator factor of (3.5) and

are then led to conclude that the resonance energy -Er - eorresponds to

1/2 _ I

k. = (20 (B, - B )" = lal , that is,

o -1
Er = MN + ome - (sz a, ), : (3.6)

as expected from the expression (2.35) for the =-Y scattering phase and

from the smallness of b, and that the width is given by35

/e = bk P/ lagl ) = b la ). (3.7)

In these expressions, the values of a, and bl which appear should be

taken at the momentum k = + i K} corresponding to the resonance energy Er'

, &nd b is neglected, the I =1 (a-)

amplitude leads to the value _Kf = 250(ih0) Mev/c. This corresponds to a -

If the energy dependence of a

resonance eﬁe:gy at 82(+30) Mev below the K -p threshold, i.e. at mass value
M* = 1550(i30) Mev, which is not in‘disagreement with the.observed location
of the Y* ‘resonance. According to:(3;7), the correspgnding half-width of
this resonance is I'/2 = 21 % L Mev. Iﬁ.making this éstim@te, we have
adjusted al(gi) to the obsgrvgd value, that‘is to the value givipg the
observed resonance location M according to Eq. (3.6). The narrowness of
this resonance is QMé partly to the smallness of b; vhich reflects the
slowness of the I =1 X+ N e-Y_+ T transition rate, and partly.to the

lafgeness of a;, as a result of the corresponding diffuseness of the K-N

- bound-state system.
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A more adequate discussion of the resonance shape may be based on
the expression (2.35) for the =-Y scattering phase in the resonant state.
However, the mafrixv Y is not knowng,_If we first consider the approximation
of taking y = 0, the parameters BZ and AﬁA. can be related to thé zZero-
energy data, if we assume them to have the simple energy dependence appropriate

to the angular momentum of each channel, and the expression
2
hxt (KbA>

qu | 1 +«ka I2 + (Kb)2

o + A= +A) = (3«8)‘7

is then obtained for the s-wave =x-A elastic scattering cross section, where

b = bz + bA = BZ pz + ﬁA pA | . (5°9)

is to be taken as energy-dependent.

The resonance shape given by (3.8) is shown in Fig;‘l for several
' cases'of‘interest; For s~wavem’ﬁ~A resonance, the éhape is somewhat asymmetric,
with & long taii on the low-energy side; the full width at hslf maximum.is
42 Mev, in agreement with thaﬂ giveﬁ by expression (3.7). Although, as
remarked in Section II, a large value for 7y does appear excluded by the
degree'of symﬁetry observed fdr the reéonant state; a ﬁoderate value of 7
would not distort the resonance curve unreasonably. In fact, the rather
symmetric . resonance curve (b) has been drawn by taking the (arbitrarily
chosen) value c/qA = =0.33 fermi in the expression (2.35); it will be
noticed that.this assumption-of a moderate finite vaiue for 7 has not
appreciably affected either the ﬁalf-ﬁidth of'the location of the resonance.
If it is supposed that the (X, A)“parity is.odd, so that the corresponding
x~% system is pl/2 s the éorfesponding curve for o{n + % - =« + L) is

given by (d); owing to the centrifugal barrier this resonance curve is
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displaced upward in energy a litfle (~ T Mev).- If the wn-A resonant state
is Pl/2 (corresponding to even (KA) parity), the'resonaﬁce~shapevis rather
symmetric for ¥ = 0, the lower side being suppressed by the decrease in bA
as the energy falls, but the half-width is rather smaller (= 14 Mev) as a
result. These variations illustrate the uncertainties inherent in any attempt
to predict the width of the Y% resonance oniﬁhe basis of this model at
present. Rather, a definite measurement of the resonance half-width would
be of value for the interpretation of the detailed character of the K-N
bound state and its outgoing channels. .

This interpretation of the =n-A resonance naturally reguires that
J = % hold for the Y% spin. The experimental evidence appears coqsistent

k,6

with this assignment, and the evidence on the polarization properties
* ‘
of the A decay when the Y. resonance produced in a polarized state
. . . *
further suggests that the =x-A system resulting from Y decay is in an

8 state. The latter situation requires that the (KA) parity be odd, and

1/2
this requirement is .consistent with what other indications exist concerning
the (KA) parity.5’56

37

Finally,:this intérpretation allows a simple explanation”' of the ‘

: ‘ : _ * - . :
excitation function observed6 for Y production in K + p collisions.
* R
On this view, there is quite a close analogy between the Y production

reaction,

- ¥% :

K + N > + Y , ‘ (3.10)
and the well<known nucleon-nucleon reaction

N + N - x + d. | B (3.11)
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For_the.latter reaction, it is known that the pion production is predominantly
p-wave for final c.m. momentum above about 50 Mév/c, and it is now believed
the this. is a direct consequence of the pseudoscalar nature of the pion.l
Regarding the Y% as a K-N bound state analogous to the deuteron, the

pion in reaction (3.6) can be emitted only from the nucleon (the interaction

K - K + being forbidden by angular momentum and parity comservation), and

38

the analogy”  between these reactions leads to the expectation that p-wave
pion production should be dominant in the Y% production reaction also,
sufficiently far above the threshold energy.

The Z/A ratio observed for Y% decay is quite small; in fact,
there is at present almost no clear evidence for a resonance in the X-n system
at the Y% energy and an upper limit at approx 10% has been placed7 on the
ratio (%" + Z"x°)/(Ax"). In terms of the presént interpretation, it is
difficult to make any pfediction of. this ratio, except by an extrapolation
from the Z/A ‘ratio in I = 1 absorption at the K -p threshold, ﬁﬁich
depends on some additional assumptions. As discussed in Appendix A, this
threshold ratio is known rather poorly, but it is shown that a lower limit
of 0.25 can be placed on it from the observed .2’/Z+ ratio and the (A + x°)
rate at threshold. In terms of the reaction matrix elements, this threshold
ratio is given by’2
1+ (:tp,;c (BAt 7Azt - th 7Mt)/f3; ‘)2

t o
A1+ (mEJc (th 7mt - BAt 722t)/BAt)

t
(Zy - (P2 ) B
A Tt
1 6A

( '5;12)

where very little is known of these elements of ¥. As remarked above, there

is no indication from the resonance shape that these elements are at all
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large. " If we first neglect them, the relationship between the Z/A ratio
at threshold and at resonance may be discussed as follows:

(a) 5y, resonance for both n-A and xn-Z channels. Here the

natural approximation is to neglect the energy dependence of Bz and BA’
'éo that the Z/A ratio falls from the threshold value only because of the
fall in the phase—space-ra#io pz/pA. Since.(pZ/bA)f;s =~ O.8(pz/pA)t , it
is clear that a ratio as small as that observed can be accounted for only
if the parameters BZ’ BA have quite appreciable energy dependence over
this energy range, or if the elements of 7y are suffieiently large at

threshold to modify this comparison. Neither of these possibilities gives

a simple interpretation of the data.

(v) Py /o resonance for the w-Z channel. If the (KX) parity were

~ even, the final n-Z system woﬁld be p1/2, and the natural assumption on
the energy dependence of 62 is that of proportionality to A5+ Since the
Y* energy is about 55 Mev about the =n~Z threshold, qzr = 120 Mev/c, and
(Bzr/ﬁzt) ~ 0.45. ‘In this case it is conceivable that a (Z/A)r ratio as
low as 0.25 x 0.8 x 0.45 = 0.09 is compatible with the threshold data, and

> If it is

this is comparable to the upper limit gquoted by Dahl et al.
- supposed that the (KA) parity also is even, so that the x-A resonant state
is pl/2 and (BAr/BAt)2 o 0.66, a somewhat less favorable ra%io
(Z/A)r ~ 0.14 results from these simple assumptions on the energy dependence
of BZ aﬁd BA N

At this point, we must emphasize that there is no clear-cut experi-
mental evidence which otherwise requires that the (a-) amplitudes are the
physically correct ones. Not even. the sign of the reél parts of the

amplitudes is definitely established. In principle, this last could be

achieved from the observation of the Coulomb-nuclear interference in K-—p
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elastic scattering at low energies. At lab momentum of 172 Mev/c, the
scattering amplitudes corresponding to the (a+) and (a-) solutions of

Table I are
flat) = % 0.35 + 0.7h i . o (3.13)

The real parts of these scattering amplitudes arise almost entirely from
a, and are moderately well determined (within about 20%), Owing to the
dominance of the absorptive part of f , however, a cleér=cut decision
between the two sign possibilities is difficult and will probably not be
achieved until the statistics on Kénproton scattering are greatly improved.
For K -nucleus scattering, the optical-model potential is known to be
attractive. This conclusion was convincingly argued by Alles et ai.ho '
several years ago from ébservatibns on the inelaétic scatteringbof low-energy
K mesons by nuclei, and has also been reached in the study of small-angle
scattering of X mesons by. emulsion nuclei.hl» However, if we think in terms
of potential interactions, we must realize that the existence of a K-N
bound . state means that the potential corresponding to the I = 1 (a-)
amplitude must actually be strongly attractive. In this situation there
is some dou’o‘blL2 whether the sign of the K nucleus poteﬁtial at low energies
really provides any clear indieation of the-sign of the real part of the
K-N scattering amplitudes.

The (b-) solution differs most markedly from the other ampiitude
sets in the behaﬁior it prediéts for the absorption cross sectﬂ'.ons° For
this solution, the I = O absorption cross section falls more rapidly with

increasing momentum, while the I = 1 absorption cross section falls less

rapidly, than for any of the other solutions. Thus, whereas the other
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solutions give values for o(A) between 7 and 9 mb., and for G(ZO)
between 12 and 14 mb., at (lab) momentum 172 Mev/c, the (b-) solution leads
to o(A) = 16 mb and 'G(ZO) ~ 9 mb. This corresponds also to a much stronger
energy dependence of the A/(Z‘.O + A) ‘ratio for the {b-) solution than for
the others; the ratio predicted at 172 Mev/c (for value 0.21 at zero energy)
is 0.63 for the (b-) solution, compared with the predictions 0.37 for (a+),
0.31 for (a-), and 0.40 for (b+). It is expected that data will soon be

31

available on this ratio in this momentum region. Another experimental
parameter of particular interest is the '2-/2+ ratio, whose mean value
averaged over the (lab) momentum interval 100 to 200 Mev/c is 0.95 * 0.3.
The energy dependenceiof this ratio depends on the energy dependence both of
the absorption cross sections o, and oy and of the phase angle ¢
between the corresponding matrix elements MO(Z) and Ml(Z). If the KYN
parity is odd, or if the final state scattering is weak, iﬁ is natural to
éséume that the energy dependence of ¢ arises entirely from the initial
state scattering.2 With the value 2.18 for the Z-/Z+v ratio at zero -
energy, the mean Z—/Z+ ratio predicted for the 100 to 200 Mev/c (lab)
momentum interval is 0.83 for the (a-) solution, 1.45 for the (b+) solution,
in agreement with the data, whereas the values predicted with the (a+) and
(b-) solutions are 2.15 and 3.2k, respectively. It mist be borne in mind,
however, that, especially if the KYN parity.is evén,tthe.neglect of energy
dependence for the.fiﬁal state scattering may be an uncertain assumption.
There are considerable data available on K -deuterium scatterigg
and reactions in the low-energy reg:t.on.eg’kL3 The analysis of this in terms

of the K-N interaction amplitudes is complicated, however, by the strong

initial- and final-state interactions which occur in the initial and final
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three-body systems. The discussions which have been given for the capture
reactions from :r'es-l;M‘L and for the elastic and inelasticrscattering at approx
200 MeV/c l‘5,‘za,reno*!: yet sufficiently complete to give any qleareeut
indications for preferring a particular set of K-N -amplitudes, although
there is every reason to expect that such data will,become>valuable in this
respect. as the experiments and the theoretical calculations each.become more
refined.

. There is also promise that the study Qf K20=p scattering and
reaction processes: in the low energy region will give some direct indications
concerning the K-N amplitudes in the near future,h6 On the one hand, the

" K-N _interactions in _KQOép ecollisions are entirely in the I = 1 state,-
so that the observation of K,On

2
determination of the (Z/A) ratio in the I = 1 channel, and the

p reactions will allow a very direct

measurement of a total absorption cross section for the I = 1 channel
will help greatly in distinguishing between the (a) and (b) sets of amplitudes.
On the other hahd, gs pointed out by Biswas,h7 theFSavave cross section‘for

the reaction

o , o . o _ .
Ké + P - Kl + p (3.14)

is given by the expression
a, - . : ao . . Al
PY rEEETVEEY N ’
| g(l - ikal-) ,‘ 2(1 - ikao) 1 - ikA,

(3.15)

) 0 ' -0
U(Ké +p=> K&+ p) = x

0 1
channels. The scattering length «

where a., «, are the (real) scattering lengths for the I = 0, 1 K-N

is well known, Q. is less well known

1 (0]

but is smaller, with the same sign, and there is some hope of discriminating
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quite strongly between the (a+) and (a=-) X-N amplitudes as a result of the
interference between the real parts of the two terms of (3.15) Unfortunately,
such an experiment appears feasible only down to (lab) momenta of about
300 Mbv/c, a momentum region where there will be some. question concérning
the importance of p-wave contributions to the expression (3.15).

At the present ;tage, any further ihdications of the sign of the
K-N scattering amplitudes, and whether they are of the (a) or the (b) type,
will be of the greatest importance in establishing the relafionship'df the

* . -
Y resonance observed with the possible existence of an I = 1 K-N virtual

bound state.
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IV. THE DISPERSION-REIATION. FORMALISM AND THE K-N INTERACTION
In order to go beyqndna-Strictly phenomenoiogical_approachtand to

discuss what energy dependences may be expected for the parsmeters we have
introduced, the use of the dispersion-relation formalism is thé nost cémplete
and convenient procedure for. including specific physical mechanisms, such as
the exchange of pions between the K meson and nucleon. As BjorkenlO and
Nauenbergll have pointed out, the method used by Chew and I‘/Lamdels'bam.?’b'8 for
one-channel problems may readily be extended for multichannel situations.

Fdr a state of definite angular momentum and parity, the scattering matrix

T(E) for a system of n two-particle channels may be written in the form

™E) = N(E) DT (E) , ’ (4.1)

where the elemeﬁts of the n-by~-n matrix D(E) are analytic functions of the
total energy E, each in a cut E plane wherevthe branch cut is chosen toirun
from an appropriate threshold along the positive real axis. The.éieménts of
the n-by-n matrix N(E) are analytic functions, for each of which the branch
cuts and singularities lie to the left of the corresponding tlresholds, their
location and charaeter reflecting the nature of the dynamical influences
affecting the corresponding reaction processes. Since the elements of N(E)
are real on the branch cut of the corresponding element of D(E), themgnitarity

condition

(T (8) ] = - = o(E) (k)

leads to the result that

InD(E) = - 1 o(E) N(E) (4.3)

along the upper side of the right-hand branch cut. Assuming that Re D(E)
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approaches a constant as E - oo, it is then convenient to normalize D(E)
in such a way that Re D(E) approaches the unit matrix at infinity, which
is possible because T(E) is expressed in the form of a ratio. by Eg. (4.1).

Then, following Bjorken and. Nauenberg, D(E) may be determined, leading to

the formg9
: 00 -1
nE) = we){ 1. ; SEIMED 5 . (4.k)
Et E* - E ' _ .

The matrix N(E) may now be regarded as a quantity to be determined in terms
of its .singularities, either in a_semiphenomenological'way or in terms of
some dynamical principles. For arbitrary N(E),.the expression T(E) 1is
not genérally 2 symmetric matrix, as is required by time-reversalMinvariance,

50

but Bjorken and Nauenberg”  have demonstrated that if N(E) is determined

from the condition
Im N(E) = [ Im T(E)] D(E) , (k.5)

on its dynemical singularities, then T(E) will be symmetric as long as the
matrix [Im T(E)] on these dynamical singularities is itself symmetric.
This formalism is, of course, very closely related to the X-matrix

formalism. In fact the explicit relationship is given by the equation
. -1
K(E) = NE) { D(E) + in o(E) N(E) )} ) : (4.6)

where D(E) is given by the denominator of expression (4.4). The elements
of fhe denominator of (4.6) are real functions of E along the real E
axis, beth fof physical energies and for energies below the thresholds;
until E reaches the first dynamical brénch cuts appropriate to the maﬁrix

element considered. Thus, in this region to the right of all branch cuts,



UCRL-9580

«36-

the elements of the K matrix are real, as they should be; K(E) has .the
correct symmetry when the cohdition specified following Eq. (4.5) is

satisfied. Further, as expected,5l

‘these elements are analytic functiqhs
ofva, and in particular they are analytiec functions of E aleng the real
axis, in both physical aﬂd unphysical regions, to the right of these branch
cuts. To the left, howe%er, the function N(E) generally becomes complex
below the onset of the first branchfcut'and the K=mafrix elements become
complex in this region, as remarked in Ref. 2. The form (h 6) has the
advantage that it makes expllclt the cause and nature of this behav:Lor,52
In terms of the form (4. 6), resonances of the flrst type discussed

in Sectlon IT correspond to zeros of the determlnant of the denomlnator, i.e.,

they occur for real energles such that
det (D(E) +1ix o(E) N(B)) = 0. : : (4.7)

At these resonance energy values, all elements of the complete K matrix for
the n systems become infinite.

As dlscussed in Section II, the more convenlenf procedure is to
confine explicit attention to the subset i eof channels which are
energetically available at the.enefgy of interest and to make use of the
"redueed K metrix” Kﬁ(ﬁ)o This.matrix Kﬁ(E)' ievfelated to the eeattefing

matrix T(E) by the relation - -
E) = K(B) {1 - ixp(E) e (E) K(B) )™, o (48)

where € (E) denotes a progection cperator whlch is unity for the
energetically avallable channels at energy E, and zere otherwise. Only
the submatrix K (E) of Kﬁ(E) which refers to the open channels is of

direct physical interest, since thevscattering>amplitﬁdes for the energetically
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permitted reactions obviously depend on the elements of Kkl(E) alone.
Remembering the condition (4.3) and that its right-hand side is simply to be
taken zero for an energy below the appropriate threshold, comparison of (4.8)

with (4.1) leads to the following expression for Kh(E):
Ko(E) = N(E) ( Re p(E) 17t . (4.9)

From its definition, and the discussion in Section II, it is clear that
KR(E), although continuous along the real axis, is not an analytic function
of E but has, in fact, a cusp~like behavior with a change of analytic form
at each threshold.

Froﬁ the expression (4.9), the location of all resonances of the

system are given by the real roots of the equation
det {Re D(E) } = 0O . ~ (k.20)

Those roots of (4.10) which lie below all thresholds represent stable bound
states of the system. Those which lie between the ith and (i+1)th threshold
represent resonances in the set of 1 channels; these resonances include
the "virtual bound-state" resonances arising from interactions in the closed
channels as well as the resonances of the first type. To determine the
structure of such a resonance state, the scattering matrix Ti(E) for the
open channels isighen considered; the eigenvalues of =« pil/2 Ti(E),pil/2
are the set { e ® sin 88}, vhere the {Bs} are (with s = 1, 2,e0.1)

the (real) eigenphases for the open channels. At the resonance energy, one

of these eigenphases (s = r, say) passes through 90 deg; the eigenstate

corresponding to this eigenphase Sr ,

[r, B) = ; cra(E) | a, E ), . (4.11)
=1
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then represents the resonant state, the relative intensity of the channel
a being | era(E)‘l2 ‘at energy E in this state. |

For coupled K-N, ‘w-%Z, and w=A channels, the branch cut which lies
closest to the physical region is that arising from the exchange of two pioné
between K and N, For exchange of & system of mass m, the corresponding

branch cut begins at energy E(m) given by

B(m) . S - zu®) o+ (mF - %mg)” . (4.12)

For the exchange of a plon pair, the cut begins only about 30 Mev below the
K-N threshold. This situation certainly raises questions concerning the
validity of extrapolation from the threshold.to the Y* resonance energy,

as is discussed again below and 1in Appendix B, If the emission of a pair

of s-wave pions by the K meson is not an especially strong coupling, it is
possible that this branch cut may not have an impértant effect-on the K-matrix
eléments'in this energy region. However, more serious branch cuts may well
arise from exchange of the I = 0O w® 'particle53‘(if it is strongly coupled
with K mesons); or of a resonating pion pair.

Ferrari- et al¢5u’55’56 have taken the first step in & more genefal
discussion of these K-N reaction processes following dispersion=-theory
nmiethods, by including a simple pole in the K-N diagonal element of {Im T]
as a roﬁgh representation of the- terms arising from the eXchange'of a
particle or resonant system (nominally a pion-pion resonance) between K
and N, This pole has residues R, and R, for the I=0 and I=1

systems, respectively. These residues are related by R0 = Rl, or

0
i=0 or 1l. The magnitudes of these residues are otherwise net known,

R = =3 Rl’ according as the isotopic spin of the system exchanged is
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unless some specific dynamical theory ié adopted, and are generally to be
regarded as parameters to be determined eﬁpirically.6o At present, it
appears a very difficult proposition to determine further such parameters
from the low-energy K--p data, since these have proved barely sufficient

for the determination of constant scattering amplitudes A, and Al. Using

0

a8 rather speculative estimate of RO and Rl (with a ratio RO/Rl ~ - 3,
corresponding to the exchange of a j=1, I =1 =n-x resonance), Ferrari
et al.56 have calculated the energy dependence of the (a+) amplitudes A,

~and A_, due to K-N interactions corresponding to the exchange of mass

l’
m= 3.6 m., and have concluded that an extremely strong energy dependence
can result, even though the range parameter of this interaction is only
(3.6 mﬁ)-l ~ 0.4 fermi. Since their calculated scattering lengths vary by
as much as a factor of 2 between zero and 150 Mev/c momentum (c.m.), it is
apparent that such a strong energy dependence would completely invalidate
any attempt to relate the Y* resonance to the low-energy K -p data
without a rather complete theory of the mechanisms giving rise to this
energy dependence.

A simplified treatment of the situatioﬂ discussed by Ferrari et al.
is given in Appendix B. It appears that the strong energy dependence they
obtained fof the (a+) amplitudes is iargely a consequence of the great
strength assumed for the interaction of the pion pair with the K meson.
In this case, there is a question whether, for consistency, further branch-cut
terms corresponding to the exchange of two, three, and more resonating pion
pairs should not also be included at the same time; although these more
complicated singularities are more distant from the physical energy regioﬁ;

their strength may be very great, and they may play a significant part in
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determining the energy dependence 6f even the low-energy scatteringoél
Although the dispersion-theory formalism represents a tremendous step forward
in the technique and understanding of strong-interaction problems,‘the way
in which it is used at the present preliminary stage does often represent a
new kind of perturbation approach, involving the_assumption that a strong
near-by singularity can be introducéd to represent some particular physical
mechanism without need for tﬁé inélusion cf any related, further distant
singularities.,

On the other hand, f@f mechanisms of moderate strength, the dispersion
method provides a convenient method for the semiphenomenological inclusion of
their effects in the theoretical expressions to be compared with the.exper;=
mental data., vSineé,.for the strangé particles;, nothing is known conéerning
the strengths of the many boésible vertices that play a role even in the
simpiest situations, it is cleaf that a phenomenological_approach of this
kind places a very severe demand on the data. At the present stage, the
guidance of some framework of dynamical principles, such as those of global
symmetry (cf. Section V) or of the vector theory of strong interactions
discussed by Sakﬁrai,58.would_be exéeedingly advantagecus.

Ferrari et 31055 have also discussed the relatioﬁship between the

K-N and the K-N interactiens which arise from pion-exchange processes. In
the interpretation of the Y*’ resonance as Eva bﬁund state; these processes
appear of the greatest importance, since they can give rise to poteﬁtial
interactions which have relatively long range, and which can therefore be

especially effective in binding the K=N system. For this discussion, we

need the relationship between the vertices for the interactions
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(a) K - K + nx, : ‘ | (%.1%a)
(b) K - K + o, ' 4 (4.13b)

in correspoﬁding configurations. For the derivation of this relationship, ﬁhe
operation of G cdnjugation'is appropriate. For the pions, this operation

simply multiplies their wavefunction by (-l)n; for the K mesons, this operation
changes each K meson to its ahtiparticle and multiplies thé matrix element

by (-l)i where 1 1is the isotopic spin transferred by the (nx) system.

Since the (mx)-N interaction is common to the K-N and the K-N inter-

actions, we have at once
MK -N) = (-1)"* mx*-n) . (4.1k4)

By taking this relation (4.14) in turn for p and n, we deduce the following
relationships between the ampliﬁudes ﬁi 3 MI for definite I-spin states

of the K-N and K-N systems,

i " : _

W (K-N) = (-D)YT () (K-N) + M (K-W))/2 (k.158)
and |

= (= ' +1

M (K-N) = (~1)" (3 My(K-N) - M (K-N))/2 . | (4.15b)
Finally, we recall that for i = O, we have ﬁl = ﬁb and M, = M/ ; for
i=1, MO = = 3 Ml and MO = - 3 Ml. Inserting these relations into

Egs. (4.15) for the case i =0 and i =1 in turn, we derive the general
result,65 independent of the I-spin state of the interacting particles and of

the i-spin transferred between them,

ﬂi(ﬁLN) = (-1)" MI(K-N) . . (k.16)
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B This relation6h has the-samé form as the well-known relation connecting the -

pionic eontributions to the N-N and the N-N interactions. | -
If we denote by (Xe’ XO) " and (Yé, Yo) ‘the contfibutions to fhe

I =1 K-N interaction due ﬁolthe exchange of systems with even and odd

Geconjugation pariﬁy (¢°go, for even and odd n), yith totai isotopic spin

is= 0 and 1, respectively, then we have fo;_the other K-N and K-N states

the following‘inteféctions:

Vi(KaI\I) = X, +X +Y + Y, Yl(KwN) =_ Xy + X, =Y, + Y,
and ' ‘ |
VO(K-sN) = Xy X, = BV - 3, V’O(K-N) = =Xy +X + 3 -3 .

The interactions Vl(KmN) and Vl(an) are known to be stréngly>fepulsive

and strongly attractive (with the interpretation of the Y* resonsnce as '

an I._'= 1 X-N bound state),‘reSpectively,,whereas Vb(KwN) is weakly repulsive

%E:SZO(KFN) may be repulsive; .of uhcertain -strength, or very strongly attractive.
Afagts could be fitted quiitativelyfby these expressions if the dominant

contributions were from the exchange of an I = 0 particle (mo ?7) with

odd G-conjugation parity, and qf gn' I =1 gystem with odd G. Iﬁ the attempt

to understand what intéractions could give rise to a bound K-N state, it

is natural, as remarked above, to consider first the processes of pion

exchange between the K meson and fhé nﬁcleon, since, for given coupling strength,

I

the X-N interactions of longest range are those which will be the ﬁpst

effective in binding.. However, in terms of the pion configurations at present
, yet

conjectured tc be of particular importance, there does noﬁhappear an obvious

and simple interpretation of the character of the observed (K-N) and KaN
, 6

potentials.
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V. GILOBAL SYMMETRY AND PION~HYPERON RESONANCES
The charge-independent Yukawa interaction of the pion with A and =

hypefons may be written

ep (AT 05 - 5T on) - x4+ (g* xO0F) * 2, (5.1)

where A, X, and x denote the isotopic-spin components of the A, I,

and'pion wave functions, and O denotes the relevant space-spin operators.

It was pointed out independently by Gell—Mann12 and by Schwingerl5 that, for

Esx = Euzg = 8 (5.2)

the interaction (5.1) can be written in a form whose structure parallels that

of the pion-nucleon interaction, namely
(T LOM g - (5.3)

This was achieved by replacing the A singlet and I +triplet by two

doublets, which we may denote by N, and N

2 3’ A
n,* s N3° | (a + )2
= LN = ’
v, A=) A2 5 ==
, (5.4)
in terms of whieh the pion-hyperon interaction (5.1) takes the form
g,z o N, ntrom) -x . | (5.5)

For this to be possible, it must, of course, be assumed that A and =

hyperons have the same parity and that the operators O associated with
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& 5 and 8, 8TE of identical form. If the A and X hyperons had the

same mass, and (5,5) represented their only strong interaction, then, regardless

-of the coupling strength g, this doublet symmetry would be exac;t° ‘Ng_ and
N3 would then represent two independent doublets of the same mass, which
could not be transformed one into the other by anj pion processes.,

This doublet representation of the A and. X hyperons actually
corresponds to a representation of their isotopic spin £Y as the sum of'
two halfuinteger 1sotopic spins .3 and k, such that IY = i +k o The
form of (5. 5) then corre3ponds to the situation where the pion field is
coupled with only one of these (say 1i); the N, and N, doublets are

3
then the + = and - e substates, respectively, of the 3-component of the

.2 2.

other'isofaﬁis‘spin k . As Pais66 has pOinted out, the experimental
evidence on K-meson processes shows that the N2 and N5 doublets are
actually linked quite strongly through the K couplings. In fact, the
large AeZ mass difference already repressnﬁs a large deviation from the:
doublet approximation’-which hasg cften been attributed to the nonsymmstry
of the K couplings and which itself must lead to substantial mixing between
the N, and N, doublets. |

The "global symmetry hypothesis” of Gell-Mann and Schwinger supposes
further that the eoﬁpling parameters 85 and &5 At (as weil as g;.z )
are all edﬁal to éNNﬁ’ the space-spin operator O being assumed the same
for all of these interactions° With this hypothesis, the N and N3
states will behave exactly 1ike nucleons as far as their interactions with
‘pions are concerned, at least in the iimit that those interactions for

which the doublet symmetry does not hold do not strongly disturb this

symmetry for the pion processes,
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The global-symmetry hypothesis then 1ead$ directly to relationships
between the hyperon-nucleon and the nucleon-nucleon potentials, at least for
that part of these potentials which arises from the exchange of pions. If '

the N-N potential is written in the form

| e
Vo= I{Vo(?-'-lz? L

107 O

l’

0 ,)(1 -1, - écz)

+ %-Vl(EIQ’ élg) .0_]__) .02)(5 + Tl t Tz) ’
| | (5.6)

where Vb and Vl denote the I =0 and I = 1 potentials, then the

hyperon-nucleon potentials mey be deduced in terms of VO and Vl on the

basis of this hypothesis. Thus, in the £ -n configuration, the isotopie

spins are aligned to total 2 ; so that the N_-N »cénfiguration which is

2 )

effective is that with parallel isotopic.spins, that is with T = 1;
generally, for the I = % Y-N states, we have then

v3/2(z,z) = v . (5.7)
For the I = % Y-N states, both Z-N and A-N systems contribute, so
that the I = % interaction takes a matrix form, as follows:

V. ,.(A,A) V., (4,%)\ V3_ (v -v.)

/v B /- F Yo ™"

(5.8)

ol

The Schrodinger equation for the I = system then consists of the coupled

equations,
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mm Py b V¥ + Vb = (B A, (5.92)
12 . . , |
= Foyy o+ Vv V¥, = B, (5:90)

where E denotes the kinetic energy in the A-N system, and the inclusion
of the mass difference A = M2 - MA is, of course;, quite essential.,

Thé main difficulty of principle in the use of these relations to
prediet the hyperon-nucleon iﬁteractions in terms of the global-symmetry
hypothesis lies in the fact that the Paulli exclusion principle limits the
states available for the N-N system, but not for the Y«N system. For

3

example, consider the £ -n ~S interaction. Equation (5.7) states that

3

this is given by the I = 1 °S N-N interaction, but this interaction |
cannét be measured directly, since the exclusion principle forbids the
3@_ state for the I =1 N-N systems The I = 1 +triplet N-N potential
must be deduced from measurements on the .39, 3F, and BH states; if it
is possible to identify the angular momentum dependence of the potential,
we can then extrapolate to zero angular momentum and deduce the. form of the
I=1°7% potential. Such an extrapolation will be possible in practice
only if it is Jjustified to copfiné attention to potentials of sufficiently
simple angular momentum dependence, such as tensor forces, spin-orbit
((cl + 02)'. Ll2) forces, and perhaps forces depending on

2

L or L . Fortunately, the pion theoryvof nucleon

01 ° Lyp O Ly 12

forces gives us some reason to believe that, outside a strongly repulsive
central region whose details are not of particular importance, the N-N
107 5&2 and spin in which more complicated
' terms_than these will not play a major role. Further, the theory gives

forces have a dependence on r

considerable guidance concerning the spin, isotopic spin, and radial
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dependence of various terms of the nuclear potential in the outer region.

On this basis it appears reasonable to believe that, given sufficient
experimental data on the NQN system, one could meke a fairly reliable
extrapolation to determine the potential appropriate to states forbidden
for the N<N system. Such an extrapolation procédure wquld appear partic-
ularly plausible for the I = 1 singlet and the I = 0 triplet potentials,
where the potential is obtained empirically in the S, D, and G states
and extrapolation is required to the P, and F states lying between them
since the S scattering explores the inner regions of the potential while the
higher partial waves are particularly sensitive to the outer regions and to
. the angular-momentum-dependent parts of the interaction. The extrapolation
to the S interaction for the I = 1 +triplet or the I = O singlet
potenfials is much less certain, for the experimental data then refer only
ﬁo the P, F, H, states. The inner region of the central potential,
which is particularly important for the S scattering, cannot really be so
well established from the study of the higher partial waves, and this may be
a source of appreciable uncertainty in the applications now to be discussed.

De Swart and Dullemond67

have recently carried out detailed calculations

on the S~-wave hyperon-nucleon interactions, based on an N-N potential which

gives a good fit to the data available at present. This potential consisted

of the I = 1 potential deducedtby Bryan68 from the.p-p data and the

I =0 n-p potential of Gartenhaus.69
The S-wave scattering amplitudes for the A-N system at iow energies

have been calculated by using Egs. (5.9), including the coupling to the

(energetically unavailable) Z-N channel. For the 15 state, the zero-energy

scattering length obtained was -2.1 fermis, with an effective range of 2.24
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fermis. The Yukawa potential corresponding to these parameters has a range

parameter of 0.78 fermi, close to (Emﬁ)él , as expeéfed. This equivalent

3

, 1n good agreement with

TO

central potential has volume integral 370 Mev f

the l1S< A=N potential strength deduced by Dalitz and Downs

from the
data on light A ‘hypernuclei. For the 3S state, the scattering length
obtained’was 0.12 fermi (with effective range 85 fermis, which corresponds
to a range parameter of approx 0.65 fermi), corresponding to a weakly
.repulsive;eqpivalent potential of volume integral»appfox =55 Mev f3. The
latter is compatible with the data on hypernuclei if a three<body A-N-N
pctential7; is included which is attractive and of reasonable strengtha72
Calculations have also been made by de Swart and Dullemoﬁd on the

rates for the competing reactions

5 o+ p -3 &0 " (5.108)
and

- A. + n, » . (5olOb)
for Z&-praton collisions at very low energies. For »Z"_hyperons which"camg

to rest in liquid hydrogen, these reactions have been studied by Ross,75 who

found the ratio-

(z" +p=A+n)/(z7 +p>2 +n) = 2.0%0.5. (5.11)

ir these.reactions are assumed to occur through the S-wave Z-N interaction,
as would follow from the diséuséion by Day, Sucher, and Snow30 of mesic
absorption from high-lying levels of hydrogen-like mesic atoms in consequence
of the Stark-mixing mechanism, then these calculations can be compared with

Ross's data. -The amplitudes for I ~-p elastic scattering and for the ZO
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reaction (5.10a) are given by
M(E" +p-3Z +p) = -% (a5 (,2) + 22 (5,5), (5.122)
M= +p->z0 +1n) = L; (a5 (£,2) - &y (,2), - (5.12p)

vhere 85(2’2) and al(z,z) denote the zero-energy elastic-scattering

amplitudes for the Z-N system in the I = % and I = % states, respec~

tively. At zero energy, the amplitude aB(Z,Z) is real, but al(Z,Z) is
complex, because of the absorption due to the competing reaction (5.10b),

confined to the I = % channel. The amplitude for the A reaction (5.10b) .

is given by
M(s" +p=A+n) = —-Vg (a, (Z,0)) , - (5.12¢)

where thg amplitudes al(Z,E), al(z,A) are calculated together from the _
I= % equations (5.9). For the 15 state, the I = % interaction is
almost resonant at zero energy, since it is equal to the lS N-N interaction,
and the amplitude a5(Z,Z) is very larée, wvhereas al(Z,Z) and al(Z,A)
have only moderate values. As a result, the ZO reaction is stfongly

76 being = 1/ho.

‘dominant in the lS state, the calcuiated A/ZO ratio
For the 58 state this near-resonant situation doés not hold, and the

A/Zo ratio obtained is closer to the ﬁhase-space ratio of 4.6, 76 although
somewhat smaller than this for the reasons diséussed previously;77 the
calculated A/ZO '.ratio for the S state is 3.6 (£ 0.4) vhere the
error given reflects the present uncertainty in the (27, ZO)' mass
difference. Assuming that thevprocesses of atomic capture and Stark mixing

30

discussed by Day et al, do not depend on the relative spin orientation of

£~ and proton, the A/ZO ratio predicted for =" capture in hydrogen is
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predicted to be

(/20 + Mgy + KN+ a),

s (=2/° + ) v 320/ )
. 8=0 . - S=1
s-wave capture :

(5.13)

1.55. (% 0.1) ;

which is in essential agreement with the observed ratio (5.11).

These twe comparisons with the experimental data really provide quite
different tests of global symmetry. For the A=N potential, the dominant
terms arise from two-pion exchange and are proportional to gazAn ; from
the lS comparison here, we conclude that the values of g2 and gg

, > Zhx Nln

must be very comparable. However, the longest-range potentials which give
rise to the = + p reactions (5.10a,b) are those arising from exchange of
one pien, and are tnerefere proportional to 85 and 52Aﬁ’ respectively.
The ratio of the (20 + n) and (A + n) transition rates therefore provides
a rough measure of the ratio (g22x/5zmg 2 . The two eomparisons discussed
78 k2 2 2

above therefore indicate, at least qualitatively, g ot 85y = & g ?

in accord Wlth the global symmetry hypothesiso

The main argument against global symmetry was that given by Salam, 7

concerning the nature of the final~state interactlons in the K + p - + Z
reactions in the lowsenergy region. The early data indicated that the phase dif-
ference ¢t betreen the I=0 end I=1 metrix elements at zero energ&

was large, ¢t ~ 60 deg. Since tne f=Z ecattering etates involved are

8 or pl/2 , according as the (kz) parity is odd or even, it was

1/2
difficult to understand in terms of global symmetry how these could be so large;

even when the kinematic effects of the (A,Z) mass dlfference were included. More

0y
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recent data29 have shown that, although the phase difference |¢%| could be as
large as 60 deg, uncertainties in the data are such that they are also

compatible with any angle ¢t
against global symmetry loses much of its force, at least until a more

down to ¢t ~ 0 deg, and this argument

certain determination of ¢t is achieved.

For pion~hyperon scattering, as pointed out by Gell--Mann,12 global
" symmetry requires J =‘§ , I = g resonances in the n—NE and ﬁQNB

systems, corresponding to the x=N (5,3) resonance.' After the Z-A mass
difference A 1s’ taken into.account; : these Tresonances are.expectéd to appear
as separated I =1 and I = 2 vresonant states in the pion-hyperon ,
scattering. Their final location has been estimated by Amati et al.80 in
terms of a static model of the pion-hyperon interaction; They have also

considered the effect of a disturbance of 85 Ast and By from the global

symmetry value . by nonsymmetric forces, measured by the parameters
S . s

2 2 e > 2 1,2 2

(5.1%4)

For small values of & , Amati et al. find that the resonance energies are

given by

Erl =M, + 2 - -21-A - %AS, (5.152)

Er2= M+ 9 +-§A+-2]3A6, " (5.15b)
where & is given by

3.2 :
-2 P 't g'” ui(g
2 - £y a (at) (5.16)
v m ! (m!_m)

and depends on ng and the cutoff energy. As expected, the location of

the resonance‘is'rather sensitive.ﬁo the value of gYZ.- The I = 2 resonance
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is predicted to lie highef'than the I =1 resonance, which is reaéonable,
since, to a first approximation, the resonance location is expected to
correspﬁﬁd fo a defihite momentum for the incident system, which muast be
entirely =n-X for the I = 2 case. 7

Amati et al. have suggested recéntly that the observed x«A resonance

may represent this I = 1, J =2 resonance. They calculate the half-width

2

of this resonance as
N - et (e v o)), o (5.17)

with 8 correction factor of (1 + 0.66 ) for &5 p # Eyy, » Taking the
same value of ng as for the (3,3) resonance, & = O, and the value

Q. = 230 Mev/c, the (3,3) resonance halfawidth;6 P“N/é = 50 Mev leads
to a half-width Fl/é = 28 Mev for the m-A resonance, quite compatible

with the present experimental evidence. The branching ratioc at rescnance

is given by '
v . q 3 '
(/ax), = 2 ( —2) r ., (5.18)
AR 20 9 (1 +8)°2 ,

which takes the value 0.11 for ® = O. This prediction is also coﬁpatible
with the data.

These predictions are in remarkable agreement with the data on the

*
Y resonance. The conclusion above that the hyperon-nucleon interactions

are in good general agreement with the global symmetry hypothesis gives

* -
further weight to the identification of the Y resonance with this j = g

resonance. Obviously, a clear-cut spin determination would distinguish most

clearly between this possibility and the " K-N bound-state" interpretation

discussed in the earlier sections. At present, although the Adair analyses
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which have been made are all consistent with isotropic decay of the 'Y* and
a js= % spin assignmént,Bl these are still somewhat unsatisfactory in that
these Adair'plots show considerable backwaerd-forward asymmetry,au'a feature
which could not bé_present'if the Y* decayed in isolation, as ‘the use of
the Adair analysis assumes.

With this identification of the: Y* resonance, the prediction of
an I = 2 =~ resonance becomes rather specific. The I ='2‘ resonance
is expected to occur at a mass value close to 1545 Mev and to have a hglf-

‘width of about 50(288/250)5 ~ 100 Mev. It is of obvious importance to-

investigate whether this resonant state is produced in reactions such as

0

K" +p-= (2 +a7) +x (5.19a)

and

v p (T ﬁ+) + &0 ~ (5.19b)

at higher energies than have been investigated to date.

In conclusion, it must be emphasized that the calculations by Amati
et al. ignore the effect of the coupling between the pion-hyperon system and
the J = g K-N channel. Since the KXYN coupling is strong, it is quite
possible that, even with global symmetry, these interactions could modify
appreciably the location of thése resonances, quite beyond their influence
on the effective values of ggAn and gZZu . It may well be that the
agreement between the_observed Y* resonance and this predicted J = g"
resonance.is fortuitous, and that an analogue of the (3,3) resonance may lie
in some.higher energy region. (Although our intuitive expectation, based
on lowest-order perturbationvtheory, would be that this additional coupling
to a higheri~energy configuration would depress, rather than raise, the

resonance energy.) In this event, it could appear as an I = 1 K-N resonance,
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but its influence on the K-N channel need be mérked only if the matrix .
elements coupling the resonént state with the KN system were sufficientlj
large. As we have seen above in the discussion of the K-N system, the
coupling between open channels for strongly interacting systems need not
_always be large. Since such a pion-hyperon resonance would influence
strongly the phase of the I = 1 reaction amplitude M(K +N->x + ),

“the (Ef + u“)/(2~ +ah) ratio, which_depends sensitiveiy on the relative
phases of the I =0 and I = 1 reaction amplitudes, may provide a
sensitive indicator for such a pion-hyperon resonance. It is quite probable
that further surprises are in store for us concerning resonances in these

strange-particle systems.
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APPEN]IX A
THE ZERO-ENERGY K-N SGATTERING LENGTHS

A brief discussion is given here of the derivation of the scatteriﬁg
lengths Ao and Al given in Tabie I and of the uncertainties in this |
derivation. The data used were those sﬁmmarized in the Kiev Conference
Report of Alvarez.29

' First consider the in-flight data. All evidence concerning the data
in the (lab) momentum range 100 to 200 Mev/e is consistent with the
assumption that the interaction is effeétive dominantly in the s»wuve.ih
Instead of attempting an elaborate least-squares fitting to the dats in
various momentum ranges, we concentrated the available data at a mean energy
of 172 Mev/c in the following way. Since the elastic scattering cross section
is slowly varying, a weighted average of the.available cross'sections wﬁs
used, giving aeﬂ = T9 £ 10 mb. The charge-exchange cross section was
taken as 15 * 4 mb. A value for Oabé(zi) was obtained by taking a
weighted average of ki‘x cabs(zi) over this momentum range; from this
mean value, the estimate oabs(zi) = 45 £ 7 mb was obtained for ki = 172 Mevfe.
At this energy, nﬁ2 = 98.5 mb, and this partial absorption cross section
is therefore to be conéidered rather large; in fact, its upper limit comes
relatively close to the geometrical limit allowed by the other cross sections,
taken together with the zero-energy parameters. For this reason it was :
decided to mske some rough allowgnce for the amount of p-wave absorption
included in this cross section, as follows. At 400 Mev/c, the angular
distributions show clear évidence of strong p-wave interactions and the
total absorption cross section for all hyperon production is observed to

be 33. 5 mb, to be compared with an s-wave geometrical limit of n& = 20 mb

at thls energy. Rather arbitrarily, it was assumed that about half of the
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absorption cross section at 400 Mev/c was from the p wave, and that the p-wave
cross section for zi prodnction at this energy was about 9mb. This
estimate was scaled in proportion to the nomentum, to give a corresponding
:estimate for 172 Mev/e, which was then subtracted from the abdve figure for
(E ) at this momentum° This_procedure led to the estimate of 40.5 * T mb
adopted for o, (Z ) | | | |
As Kruse and Nauenberg have discussed 85 the knowledge of the s-wave
Cross sections for all hyperonaproduction reactions at a given energy E,
together with the elastlc and charge-exchange cross sections, would allow a
determination of the scattering amplitudes A (E) and A (E) appropriate
to that energyo However, such complete data are not yet available, and in
order to obtain an estimate of the scatterlng amplitudes, it is necessary
to make use of the‘"at rest" data and to make some specific assumptlon |
concerning the energy dependence of AO and Al For example, one could
assume the energy dependence of effective range theory, A (l + = RI AI k )
with some physically appropriate choice for the effective ranges RO and ‘Rl°
For simplicity, we have made the choice of zero effective”range, that is, of
energyaindependent values for iAO: and Ale
At c.m. momentum k, it is convenient to write the expressions‘for

elastic and charge-exchange cross sections as

2
1

Q
+.
Q
It

n {(562'1 b02)/§D6;’¥f (a.“ + bl2)/éDl} s (A1)

el ce

% ((a - a)% + (v, - 5)1/D D)) , ~(a2)

ce o T %

Q
n

Vhere D denotes (1 + kb)2 + (ka,)z}° In these expressions, the
modifications due to the (K-, Ep) mass difference and to the K -p

Coulomb interaction have been neglected, as they do not represent msjor

>
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corrections at 172 Mev/b and can be allowed for subsequently. For the

absorption cross section, we have

0upe(E) = Z (e, + ((1- /2)(by/0) 3, (83)

where € denotes the fraction of I = 1 absorption which leads to A
hyperons. The value of & was also assumed energy-independent and was
taken from the 2zero energy data (see below). The equations (Al) and (A3)

could then be solved algebraically for DO and D. in terms of bO and

1.

and therefore for a. and a,. By a systematic procedure of trial and

bl’ 0 1

error, for assigned values of bo, all values of bl (together with the

corresponding values of a_. and al) which satisfy the eqpation'(AB) were

0
then determined by an electronic computer.
At zero energy, the quantities determined directly from the "at rest”

events are

R = (% « :"’)/(zo”+ A) = 1.79 * 0.18,
S = A/(z:O + A) = 0.214 % 0,04,
T = 2/ = 2.8 £ 0.06.

These numbers allow an estimate to be obtained for €, or for (Z/h)l,

: 1 . |
: (Z:/A‘)l = ( z - 1) = (R - 2(1-8))5. (Ak)
. + 0.3 .
The value obtained, € = 0.5 _ 0.15 ? is rather poorly determined at

present. In terms of IVJ.O and Ml’

abscrption leading to (x + I) states with I = O and 1, the expression for

the zero-energy amplitudes for

T is
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2 | 2 2 -
T = (M, +§M + V6 M M cos ¢ )/(M, +-§-Ml - Ve M, M, cos &),

(a5)
where ¢% is the relative phase between M  and Ml° Comparison of this

0

expression with the cbserved value for T allows a lower limit of 0.025 to
be placed on the ratioc Mlg/Mbe; combining this with the value of

1\11‘2/1v102 = 0.091 (where N, denotes the I = 1 amplitude leading to the

1
(x + A) channel) obtained from S leads to the lower limit of 0.28 £ 0,05

for the ratio (Z/h)i, which corresponds to an upper limit of about 0.8 for e.

The ratio ao/él of the I =0 and I =1 zero energy absorption rates

(given by fM62/1M12‘+AN12))' may be determined from

0p/0y = €(32°/0) = e(3(1 - 8)s) . - (a6)

Since the second factor is relatively well determined (11.0 * 3) uncertainties

in co/bl and € are quite strongly correlated. The relationship between

Uo/bl and the amplitudes ‘A, A, is given by2

0’ 1
; ' 2 2
9%, b (1 + Kal) + (Kbl)
2 = () 5 5 ) (A7)
0 1 (1 + Kao) + (Kbo)

where K denotes (2uK A)l/é and A is here the (X, EQ) mass

difference. Since the solutions obtained have the feature that either ao

or a, is large, this second factor has a considerable effect on the

determination of AO and Al; in particular, the magnitude of this factor
depends quite strongly on the absolute sign chosen for the pair (ao, al);

The procedure for determining A

0 and Al from these data was then

z)

o
oabs(z:’), 0, and €, the

~as follows. For specified values of Ge

-~
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parameters 8y 8y and bl were determined as function of bo. Generally,
two solutions were obtained in each of which the relative sign of a. and

0]

8, was definite but the absolute sign of (ao, al) was not determined. For

all four solutions (i.e., with both choices for the absolute sign of (ao, al)
for both cases), the right-hand side of (AT) was calculated as a function of

bo, and the value of bO (and with it, the values of ay» al,_and bl) was

then determined by comparison of oo/bl with the physical value determined
from (A6).

The mean values given in Table I for the (a*) and (b-) amplitudes
were obtained in this way from the best values for the input data. The
uﬁcertainties to be associated with these amplitudes were then estimated

by considering the sum

2 - 5t (x (a, b, s ? ) - X )2/ 2 O (a8)
= A5 VB84 V8 By 895 By i/ /%

where X, X2, X Xk ‘denote the expressions (A1), (A2), (A3), (AT),

5,

respectively, and ¢ denote the standard deviations

17 9 93 O

associsted with the experimentally observed values X, X, X and X

1’ XQ’ 3’ o
The relative probability for a given set (ao, bo, 8,5 bl) on the basis

of this data is then proportional to exp(- X2/2)4. For a mean value set,

2

%2 = 0; the surface X°-= 1 in the (ao, by, & bl) space then defines

l’
the uncertainty on fhese parameter values to the confidence level 6f one
standard deviatipn. The error quoted for each parameter in Table I was
obtained from the intersections of this surface with the corresponding
c0aordinate‘axis When‘the other three parameters were held at their mean

values. This procedure ignores the possibility of large off—diagbnal

elements in the error matrix and may underestimate the uncertainty of the
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parameter in certain cases.
For the (a+) set, the amplitudes appear to be relatively well

determined. For the (a-) set, a. is quite poorly determined in

0
comparison with a- This insensitivity of the data to the value of 8y is
due to the large value of bO’ for the contribution from bO generally
dominates the contribution from a, in the expressions above; the value of

by . itself is also no more accurately determined. It is of interest to
note that the = /& ratio in the region 100 to 200 Mev/c, which has not
been used in the above analysis, is also insensitive to the value of ao o

As ao varies from 51015 to =0.35, the value calculated for the average
2’/Z+ ratio over this interval varies froﬁ_ 0?87 to O¢80, the experimental
value being 0.95 * 0.3. For the (b-) set, the amplitudes are quite well
determined exeept for - bys for which any value between 0.8 and 1.8 is

acceptable; the probability curve for b is very asymmetric and falls

0
very greadually on the uppér side of the best value for bOo
No solution of the (b+) type exists for the best values of the

input data. However, a solution of this type existed if ¢ € or A

abs’ ‘
were reduced by one standard deviation. These solutions were used as

starting values in & systemstic search for the set (ao, b bl)'giving

0’ 1
the least value of X°. This set of (o+) amplitudes is given in Table I
and corresponds to X2 = 0.12, which iS'é quite acceptable value. This
minimum is quite Wellmdefinedvand gives & satisfactory (b+) .set of
scéttéfing amplitudeé° |

In concluding this Aépendix, we wish to éxpregs our appreciation
for the assistance of Mfo J. Dick, Applied Mathematics Division, Argonne'

National Laboratory, and of Mr. J. Schwartz, Physics Department, Lawrence

Radiation Laboratory, with the programming of the computer calculations which

e
were necessary here.
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APPENDIX B
A SIMPIE DISPERSION-THEORETIC DISCUSSION OF PION-EXCHANGE IN K-N PROCESSES
In order to illustrate some of the points made in Section IV, we

54,55,56

consider here, following Ferrari et al., a simplified nonrelativistic
treatment of the effect of the exchange of a vector boson B between K mesons
and nucleon on the energy dependence of the scattering amplitudes. The

diagram of interest is shown in Figure 2. Its amplitude is given by

2 2
= Y N-(k -~ k*
F = fost(‘E_j}&)/((k k') +mB) 5 | (B1)
I
wvhere Q = Ty TK/h or 1, according as the boson B has I =1 or I =0,
and fK, fN denote the coupling strength of B with the K meson and

nucleon, respectively. This boson mey represent a pair of J = 1-, I =1
resonating pions, or perhaps the I = 0O wp particle, or some other resonant
j=1-, I =0 pion configuration. In the nonrelativistic limit, (B1)

reduces to

Frer., = % N 2 2mK/(mB2 + (k = E')e) . | (B2)

Averaging over angles to obtain the sewave amplitude leads to a logarithmiec

branch cut in F_ s(k~2) as a function of k2, running from k2 = —mTf/h

to the left. Following Ferrari et al., we replace this branch cut by a
simple pole at the point k2 = mee/? . For the scattering matrix T, this
corresponds to the assumption that on the left-hand cut, the imaginary part ’

of T on the upper side of the cut may be approximated by

2 2
Im T = t R 8(k~ + ko) , (B3)
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2 2 . .
where k,° = -my /2 and R = me & fN/én, recalling the relationship
T = F/2nx for the T matrix as defined in the text.

Consider first the two-channel case. The analytic function N(E)
which satisfies the condition (4.5) on the left-hand cut, and which is finite

at infinity, may be written

R R ’
N = @ + —=—— D_(0) B + ————= D __(0)
k2 + k 2 KK ' ’ k2 + k’2 Ky '
. 0 0
st y .

(Bl)

The elements «, B, and 7y are constants which represent the contributions
to N from more distant singularities. When R = 0, the matrix N mast
reduce to the K matrix used in the text and must then be symmetric. The

factors DKK(O) and DKY(O) denote the values of the corresponding elements
2 2
= =ko 0

The elements of the denominater matrix D are analytic functions in

of D at the point k

the k2 plane, whose imaginary parts along the right-hand cuts are given by

ImD = -xp N, : | : (B5)

Approximating the K-N ﬁhaée=space density by 'ﬁpK = Ck, and the =n-Y phase
. space density by corresponding expressions, we may write down by inspection
the analytic functions which satisfy Eq. (B5) and which agree with the

normalization condition that Re D - 1 at infinity. The result is
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» ) k -_iko v k - iko
D = 1 - iCkx - iCRD(0) w0 -iCkp - 1CRD,(0) —5 5
kK +k k™ +k
0 : . 0
- ij[pYBT‘ 1 - ispyy
(B6)
We now have two equations of consistency for the determination of DKK(O):
and DKY(o)° Thus, for k = + ik, in (B6), we have
D_(0) = 1 % Cka = R p (0) (B7)
KK 0 2ko KK ?
from which we obtain
DKK(O) = (1+Ckoa)/(l+CR/2ko) . : (B8)
Similarly,
Dpy(0) = Ckp/(1 + CR/2k)) , \ (29)

so that the matrices N and D, modified for the effeect of exchange of the
boson B, are now obtained. »
As pointed out by Bjorken and Nauenberg,so it is pot immediately
apparent that the scattering ﬁatrix T +thus obtained is symmetric, but this

mey be verified quite readily by direct calculation of

B(r -F)p = Dv - -, - (B10)

by showing that the right-hand side vanishes identically. It is now of
interest to calculate the K matrix, by means of the relation (4.6). This

leads to the result
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K = 2 fa+ @1+ cxoa) , B

gt 3 y 2zt g )® 8t e

(Bll)

-1 2 ., 2
where Z = (1 - ¢bko(} +»Ckoa)) | and ¢ = [RA1 + CR/2k)) IAK" + k7).
The result (Bll) has been written in such a form that it is valid at once
for the three~channel case also, when £ 1is replaced by a l-by-2 matrix.
The K-N scattering amplitude may now be obtained from (B11), with the

result

M
A=2zg (a+ g1+ Cky®) + inB(1 - ¢bko(1 + Cky@) -

- anay (727 + (ok )peTe)) ™ o, BT ) .

(B12)
In the unphysical regibn for the K=N channel, the reduced K matrix

may be obtained by using expression (4.9),

‘ Ck R CR(1 + Ck.a)
KR = 7 - BTBC(K - 0 1 )(l+CKa o 0 1 )
1+ CR/2k) Kk + Xk, 1+ CRf2k, K+ Xk,

(B13)

The location of a K=-N bound state is then to be determined from Eq. (holO),
which, as can be seen from (Bl3), reduces here to the simple equation
CR(1 + Ck @)

1+ Ckx - = 0, (B1k4)
1+ CR/2k) Kk +k, -

where the replacement k = +i1k has been made in this region. It is of

=1

°

Y .
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interest to note that, despite the occurrence of a pole in T at the point

K2 = kP = Akoz, the condition (Bl4) for a bound state shows no singuiar
behavior even at the point k = k.. This is in aécordVVith expectation, as

0
discussed in Section IV. The Eq. (Bli) is of course identical with the

equation (1 + CKKKK) = 0.

‘The energy dependence of (Bil) and (B12) arises from the energy
dependence of the term ﬁ. If the coupling parameters fK and fN are
small, so that R is also small, this energy dependence is generally qﬁité
weak.

| The case of most iﬁterest is that in which the coupling parametérs
fK. and fN are large and most of the real part of the largé scattering
amplitude (al ' for the (éi) solutions, a, for the () solutions)
can be attributed to the attractive potential generated by the exchahge of
the boson B between K meson and nucleon. For this case the parameter R
is large and positive and the coefficient R/(1 + CR/ékO) which appears in
¢ is not strongly sensitive to its precisé vélue. We shall illustrate the

situation for the (at*) solutions by choosing k. to correspond to the mass

0
305 Mev (roughly the wp mass), the lowest mass which may be relevant, since
this hay be expected to lead to a ébrﬁespondingly large éffective rangé and to
the strongest energy dependence for A.

First we consider the (a-) situation. Here the potential term is
sufficiénﬁly strong for binding, so a coupling strengfh foN/%« ~ 1.4 was
chosen (sufficient to give about the observed K-N bindiné for the static

potentié,l)° Since the value of b, is émall relative to a,, we neglect

1
the small contributions from the last term of (B12), neglecting'élso'the

element 7y for the reasons discussed in Section IIT, and determine the
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value of O from the observed value a = =0.85 f, with the result @ = -1,06 £.*

To illustrate the ene;gy dépendence of A =a + ib, we then calculate these

parameters atvlab momentumb 175 Mev/c, with the result Al = (-0.93 + 0.15 i)f,

The energy dependence found for this éase is relatively slight,‘ Finally, we

substitufe in Eq. (B1k) to determine the location of the K-N bound state

for this model. The #alue obtained for Kk is 1.27 fal, to be compared with

the value K = 1,18 f_l computed from the zero-range approximation. This

corrected value of K would place the K-N bound-state resonance at about

97 Mev below the K-N threshold, compared with the estimate of =~80 % 30 Mev,

with the zero-range assumption. When we recall that, in this case, the

location of this K-N bound state almost coincides with the location of the

pole inserted into N(E) to represent the exchange of this boson, it is

quite remarkable that this extrapolation intc the unphysical region deviates

so little from the extrapolatiop carried out with thelzeronrange appfoximation.
| To illustrate the (a+) situation, we have chosen (rather arbitrarily)

é wgaker coupling, foN/h“ = 0.7, to corres?ond to thevabsence of a bound

state. The value of « ‘corresponding to al = + 1.5 £ is then found to

be =0.27f. In this case the énergy dependence of a and b is found to

be much stronger; at 175 Mev/ec, fhe value A, = (0.45 + 0,15 i)f results, a

very substantial fall from the zero-energy value assumed. With such a

rapid variation of the parameters,-it would be quite essential to modify

the procedure of the analysis given in Appendix A, to relate the "at-rest”

data and the 175 MEV/E data éorrectly, It is not eésy to understand

physically why the effective range for this case turns out to be so large,

and a more detailed study of the effect of "long-range pion exchange" on the

K-N interaction certainly appears desirable at this stage.
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between -channels and. has.here been.taken to be the projection of a -

plane wave, P denotes'a principal value integral at the singularity
O.,.and Hint is the interaction Hamiltonian causing the reaction
processes. It is this second term of (i) which corresponds to:the

cosine wave of (2.2) for a two-particle channel. The -K-matrix elements

‘are then defined, apart from normalization factors, by the relation

K= @, x gDy o g W)

1 int

)

is the wavefunction obtained for inhomogeneous term -¢(J

MED
in Eq. (1). For a more complete reference to these formal points, we

refer to the well-known paper of Lippmann and Schwinger (Ref. 15).

‘B. Lippmann and J. S. Schwinger, Phys. Rev. 79, 469 (1950).

‘M. Gell-Mann and K. M. Watson, Ann. Rev. Nuclear Sci. 4,: 219 (1954).

For -example, with a potential interaction in a- one-channel case, this

2kr -Or

. point is reached for an energy such that ¢2V(r) ~ e e -

as r —> 00, where K' denotes Ik . . For the case where the potential
interaction V(r) .is asymptotically;proportional to 'é-QT,.this‘occurs
for total energy E = (M? - qe/h)l/é‘+ (p?-- 02‘2/&)]'/2

The main mathematical problem lies in carrying out the matrix inversion
specified in Eq. (2 6) for the evaluation of the scattering matrix from
the reactlon matrlx. For a ;ystem with multlpartlcle channels, this

involves the inversion of an. integral operator, . that is, the solution

of an integral equation.for T,
T(1 - in p K) = K. | (1)

This is the integral equation.first discussed by W. Heitler (Ref. 19)
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in connection with' "radiation damping, " the term used at that time to
describe £he effect of the unitariﬁy;bondition‘on scattering and
reaction amplitudes. An exactly analogous situation arises in the
dispersion-theory formalism for multiparticle reaction.channelé, of
course, and this has been discussed recently by.R. Blankenbecler

1

(Ref. 20).
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the channels f ‘include any number of multiparticle channels. They

are most readily derived by first expanding (2.6) as a series of

" powers of K, then separating out sub-summations.of terms accordingly

-as ey link i with i, 1 with f, £ with i, or f with .f, and

finally summing up all the subséries obtained in this way. - For

example, the result (2.11) may be derived very directly, as follows:

K + (iﬁ)beK 4+ sen + (iﬁ)n KoKpK: « +pK + ... . (i)

g
]

K+ ix. K (Pi-+ Qi)pK-+ cos

B (in)?-K(Pi + Q) PK (P, + Q) oK+ pK + **2,

(ii)
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‘where fPi is the projection operator for -channel .1 and ,Qi its
complement (1 --Pi). To obtain the diagonal element of' T, that.is,

P, TP, 4n this notation, the sum (ii) may be regrouped .(recalling

P2 - P, and Q.2 = Q,) to give the form
i i i i

]

, . Y ! ' ' Ve
P, TP, =A+ inAp, A+ «oc + (i) Ap; Ap, A-c-p.A -+

i

), B (111)

A(1 - im p; A

where A 1is given by

b=
1l

B 3 . 1 2 . ‘ vo‘oo
P, {x + it KQ, oK+ (irx) KQ; PK Q. PK +
. \n
+ (in) KQi oK Qi.pK oK +- } Pi

1 | !
1. - ix QinpK Qi

PiIK+ i K, QipK}Pi’ - (iv)
which is precisely the curly bracket of expression (2.12). Other
examples of the use| of this technique for situations of interest here
are to be found in Ref; 2, pp. 350~333.
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. There are, however, many particular situations where explicit reference-

‘torthesopen channels f is7veryrcomplicated-(forvexample, if the

channelé f are multiparticle) and not of interest to the matter at
hand. For such cases, the use of the "equivalent-reaction matrix" a
would be convenient for the discussion of the énergy,dependence of the

cross sections relating channels i, for example for the discussion
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of cusp.behavior at‘thresholds»for'some:of.the.cﬁannels i. .Such-a
situation arises in the discussion of cusps-fof A-K production,at the

Y<K thresholds, where it is not of interest to specify in detail the

. features of the competing w+ N — N+ % + ® processes.

This transformation to a "reduced reactiOn.métrix” with the. elimination

of explicit réference‘tb:the closed channels is well known in nuclear
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.32, . At higher energies. (uoo Mev/c), it is known (Ref. 29) that there is a .
strong‘p—wave ipteraction, both from the non-isotropic angular-@istributions
(especially,for;elastic'scattering)Aand fromvthe;magnitudequ the. total
absorptive cross section: (which exceeds the,s-wave.limit).
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K--p ,channgl, and mainly from the ~p3/2 incident wave. vThe first of
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-(Y*+/Y*f) :réfio is unity for K™+ P intefaétionsvuﬁ to

. ¥
approx 1000 Mev/c-lab_momentum, and that Y production.is strong in
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Kéo.+-p collisions (Ref. 39).
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‘This expression- (4.4) is not limited to the case of reactions with two-
‘particle channels,  but may be used also for multiparticle channels. .In
this case, however, the matrix inversion.involved requires the solution
-.of a linear integral equation. This point has been .discussed recently

;byﬁR.-Blankenbecler'(Ref.»EO),infasmore‘general representation of the

scattering matrix; not limited to a .state of definite angular momentum

and parity.
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Jdaws. - For-example, as first proposed by.Yang-and Milis,_
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.J. Bjorken and M. Nauenberg, Phys. Rev..121, 1250 (1961).

For -a-two-channel situation, the analytic properties of the relativistic
K matrix on:both.the physical and unphysical sheets of the Riemann
surface, as well as their relation:with the singularities of the

scattering matrix, have recently been discussed by R. Oehme,vResonance

-Poles and the Reaction Matrix, Nuovo cimento . (to be ‘published, 1961).

This behavior will occur also for potential interactions, provided.that

these do not fall off more rapidly. than exponential functions with

“increasing radial distance.
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Such as the Vector Theory . of StronglInteractions,.discussed recently

by Sakurai (Ref. 58). In this theory the strong interactions are

mediated.by a number -of vector bosons related to specific conservaﬁion

59

there is

an I =1 wvector boson B_ .coupled with the total isotopic spin

I
operator, . so that there are definite equalities connecting the strength
of its coupling with the pion field, with the 'K-meson field, and with

“the-nucleon, irrespective of the nature of other strong interactions
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-the~couplihg between X and N due to the exchange of this boson B
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that may,exist‘(as-long as these are compatible with -I-spin

conservation). As a result, if the strength of this coupling (and

the mass of the boson B is determined from the analysis of pion-

)

‘nucleon phenomena (for~example, from the electromagnetic structure .of

the nucleons), then this theory would requiré‘avdefinite strength for

T

J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).

C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).
It is important, however, that residues for the exchange of the same

system between K and N .are directly related with these residues, in

'a way depending on the system exchanged . (see below). This provides an

ﬁnportantvconsistenCy‘constraint.in.their'determination,‘which relates
quite distinct physical processes.
Blankenbecler et al. (Ref. 62) have made similar observations in.their

discussion of the use of dispersion relations for potential scattering.
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- Although (4.14) agrees with the statements made in Sec. VI of Ref. 55;
_this result (4.16) does not agree with the relationship used in

.Sec., VI of Ref.. 56. The result (4.16) does agree with the explicit

calculations of Sakurai (Ref. 58).

We note that this relation is not:limited to pion-exchange processes,

but holds generally in the form ”MI = G'MI’ where ‘G denotes the

- Ge-conjugation parity of the. system exchanged.

There is one notable exception to this remark. . As pointed out by Sakural

(private communication; see also Ref..58), the exchange of the i =1 BI
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.vector~meson-(identified;tentatively-with wo) ;glves rise to an

attractive »Ye -and - a repulsive XO’ -If -X. were larger than Xe

0
(by a factor 2 3), the potentials given above would all fit the data

qualitatively except for VO(K-N), which would be more strongly attractive

than Vi(K-N) and would lead to a deeply bound state (K—N)O. It is

. of;interest;to-note that such a state (K-N)O with mass below the

‘=2 ‘threshold would be difficult. to detect. It would be stable with
. respect to-charge-independent strong interactions, so that its dominant
-decay modes would. be -Zp-+ 7 -and A+ Y. .On.the other hand, its mass

.is too great for it to be formed in strange-particle. .reactions studied

-most intensively to date, namely the K -p "at rest" reactions-and the

T -p reactions.-up to 1.3 Bev/c; furthermore, in sufficiently high-

-energy reactions it will be difficult. to distinguish the production of

this state from the production of - (A + nQ) ,continuum states. .At
present, the existence of suchan ‘I = O«K-N -state .cannot ‘be -excluded!
A. Pais, Phys. Rev. 110, 57k (1958).
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The -existence of a three-body. A<N-N potential is a necessary consequence

of. the form of the potential (5.8), since the operation of V)5 between

the A hyperon and one nucleon followed by the operation of VZA
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between  the resulting % hyperon and the other nucleOn“automatically
generates such an interaction.'lln a more complete treatment. of the
structure of ' A-hypernuclei, potentials of the form (5.8) would be used,
with a hypernuclear wavefunction extended  to include'a1COmponentvdescribing
explicitlyfthe % configuration;. this procedure would automaticaily"

include,most'(although not all) of these three-body potential effects.
' 7

The binding-energy difference between AHe and- :ALi allows a

rough-estimate of the difference.between singlet and triplet A-N

potential strengths'largely;indepéndentfbf the details of the three-
>

body_potential. The most naive interpretation of this comparison

corresponds to the -existence of an attractive three-body potential

3

togethervwith’aaweak S potential, which:is certainly not ‘in

disagreement with the results above.. See also Ref. Tk.

B..H. Dalitz, Hyperon—Nucleon-Interactions; unpublished report presented
to the 1959 Annual International Conference .on High -Energy Physics at
Kiev.

A. R. Bodmer and S. Sempanthar, Binding Energies of A Particles and
the A-N TInteraction, (to be. published, 1961).

R. R.-Ross, Bull., Am. Phys. Soc., Ser. II, 3, p. 335 (1958).

Tt is of interest.toc note that, ifithe mass difference could be neglected
in the calculation of these matrix elements (5.12),-globalvsymmetry
would imply the -equality of (5.12b) and (5.12c). Then, since the phase-
space ratio - (A-N)/(Z-N) is approx. 4.6, a ratio A/ZO of approx 4.6
would be expécted_for‘both 'lS' and 3S states. The'Stfong~effect‘of
A on'the relationvbetﬁeen thepe matrix elements is'pértiCUlarly{markéd

: 1 : ' . : S .
in-the ~S state here, because there is a near-resonant interaction which
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channel (but not in the

o] [

is thrown far off resonance -in.the I =

I1=2 -channel) by the effect of A.

2.
R. H. Dalitz, in»l958 Annual International Conference -on High‘Energy

It is not clear at present how sensitive these comparisons are to the
relative signs of these coupling constants. The global-symmetry hypothesis
requires .that B and By have the same sign, of course, but leaves

open .the question of their sign relative to gNNn"

Abdus Salam, Strange-Particle Interactions, unpublished report presented
~to the 1959 Annual International Conference. on High Energy Fhysics at

‘Kiev.

D..Amati, A. Stanghellini, and B. Vitale, Nuovo cimento 13, 1143 (1959);
Phys. Rev. Letters 5, 524 (1960).
Block et al. (Ref. 82) have given an independent argument. supporting

this conclusion, based on the study of angular correlations in Y

- : ¥
decay following the K. + Heh-* He5 + Y reaction. However, since

: *
the 'Y +travels a.mean distance of only = 1.2 fermis before decay,

5

there is a possibility that the A-He’ and . x-He

final-state
interactions may complicate the interpretation . of these . data., For

*
a unique prediction of the angular correlation for a given Y spin,

the Kf-Héh “capture must also-be-assumed to. occur through an.s-orbital

interaction, an assumption which is by no means certain (Ref. &3).

‘Martin M. Block, Duke University, private communication, 1961.

T.-Day,  Nuovo cimento 18, 381 (1960).

- It seems-probable that most of this asymmetry arises from interference

between .the primary pion and the decay pion as a result.of Bose

v
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statistics, rather than from a-dynamical interference between them

(such as might arise from a pion-pion force or from simultaneous

interaction of the two pions with the A hyperon). Tt should be

remembered  that the primary pion:travels‘a distance -of approx;h.5

* : ‘ . _
fermi in one mean Y lifetime. = The Bose-statistics interference is

expected to diminish With‘increasing-production'energy) so’thatIClearer

fésul£3;may~be obtained“inyeiperiments'now planned fo%‘higher'production

.energies.

U. Kruse:and M. Nauenberg, S-Wave K-N *Scattering Amplitudes, Lawrence

'Radiation Iaboratory.Report UCRL-8888, Sept. 1959 (unpublished).



Fig. 1

Fig. 2

UCRL-9580

-80-

‘FIGURE LEGENDS ; . a
Pion-hyperon scattering cross-sections calculated for the (a-) -

set of K-N ‘scattering amplitudes, with a. adjusted to locate

1
the resonance energy at 1382 Mev-and _bl = 0,20 fermi. The curves

'shown are-as.follows: (a) -the total w-A elastic scattering

.cross section, with w-A and xn-X systems both Sl/é’ and with

:zero potential scattering - (7. = 0); (b) ,the same, with the potential

-scattering chosen to give a potential scattering phase of & = - 15 deg.

- at the resonance energy; (c) .the total mx-A elastic scattering

-crOSS'sectiqn=with = andu.ﬁ-Z Isystems both 'pl/é , and with

zero potential scattering; and. (d) .the energy dependence of the

total n-% elastic scattering cross section- (arbitrary normalization),
with the assumptions of case (c). | |
Graph showing schematically,the exchange of vectof:boson B between

X and nucleon, as considered in.the model calculation . of AppendiX.B.

L
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1345 1365 1385 1405 1425
Total energy of pion-hyperon system (Mev)

MU -22648

Fig. 1



-82-

N | N

"‘MU=-22649

Fig. 2
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