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ABSTRACT

Recent advances in high-performance computing

(HPC) have promoted the creation of standardized

remotely sensed products that map annual vege-

tation disturbance through two primary methods:

(1) conventional approaches that integrate remote

sensing-derived vegetation indices with field data

and other data on disturbance events reported by

public agencies on a year-to-year basis, and (2)

‘‘big’’ data approaches using HPC to automate

algorithms and workflows across an entire time

series. Given the recent proliferation of these an-

nual products and their potential utility for

understanding vegetation dynamics, it is important

for product end users (that is, practitioners and

researchers in domains other than remote sensing)

to understand the differences in their representa-

tions of disturbance and the conditions under

which they report it. We use fire in California as a

case study to compare reported disturbance across

three widely used vegetation disturbance prod-

ucts—LANDFIRE (representing the conventional

approach), Hansen Global Forest Change (GFC),

and North America Forest Dynamics (NAFD), the

latter two created from automated approaches.

Using Google’s Earth Engine, we compared their

total and annual amounts of fire and non-fire dis-

turbance for 2001–2010 and examined the prod-

ucts’ reported disturbance across different

environmental and burn conditions. We found that

GFC and NAFD reported similar amounts of dis-

turbance that were consistently much lower than

LANDFIRE’s reported disturbance across all years,

regions, and habitats. We also found that despite

the differences in amounts of reported disturbance,

the products identified disturbance in similar ran-

ges of bioclimatic conditions and habitat types, and

thus, differing environmental conditions in areas

reported as disturbed were not the drivers of the

difference. Rather, we found that lower sensitivity

to fire disturbance for GFC and NAFD, as compared

to LANDFIRE, was a key driver of the overall dif-

ferences in the amounts and locations of reported

disturbance; both GFC and NAFD reported much

lower amounts of fire disturbance than LANDFIRE

across all burn conditions. Furthermore, the dif-
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ference in reported disturbance between LAND-

FIRE and GFC/NAFD was greater for fire distur-

bance than for non-fire disturbance; LANDFIRE

reported more than double the total amounts of fire

disturbance of GFC and NAFD in the study period.

Based on our results, we encourage end users to

choose the appropriate disturbance product based

not only on spatial extent and habitat but also on

the disturbance type of interest (that is, fire and

non-fire). Overall, rather than focusing on accu-

racy, our study quantifies the extent to which the

products exhibited differences in the amounts and

locations of reported disturbance to provide insight

into these products’ representations of disturbance

and help end users evaluate and choose the most

appropriate product for their needs.

Key words: vegetation disturbance; fire; Hansen

Global Forest Change; LANDFIRE; North American

Forest Dynamics (NAFD).

HIGHLIGHTS

� LANDFIRE reported the highest amounts of

vegetation disturbance in all years and all habitat

types.

� Differences among products are greatest for fire,

rather than non-fire disturbance.

� Low sensitivity to fire disturbance for GFC and

NAFD was a key driver of differences in reported

disturbance.

� Choosing a disturbance product needs to be

based on spatial extent, habitat, and disturbance

type.

INTRODUCTION

Recent advances in high-performance computing

(HPC; including distributed, parallel, clustered, and

cloud-based methods) have provided new oppor-

tunities to analyze ‘‘big’’ remotely sensed data

across broader spatial scales (for example, global)

and finer temporal (for example, annual) resolu-

tions (Plaza and Chang 2007; Lee and others 2011;

Kalluri and others 2015; Kang and Lee 2016; Ku-

mar and others 2017). These HPC-based remote

sensing analyses are increasingly being used to

identify long-term vegetation changes using the

Landsat Time Series (LTS) (Hermosilla and others

2016; Soulard and others 2016). Some of these

efforts have resulted in standardized maps (that is,

products) of annual vegetation disturbance (that is,

annual changes in vegetation due to natural or

anthropogenic events) across the USA and globally

(Hansen and others 2013; Goward and others

2016). These LTS-based annual products of vege-

tation disturbance have been primarily produced

through two methods: (1) conventional approaches

that integrate remote sensing-derived vegetation

indices with field data and other data on distur-

bance events reported by public agencies on a year-

to-year basis, and (2) ‘‘big’’ data approaches using

HPC to automate algorithms and workflows across

an entire time series (typically all LTS images col-

lected for a given time period and spatial extent).

A key example of the conventional, year-to-year

approach is Landscape Fire and Resource Man-

agement Planning Tools (LANDFIRE) for the Uni-

ted States (USA). Historically, LANDFIRE focused

on providing spatially explicit data of canopy

characteristics, such as vegetation height and cover,

which were typically derived from modeling and

scaling up of sampled field data using satellite

imagery (Keane and others 2007; Reeves and oth-

ers 2009; Rollins 2009; Ryan and Opperman 2013).

To create a product specifically focused on annual

vegetation disturbance, LANDFIRE gathered loca-

tion data on vegetation disturbance events (for

example, fire, harvest, pestilence) reported by

public agencies and integrated these data with

HPC-based calculations of vegetation indices from

the LTS (such as normalized burn ratios used to

identify burned areas) to produce a map of vege-

tation disturbance for each year between 1999 and

2014.

In contrast to mapping disturbance on a year-to-

year basis, ‘‘big’’ data approaches analyze satellite

data across an entire time period of interest to

identify key inflection points that indicate vegeta-

tion disturbance. Specifically, these approaches

employ automated algorithms and workflows that

leverage HPC to identify annual changes in spectral

signatures (that is, reflectance) across large multi-

temporal stacks of images from LTS. Key examples

of this automated approach are North American

Forest Dynamics (NAFD) and Hansen Global Forest

Change (GFC). NAFD is a collection of standard-

ized, annual maps of vegetation disturbance across

North America for 1984–2010 (Goward and others

2016), produced by applying the Vegetation

Change Tracker (VCT) algorithm (Huang and oth-

ers 2010) to the LTS within an HPC environment

developed by NASA (NASA Earth Exchange, NEX)

(Nemani and others 2011). GFC is the first global

forest change product to be produced at the spatial

and temporal resolution of LTS (Hansen and others
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2013) and was produced through large-scale col-

laboration between Google and academic re-

searchers that leveraged Google’s cloud-based HPC

infrastructure to produce standardized, annual

maps for 2000–2014. Additional algorithms that

have been developed for the LTS, such as Land-

Trendr (Kennedy and others 2010), Continuous

Change Detection and Classification (CCDC) (Zhu

and Woodcock 2014), and other examples (Cohen

and others 2017; Healey and others 2017) will

likely result in future vegetation disturbance

products that are also produced from HPC appli-

cations of automated algorithms (Pengra and others

2016).

Although there have been several comparative

evaluations of the algorithms used by remote

sensing experts to map vegetation disturbance,

such as VCT, CCDC, LandTrendr and others (Cohen

and others 2017; Healey and others 2017), there

have been no systematic comparisons (at the time

of this publication) of the vegetation disturbance

products that are frequently being used by non-

remote sensing experts to study the impacts of

disturbance on ecosystems (for example, GFC,

NAFD, LANDFIRE). Previously published papers

evaluating these vegetation disturbance products

have focused on the accuracy or validation of an

individual product (Krasnow and others 2009;

Thomas and others 2011; Zimmerman and others

2013; Hyde and others 2015; Tyukavina and others

2015; McKerrow and others 2016; Gudex-Cross

and others 2017; Zhao and others 2018) or on

integration of these products (or the algorithms

used to create them) to improve the accuracy of

disturbance identification (Healey and others 2017;

Schroeder and others 2017; Soulard and others

2017).

Given the recent proliferation of these annual

products as well as their potential utility for non-

remote sensing experts to explore the spatial–tem-

poral impacts of vegetation disturbance on ecosys-

tems, it is important to evaluate these products to

understand the differences in their representations

of disturbance (for example, amounts and loca-

tions) as well as the conditions under which they

report it (for example, sensitivity to disturbance

across different bioclimatic, habitat, and burn

conditions). As each product was created by dif-

ferent initiatives with specific goals and motiva-

tions, it is understood that they will demonstrate

differences in their locations and amounts of re-

ported disturbance. However, as the amounts and

locations of disturbance reported by these products

(GFC, NAFD, and LANDFIRE) have not been sys-

tematically compared, it is not known to what ex-

tent the choice of the map product used to

represent disturbance in ecological studies might

impact the results and conclusions that have been

drawn regarding the impacts of disturbance on

ecosystem processes.

In this paper, we provide a first comparative

evaluation of GFC, NAFD, and LANDFIRE, which

are the three LTS-derived vegetation disturbance

products that have overlapping spatial (for exam-

ple, USA) and temporal (for example, annual from

2001 to 2010) extents at the time of this publica-

tion. We use fire in California as a case study to

identify where and when these products report

disturbance, using two widely used reference da-

tasets of fire across California: Monitoring Trends in

Burn Severity (MTBS) and fire perimeters from the

California Department of Forestry’s Fire and Re-

source Assessment Program (FRAP) database. As

California is a fire-prone state, large wildfires occur

annually across the state, resulting in significant

changes to forest, shrub and grass (Stephens and

others 2007; Moritz and Stephens 2008; Krasnow

and others 2017), the three habitat types of focus in

this study. Rather than focusing on accuracy (as

previously noted publications have already done)

or spatial agreement among these products, this

paper quantifies the extent to which the products

exhibited differences in the amounts and locations

of reported disturbance.

Specifically, this paper asked:

1. How comparable were the three vegetation

disturbance products in their amounts of re-

ported disturbance across California?

2. How comparable were the environmental con-

ditions (that is, bioclimate and habitat types) in

the areas reported as disturbed by the products?

3. To what extent could differences in reported

disturbance be attributed to differing sensitivi-

ties to fire disturbance?

To help end users of these products better under-

stand how these products were created, we first

review the key differences between the automated

approaches of GFC and NAFD and the more con-

ventional approach of LANDFIRE and highlight

how their methods of creation result in differing

thresholds (that is, sensitivities) for reporting dis-

turbance. For our comparative analysis of these

products, we employed Earth Engine (EE), a cloud-

based, distributed HPC platform created by Google

that provides a set of analytical functions for ana-

lyzing vector and raster-based geographic data via

multiple cloud-based user interfaces (Gorelick and

others 2017). Even while limited to California, the

disturbance products evaluated in this study are

Differing Sensitivities to Fire Disturbance Result



‘‘big’’ data, as approximately 450 million pixels

were analyzed for each year based on the LTS

spatial resolution of 30 m. As such, we used the

JavaScript API Code Editor to leverage the HPC

capabilities of EE as well as the built-in function-

ality such as code-sharing and cloud data storage,

which support reproducibility and collaboration

(Palomino and others 2017).

We recognize that end users (for example, prac-

titioners and researchers of domains like ecology

and conservation biology without remote sensing

expertise) are seeking these products to accurately

characterize annual vegetation change and distur-

bance in their work, and this is the first compre-

hensive study to examine the key differences across

these competing annual vegetation disturbance

products. We believe our results provide insight

into the differences among these products’ repre-

sentations of disturbance and can help end users

evaluate and choose the most appropriate product

for their needs.

STUDY DATA: ANNUAL, STANDARDIZED

VEGETATION DISTURBANCE PRODUCTS

The three vegetation disturbance products included

in this study are the only annual, standardized

products that share an overlapping spatial and

temporal extent at the time of this publication. In

this section, the goals and workflow of each pro-

duct are described as well as the key strengths and

limitations of the workflow. A summary of the key

differences among these products is found in

Table 1.

Automated, ‘‘Big’’ Data Approach

Hansen Global Forest Change (GFC)

Motivated by the limitations of existing data on

global forests and previous workflows that were

amalgams of differing datasets, methods, and defi-

nitions, the primary goal of GFC was to provide a

map of global forest extent and change that could

be used to quantify annual forest loss and gain

using a systematic and replicatable workflow

(Hansen and others 2013). Prior to GFC, there was

no spatially and temporally explicit global map at a

useful spatial resolution such as that of the LTS, as

‘‘previous efforts have been either sample-based or

employed coarse spatial resolution data’’ (Hansen

and others 2013, p. 850). Using Google’s Earth

Engine (EE), GFC employed a supervised classifi-

cation to identify locations of forest loss between

2000 and 2014, using training data of locations pre-

labeled with known forest loss or no forest loss

(that is, discrete identification). As the baseline for

forested area, pixels containing tree cover with a

height greater than 5 m were identified as forested.

In the training dataset, forest loss was represented

by pre-identified pixels that had experienced

‘‘stand-replacement disturbance’’ leading to a non-

forest state for the pixel (Hansen and others 2013).

As such, forest degradation that did not result in a

new cover type (for example, only reduction in

greenness) was not labeled as forest loss. The year

of loss was identified through an analysis of a time

series of the Normalized Difference Vegetation In-

dex (NDVI; an indicator of greenness calculated

from the LTS bands for red and near-infrared); the

year with the sharpest drop in NDVI in the time

period was identified as the year of loss. The cause

or severity of loss was not provided in the data; a

pixel-based label of uncertainty is also not provided

(that is, uncertainty of loss at a given pixel).

The overall accuracy of the forest loss reported by

GFC as well as the producer’s and user’s accuracies

have been evaluated to be greater than 80% (ap-

proximately) across all climatic biomes as well as

globally (Hansen and other 2013, supplemental

instruction). The creators of GFC recommend using

their product for regional to global analyses of

forest extent and change (Hansen and others

2013), indicating that GFC is not intended for non-

forest habitats or for use at local scales. A specific

minimal mapping unit (MMU) or analysis resolu-

tion scale for use of GFC is not provided.

The key strength of GFC is its unique global

coverage of forest cover and loss at the spatial res-

olution of the LTS. Furthermore, its workflow is

simple and easily replicated using standard remote

sensing techniques such as supervised classification

and time series analysis of vegetation indices;

therefore, its creation process is easily understood

by end users who are interested in learning more

about the product and interpreting its accuracy.

However, as the baseline for the forested state is

defined at heights of 5 m or greater across the

Landsat pixel resolution (30 m), GFC may not be

appropriate for all forested habitats, such as early

successional forest, mixed vegetation-forest, and

sparse or open canopy forest. Another major limi-

tation of GFC stems from its focus on discrete losses

of vegetation. Reductions in vegetation cover are

not identified until the reduction is significant en-

ough to cause a change in cover type or

notable drop in greenness, limiting its identification

of certain habitat disturbances (for example, those

that result in minimal change in greenness such as

low intensity fires) or its applicability to certain

J. Palomino and M. Kelly



habitats (for example, those that do not demon-

strate a clear change in greenness before and after

disturbances such as mixed vegetation).

North American Forest Dynamics (NAFD)

Similar to the motivation behind GFC, the creation

of NAFD was prompted by the North American

Carbon Program (NACP) which recognized that

existing monitoring programs did not have data at

the appropriate spatial and temporal resolution

needed for accurate estimates of carbon fluxes

across North America. In addition, they identified

that the impacts of forest disturbance on carbon

dynamics needed to be better understood, in order

to manage ecosystems effectively (Goward and

others 2008, p. 105). To address these data gaps,

the NAFD project leveraged the spatial and tem-

poral resolution of the LTS to quantify forest

change that results from both severe and minor

disturbances, ‘‘including phenomena such as par-

tial harvest, thinning, and insect damage, which

may not always destroy the whole stand’’ (Goward

and others 2008, p. 106).

To create the NAFD annual map products (Go-

ward and others 2016), the Vegetation Change

Tracker (VCT) algorithm (Huang and others 2010)

was employed on NASA Earth Exchange’s com-

puting facilities (NEX; Nemani and others 2011) to

identify annual forest cover and disturbance be-

tween 1986 and 2010. VCT calculates an integrated

forest z-score (IFZ), an inverse measure of likeli-

hood that a pixel is forested in a given year, within

a time series analysis to identify locations of forest

stability and change for a given time period. For

NAFD, the IFZ was informed by normalization in-

dices that were calculated from a training dataset of

known forest locations. A consistently low IFZ

(close to zero) across the time period indicated

relative stability in the forest cover, while a marked

increase in IFZ indicated a disturbance in forest

cover, ranging from partial to total stand distur-

bance (that is, continuous identification of distur-

bance). To better incorporate disturbances

specifically due to fire, NAFD also integrated dif-

ferenced Normalized Burn Ratio (dNBR) analyses

(that is, the ratio of the difference between the

Table 1. Summary of Vegetation Disturbance Products

Disturbance

product

Time

period

Extent and

target

vegetation

Definition and identification of

disturbance from LTS

Computing environment

Hansen Global

Forest

Change

(GFC)

2000–2014a Global

Forest

Loss of cover (discrete): ‘‘stand-replacement

disturbance’’ leading to a non-forest

state for the pixel (Hansen and others,

2013, supplemental material)

Identification method (automated): supervised

classification of forest loss; NDVI time

series analysis to identify year of loss

Google Earth Engine (EE):

cloud-based distributed com-

puting platform (proprietary)

North Ameri-

can Forest

Dynamics

(NAFD)

1986–2010 North

America

Forest

Disturbance of cover (continuous): annual

change in the integrated forest z-score

(IFZ), an inverse measure of likelihood

that a pixel is forested in a given year

Identification method (automated): VCT algo-

rithm applied to LTS, supplemented by

dNBR analyses

NASA Earth Exchange (NEX):

HPC cluster managed by

NASA

LANDFIRE 1999–2014 USA

All vege-

tation

Loss and disturbance of cover (discrete and

continuous): depending on data inte-

grated in that year

Identification method (manual integration):

year-by-year integration of disturbance

events reported by public agencies and

calculated indices from LTS including

NDVI, dNBR, MTBS, VCT algorithm,

and Multi-Index Integrated Change

Algorithm (MIICA)

Custom multi-node HPC clus-

ter managed by the USGS

Earth Resources Observation

and Science (EROS)

aFirst year of identifiable loss is 2001.
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near-infrared and short-wave infrared bands of the

LTS over the sum of these bands) that compared

the NBR indices between a pair of pre- and post-fire

images. Like GFC, NAFD also did not contain

information on the cause or severity of the distur-

bance.

The overall accuracy of NAFD was first evaluated

to range from 77 to 88% at an annual scale; for

stand-replacement events (including harvesting

and fires), the overall accuracy was evaluated to be

approximately 92% (Thomas and others 2011). A

later accuracy assessment that aggregated distur-

bance across years into one class reported ‘‘an

overall accuracy of 84.5% in representing distur-

bance that resulted in at least 20% cumulative

canopy loss,’’ with user’s and producer’s accuracies

of 67% and 62.9%, respectively (Zhao and others

2018, p. 31). Although a pixel-based label of

uncertainty was also not provided for NAFD, these

robust assessments can be used to improve esti-

mations of disturbed area within a given study

area. Regarding its recommended use, NAFD was

created using the LTS spatial resolution of 30 m;

however, a MMU was applied to produce the final

data product (four pixels at a 30 m resolution for

disturbed pixels). As such, the producers of NAFD

recommend analyzing the data at a coarser reso-

lution, suggesting 60–100 m (Goward and others

2016).

Although NAFD is also produced from an algo-

rithmic approach, the identification of continuous

disturbance (that is, reduction in vegetation cover)

is a key advantage of NAFD, as compared to GFC

which focuses solely on discrete disturbance (that

is, stand-clearing or replacement). As NAFD can

identify partial disturbances that do not result in

land cover change, it potentially ‘‘captures most

rapid stand-clearing events (including clearcut

harvests and fire), as well as many non-stand-

clearing events (partial harvest, thinning, storm

damage, insect damage)’’ (Masek and others 2013,

p. 1089). However, there are some limitations for

the use of NAFD that stem from the IFZ disturbance

identification process centered on identifying

deviations from a persistent forest state. Although

the creation process of NAFD is completely repro-

ducible and easily integrated with other analyses

due to the portability of the VCT algorithm across

platforms, interpretation of the IFZ score makes

NAFD less approachable for end users to under-

stand, and therefore, evaluate. Furthermore,

smaller disturbances or disturbances in less densely

vegetated forest or mixed vegetation-forest could

be missed by the IFZ score if they do not result in

enough spectral change to be identified. Likewise,

it is also possible that some natural processes such

as drought could result in similar spectral changes

to smaller disturbances such as pestilence and low

severity fire, and thus be identified as disturbance

by NAFD.

Conventional, Year-to-Year Data
Integration Approach: LANDFIRE

Landscape Fire and Resource Management Plan-

ning Tools (LANDFIRE) is a multi-agency collabo-

ration between the US Forest Service (USFS) and

the US Department of Interior with a goal of pro-

viding ‘‘a common ‘‘all-lands’’ data set of vegeta-

tion and wildland fire/fuels information for

strategic fire and resource management planning

and analysis’’ across the US (LANDFIRE 2018a).

Officially launched in 2002, LANDFIRE was moti-

vated by the ‘‘number, severity, and size of wild-

land fires’’ and is widely used by land management

agencies for wildfire planning and mitigation pur-

poses (LANDFIRE 2018a). Currently, LANDFIRE

provides a suite of over twenty data products at a

30 m spatial resolution, including maps of vegeta-

tion canopy characteristics and fuel types as well as

fire regimes and disturbance events.

While GFC and NAFD were produced from

modern, automated analysis pipelines via HPC, the

LANDFIRE disturbance product represents a more

conventional, year-by-year approach to mapping

disturbance. Specifically, a separate data layer for

each year was independently created by combining

all known data of reported disturbance in that year:

(1) point locations and perimeters of disturbance

events provided by public agencies; (2) vegetation

and burn indices calculated from remote sensing

analyses of the LTS (for example, NDVI, dNBR,

Burned Area Reflectance Classification, Rapid

Assessment of Vegetation Condition after Wildfire);

and (3) other data integrated from MTBS, the VCT

algorithm, and the Multi-Index Integrated Change

Algorithm (MIICA) (Jin and others 2013). A cus-

tom computing cluster managed by the US Geo-

logical Survey (USGS) Earth Resources Observation

and Science (EROS) was used to process satellite

imagery, calculate vegetation and burn indices, and

integrate the data into one raster layer for each

year (USGS 2016).

Accuracy assessments of the LANDFIRE products

have focused on the vegetation characteristics and

fuel data products (Krasnow and others 2009; Hyde

and others 2015; Gudex-Cross and others 2017),

rather than the disturbance data product, and

indicate that LANDFIRE should be supplemented

with data collected or analyzed at a local scale

J. Palomino and M. Kelly



whenever possible. LANDFIRE has not relied on

specific MMU to develop the vegetation and fuel

layers (Rollins 2009), and the disturbance data in-

cludes all reported disturbances larger than 0.02

acres in size (approximately 81 sq. m). However,

LANDFIRE is self-labeled to provide mid-level

products, and as such, encourages the evaluation

and use of these products at a coarser resolution of

5 acres, or approximately 22 pixels at a 30 m res-

olution (LANDFIRE 2018b).

Based on its stated mission to cover all vegetation

types across the USA, the primary advantage of

LANDFIRE is that does not target a specific vege-

tation type, such as forest which is the target of

both GFC and NAFD, and thus, provides broader

coverage of vegetation disturbance across the USA.

Furthermore, due to its year-to-year data integra-

tion approach, LANDFIRE can easily incorporate

both discrete and continuous disturbances because

it is a manually curated product that aggregates

multiple data sources, including both HPC-based

remote sensing analyses and location data on dis-

turbance events collected by public agencies across

the USA Therefore, LANDFIRE could include

smaller or less severe disturbances that may be

missed by GFC and NAFD because those events do

not result in significant spectral change. The variety

of data used in LANDFIRE’s conventional approach

also supports pixel-based labeling of a disturbance

type, severity, as well as uncertainty based on the

data source. It must be noted, however, that the

uncertainty label provided by LANDFIRE is not

based on an uncertainty analysis but rather per-

ceived uncertainty based on the source and/or

identification method of the disturbance.

A major limitation of LANDFIRE’s approach is

that it is neither easily replicatable nor reproducible

(because it is not an automated process and

aggregates data on a year-to-year basis); this re-

quires end users to devote time querying metadata

files and documentation, in order to fully under-

stand how the data are collected and analyzed for a

given year or location. Furthermore, there is high

potential for compounding data biases and inac-

curacies (for example, underestimation or overes-

timation of disturbance) that are present in the

reference datasets that are aggregated into LAND-

FIRE. For example, disturbance event locations and

perimeters reported by public agencies may not

always be ground-checked and can be hand-de-

marcated to include a larger area than the actual

footprint of the disturbance. Between years, this

curation method could also vary in data quality and

accuracy, depending on the data that was received

for that year by other public agencies (ranging from

local to federal levels).

METHODS

Comparison of Reported Disturbance
Across California for 2001–2010

To quantify how comparable the three vegetation

disturbance products were in their amounts and

locations of reported disturbance, we created two

sets of comparable raster images from the original

GFC, NAFD, and LANDFIRE data using EE to

quantify both annual and total reported distur-

bance. The first set of data contained comparable

annual rasters of reported disturbance for each year

between 2001 and 2010, while the second set con-

tained comparable aggregated-time rasters of re-

ported disturbance across the study period of 2001–

2010. Details on the standardization process used to

create these sets of rasters are included in the sup-

plemental material (Online Appendix A). The spa-

tial extent of each product’s reported disturbance

areas was mapped using the aggregated-time raster

created for the product (Figures 1 and 2).

Areas of disturbance attributed to fire were

identified by overlaying of the aggregated-time

raster created for each disturbance product with a

raster of fire occurrence derived from fire perime-

ters provided by CALFIRE Fire Resource and

Assessment Program (FRAP) for the study period

(more information on this derived raster of fire

occurrence is included in Online Appendix A). We

also used the fire occurrence raster derived from

FRAP to calculate the total areas of disturbance

attributed to fire (m2/year) for each year and across

the study period using the EE function called

ee.Image.pixelArea (Figures 1 and 3). This function

provides the pixel areas of the two categories in

binary images (for example, where pixels both re-

ported as disturbed and overlapping with the fire

occurrence are labeled with a value of 1, and all

others labeled value of 0). For GFC and NAFD, the

sums of these annual values of reported distur-

bance (both attributable and non-attributable to

fire) were equivalent the total area reported as

disturbed by each product across 2001–2010 (Fig-

ure 1). Due to the annual format of the original

LANDFIRE data, pixels could be counted more than

once in the sum across the time period (that is,

separate disturbances in different years); thus, two

sums are provided: the unique area reported as

disturbed in the time period (Figure 1) as well as

the duplicated total area reported as disturbed

(Online Appendix B).
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We also quantified total reported disturbance by

habitat type (for example, how much scrub/shrub

GFC reported as disturbed across California for

2001–2010), using the CALFIRE FVEG database to

create a raster of four major habitat categories across

California: scrub/shrub, forest, grass, and other (for

example, desert, agriculture, wetlands, barren, ur-

ban). Definitions of the habitat types derived from

FVEG are included in Online Appendix A. For these

calculations, we applied ee.Image.pixelArea to bin-

ary images that combined the aggregated-time raster

for each disturbance product and a raster for each of

the four habitat types derived from FVEG. These

results provided the total pixel area reported as dis-

turbed by each product within each habitat type

(Figure 4; Online Appendix B).

Comparison of Environmental
Conditions in Areas Reported
as Disturbed

Next, we compared the environmental conditions

at pixels that were reported as disturbed by each of

the three vegetation disturbance products. Based

on elevation from the National Elevation Dataset,

climate water deficit (CWD) from the California

Climate Commons, and mean temperature from

the PRISM climate project (see Online Appendix A

for more details on these environmental datasets),

we produced multiple summary statistics for each

disturbance product using the EE functions called

ee.Reducer.percentile, ee.Reducer.mean and

ee.Reducer.stdDev (Figure 5; Online Appendix B).

As a baseline reference, the same statistics were

calculated across the total area of California. We

also used ee.Image.pixelArea to calculate the total

area of each habitat type as a proportion of the

spatial extent of the disturbance products (for

example, the proportion of the total area reported

as disturbed by GFC that was scrub/shrub habitat)

(Figure 6; Online Appendix B). As another baseline

reference, the areas of each habitat type across

California were calculated.

Comparison of Sensitivity to Fire
Disturbance

In the final portion of the analysis, we compared

the products’ sensitivities to fire disturbance by

Figure 1. Total reported fire and non-fire disturbance across California between 2001 and 2010. Disturbance attributed to

fire is based on overlap with fire perimeters from CALFIRE Fire Resource and Assessment Program (FRAP).
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Figure 2. Highlighted areas of spatial differences in reported disturbance for 2001–2010. Spatial differences in reported

fire and non-fire disturbance are highlighted across three key regions (Northern California, Sierra Nevada, and Southern

Coast).

Figure 3. Reported fire and non-fire disturbance by habitat type. Darkest portion of each bar represents proportion of

reported disturbed area attributed to fire, based on overlap with FRAP fire occurrence, for Hansen Global Forest Change

(GFC), North American Forest Dynamics (NAFD), and LANDFIRE (LF).
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calculating the number of pixels of each product

that overlapped with the FRAP fire perimeters and

the MTBS maximum burn severity raster (Fig-

ures 7 and 8). Since the creation method of

LANDFIRE already incorporated versions of the

FRAP and MTBS data (see section on Study Data),

the primary intention of this analysis was to iden-

tify how sensitive GFC and NAFD were to fire

disturbance. For a baseline from the fire reference

data, we also calculated the total amount of fire

disturbance across California (and by habitat type)

reported by FRAP (that is, the fire occurrence raster

derived from FRAP fire perimeters) and MTBS (that

is, raster of maximum burn severity) using

ee.Image.pixelArea (Table 2; Online Appendix B).

For both fire datasets, we included the year 2000 to

account for pixels that may have been reported as

disturbed in the first year of the study (2001). As

the MTBS data were originally provided as annual

rasters, we aggregated them to create a new single

Figure 4. Annual reported fire and non-fire disturbance across California for years 2001–2010. Darkest portion of each

bar represents proportion of reported disturbed area attributed to fire, based on overlap with FRAP occurrence, for Hansen

Global Forest Change (GFC), North American Forest Dynamics (NAFD), and LANDFIRE (LF). Annual number of fires

reported in FRAP database are labeled for each year (for example, n = 200 for 2001).

Figure 5. Distributions of bioclimatic conditions across the areas reported as disturbed. For reference comparison, the

distributions of bioclimatic conditions across all of California are also reported, alongside distributions for Hansen Global

Forest Change (GFC), North American Forest Dynamics (NAFD), and LANDFIRE (LF).
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raster that contained the maximum burn severity

at each pixel across the study period.

To explore differences in sensitivity to fire dis-

turbance across fire perimeter size, we categorized

the fire perimeters into six size classes based on

acreage reported by FRAP (that is, less than 100,

100–500, 500–1000, 1000–10,000, 10,000–90,000,

greater than 90,000). The overlapping areas be-

tween the disturbance products and the fire

perimeters were calculated using ee.Reducer.fre-

quencyHistogram, which provided the total num-

ber of pixels of each disturbance product contained

within each fire perimeter. These pixel counts were

converted to percentages by dividing the number of

pixels reported as disturbed by each disturbance

product by the total number of pixels contained

within the fire perimeter. For each size class of fire

perimeters, a mean of the percentages was calcu-

lated to provide the average percentage of overlap

in that size class (Figure 7; Online Appendix B).

Last, we used ee.Image.pixelArea to explore dif-

ferences in sensitivity to fire disturbance across

burn severity by calculating the overlap between

the disturbance products and each MTBS burn

severity level (unburned to low, low, medium,

high) across the four habitat types (Figure 8).

Figure 6. Distribution of habitat type across the areas reported as disturbed. For a reference baseline, total habitat areas as

proportions of the area of California are also reported, alongside the proportions for Hansen Global Forest Change (GFC),

North American Forest Dynamics (NAFD), and LANDFIRE (LF).

Figure 7. Comparison of sensitivity to fire disturbance across fire perimeter size. Based on overlap with fire perimeters

from CALFIRE Fire Resource and Assessment Program (FRAP) for Hansen Global Forest Change (GFC), North American

Forest Dynamics (NAFD), and LANDFIRE (LF).
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RESULTS

LANDFIRE Reported the Highest
Amounts of Fire and Non-fire
Disturbance Across California

Between 2001 and 2010, GFC and NAFD reported

lower totals for fire and non-fire disturbance than

LANDFIRE across California (Figure 1). LANDFIRE

reported the highest amount of disturbance at

8.41% of the total area of California, while GFC

reported the least amount of disturbance at 2.54%

of the total area of California. The amount of dis-

turbance reported by NAFD was closer to GFC than

LANDFIRE at 3.77% of the total area of California.

The range of values for total disturbance attrib-

uted to fire was wider than the range of values for

total disturbance attributed to non-fire (Figure 1).

For fire disturbance, LANDFIRE reported more

than double the disturbance of both GFC and

NAFD. Specifically, LANDFIRE reported 5.54% of

the total area of California as disturbed by a fire

event (determined by overlap with the FRAP fire

perimeters), whereas NAFD and GFC reported

much less disturbance attributed to fire at only

2.13% and 1.71%, respectively, of the total area of

California. For disturbances attributed to non-fire

events (determined by no overlap with the FRAP

fire perimeters), the products reported more similar

totals, with LANDFIRE reporting 2.87% of total

area of California as disturbed, and NAFD and GFC

reporting 1.64% and 0.83%, respectively.

Spatial differences in reported disturbance

among the disturbance products were noticeable

across all regions of California (Figure 2). The

spatial patterns of fire and non-fire disturbance in

the selected regions (Northern California, Sierra

Nevada, and Southern Coast) clearly highlighted

that more disturbance was reported by LANDFIRE,

as compared to GFC or NAFD. The Northern Sierra

Nevada was a key area of difference among the

products that was attributable to non-fire distur-

bance, while the Southern Coast was a key area of

difference that was attributable to fire disturbance.

Northern California was a key area of difference

that was attributed to both fire and non-fire dis-

turbance, with LANDFIRE reporting more in both

Figure 8. Comparison of sensitivity to fire disturbance across burn severity and by habitat type. Based on overlap with

data from Monitoring Trends in Burn Severity (MTBS) for Hansen Global Forest Change (GFC), North American Forest

Dynamics (NAFD), and LANDFIRE (LF).

Table 2. Summary of FRAP and MTBS Fire Disturbance Reported for 2000–2010 Across California

All California

(%)

All Scrub/shrub

(%)

All Forest

(%)

All Grass

(%)

All Other

(%)

FRAP percent of area burned 5.83 17.87 7.31 5.6 0.89

MTBS percent of area

burned

5.77 18.10 7.29 4.99 0.84
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categories as compared to GFC and NAFD. Com-

paring only GFC and NAFD across the three se-

lected regions, the overall spatial patterns of

reported disturbance (Figure 2) reinforced that

these two products reported more similar totals of

fire disturbance (1.71–2.13%, respectively, as re-

ported in Figure 1), as compared to non-fire dis-

turbance (0.83–1.64%).

The breakdown of total reported disturbance by

habitat type also indicated that LANDFIRE reported

the highest amounts of disturbance as compared to

NAFD and GFC across all habitat types (Figure 3).

LANDFIRE reported approximately double the

amount of disturbance in scrub/shrub and forest, as

compared to both GFC and NAFD (Figure 3). The

range of values for total disturbance across the

three products was also widest in scrub/shrub

(ranging from approximately 6.5–20% of the total

scrub/shrub area of California) and in forest

(ranging from approximately 4–14% of the total

forest area of California) (Online Appendix B).

There was also a notable difference in reported

disturbance in grass, as GFC and NAFD reported

little disturbance in grass (0.98% and 1.49%,

respectively), while LANDFIRE reported more than

three times these amounts (6.88% of the total grass

area of California).

Across all three products, the majority of the

reported disturbance in scrub/shrub was

attributable to fire (as determined by overlap with

the FRAP fire perimeters) (Figure 3). The reported

disturbance attributable to fire ranged from 5.7 to

17% of the total scrub/shrub area of California.

Reported disturbance in forest was more evenly

split between fire and non-fire disturbance (Fig-

ure 3; Online Appendix B). For grass, most of the

reported disturbance by LANDFIRE was

attributable to fire, while the reported disturbances

by GFC and NAFD were equally attributable to fire

and non-fire disturbance.

Our comparison of total annual disturbance also

indicated that LANDFIRE reported the highest

amounts of disturbance in each year, whereas GFC

and NAFD reported more similar amounts of dis-

turbance across all years (Figure 4; Online Appen-

dix B). NAFD generally reported slightly more

disturbance than GFC in each year with the

exception of 2006. The widest range of values for

annual reported disturbance occurred in 2008,

2003, 2007, and 2006 (in descending order), all

years for which FRAP reported the highest annual

numbers of individual fire perimeters (between 309

and 425). In these years, LANDFIRE reported much

higher disturbance than GFC and NAFD as well as

demonstrated the highest overlaps with the FRAP

fire perimeters (resulting in higher attribution of

disturbance to fire events in these years). GFC and

NAFD demonstrated the highest overlaps with the

FRAP fire perimeters in 2008, followed by 2007.

The smallest range of values for annual reported

disturbance occurred in 2010 and 2001, years in

which FRAP reported the lowest annual numbers

of individual fire perimeters (204 and 200, respec-

tively). In these years, LANDFIRE reported the least

amounts of disturbance, and its total disturbance

values were the closest to GFC and NAFD, as

compared to other years (Figure 4; Online Appen-

dix B).

Minimal Differences in Environmental
Conditions Observed Across Areas
Reported as Disturbed

To identify the extent to which differences in re-

ported disturbance could be attributed to environ-

mental differences in the areas reported as

disturbed, we compared the bioclimatic conditions

and habitat types across the areas reported as dis-

turbed by each product. We found that the prod-

ucts reported disturbance across very similar

distributions of elevation, climate water deficit

(CWD), mean temperature, and habitat type (Fig-

ures 5 and 6). In particular, the products reported

disturbance at higher elevations, lower CWD, and

lower mean temperatures than the California

baseline (that is, the full range of conditions across

the state) (Figure 5). The distribution of habitat

types across the areas reported as disturbed were

also similar across the products (Figure 6). As pro-

portions of their total reported disturbance

amounts, the products all reported the most dis-

turbance in forest (ranging from approximately

47.5–50% of their total areas) and scrub/shrub

(ranging from approximately 36–40% of their total

areas). These proportions of disturbed area in forest

and scrub/shrub were greater than the overall

proportions of those habitat types across California

(approximately 30% for forest and 15% for scrub/

shrub), indicating that all three products reported

disturbance more frequently in those habitat types,

as compared to grass.

GFC and NAFD Demonstrated Low
Sensitivity to Fire Disturbance Compared
to LANDFIRE

As previously noted, the comparison of the prod-

ucts to FRAP and MTBS was primarily intended to

evaluate sensitivities to fire disturbance for GFC

and NAFD, as LANDFIRE had already incorporated
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versions of the FRAP and MTBS data and would be

expected to display high overlap with both refer-

ence datasets. Comparing the reported fire distur-

bance totals to the baseline summaries of FRAP and

MTBS for the study period (Table 2), GFC and

NAFD reported notably less fire disturbance than

these reference data. The calculated baselines of fire

disturbance for the study period from FRAP and

MTBS indicated that approximately 5.8% of Cali-

fornia was reported as burned (compared to 1.71%

for GFC, 2.13% for NAFD, and 5.54% for LAND-

FIRE) (Online Appendix B). GFC and NAFD also

reported less than half of the fire disturbance in

scrub/scrub (5.71% and 7.9% of all scrub/shrub

habitat, respectively) (Online Appendix B), as

compared to FRAP and MTBS, which reported the

most fire disturbance in scrub/shrub (approxi-

mately 18% of all scrub/shrub habitat across Cali-

fornia) (Table 2). Similarly, GFC and NAFD

reported less than half of the fire disturbance in

forest (2.57% and 2.69%, respectively), as com-

pared to FRAP and MTBS, which reported

approximately 7% of all forest habitat across Cali-

fornia as burned.

In our direct comparison of each product’s

overlap with the FRAP fire perimeters, we found

that GFC and NAFD excluded more individual fire

perimeters (n = 1250 and n = 1083, respectively),

than LANDFIRE (n = 141). Despite the difference

in the total number of fires excluded, the median

fire perimeter size excluded by the products were

similar in range (from 35.59 to 41.64 acres). Of the

fire perimeters that were overlapped by the prod-

ucts (by at least one pixel), GFC and NAFD

demonstrated similar percent overlap with the

FRAP fire perimeters that were lower than LAND-

FIRE across all perimeter sizes (Figure 7). For FRAP

fire perimeters larger than 1000 acres, the mean

percent of pixels reported as disturbed within the

fire perimeters increased with size for both GFC

and NAFD, but reached a maximum percent of

approximately 40% for the largest fire perimeter

size (Figure 7; Online Appendix B).

Similar to its overlap with FRAP, the overlap

between LANDFIRE and MTBS was close to 100%

across all burn severity levels (Figure 8; Online

Appendix B). Both GFC and NAFD demonstrated

higher overlap with MTBS (which focuses on fire

perimeters larger than 1000 acres), particularly at

the medium and high severity categories (Fig-

ure 8). For the MTBS data, both GFC and NAFD

reported more disturbance as burn severity in-

creased to the medium and high severity classes

(Figure 8; Online Appendix B). This pattern was

demonstrated across all habitat types but was most

noticeable for GFC and NAFD in forest and NAFD

in scrub/shrub. At medium severity, both GFC and

NAFD demonstrated an approximately 50% over-

lap with MTBS for forest. NAFD demonstrated a

similar level of overlap with MTBS for scrub/shrub

at medium severity (approximately 50%). Both

GFC and NAFD reported the most disturbance in

forest at the highest severity (approximately 80%

of the total forest that MTBS reported as burned

with high severity).

DISCUSSION

Differing Sensitivity to Fire Disturbance
is a Key Driver of Difference in Reported
Disturbance

Our comparative evaluation demonstrated that

GFC and NAFD reported similar amounts of dis-

turbance that were consistently much lower than

LANDFIRE’s reported disturbance across all years,

regions, and habitats (Figures 1, 2, 3 and 4). We

also found that despite these differences in the

amounts of reported disturbance, the products

identified disturbance in similar ranges of biocli-

matic conditions and habitat types; thus, differing

environmental conditions in the areas reported as

disturbed were not the drivers of the differences in

reported disturbance (Figures 5 and 6). Rather, we

found that lower sensitivity to fire disturbance for

GFC and NAFD, as compared to LANDFIRE, was a

key driver of the overall differences in the amounts

and locations of reported disturbance. Specifically,

both GFC and NAFD reported much lower amounts

of fire disturbance across all FRAP fire perimeter

size classes and all MTBS burn severity classes

(Figures 7 and 8). Furthermore, the difference in

reported disturbance between LANDFIRE and GFC/

NAFD was greater for fire disturbance; in particu-

lar, LANDFIRE reported more than double than

amounts of GFC and NAFD across California in the

study period (Figure 1).

Although it was expected that LANDFIRE would

demonstrate high overlap with FRAP and MTBS

due to these types of reference datasets playing a

key role in the creation of LANDFIRE, it was not

previously known the extent to which LANDFIRE’s

reported disturbance would differ from that re-

ported by disturbance products created from ‘‘big’’

data approaches (for example, GFC and NAFD).

Based on the results of this study, it is clear that the

automated, time series approaches of remotely

sensed products such as GFC and NAFD resulted in

much lower reporting of fire disturbance than the

year-to-year approach of LANDFIRE that integrates
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remote sensing-derived vegetation indices with

field data and other data on disturbance events

reported by public agencies. Furthermore, due to

the lower sensitivity to fire disturbance by GFC and

NAFD, the differences in reported disturbance be-

tween these products and LANDFIRE were greatest

in the years with the most fire (Figure 4) and in

scrub/shrub habitat (Figure 3) for which both

FRAP and MTBS reported the most fire (Table 2).

Comparing only GFC and NAFD, the latter re-

ported more disturbance across all regions and

habitats and in most years (Figures 1, 2, 3 and 4).

The higher reporting of disturbance by NAFD re-

flects a key difference in their automated ap-

proaches, namely that the approach taken by

NAFD is to identify continuous change in vegeta-

tion cover (that is, reductions in vegetation), rather

than to identify only discrete changes that would

cause stand replacement, as is the approach taken

by GFC. Notably, this difference in reported dis-

turbance was not observed in the comparison of

the products across the burn conditions, as both

GFC and NAFD reported similar overlaps with

FRAP and MTBS (Figures 7 and 8). This result

indicates that for fire disturbance, the differences in

continuous and discrete approaches did not play a

strong role in its identification, as both products

reported equally less fire disturbance than LAND-

FIRE.

Implications for Use of These Vegetation
Disturbance Products

Given their differences in reported disturbance, the

lack of comparative evaluations of these products

(GFC, NAFD, and LANDFIRE) is a notable omission

in the scientific literature, as these products are

widely used as sole representations of disturbance

in studies on the impacts of vegetation change and

disturbance on ecosystem processes such as carbon.

For example, GFC has been used to examine the

impacts of forest change on carbon dynamics both

globally (Tyukavina and others 2015; Arneth and

others 2017) and within the USA (Anderegg and

others 2016; Woodall and others 2016). NAFD has

also been frequently used to explore the impacts of

forest disturbance on carbon dynamics within the

USA (Gu and others 2016; Williams and others

2016; Dolan and others 2017; Sleeter and others

2018). LANDFIRE has been applied more broadly

across landscapes in the USA to explore impacts of

past disturbance on hydrology (Boisramé and oth-

ers 2017), subsequent fire (Parks and others 2014)

as well as carbon dynamics, specifically in Califor-

nia (Liu and others 2011; Gonzalez and others

2015). As our analysis indicates that these products

reported notable differences in the amounts of

disturbance (from GFC at the low end to LAND-

FIRE at the high end), researchers need to be aware

that the choice of the disturbance product can

greatly impact the results of their studies aimed at

quantifying the ecological impacts of disturbance

events.

The applications for remotely sensed disturbance

products are not restricted to carbon-related stud-

ies; rather, researchers are increasingly highlighting

the potential use of these kinds of products to

quantify and monitor the impacts of disturbance on

ecosystem functions, ecosystem response and resi-

lience, and species abundance and distribution,

while also recognizing that disturbances are not

limited to changes in land cover (Rose and others

2015; Pettorelli and others 2014). These researchers

declare a desire and need for remotely sensed

products that can offer standardized time series of a

variety of types and magnitudes of disturbance that

clearly indicate where disturbance has occurred

and how much across multiple types of habitats

and environmental conditions. Our analysis of the

current state of vegetation disturbance products

indicates that more work is needed to quantify

uncertainty across these products in a way that can

be useful to conservation and resource managers,

who want to know which product(s) to use in

specific habitat and ecosystem types.

Recommending a product solely on its stated

goals and purposes, each product provides a unique

spatial and temporal coverage of vegetation dis-

turbance in specific habitats. At the time of this

publication, GFC is the only remotely sensed pro-

duct that maps annual forest change at a global

extent with the spatial resolution of the LTS and is

the clear choice for studies of forest change at

global and continental scales outside of North

America. For North American and specifically,

USA-centric studies, NAFD provides more nuanced

coverage of forest disturbance from low to high

magnitude events (that is, from minimal reductions

in vegetation cover up to clear-cutting and land use

changes). Within the USA, LANDFIRE uniquely

provides coverage of disturbance in scrub/shrub

and grass, which highlights the need for new

products that include coverage of disturbance in

these habitats at global and continental scales.

Although these recommendations appear clearly

defined—that users should choose the appropriate

disturbance product based on its spatial extent and

targeted habitat—our analysis clearly identified

that the differences between LANDFIRE and GFC/

NAFD were greatest for reported fire disturbance,
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indicating that the choice of disturbance product is

of more consequence when the targeted distur-

bance is fire, rather than non-fire disturbances (for

example, clearing, pestilence). Given this key dif-

ference, the choice of disturbance product becomes

not so straightforward, for example, for research

aimed at identifying the impacts of fire-specific

disturbance on forest in the USA, as either NAFD or

LANDFIRE could be used. Furthermore, as GFC

and NAFD reported similar amounts of forest dis-

turbance, the convergence between the two could

indicate a more accurate amount of both fire and

non-fire forest disturbance, highlighting a potential

overestimation of forest disturbance by LANDFIRE

(Figure 3).

Furthermore, all three products actually reported

the most disturbance in areas dominated by scrub/

shrub habitat (Figure 3). Given that GFC and

NAFD do not aim to identify disturbance in scrub/

shrub, it would seem that their amounts of re-

ported disturbance in scrub/shrub should be lower

than the amount in forest. Although scrub/shrub

habitats often demonstrate high spectral variability

(Hamada and others 2011) which could be inter-

preted as disturbance by automated products,

scrub/shrub was also most frequently reported as

disturbed by the fire reference data (FRAP and

MTBS), thus indicating the possibility that the

automated products (GFC and NAFD) were accu-

rately identifying higher fire disturbance in scrub/

shrub as compared to forest.

The fact that the amount of disturbance in scrub/

shrub reported by GFC and NAFD was lower than

that of LANDFIRE was not surprisingly; however,

the difference in reported forest disturbance was

unexpected as GFC and NAFD would presumably

be more accurate for forest, given their stated foci.

One possible explanation is that GFC and NAFD are

specifically missing smaller disturbances that do not

cause stand replacement (that is, change to a new

cover class) or do not cause significant reduction in

vegetation cover, which, respectively, would be

needed for their workflows to identify the distur-

bance. However, the size of disturbance does not

appear to be a driver of identification for fire dis-

turbance. Although the overall number of excluded

fires was high for GFC and NAFD compared to

LANDFIRE, the median fire size excluded was

similar across the three products, and GFC and

NAFD had low overlap with the FRAP fire

perimeters across all size classes. This indicates that

size of the fire was not a driver of difference in

reported fire disturbance among the products; GFC

and NAFD were simply less sensitive to fire dis-

turbance overall as compared to LANDFIRE.

However, it must be noted that LANDFIRE’s high

overlap with FRAP and MTBS does not mean that it

is more accurately reporting fire disturbance. As

previously discussed, the creation method of

LANDFIRE includes ingestion of data directly from

reference data sources such as FRAP and MTBS.

These data have their own biases and uncertainties

that propagate to other workflows that used them

as reference data. For example, researchers exam-

ining the accuracy of fire reference data have found

that manually mapped fire perimeters (such as the

vector data provided by FRAP) can overestimate

the burned area by an average of 18% (up to 37%),

as compared to fire perimeters delineated using

remote sensing techniques (Kolden and others

2012; Kolden and Weisberg 2007). Similarly, other

researchers have found that independent classifi-

cation of burned areas resulted in higher accuracy

than MTBS data (Meddens and others 2016). Due

to LANDFIRE’s ingestion of these products, over-

estimation in reference data such as FRAP and

MTBS would also result in higher reported distur-

bance by LANDFIRE, the extent to which would be

unknown without further accuracy and uncer-

tainty analyses.

In addition, the MMU of the reference data can

also result in biases and uncertainties in the anal-

yses of the disturbance products. For example, fire

disturbance in California grasslands can be widely

underreported, due to the MMU of reference data

such as the FRAP fire perimeters, which only in-

cludes grass fires over 300 acres (FRAP 2018). This

limitation of the reference data is supported by our

results which indicate grasslands were reported as

disturbed less often than forest and scrub/shrub by

all of the products, including LANDFIRE (Figures 3

and 8), which is the only one of three products that

is actually applicable for mapping disturbance in

grasslands in the USA. Interestingly, while the

MMU of FRAP in forest (used by both CALFIRE

and USFS) is smaller than the MMU for scrub/

shrub (10 and 30 acres, respectively), all products

reported more fire disturbance in scrub/shrub,

indicating that the larger MMU of FRAP in scrub/

shrub did not limit the reporting of fire disturbance

in scrub/shrub for any of the products. Regarding

the MMU of the MTBS data (fires larger than 1000

acres for the Western USA), our results indicated

that reported fire disturbance by GFC and NAFD

increased with burn severity (Figure 8); however,

those results were not matched by our comparison

of reported disturbance by FRAP fire perimeter size,

for which percent coverage was low, even for fire

perimeters larger than 1000 acres (Figure 7). This

discrepancy indicates that the analysis of fire dis-
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turbance based on fire perimeter size is highly

dependent on the input reference data, and thus,

more than one reference dataset should be used as

the reference point for any evaluation.

Based on our results, we encourage end users to

choose the appropriate disturbance product based

not only on spatial extent and habitat but also on

the disturbance type of interest (that is, fire and

non-fire). Furthermore, given the lack of compar-

ative analyses of these products, additional work is

needed to quantify and identify the spatial patterns

of uncertainty in disturbance across these products

with careful consideration to use more than one

reference dataset for evaluation. While there has

been some research on integrating some of these

products (Schroeder and others 2017; Soulard and

others 2017) or the algorithms used to create them

(Healey and others 2017) to improve the accuracy

of disturbance identification (that is, potentially

reducing uncertainty), these integration efforts

have not been used to quantify uncertainty across

study areas and have typically focused only on

areas in which at least two products or algorithms

identified disturbance. While using data integration

to improve the accuracy of identified disturbance

contributes greatly to the literature, quantifying

spatially explicit measures of uncertainty would

provide end users with additional critical informa-

tion to support their decision-making regarding

which product or products would best meet their

needs.

One possible method for quantifying spatially

explicit uncertainty is through data integration

based on spatial agreement. For example, pixels

that are reported as disturbed by all products (that

is, pixels of highest agreement) and are contained

within a fire perimeter could be assigned a low

uncertainty for a fire disturbance. Similarly, pixels

that are reported as disturbed by all products

(again, pixels of highest agreement) but are not

contained within a fire perimeter could be assigned

a low uncertainty for a non-fire disturbance. On

the other hand, pixels that are not reported as

disturbed in any product but are contained within a

fire perimeter in reference data could be assigned a

high uncertainty for fire disturbance (that is, likely

unburned area within the fire perimeter), helping

to narrow down the true extent of fire events.

These kind of spatial agreement metrics could

provide a more automated and more objective

identification of unburned areas (as compared to

dNBR analyses which require defining thresholds

for disturbance that vary by vegetation and

ecosystem type) as well as highlight areas where

individual disturbance products may be overzeal-

ous in reporting disturbance (that is, errors of

commission).

Integral Role of Spatial Data Science
and HPC in Creating Disturbance
Products

Previous to this study, comparative evaluations of

disturbance products had likely been limited by

two related factors: (1) the lack of overlap in

products’ coverage across space and time (that is,

limited and non-overlapping spatial and temporal

extents); and (2) the inadequacy of conventional

analytical tools to handle and analyze data at

increasingly finer resolutions and broader extents.

In other words, remotely sensed products of vege-

tation disturbance (with overlapping spatial and

temporal coverage at the spatial resolution of LTS)

are recent developments that have been made

possible by the creation of computational tools used

to create and compare them. In particular, the re-

cent development of HPC tools specifically in-

tended for geospatial analyses (such as EE) has

helped to address computational challenges pre-

sented by large spatial–temporal data and has been

encouraged by CyberGIS researchers interested in

expanding tool interoperability and scalability for

‘big’ spatial data (Yang and others 2010, 2011;

Wang 2016). Alongside these technological ad-

vances, integration of conventional geospatial

methods and modern Data Science techniques

(that is, data mining/algorithms, machine learning)

have arisen from the development of a Spatial Data

Science to support the application of fundamental

geospatial analyses to ‘‘big’’ spatial–temporal data

stacks such as the LTS (Palomino and others 2017).

These developments in Spatial Data Science and

HPC have resulted in both the creation of products

at finer spatial and temporal resolutions and

broader extents as well as an increased ability to

compare and evaluate them. Even while limited to

the California scale, the disturbance products

evaluated in this study are ‘‘big’’ data, as approxi-

mately 450 million pixels were analyzed for each

year to cover California at a 30 m spatial resolution.

Just as the processing power and data handling

capabilities of HPC were needed to create these

disturbance products, a thorough interrogation and

evaluation of these products also required the use

of HPC to identify patterns across this complex

multi-temporal data stack. The platform employed

in this study, EE, is an exemplary tool emerging

from these advances in HPC and Spatial Data Sci-

ence, as it supports fundamental geospatial analy-

ses such as raster stack calculations and zonal
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statistics on data that are not easily handled in

conventional desktop tools.

As products of self-contained analysis pipelines

or algorithms running autonomously on HPC, GFC

and NAFD are the first examples of standardized,

annual products that leverage the spatial and

temporal resolutions of the LTS and are very likely

not the last of their kind. Other algorithms that

identify vegetation disturbance using the LTS, such

as LandTrendr (Kennedy and others 2010) and

Continuous Change Detection and Classification

(CCDC) (Zhu and Woodcock 2014), can be lever-

aged to produce new standardized products. In fact,

CCDC is currently under evaluation and validation

for the release of a new standardization product to

be distributed by the USGS (Pengra and others

2016). Furthermore, these algorithms and others

could potentially be expanded to other satellite

time series such as Sentinel to produce products

with finer spatial resolutions, as compared to the

LTS, in the future. In contrast to the lengthy pro-

tocols and manual data integration of a product like

LANDFIRE, these automated products streamline

the identification of disturbance by focusing

exclusively on changes in spectral characteristics

using a data science approach that does not require

a priori knowledge of disturbance events. Moving

forward, these modern, automated workflows and

the products they create can also enable regional

(and possibly global) analyses of fire return inter-

vals and dynamics of burn intensity to identify

generalizable trends (Stevens and others 2017),

beyond local analyses of individual fires (Collins

and others 2007, 2009).

CONCLUSION

We used Earth Engine to compare the reported

amounts of fire and non-fire disturbance for 2001–

2010 among three widely used vegetation distur-

bance products and examined the products’ re-

ported disturbance across differing environmental

and burn conditions. Overall, GFC and NAFD re-

ported smaller totals for disturbance than LAND-

FIRE (2.54%, 3.77%, and 8.41% of California,

respectively) as well as less disturbed area

attributable to fire (1.71%, 2.13%, and 5.55% of

California) across the study period of 2001–2010.

Despite differences in amounts of reported distur-

bance, the products identified disturbance in simi-

lar ranges of bioclimatic conditions and habitat

types. Thus, differing environmental conditions in

areas reported as disturbed were not major drivers

of difference; rather, lower sensitivity to fire dis-

turbance for GFC and NAFD, as compared to

LANDFIRE, was a key driver of the overall differ-

ences in the amounts and locations of reported

disturbance. In particular, both GFC and NAFD

reported much lower amounts of fire disturbance

than LANDFIRE across all FRAP fire perimeter size

classes and MTBS burn severity classes. Further-

more, the difference in reported disturbance be-

tween LANDFIRE and GFC/NAFD was greater for

fire disturbance than for non-fire disturbance;

LANDFIRE reported more than double the total

amounts of fire disturbance of GFC and NAFD

across the study period.

Designed and executed within EE, our method-

ology provides a reproducible framework for com-

parative analyses of vegetation disturbance

products to identify the conditions under which

they report disturbance. Rather than focusing on

accuracy, this comparative examination of reported

disturbance highlights the drivers of differences

(that is, uncertainty) in reported disturbance

among vegetation disturbance products. As an

illustrative example, this paper used fire in Cali-

fornia as a case study to help end users of these

products understand how their approaches to

identifying disturbance impact the amounts and

locations of reported disturbance. As we found that

the differences among the products were greatest

for fire, rather than non-fire disturbance, we rec-

ommend that users choose a disturbance product

based on spatial extent, targeted habitat as well as

disturbance type (that is, fire and non-fire distur-

bance). Additional work to quantify uncertainty in

disturbance across these products and identify

spatial patterns in uncertainty is needed to further

support end users in choosing the most appropriate

product or products for their needs.
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