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Abstract

Computational Modeling of Multicomponent Disordered Rocksalt Cathodes

by

Peichen Zhong

Doctor of Philosophy in Engineering – Materials Science and Engineering

University of California, Berkeley

Professor Gerbrand Ceder, Chair

The pursuit of carbon neutrality necessitates improvements in energy storage technologies,
with high-performance Li-ion battery cathode materials offering a promising avenue. Mod-
ern battery materials can contain many elements with substantial structural complexity,
such as configurational disorder that has been shown to be critical for their electrochemical
performance. Taking disordered rocksalt cathodes (DRX) as examples, the thesis presents
a comprehensive computational modeling study to address the multicomponent complex-
ity through an integrated approach spanning from first-principles calculations to machine
learning methods.

The thesis introduces the methodologies required for modeling thermodynamics on lattices
from first principles, leveraging density functional theory and lattice models to investigate
configurational degrees of freedom. It subsequently demonstrates the application of cluster
expansion Monte Carlo simulations to model the short-range order (SRO) in DRXs. The
important effect of SRO is demonstrated through the Li-F locking effect in several Mn-based
DRXs. A Mg-doping strategy is proposed to increase the capacity by decreasing the amount
of Li bound to F. The important role SRO plays in the Li diffusion kinetics is illustrated
in several DRX compounds with composition LixMn0.4Nb0.3O1.6F0.4. By quantifying the
percolating Li content in the diffusion network, a strategy of introducing cation deficiency
is proposed to tune the SRO and improve the high-rate performance.

Subsequent chapters transition to atomistic modeling with charge information, which is
crucial for modeling redox reactions and charge transfer phenomena in cathode materi-
als. Two conceptual approaches – charge-decorated cluster expansion and charge-informed
machine learning interatomic potentials – are introduced. The charge-decorated cluster
expansion is applied to study the intercalation chemistry with multi-redox reactions in
Li1.3−xMn0.4Nb0.3O1.6F0.4, providing a clear demonstration of the Mn and oxygen redox con-
tribution to the redox potential as a function of Li content. The charge-informed interatomic
potential is used to study the transition metal migration-induced phase transformation in



2

Li1.1−xMn0.8Ti0.1O1.9F0.1 via molecular dynamics. An analysis of structural change and SRO
is discussed to reveal the effect on the intercalation chemistry.

Lastly, the thesis introduces a novel approach for directly modeling the electrochemical
performance of DRX materials. A comprehensive machine learning model (DRXNet) is
introduced as a universal end-to-end model with modular design. A graph neural network
and embedding networks are used to encode the chemical and electrochemical conditions,
including composition, current density, working voltage window, and battery cycle state.
The DRXNet is trained on years of experimental discharge voltage profiles and enables an
extensive exploratory search across diverse chemical spaces and test conditions, paving the
way for identifying novel cathode materials for next-generation batteries.

By integrating the progress achieved in this thesis with recent advances in the fields of
computational physics and AI for Science, the thesis proposes general strategies for advancing
computational modeling in energy materials design as future directions.

Thesis Advisor: Prof. Gerbrand Ceder
Professor of Materials Science and Engineering
Samsung Distinguished Chair in Nanoscience and Nanotechnology Research
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Chapter 1

Introduction

1.1 Motivation

The quest for energy exploration and utilization is intrinsically related to the technological
advancement of civilization. This intriguing relationship was proposed by Soviet scientist
Nikolai Kardashev in 1964 [1]. The Kardashev scale categorizes civilizations into three types.

A Type I civilization (planet level) is able to access all the energy available on its planet
and store it for consumption. A Type II civilization (stellar level) can harness the total
energy of a star. A Type III civilization (intergalactic level) can directly consume all the
energy of its entire host galaxy. The scale was later suggested by Sagan [2] with a definition

Figure 1.1: Three types of civilizations with energy consumption rate in the Kardashev scale:
(1) Type I: Planetary civilization (1016 W); (2) Type II: Stellar civilization (1026 W); (3)
Type III: Intergalactic civilization (1036 W).
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by interpolating and extrapolating the characteristic values, which produce the formula

K(P ) =
log10 P − 6

10
, (1.1)

where K is a civilization’s Kardashev rating and P is the power it uses (in W).

The current total world’s annual energy consumption in 2022 is 604.04 exajoules (167,789
TWh), with 494.05 exajoules (81.8% of total) consumed by oil, natural gas and coal [3]. Our
human world is therefore classified as a Type 0.728 civilization on this scale. This signifies
that we are less developed and not yet fully utilize the complete energy potential of our
planet, especially for the utilization of renewable energies, and far from reaching the status
of a Type I civilization. The statistics underscore the significance of research in the field of
energy applications. The objective is to advance our understanding of energy conversion,
storage, and distribution to move forward on the Kardashev scale. This advancement not
only denotes our progression as a civilization but also provides solutions to the pressing
energy-related challenges we face today, such as clean energy production, energy efficiency,
and environmental sustainability. This compelling motivation drives the research in clean
energy that forms the focus of this thesis.

1.2 Li-ion batteries

Looking back to our planet and materials science, the pursuit of efficient and clean energy
utilization for a better world necessitates advancements in energy storage technologies. One
promising direction is to explore high-performance lithium-ion (Li-ion) batteries. Since the
first invention by Sony in 1991 [4], Li-ion batteries have emerged as a cornerstone of modern
energy storage, offering portable, high-energy density, and rechargeable power for diverse ap-
plications encompassing consumer electronics, electric vehicles, and grid-scale energy storage
systems. Fundamental to a Li-ion battery are the cathode, anode, and electrolyte, which
collectively enable the efficient storage and release of electrical energy via the charge and
discharge processes [5].

Figure 1.2 illustrates the components of a Li-ion battery, which include the cathode,
anode, and electrolyte. Both the anode and cathode are intercalation materials, which
allows Li to be reversibly inserted/extracted from the host structure. For example, during
the charging process, Li-ions are extracted/inserted into the cathode/anode, accompanied
by charge transfer via redox reactions. The equilibrium voltage of a battery is defined by
the difference in Li chemical potentials between the cathode and anode:

V = −µ
cathode
Li − µanode

Li

zF
, (1.2)

where z is the charge transferred per ion, F is Faraday’s constant, and µLi is the chemical po-
tential on the cathode and anode, respectively. The anode is typically composed of graphite
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Figure 1.2: Components of a rechargeable Li-ion battery with anode, electrolyte, and cath-
ode. (Ref. [6])

[7] or silicon-based materials [8]. The electrolyte is composed of a Li-salt dissolved in an
organic solvent (e.g., LiPF6) or solid-state superionic conductors to facilitate the fast Li-ion
transport between the electrodes [9]. And the cathode materials encompass a diverse range
of compounds, including layered oxides (e.g., LiCoO2 [10]), spinels (e.g., LiMn2O4 [11]), and
polyanion-based structures (e.g., LiFePO4 [12]).

Despite significant progress in the development of Li-ion batteries, the design of advanced
cathode materials remains a crucial bottleneck in achieving higher energy densities, higher
charging rates, and long-term cycle retention. The challenges in cathode design are multi-
faceted, encompassing issues such as structural stability, voltage fade, capacity retention, and
thermal stability. Moreover, the increasing demand for sustainable and cost-effective materi-
als necessitates the exploration of alternative and earth-abundant elements (e.g., Mn-based
cathode materials) [13].

1.3 Disordered rocksalt cathodes

Disordered rocksalt cathode (DRX) materials have emerged as a promising alternative
to conventional layered cathodes, such as Ni–Mn–Co and Ni–Co–Al (NMCA) type cathodes.
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(a)

(b)

Figure 1.3: (a) Average discharge potential (Voltage vs. Li+/Li) and gravimetric capacity
(mAh/g) of selected layered and DRX cathodes. Contour lines represent the gravimetric
energy density (Wh/kg). NMCA = NMC: Li(Ni,Mn,Co)O2 and NCA: Li(Ni,Co,Al)O2. (b)
Natural abundance (blue bars) and price (orange bars) of selected 3d and 4d transition metal
elements found in disordered lithium transition metal oxide cathodes (on a log scale). (Ref.
[14])
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Figure 1.4: The disordered rocksalt structure composed of cation FCC (occupied by Li/TM)
and anion FCC (occupied by O/F).

The high cost of Ni and Co in NMC-type cathodes limits the large-scale expansion of Li-
ion batteries, whereas DRX cathodes can enable scaling of Li-ion energy storage to several
TWh/year production due to their earth-abundant precursors [14]. These materials feature
a nearly unlimited compositional design space and a more complex structure-property rela-
tionship than conventional layered cathodes. Figure 1.3(a) presents the average voltage and
specific capacity of reported DRX compounds as compared to the NMCA-type cathodes.
Figure 1.3(b) demonstrates the natural abundance and price per ton of 3d and 4d transition
metals that are typically considered in cathode design. The high price of Ni and Co high-
lights the advantages of DRX, which can be composed of non-precious elements such as Mn
and Ti.

Since the absence of long-range cation order, DRX materials are characterized by a
random distribution of cation species within a rocksalt lattice. As shown in Fig. 1.4,
the cation FCC sublattice can be occupied by Li and different transition metals, and the
anion FCC sublattice can be occupied by oxygen and fluorine. A typical DRX cathode
(Li1+xM’aM”bO2−yFy) is composed of three major components: (1) the redox-active species
M’, which provides electron redox; (2) the inert high-valent TM M”, which charge com-
pensates for the Li excess and stabilizes disordered structures [15]; (3) fluorine, which can
improve the cyclability and allows more Li excess to be accommodated without losing TM
redox by lowering the cation valence [16].
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Figure 1.5: Theory and computational modeling of rechargeable Li-ion battery materials.
(Ref. [24])

Despite the absence of long-range cation order, interactions between species can also
generate short-range ordering (SRO), which critically affects electrochemical performance in
various DRX compounds [17]. The wide variety of chemical environments for Li and TMs
provided by SRO and chemistry offers new opportunities for improving cathode performance,
such as enhancing cyclability through fluorine/vacancy doping of the anion sublattice [18, 19],
boosting rate capability by engineering cation SRO [20], and achieving zero-strain cathodes
for solid-state batteries [21–23].

1.4 Challenges in modeling complex oxides

In order to push the boundaries of Li-ion battery performance, especially the DRX ma-
terials, a deeper understanding of the fundamental mechanisms governing cathode behavior
is essential. This includes the investigation of novel crystal structures with degrees of disor-
der and partial disorder [25–27], compositional tuning [28], and advanced characterization
tools (e.g., pair-distribution function analysis [29], spherical-aberration-corrected transmis-
sion electron microscopy [30], solid-state nuclear magnetic resonance spectroscopy [31]).

Particularly, the integration of computational modeling from first-principles calculations
has demonstrated substantial efficacy in studying and designing rechargeable Li-ion bat-
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Figure 1.6: (a) The estimated time required given by Ferrari et al. [32] to sample all the
possible configurations in the first three neighbor shells (see inset) of a quinary alloy (’brute
force’) or to perform a million Monte Carlo steps with DFT, compared to the length of
a working day, the average human lifetime, the whole span of human history and the age
of the Universe. For the DFT calculations, it is assumed a typical time of 1 h for each
configuration. (Ref. [32]) (b) Illustration of various local configurations in DRX materials
with heterovalence in modeling Li intercalation chemistry.

tery materials. This powerful approach greatly facilitates the understanding of fundamental
mechanisms and accelerates materials optimization. Starting from fundamental thermody-
namics and kinetics, the theoretical relationships for key battery properties, such as voltage,
capacity, ion diffusivity, and other electrochemically relevant quantities, can be accurately
formulated and computed using a variety of computational techniques as overviewed by Van
der Ven et al. [24]. Insights derived from these developments have been instrumental in
advancing the application to DRX materials. Noteworthy achievements include the elucida-
tion of unlocking Li capacity limits through nudged elastic band calculations and percolation
models [25], the understanding of how different short-range order distributions impact ki-
netic properties via cluster expansion from first-principles calculations [17] and the study of
fluorine dopability via phase diagram calculations [16].

Since DRX materials are categorized as multicomponent complex oxides, the challenges
lie in that the computational modeling needs to capture the complexes of the configurational
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degrees of freedom correlated with the chemistries. Ferrari et al. [32] presents an estimated
time required to sample configurations in the first three neighbor shells of a quinary alloy
with brute force using DFT evaluations via a brute force way or Monte Carlo. The time
is compared to the length of a working day, the average human lifetime, the whole span of
human history, and the age of the Universe. The exponentially increased computational cost
clearly discourages the direct application of DFT to study multicomponent materials.

As types of TM oxides, DRX materials also exhibit complex electronic structures and
strong correlation effects that need to be addressed computationally. One approach is to
use density functional theory (DFT) with the Hubbard U correction [33] or employ meta-
generalized gradient approximation (meta-GGA) functionals [34]. These methods are de-
signed to address the electron delocalization effects and provide a more precise description
of the exchange-correlation effects.

Moreover, one of the most critical properties of batteries is the voltage resulting from
redox reactions, which characterizes intercalation chemistry and is strongly correlated with
the electronic structures of TM oxides. As demonstrated in Fig. 1.6(b), the intercalation
chemistry involves energy evaluations of configurations between Li, vacancy, and oxidized
species, which is related to the determination of Li removal, TM-redox or O-redox, and
charge transfer effects. The coupling between these electronic degrees of freedom and con-
figurational orderings substantially complicates the computational approaches. It is worth
noting that these computational challenges are also of significant concern for optimizing
cathode materials from an industry perspective [35]. Therefore, accurate, predictive, and
robust computational approaches are highly desired for both scientific understanding of fun-
damental mechanisms and the acceleration of advanced battery manufacturing.

1.5 Overview of the thesis

This thesis aims to deepen understanding of DRX materials by advancing simulation and
statistical/machine learning techniques. By integrating cutting-edge methods, it strives to
lay the foundation for a new era of materials discovery and optimization for energy storage
applications. The thesis is structured as follows:

• In Chapter 2, the thesis begins by introducing the fundamentals of computational
thermodynamics and the essential tools for ab-initio modeling, which include DFT
calculations, statistical mechanics in lattices, and Monte Carlo simulations. It em-
phasizes discussing the mathematical foundations of cluster expansion methods and
exploring approaches for developing robust, accurate, and predictive models by using
sparse regression with ℓ0ℓ2-norm regularization.

• In Chapter 3, the thesis introduces the application of cluster expansion Monte Carlo
to investigate the short-range order effects on the electrochemical performance of DRX
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materials. Examples include (1) using Mg-doping to resolve the Li-F locking effect to
increase capacity and (2) improving Li transport kinetics through partial Li deficiency.

• In Chapter 4 and 5, the thesis introduces advanced computational methodologies
for ionic materials with charge information: charge-decorated cluster expansions and
charge-informed machine-learning interatomic potentials. The discussion focuses on
how to model configurational thermodynamics coupled with electronic degrees of free-
dom and model transition metal migration with atomic charge correlation.

• In Chapter 6, the application of deep learning techniques for predicting experimental
discharge voltage profiles using DRXNet is discussed. DRXNet is a universal model
trained on a wide range of chemistries and experimental test conditions, which provides
a data-driven approach to accelerate the discovery and identification of novel cathode
materials.

• In Chapter 7, conclusions of this thesis and an outlook on future directions are dis-
cussed.
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Chapter 2

Thermodynamics on lattices from first
principles

2.1 Introduction

The cornerstone of computational thermodynamics is first-principles calculation, for ex-
ample, Density Functional Theory (DFT), a quantum mechanical method used to investigate
the electronic structure (primarily the ground state) of many-body systems. DFT provides
a practical approach for studying systems with many electrons while maintaining a tractable
computational cost; it is instrumental in predicting properties such as formation energy, den-
sity of states, band structure, etc. In addition to DFT, statistical mechanics plays a crucial
role in the analysis of systems with substantial configurational disorder. For example, Monte
Carlo simulations with lattice models are statistical mechanical tools that offer insights into
energy sampling, free energy integration, and materials’ phase transitions by simulating con-
figurations on lattices, which enables the exploration of materials’ macroscopic properties
based on their microscopic distributions.

In Chapter 2, the fundamentals of DFT and statistical mechanics in lattices will be
introduced. Specifically, this chapter discusses the mathematical formulation and develop-
ment of the cluster expansion method, a powerful tool used to study the configurational
thermodynamics of alloy systems and disordered solid-state materials.

2.1.1 Quantum mechanics of electrons

In quantum mechanics, the many-body Schrodinger Equation for interacting electrons is[∑
i

(
− ℏ
2me

∇2
i + Vext

)
+
e2

2

∑
i,j

1

|ri − rj|

]
Ψn(r1, r2, ...) = EnΨn(r1, r2, ...), (2.1)
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where Ψn(r1, r2, ...) is a many-body wavefunction. The Vext is the external potential, e.g.,
taking Bohn-Oppenheimer approximation, is the interaction between electron and atomic
nuclei Vext(r) =

∑
A e

2ZA/|r −RA|. However, direct solving the many-body wavefunction
is an intractable problem in solids. As an approximation, the Hartree-Fock method is intro-
duced to include the electron exchange effect. The ground-state many-body wavefunction is
approximated as a Slater determinate to represent the anti-symmetrical nature of electrons:

Ψ(r1, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(r1, σ1) · · · ϕ1(rN , σN)

...
. . .

...
ϕN(r1, σ1) · · · ϕN(rN , σN)

∣∣∣∣∣∣∣ , (2.2)

where ϕi(rj, σj) are single particle orbits, each of which is a product of the position function
ψσ
i (rj) and spinel variable αi(σj) [36]. For simplicity, taking that the Hamiltonian is diagonal

in the spin basis, the expected value of energy is obtained by integrating

E = ⟨Ψ|Ĥ|Ψ⟩

=
∑
i

∫
ψσ∗
i (r)

(
− ℏ
2me

∇2 + Vext

)
ψσ
i (r)dr

+
1

2

∑
i,j,σi,σj

∫
ψσi∗
i (r)ψ

σj∗
j (r′)

e2

|r − r′|
ψσi
i (r)ψ

σj

j (r′)drdr′

− 1

2

∑
i,j,σ

∫
ψσ∗
i (r)ψσ∗

j (r′)
e2

|r − r′|
ψσ
j (r)ψ

σ
i (r

′)drdr′,

(2.3)

Taking the variational principle

E0 ≤
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

⇒ δ (⟨Ψ|H|Ψ⟩ − E0⟨Ψ|Ψ⟩) = 0, (2.4)

for each orbit ψσ
i , the Hartree (Columb) term Ĵ(r) and exchange term K̂(r) is obtained

Ĵ(r)ψσ
i (r) =

∑
j,σj

∫
ψ

σj∗
j (r′)ψ

σj

j (r′)

|r − r′|
dr′ψσ

i (r)

K̂(r)ψσ
i (r) =

∑
j,σ

∫
ψσ∗
j (r)ψσ

i (r
′)

|r − r′|
dr′ψσ

j (r)

(2.5)

The exchange term K̂(r) is summed over all orbitals {j} of the same spin σ, including the
self-term j = i. Since the K̂(r) stands for non-local effect, it cannot be represented by
electron density n(r) = ψ

σj∗
j (r)ψ

σj

j (r) solely.
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2.1.2 Density Functional Theory

While the Hartree-Fock method offers a way to address the exchange effect in many-
body quantum systems, it remains computationally intensive to solve Ψ variationally. An
alternative approach is Density Functional Theory (DFT), which addresses the properties of
many-electron systems in terms of spacial functionals of the electron density. DFT strikes a
balance between computational efficiency and accuracy, establishing itself as a pivotal tool
in the field of computational quantum mechanics, particularly for solid-state systems. The
theoretical foundation of DFT is grounded in the Hohenberg-Kohn theorems, which furnish
a rigorous framework for the treatment of many-body quantum systems [36].

Theorem 1 (First Hohenberg-Kohn theorem) For any systems of interacting particles
in an external potential Vext(r), the potential Vext(r) is uniquely determined, except for a
constant shift, by the ground state particle density n0(r).

Theorem 2 (Second Hohenberg-Kohn theorem) The ground-state energy, E0, is a func-
tional of the electron density, n(r), and the exact ground-state density, n0(r), minimizes
this functional. Mathematically, if n(r) is any density that satisfies the particle number
constraint, i.e., ∫

n(r)dr = N, (2.6)

where N is the number of electrons, and

E[n0(r)] ≤ E[n(r)], (2.7)

with equality if and only if n(r) = n0(r).

While the Hohenberg-Kohn theorems establish the foundation for DFT, they do not
provide an explicit form of the energy functional. Kohn and Sham proposed a practical
scheme to approximate by rewriting the multi-body problem discussed earlier as a system
of non–interacting single–orbital {ϕi(r)} problems [38]. Briefly, the Kohn–Sham energy
functional is given by

E[n] = Ts[n] + UH [n] + Vext[n] + Exc[n], (2.8)

where Ts[n] is the single-particle-like kinetic energy

Ts[n] = − ℏ2

2me

∑
i

∫
ϕ∗
i (r)∇2ϕi(r) = Ts[{ϕi(r)}]dr, (2.9)

and UH [n] is the Hartree energy

UH [n] =
e2

2

∫
n(r)n(r′)

|r − r′|
drdr′. (2.10)
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Figure 2.1: (a) Illustration of electron exchange effect. (b) The Jacob’s ladder of DFT
approximations from Hartree approximation to exact quantum accuracy of many-body sys-
tems. (Ref. [37]).

The exchange-correlation energy Exc[n] is captured as the energy associated with electron
exchange and correlation. The correlation energy arises from the interactions between elec-
trons beyond treating their motion in a static potential background. The minimization of
the energy functional gives

δ

(
E[n]− εi

∫
n(r)dr

)
= 0, δn(r) = δϕ∗

i (r)ϕi(r) (2.11)

and the Kohn–Sham Equation[
− ℏ2

2me

∇2 + Veff(r)

]
ϕi(r) = εiϕi(r), (2.12)

where the effective potential is given by

Veff(r) = Vext(r) + e2
∫

n(r′)

|r − r′|
dr′ +

δExc[n]

δn(r)
. (2.13)

One difficulty in the Kohn—Sham scheme is the approximation of the exchange-correlation
energy. The simplest approach is the local density approximation (LDA):

ELDA
xc [n] =

∫
εxc[n(r)]n(r)d(r), (2.14)
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Figure 2.2: Comparison of the errors in intercalation voltages calculated with GGA (red
circles), GGA+U (green triangles), and the HSE hybrid functional (blue squares). (Ref.
[40])

where the εxc equals the exchange-correlation energy per electron of a homogeneous electron
gas, therefore εxc is local and neglects the inhomogeneous effects around r. The Generalized
Gradient Approximation (GGA) improves LDA by taking into account for the gradient of
the electron density:

EGGA
xc [n] =

∫
εxc[n(r),∇n(r)]n(r)d(r), (2.15)

where the functional εxc[n(r),∇n(r)] can be chosen by satisfying various limiting behaviors
or through the empirical fitting, such as the PBE (Perdew-Burke-Ernzerhof) functional [39].

LDA/GGA+U

Early DFT calculations for battery materials primarily relied on either the LDA [38] or the
GGA [39]. However, these approaches led to a systematic underestimation of experimentally
measured voltages in ordered Li-TM oxides by up to 1.5 V (out of ∼ 4 V) [41]. The failure
of DFT in predicting the voltages of Li-TM oxides can be attributed to the self-interaction
problem. This issue arises because LDA and GGA functionals treat each electron as if it
were in a mean field created by all the other electrons, including the electron’s Coulombic
interaction with itself. Consequently, this results in a spurious delocalization of electrons,
leading to significant errors in strongly-correlated systems [42].
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(a) (b)

(c)

Figure 2.3: (a) Error distributions of PBE, SCAN, and r2SCAN calculated formation energy
in comparison to the values of experimental formation enthalpies. (b) Average calculation
time for all functionals considered here relative to that of PBE. (c) Comparison of mean
absolute errors for PBE, SCAN, SCAN+rVV10, r2SCAN, and r2SCAN+rVV10 with respect
to experimental values for formation enthalpies of solids. (Ref. [47])

The GGA+U method offers a practical solution to correct the self-interaction error [33,
41–43]. It introduces a penalty term for partial on-site occupations inspired by the Hubbard
model (Honsite = U

∑
i ni↑ni↓), favoring disproportionation into fully occupied and empty

states. Such an effort results in significantly reduced prediction error on the voltages, which
is evidenced in Fig. 2.2. The prediction errors of DFT calculations with several functionals
are presented, where the red circles represent GGA, green triangles represent GGA+U , and
blue squares represent the HSE hybrid functional). The magnitude of the +U correction is
controlled by a system-specific parameter, which can either be determined self-consistently
from linear response theory [42, 44, 45] or by fitting to reference band structures or formation
energies [33, 41]. Another approach is to include the exact exchange term (Hatree-Fock
method) into the exchange-correlation functional, e.g., hybrid functional [46]. Although
the hybrid functional offers an improved description of electron-electron interactions, its
substantial computational resource requirements limit its applicability for large-scale energy
evaluations in DRX materials.
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Meta-GGA: SCAN and r2SCAN

Although LDA/GGA+U partially resolves the systematic errors associated with electron
self-interaction, the +U value remains system-specific and has limited transferability. In
principle, higher levels of theory, such as meta-GGA DFT functionals, can capture medium-
range dispersion interactions and should exhibit smaller self-interaction errors than GGA
without +U corrections by introducing the kinetic term ∇2n and satisfying all known con-
straints on an exchange-correlation functional

Emeta-GGA
xc [n] =

∫
εxc[n(r),∇n(r),∇2n(r)]n(r)d(r). (2.16)

Sun et al. [34] addressed the challenge of generality by developing the strongly constrained
and appropriately normed (SCAN) functional. This nonempirical meta-GGA functional has
been shown to be substantially more accurate than PBE for predicting lattice constants
and ground-state structures of solids [48]. Furthermore, the r2SCAN revision of SCAN has
demonstrated better numerical stability and high general accuracy. Figure 2.3(a) displays
the error distribution of calculated formation energies compared to experimental values for
formation enthalpies in 1,015 solid compounds using PBE, SCAN, and r2SCAN functionals.
Figure 2.3(b) illustrates the computational time relative to PBE, and Figure 2.3(c) presents
the mean absolute error (MAE) by partitioning the 1,015 compounds into various subsets.
The numbers in parentheses above each set of bars indicate the number of compounds in
that subset, as reported in the benchmark tests by Kothakonda et al. [47].

In this thesis, SCAN/r2SCAN-DFT is used for the calculations of DRX systems with
vacancies, as the introduction of vacancy is coupled with charge transfer effects and requires
a nonempirical, accurate description of the electronic structures. SCAN/r2SCAN is believed
to better capture cation-anion hybridization and Li-coordination [48, 49].

2.2 Statistical mechanics on lattices

In statistical mechanics, each microstate s possesses an associated energy Es. The en-
thalpy for microstate s is defined as Hs = Es+PV , where pressure P (intensive variable) and
volume V (extensive variable) represent a pair of conjugate variables. In solid-state systems,
the volume change is considered negligible for our discussion of configurational problems,
implying Hs ≈ Es. The probability in the microstate s is given by

Ps =
exp(−Es/kBT )

Z
, Z =

∑
s

exp(−Es/kBT ), (2.17)

where kB is the Boltzmann constant and Z is the canonical partition function of (N, V, T )
ensemble. The average energy is a weighted summation of all possible microstates

⟨E⟩ =
∑
s

PsEs. (2.18)
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Treating the partition function as a generating function of Es, the average and variance of
energy can be expressed in a more natural way [50]:

⟨E⟩ = −∂ lnZ
∂β

, ⟨E2⟩ − ⟨E⟩2 = ∂2 lnZ

∂β2
, (2.19)

where β = 1/kBT , ⟨E⟩ is the first-order cumulant (mean), and σ2(E) = ⟨E2⟩ − ⟨E⟩2 is the
second-order cumulant (variance) of lnZ (cumulant generating function). The free energy
can be expressed as

F = − 1

β
lnZ. (2.20)

Nonetheless, providing a detailed description of the partition function proves challenging,
as it necessitates knowledge of the energy spectrum for all relevant excitations. At finite
temperatures, various excited states are possible, including vibrations around equilibrium
sites, intra-atomic excitations, and substitutional excitations [51]. Among these, only the
substitutional excitation contributes to configurational rearrangement, and the solid gener-
ally experiences a large number of vibrations before such a thermal fluctuation results in
a configurational rearrangement. These observations imply that the partition function in
solids with configurational disorder can be expressed as

Z =
∑
σ

∑
s∈σ

exp(−βEs), (2.21)

where the second summation
∑

s∈σ includes all the vibrational and electronic states asso-
ciated with the configuration σ. By introducing the configurational-dependent free energy
function

F (σ) = − 1

β
ln

(∑
s∈σ

exp(−βEs)

)
, (2.22)

the partition function can be written as a generating function of F (σ)

Z(β) =
∑
σ

exp (−βF (σ)) . (2.23)

The configurational dependent free energy function can be written as F (σ) = EGS(σ) +
Fex, where EGS(σ) is the ground state energy and Fex includes excitations from vibrational
(and electronic) degrees of freedom. Prior research indicates that this approximation only
affects the order-disorder transition temperature quantitatively but does not change the
phase diagram’s topology [52–54]. Consequently, it can be inferred that the coarse-grained
partition function detailed in Eq. (2.23) is equivalent to the partition function for a lattice
model [51]. Although some early studies assumed the electronic degrees of freedom to be
ergodic as well and can be coarse-grained into {σ} in several metallic systems [55–57],
however, as discussed in Chapter 4 and 5, the electronic degrees of freedom cannot be
effectively coarse-grained for many ionic materials and must be explicitly included in the
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orbits of the lattice model [58]. In this thesis, vibrational degrees of freedom are neglected
from our discussion.

For systems that can exchange component numbers by interacting with external environ-
ments (e.g., intercalation process of Li-ions when a voltage is applied), the grand-canonical
ensemble (µ, V, T ) is more useful for discussion. The grand partition function is a generating
function of Z(β,N)

Ξ(µ, β) =
∑
N

exp(βµN) · Z(β,N). (2.24)

The average and variance of the number of components are

⟨N⟩ = ∂ ln Ξ

∂(βµ)
, ⟨N2⟩ − ⟨N⟩2 = ∂2 ln Ξ

∂(βµ)2
. (2.25)

And the average and variance of the grand canonical energy are

⟨Λ⟩ = −∂ ln Ξ
∂β

, ⟨Λ2⟩ − ⟨Λ⟩2 = ∂2 ln Ξ

∂β2
, (2.26)

where Λ = E − µN .

2.2.1 Monte Carlo simulations

In lattice systems with multiple components, enumerating all the possible configurations
is an intractable NP-hard problem. Monte Carlo (MC) simulation is a natural choice to effi-
ciently sample the high-dimensional configurational space. A key aspect in MC simulations
is to ensure that the system reaches equilibrium following the Detailed Balance Condition.

Theorem 3 (Detailed Balance Condition) Consider a system with transitions between
states i, j according to a Markov process. The transition rate from state i to state j is denoted
by Wij. The probability for the system to be in state i is Pi. At equilibrium, for every pair
of states i and j, the following relation holds:

PiWij = PjWji (2.27)

The Detailed Balance Condition plays a fundamental role in formulating MC algorithms.
The Metropolis-Hastings algorithm, in particular, is a widely used technique for sampling
probability distributions. It was initially developed by Metropolis et al. [59] and later gen-
eralized by Hastings [60]. This algorithm is often applied to systems with a large number of
microstates. An outline of the Metropolis-Hastings algorithm applied to a canonical MC in
a lattice system with the spin-flip method is presented below:

1. Initialize the system with a specific configuration σi and calculate its energy E(σi).
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2. Randomly select site i and j, propose a new configuration σi+1 by exchanging the spin
variables (i.e., occupied atom) of site i and j.

3. Compute the energy difference ∆E = E(σi+1)− E(σi) and the transition probability

P = min
{
1, exp

(
− ∆E

kBT

)}
, where kB is Boltzmann constant and T is the temperature.

4. Generate a random number r, uniformly distributed between 0 and 1.

5. If r < P , accept the proposed configuration and set σi+1 as the current state. Other-
wise, reject the proposed configuration and retain σi as the current state for the next
iteration.

In canonical MC, the transition rate Wij equals Wji since states i and j share the same
composition. In grand-canonical MC, the transition rate Wij is composition-dependent and
needs to be precomputed into a table for quick identification of all events that need to be
updated, which is called table-exchange method [61, 62]. MC simulations typically require
numerous energy evaluations (on the order of millions of steps), highlighting the need for a
reduced but efficient Hamiltonian with ab-initio accuracy.

2.3 Cluster expansion method

Li/TM

O/F

Clusters

Figure 2.4: The cation sites in a rocksalt lattice are labeled in red and can be occupied by
Li+ and transition metals (TM) in DRX. The anion sites are labeled in gray and can be
occupied by O2− and F−. Some examples of n-body (n = 2, 3, 4) clusters are included to
represent the intra- and inter-sublattice interactions.

The cluster expansion (CE) method is one approach to the effective Hamiltonian from
ab-initio calculations [63–65]. The CE expands any property (e.g., formation energy) in
terms of the distribution of atoms on a set of predefined sites, which has been well developed
to describe such configurational energetics for metallic alloys [66, 67], as well as for ionic
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systems [68, 69]. When the quantity being expanded is the energy, the expansion coefficients
are referred to as Effective Cluster Interactions (ECI). For example, in a multicomponent
system, the energy is expanded as

E(σ) =
∑
β

mβJβ ⟨Φα∈β⟩β , Φα =
N∏
i=1

ϕαi
(σi). (2.28)

A configuration σ represents a specific occupancy on all the sites of the system, where σi
describes which species sits on the i-th site of the structure. The site basis function ϕαi

(σi)
transforms the occupancy variable σi into a scalar value. There are typically as many (non-
constant) cluster basis functions as possible occupancies on a site minus one. The cluster
basis function label α = (α1, α2, α3, . . .) indicates a group of sites, each with a specific basis
function on it, where each entry αi labels the corresponding site basis function ϕαi

. Thus,
the cluster basis function Φα =

∏N
i=1 ϕαi

(σi) can be obtained by taking the product of site
basis functions. The detailed formalism of cluster expansion can be found in Ref. [63].

Basis function transformation

For example, the cation sublattice of a LiMnO2 rocksalt oxide is a binary system where
Li and Mn share the octahedral interstitial of the FCC anion framework. In such a system,
Li can be encoded by σLi = 0 and Mn by σMn = 1. The parameter αi takes a value from
[0, 1, ...M − 1], where M is the number of allowed species defined on the sublattice (e.g.,
M = 2 for Li-Mn). While many forms of site basis function can be used [66, 70, 71], a
sinusoid basis function is applied here to transform the occupancy variable (σLi, σMn) into a
value [72], where

ϕj(σi) =


1 if j = 0

− cos
(

π(j+1)σi

M

)
if j is odd

− sin
(
πjσi

M

)
if j is even

. (2.29)

The j indicates αi in Eq. (2.28) and can take a value of 0 or 1. Thus, we have ϕj=0 ≡ 1,
ϕj=1(σ

Li = 0) = −1, and ϕj=1(σ
Mn = 1) = 1. This situation corresponds to the spin variables

used in a generalized Ising model [51, 73]. For systems with species number M > 2, the
basis functions take values beyond those of spin variables {−1, 1} typically used in binary
CE. Some examples of other types of site-basis functions also developed for the CE method
are the Chebyshev polynomials [66]

ϕj(σi) =

{∑j/2
k=0 ckσ

2k
i if j is even∑(j−1)/2

k=0 ckσ
2k+1
i if j is odd

, (2.30)
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where the coefficients ck are chosen so that the basis is orthonormal. The indicator (point
delta function) basis function [70]

ϕj(σi) =

{
1 if j = 0

1σj
(σi) if j > 0

, (2.31)

where 1σj
(σi) are singleton indicator functions (1σj

(σi) = 1 if σi = σj and 0 otherwise).

Correlation function and feature matrix

The correlation function ⟨Φα∈β⟩β is computed as a normalized quantity with respect to
the crystallographic primitive cell

E(σ) =
∑
β

mβJβ ⟨Φα∈β⟩β , ⟨Φα(σ)⟩β =
1

Nσmβ

∑
α∈β

Φα(σ), (2.32)

where β is an orbit representing all symmetrically equivalent cluster basis functions α, mβ

is the corresponding multiplicity, Nσ is the size of the supercell of configuration σ for the
normalization, and Jβ is the effective cluster interaction (ECI). The CE energy is linearly
dependent on the ECIs J when the configuration σ is given

ECE(σ) = Π(σ) · J , (2.33)

whereΠ(σ) = [1, ⟨Φ⟩β1 , ⟨Φ⟩β2 , ...] is a row vector of correlation functions and J is the column
vector of ECIs.

2.3.1 Parameterizing Effective Cluster Interactions (ECIs)

Given a set of input occupancy configurations S, the set of correlation vectors forms a
feature matrix ΠS = [Π1,Π2, ...], and the corresponding DFT energies are used to construct
the target vector EDFT,S. Determining the ECIs is an inverse problem of Eq. (2.33), also
called linear regression. Generally, the problem can be solved by minimizing the cost function

min
J

||EDFT,S −ΠSJ ||22 + ρ(J), (2.34)

where ρ(J) is the regularization of ECIs J to avoid over-fitting. The selection of the regu-
larization function ρ(J) plays a crucial role in determining the reliability of ECIs, which will
be explored in depth in Section 2.4.

Figure 2.6(b) presents a brief illustration of how to construct a CE Hamiltonian itera-
tively. In practice, the CE model is initially fitted on a small set of DFT calculations, where
the DFT-relaxed structures are refined to the crystallographic sites (i.e., Wyckoff positions)
as predefined by the CE (illustrated in Fig. 2.6(a)). This procedure can be accomplished by
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Figure 2.5: Illustration of the linear relation between energies, feature matrix, and ECIs.

the crystallographic matching algorithm such as StructureMatcher in the pymatgen library
[74]. Subsequently, a basic CE is fitted, which can be utilized in a Monte Carlo simulation to
generate new structures. DFT calculations are then applied to a subset of the Monte Carlo-
derived structures, and an updated CE is fitted. This procedure is executed iteratively until
the model converges, as evidenced by a consistently low and stable cross-validation error and
accurate reproduction of DFT ground states, among other factors. In such a process, it is
always desirable to achieve fewer training iterations, as DFT calculations are costly in terms
of CPU time. On the other hand, fewer structures may also result in a worse fitting due to
insufficient sampling of the configuration space, which addresses the importance of structure
selection for training data generation.

2.3.2 Structure selection

Obtaining representative training structures through sampling is crucial for creating ef-
fective CE models. Ideally, such sampling encompasses all pertinent regions within the con-
figuration space, ensuring that CE predictions are interpolative rather than extrapolative.
However, comprehensively covering vast configuration spaces is typically infeasible. Struc-
ture sampling techniques generally rely on the relationship between the number of structures
m and the number of correlation functions d employed for fitting a CE model. Depending on
this relationship (i.e., the shape of the feature matrix ΠS), the linear system in Eq. (2.34)
can be classified as either an overdetermined (m > d) or an underdetermined (m < d) prob-
lem. The choice of structure sampling methods and their underlying mathematical rationale
vary accordingly.

The theoretical properties and practical stability of regression primarily hinge on the
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Initialize 
inputs for DFT

Run DFT

Fit CE model

Output

Converged?

Add structures 
with CEMC

Yes

No

Relaxed Structure

Refined Structure

(b)(a)

Figure 2.6: (a) Schematics of an input structure (DFT-relaxed) and a refined structure.
The refined structure is represented by the sites of the relaxed structure mapped to the
locations of the sites of the rigid lattice. The different colors represent multiple species on
the lattice. (b) The general flowchart of constructing a CE model, including initialization
of input structures, DFT calculations, fitting and convergence check, and cluster expansion
Monte Carlo (CEMC) for sampling.

feature matrix ΠS having full rank, rank(Π) = min{m, d}. In other words, the rank equals
the number of columns in the overdetermined case (m > d) and the number of rows in the
underdetermined case (m < d). Two scenarios and their relevance to structure sampling will
be discussed.

Overdetermined linear system

In the overdetermined case, a full-rank matrix consists of linearly independent sampled
values for each correlation function. For any finite set of samples, intrinsic linear dependen-
cies and inadequate sampling may contribute to rank deficiencies in ΠS. Rank deficiency
can be further exacerbated by configurations with energies inaccessible to first-principle cal-
culations (i.e., in overdetermined cases, although m > d, the rank(Π) can be smaller than
d. In such situations, the rank(ΠS) can be increased by incorporating more structures to
encompass a broader range of correlation values, and/or adding supplementary correlation



24

Initialize inputs 
for DFT

Fit CE model

Output

Converged?
Sample probe 
structures with 

CEMC
Yes

No

Sampling for Overdetermined System

Add Probe structure with

Sampling for Compressive Sensing
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• Search random structure 𝝈
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• Update feature matrix by 

𝚷 = 𝚷⊕𝚷𝝈

Compressive sensing 
cluster expansion

Sample 
𝑚 structures

Figure 2.7: (a) Sampling procedure for overdetermined problems, including initialization of
inputs for DFT calculations, fits of CE models, convergence checks, and addition of probe
(additional) structures [69]. The probe structures are selected by maximizing the reduction
of leverage score (uncertainty) between the previous set S and the new set Ŝ. (b) Sampling
procedure for the compressive sensing cluster expansion. In such a procedure, structures are
selected by selecting correlation vectors Πσ that most closely align with uniformly random
vectors over the hyper-sphere π⃗ [75]. (Ref. [63])

functions that introduce new linearly independent features. The focus of structure sampling
should be on improving the predictions and variances for a fitted CE for any acceptable
estimates of ECI. To simplify our analysis of prediction variance, it is assumed that a fitted
CE model is fitted with an overdetermined, full-rank feature matrix and captures the real
target energy as follows,

EDFT(σ) = Πσ · J + ε, (2.35)

where ε is a random error from N (0, s2). Under the assumptions above, the variance of the
predicted energy by a CE fitted with least squares regression can be expressed as

Var[ECE(σ)] = s2Πσ
T (ΠTΠ)−1Πσ, (2.36)

where s2 represents the variance from intrinsic noise in the DFT calculations for a given
population of structures, and Πσ is the correlation vector for the particular occupancy σ
used in prediction [69, 76, 77]. The expression above can be adjusted for penalized regression
models under a Bayesian interpretation [78]. According to Eq. (2.36), the average variance
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for predicted energies is given as

⟨Var[ECE(σ)]⟩ =
σ2

|S|
∑
σ∈S

Πσ
T (ΠTΠ)−1Πσ

=
σ2

|S|
Tr(H), (2.37)

where |S| is the number of training structures. H = ΠT (ΠTΠ)−1Π is the so-called hat matrix
[79]. The diagonal elements Hii are the predicted variances for a particular structure, which
are also known in the statistics literature as leverage scores. The leverage score ranks the
uncertainty of the corresponding probe occupancy σ into high-leverage or low-leverage points
according to regression diagnostics [80]. A handful of methods for structure sampling have
been proposed that seek to minimize the average leverage score, or equivalently maximize
the reduction in average predicted variance, for each additional structure included [69, 76,
77]. These methods can lead to improved robustness and accuracy in CE fits.

Underdetermined linear system

In the underdetermined linear regression case (m < d), obtaining a full-rank correlation
matrix is much more straightforward. An underdetermined system has full rank when all
correlation vectors (rows of Π are linearly independent), as opposed to linearly independent
correlation functions. In this case, maximizing the rank(Π) ≤ m necessitates obtaining m
structures with linearly independent correlation vectors.

Given the larger number of unknowns compared to samples, sampling and regression for
an underdetermined CE system are effectively addressed within the Compressive Sensing
(CS) framework. Prior research indicates that a CS approach to cluster expansions can yield
accurate and sparse ECI solutions using a relatively small number of DFT measurements
compared to the number of correlation functions (m≪ d) [71, 75]. The rigorous solution of
CS requires an ℓ0-norm regularization of J , but computing the ||J ||0 in the cost function is
challenging due to its NP-hard nature. In the CS paradigm, the ℓ0-norm can be transformed
to an ℓ1-norm when the feature matrix ΠS satisfies the restricted isometry property (RIP)
condition [81].

Theorem 4 (Restricted Isometry Property) Let A be an m×d matrix. The matrix A
is said to satisfy the Restricted Isometry Property (RIP) of order k with constant δk ∈ (0, 1)
if for all k-sparse vectors x ∈ Rd, the following inequality holds:

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22. (2.38)

To satisfy the RIP in compressive sensing, a key quantity is a coherency between the sensing
(measurement) basis Φ and the representation basis Ψ.

ν(Φ,Ψ) =
√
N max

j,k
|⟨ϕj, ψk⟩|. (2.39)



26

The probability of correct recovery from M measurements exceeds 1 − δ if the number
of measurements satisfies M ≥ Cν(Φ,Ψ)2S ln(N/δ), where C is a constant and S is the
number of non-zero elements. In the context of CE, the representation basis are formed by
the symmetry distinct orbits β, and the measurements are formed by the configurations {σ}.
For the representation Φ, the Kroenecker δ’s hold ϕβg(βf ) = δfg, where βf and βg represent
different orbits. For the measurements Ψ, the basis function is the normalized correlation

function, i.e., ψσ(βf ) = Πβf
(σ)/

√∑
β Πβ(σ)2. And the coherence is given by the maximum

scalar product of Φ and Ψ

ν(Φ,Ψ) =
√
N max

σ,β

|Πβf
(σ)|√∑

β Π
2
β(σ)

2
. (2.40)

Nelson et al. [75] proposed generating a training set where each row is an identically indepen-
dently distributed (i.i.d.) random vector. As illustrated in Fig. 2.7, during each iteration,
an i.i.d. random vector π⃗ is sampled from a hyper-sphere and normalized to the current
feature matrix ΠS. The random structure with the closest distance to the normalized π⃗ is
then added to the training set for DFT evaluation. However, in many practical cases, the
configurations in training set S are correlated because structures are not randomly sampled
but are mostly part of an ensemble of configurations with low energy, especially in ionic
materials. Such correlations fail to satisfy the i.i.d. condition. Moreover, generating struc-
tures from a specific correlation vector is also an NP-hard problem. Although the strict
compressive sensing cluster expansion is not easy to construct in practice, it is still feasible
to obtain accurate and well-converged CE models by also relying on the appropriate use of
structured sparsity regularization [71, 82].

In practical usage, one can separate the structure selection into two stages: (1) for
the underdetermined linear system, structures are selected to construct a feature matrix
with a low coherency; (2) once the number of structures is sufficient enough to reach the
overdetermined region, the additional structure can be added by minimizing the variance
according to Eq. (2.36).

2.4 Sparse regression with ℓ0ℓ2-norm regularization

In this part, the discussion focuses on how to obtain an optimized ECIs solution given by
a training set with feature matrix ΠS. Generally, the norm-regularized regression problem
can be conceptualized as minimizing the cost function

min
J

||EDFT,S −ΠSJ ||22 + µ||J ||p , ||x||p =

(∑
i

|xi|p
) 1

p

, (2.41)

where the p-norm of J is added to regularize the fit and suppress over-fitting, and µ controls
the degree of regularization. Figure 2.8 shows the comparison of ℓ2, ℓ1 and ℓ0-norm regular-
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Figure 2.8: Illustration of ℓ2, ℓ1 and ℓ0-norm regularization in a two-parameter space J =
(J1, J2). The blue circles represent the contours of the data term ||EDFT,S −ΠSJ ||22 in cost
function. The red regions represent the constraints of parameters (e.g., J2

1 + J2
2 ≤ s for

ℓ2-norm, |J1|+ |J2| ≤ s for ℓ1-norm). The dark red point is the intersection of the data term
and the regularization of parameters, which jointly determines the estimation of J . (Ref.
[83])

ization in a two-parameter space J = (J1, J2). The blue circles are the contours of the data
term error ||EDFT,S − ΠSJ ||22. The red regions represent the regularization constraints on
the parameters (||J ||p ≤ s), which can be transformed to a Lagrangian form in Eq. (2.41).

Theorem 5 (Lagrange multiplier) Let f(x) be a loss function that needs to be mini-
mized, and let gj(x) and hk(x) be the inequality and equality constraints, respectively, such
that:

gj(x) ≤ 0, j = 1, . . . , p, hk(x) = 0, k = 1, . . . , q. (2.42)

The Lagrangian form of the optimization problem with these boundary constraints can be
written as:

L(x,λ,µ) = f(x) +

p∑
j=1

λjgj(x) +

q∑
k=1

µkhk(x), (2.43)

where λ = (λ1, . . . , λp) and µ = (µ1, . . . , µq) are the Lagrange multipliers associated with the
inequality and equality constraints, respectively.

The dark red point is the regularized estimation of J , which is the intersection between
the data error term and the regularization term. The ℓ1-norm tends to generate sparser
solutions compared with the ℓ2-norm because the intersection is likely to be located on the
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axis. The ℓ0-norm counts the non-zero elements of J , where the intersection is exactly
located on the axis and thus the ℓ0-norm imposes an exact sparsity constraint on J .

Conventionally, ℓ2-norm (ridge regression, p = 2) regularization can be applied when
the problem is overdetermined. The ℓ2-norm regularized regression reduces the over-fitting
caused by intrinsic noise in the training data. This can be achieved solely by introducing
the ℓ2 regularization function and additionally using the mixed-basis expansion [84, 85].
Bayesian approaches have also been successfully applied to estimate the ECIs with a prior
distribution in several binary systems [78, 86, 87].

However, in most multicomponent systems, the problem is underdetermined as the num-
ber of ECIs increases combinatorially with the number of species, scaling approximately as∏

k(Mk − 1)nk , where Mk is the number of species on the k-th sublattice, and nk is the
number of cluster sites in the same sublattice k. The explosion in the number of basis func-
tions when many species can occupy a site makes it difficult to predefine which cluster basis
functions contribute to the expansion for high dimensional multicomponent systems (i.e.,
which cluster basis function has a non-zero element in the solution of J). Hence, a sparse
solver for ECIs incorporating feature selection is necessary. Although the ℓ1-norm regular-
ized regression exhibits some feature selection capabilities, as demonstrated in subsequent
sections, its performance is inferior to that of the ℓ0-norm with structural sparsity.

In the subsequent sections, an ℓ0ℓ2-norm regularization approach incorporating hierarchy
constraints to develop more robust and predictive CE models is discussed. First, the ℓ0ℓ2
penalty term and hierarchy constraints are introduced within the context of mixed-integer
quadratic programming (MIQP). Second, the sparsity and convergence rate of ECIs are
compared and discussed with those of the conventional ℓ1 method in the Li–Mn–V–Ti–O–F
disordered rocksalt system. Finally, it is demonstrated that an ℓ0ℓ2-regularized CE better
reproduces the correct physical interactions compared to the ℓ1-CE, in terms of computed
phase diagrams, voltage profiles, and related physical quantities in the Li–Mn–Ti–O system.

2.4.1 The ℓ0-norm regularization

In Eq. (2.41), p = 0 manifests itself as a pseudo-norm that counts the number of non-zero
elements of J :

||J ||0 =
∑
i

Ind(Ji), Ind(Ji) =

{
0, Ji = 0

1, Ji ̸= 0
(2.44)

Adding the ℓ0 term into the cost function directly penalizes the number of non-zero ECIs,
yielding better sparseness in its solution. However, optimizing a cost function with an ℓ0
term is an NP-hard problem and is difficult to present in a direct way [81, 88]. Previously,
Huang et al. [89] has approached the problem by rewriting ℓ0 optimization as a mixed-integer
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Figure 2.9: Illustration of converting the ℓ0-norm regularization into integer programming
with boundary conditions. The slack variables can take the value of 0 or 1, indicating whether
the corresponding ECI is zero or non-zero. The ECI values depicted in the plot are arbitrary
and serve only illustrative purposes.

programming problem, such that

min ||J ||0 ⇔ min
∑
c∈C

z0,c (2.45)

s.t. Mz0,c ≥ Jc, ∀c ∈ C
Mz0,c ≥ −Jc, ∀c ∈ C
z0,c ∈ {0, 1}, ∀c ∈ C

where M is a sufficiently large number (larger than the maximum possible absolute value of
any ECI), and z0,c is a slack variable (binary integer) indicating whether the ECI of orbit
c is zero or not. Jc is constrained to 0 when the slack variable z0,c = 0 (inactive) and to
[−M,M ] when z0,c = 1 (active) as illustrated in Fig. 2.9. In practice, it is shown that one
can at least obtain a sparseness-improved near-optimal solution within a reasonable CPU
time cutoff using a high-performance software package such as cvxopt or gurobi [90].
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2.4.2 Hierarchy constraints

(a) (b)

(a) (b)

Figure 2.10: Schematic illustrations of hierarchically constrained sparsity for a rocksalt struc-
ture. The site coloring in the images represents non-constant site functions. In the illus-
tration there are two types of site spaces, one with 4 allowed species (3 non-constant site
functions); and another with 3 allowed species (2 non-constant site functions). (a) Hierar-
chical relations for a specific quadruplet correlation function and all its possible factors. (b)
Hierarchical relations between groups of correlation functions acting over the same orbits of
quadruplet clusters and all correlation function groups acting over the orbits of sub-clusters
of the quadruplet cluster. (Ref. [63])

In a CE, clusters are usually enumerated in an iterative, low-to-high order (i.e., from
singlets to pairs, triplets, quadruplets, and so on). Practically, the CE is truncated to
a maximum of n (e.g., quadruplet clusters with n = 4 are a typical limit), ignoring the
higher-order interactions to control the model complexity. To differentiate the cluster orbits
by different significance, one of the basic assumptions of CE is based on the premise that
n-body cluster interactions become less important to the configurational energy (or other
scalar properties) as n becomes larger. This assumption means that the majority of the
fitted property can be described by the lower-order interactions and that the higher-order
interactions serve as the fine-tuning part of the fitting.

Such a physically inspired concept can be introduced in the form of hierarchy constraints,
as has been done successfully in some previous studies [76, 91, 92]. The hierarchy constraint
manifests itself as Jb ̸= 0 if and only if Ja ̸= 0 (a ⊂ b), where a and b are a lower- and
higher-order cluster function orbit, respectively, and b contains all the site bases of a as a
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subset. In the MIQP representation, the hierarchy relationship can be easily expressed as a
constraint between slack variables:

z0,b ≤ z0,a, a ⊂ b. (2.46)

This treatment was first proposed by Huang et al. [89], where it was used in the ℓ0ℓ1-norm
regularization paradigm; however, it may encounter the pseudo-activeness as described in
the following content.

2.4.3 The ℓ2-norm regularization

⊂ ⊂

𝓙𝜶 ≠ 𝟎, 𝐳𝟎,𝜶 = 𝟏 𝓙𝜷 = 𝟎, 𝐳𝟎,𝜷 = 𝟏 𝓙𝜸 ≠ 𝟎, 𝐳𝟎,𝜸 = 𝟏

(b) Pseudo-active hierarchy constraints (ℓ!ℓ") 

⊂ ⊂

𝓙𝜶 ≠ 𝟎, 𝐳𝟎,𝜶 = 𝟏 𝓙𝜷 ≠ 𝟎, 𝐳𝟎,𝜷 = 𝟏 𝓙𝜸 ≠ 𝟎, 𝐳𝟎,𝜸 = 𝟏

(a) True-active hierarchy constraints (ℓ!ℓ#) 

Figure 2.11: Illustration of hierarchy relations (α ⊂ β ⊂ γ) between pair, triplet, and
quadruplet orbit. The different colors on the cluster sites represent the decorating species
for a given site-basis function. The equation in red shows a pseudo-active hierarchy constraint
that may appear in ℓ1 and its derivative methods. (Ref. [83])

It is proposed that combining ℓ2-norm and ℓ0-norm regularization can impose true hier-
archy constraints, unlike the ℓ0ℓ1-norm. It is to be noted that the inequality between slack
variables does not necessarily impose the hierarchy relation (Jb ̸= 0, iff Ja ̸= 0). This is
because the hierarchy constraints are defined on the magnitude of ECIs Ja and Jb, while
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the slack variables z0,b, z0,a are intermediate to represent the presence or exclusion of the
variables.

When implementing the hierarchy constraints in ℓ0ℓ1-norm regularization, pseudo-active
behavior can manifest itself when a J = 0, but its slack variable z0 = 1 within the MIQP
paradigm. J can be regularized to zero, which is still a valid solution between [−M,M ], even
with z0 = 1. This is caused by the fact that the ℓ1-norm has feature-selection properties that
intrinsically produce a sparse solution [93]. This pseudo-activeness can introduce excessive
sparseness to the solution and break the hierarchy constraints. Figure 2.11 presents an exam-
ple of pseudo-activeness in ℓ0ℓ1-norm regularization. The excessive sparseness is introduced
to the orbit β with Jβ = 0, while all orbits α, β, γ has active slack variables z0 = 1. The
higher-order orbit γ is erroneously activated while Jβ = 0. To avoid such a situation and
ensure proper function with ℓ0 under hierarchy constraints, a norm with no feature-selection
properties is required. The ℓ2-norm is a natural choice.

With the introduction of the ℓ0ℓ2-norm and hierarchy constraints, the final ECI opti-
mization problem can be written as

min
J

JTΠT
SΠSJ

T − 2ET
DFTΠSJ + µ0

∑
c∈C

z0,c + µ2||J ||22 (2.47)

s.t. Mz0,c ≥ Jc, ∀c ∈ C
Mz0,c ≥ −Jc, ∀c ∈ C
z0,b ≤ z0,a, ∀a ⊂ b, {a, b} ∈ C
z0,c ∈ {0, 1}, ∀c ∈ C,

where ||J ||22 = JTJ penalizes the magnitude of ECIs, thus avoiding over-fitting by regu-
larizing sampling noise while the ℓ0-term

∑
c z0,c optimizes the sparseness. The hierarchy

constraints ensure correct containment relationships by manifesting lower-order ECIs first
to reduce redundancy.

2.4.4 Robustness and convergence of the ℓ0ℓ2-norm regularized
regresssion

The convergence of the CE when the ℓ0ℓ2-norm and hierarchy constraints are enforced was
tested on the configurational disorder in the LiF–MnO–LiVO2–Li2TiO3 composition space.
The CE model contains pair interactions up to 7.1 Å, triplets up to 4.0 Å, and quadruplets up
to 4.0 Å based on a lattice parameter a = 3 Å for the primitive cell. Figure 2.4(a) presents
the rocksalt framework of a DRX structure. The framework contains a cation sublattice
(red) and anion sublattice (gray), where the cation sites can be occupied by Li and transition
metals (TM, including Mn2+, V3+, Ti4+ in this example) and the anion sites can be occupied
by O2− and F−. A species indicator where the site basis function reads ϕj(σi) = δi,j was
used [70]. The electrostatic energy (Ewald energy E0/εr) is included to capture long-range
electrostatic interactions [16, 94] (see Section 4.2 for detailed statements). In total, 162 ECIs
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(including the constant term J0) are predefined in the CE Hamiltonian. For this system, DFT
calculations were performed with VASP using the projector-augmented wave method[95,
96], a plane-wave basis set with an energy cutoff equal to 520 eV, and a reciprocal space
discretization of 25 k -points per Å−1. All calculations were converged to 10−6 eV in total
energy for electronic loops and 0.02 eV/Å in interatomic forces for ionic loops. The Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation exchange-correlation functional
[39] with rotationally averaged Hubbard U correction (GGA+U) was used to compensate
for the self-interaction error on all transition-metal atoms except titanium [33] (3.9 eV for
Mn and 3.1 eV for V). After DFT evaluation, the dimension of the feature matrix ΠDFT,S

is 487 × 162. The performance of the ℓ0ℓ2-CE is compared with the ℓ1-CE. Two major
improvements are emphasized in the ℓ0ℓ2-CE.

Sparseness vs. cross-validation error

(a) (b)

Figure 2.12: (a) Cross-validation error (meV/atom) of the ℓ1-CE and the ℓ0ℓ2-CE. The
sparseness is the number of non-zero ECIs in the fit (||J ||0). The curves are generated by
varying hyperparameters µ0, µ1, and µ2 in regularization. (b) ECIs convergence test vs.
training set size. J is the ECIs fitted with full training data, and J sub is the ECIs fitted
with a subset of the corresponding size. (Ref. [83])

Cross-validation (CV) error vs. model complexity is a general metric used to evaluate
the robustness of a CE model. The optimal trade-off between under-fitting and over-fitting
can be found with a CV test, where the optimal model is fitted with the regularization
hyper-parameter µ that minimizes the CV error. In our test, a k-fold CV error is used,

CV =

√√√√1

k

k∑
j=1

MSEj, MSE =
1

N

N∑
i=1

(Ei
DFT − Ei

CE)
2, (2.48)

where CV is the cross-validation error averaged over k splits of the validation dataset, and
MSE is the mean-squared-error of each validation dataset. Here, N is the size of the valida-



34

tion dataset, and k = 5 is the number of folds. In our tests, the regularization hyperparameter
µ is selected from the logarithm space between [10−6, 10−1]. The sparseness is defined as the
number of non-zero elements of the solution (||J ||0) and represents the model complexity.

The CV error versus sparseness is presented in Fig. 2.12(a) for an ℓ1 and ℓ0ℓ2-norm
regularized CE. For the ℓ0ℓ2-CE, the CV error remains low as the sparseness varies between
25 and 150 ECIs. In this regime, the ℓ0ℓ2-CE shows no sign of over-fitting as the CV error
remains near the global minimum around 6 meV/atom. The ℓ1-CE shows a similar optimal
CV error as that of ℓ0ℓ2-CE near this minimum plateau regime from 50 to 100 in sparseness.
However, as the model complexity changes, the CV error increases at both low and high
sparsity, indicating that the ℓ1-CE is less robust against the choice of model complexity.
Therefore, it is concluded that the ℓ0ℓ2-CE can reach low CV error with a lower complexity,
which is empirically believed to result in models that better reproduce physics. A more sparse
CE can increase the computational speed of energy evaluations and is also less sensitive to
model complexity change as compared with the ℓ1-CE.

Convergence of ECIs with a subset of training data

The second point to be emphasized is that the ℓ0ℓ2-CE converges to its most accurate
solution faster than the ℓ1-CE, which lowers the risk of obtaining an over-fitted result when
the configuration space is under-sampled. This is an important improvement in the practical
use of CE constructions. To test this hypothesis and mimic the iterative sampling process,
a numerical experiment based on a finished DFT dataset (with 487 structures in total)
was designed. Then, the quality of fits performed on subsets of training data of increasing
size was evaluated and subsequently compared the subset-fitted ECIs J sub with the full-set
result. In such a comparison, the ground-truth (full set) solution is set as follows: (1) For
the ℓ1-CE, the regularization parameter µ1 is chosen at the minimum CV error according to
Fig. 2.12(a). This solution has 99 non-zero ECIs when all 487 training structures are used
in the fitting. (2) For the ℓ0ℓ2-CE, to compare the convergence rate under a similar degree
of model complexity, hyperparameters are selected such that the ℓ1-CE and ℓ0ℓ2-CE have
similar sparsity. The resulting ℓ0ℓ2-CE has 92 non-zero ECIs with all 487 training structures
included according to Fig. 2.12(a).

After setting the hyperparameters for both models, the normalized absolute difference
||J sub − J ||1/||J ||1 between the ℓ1-CE (blue line) and ℓ0ℓ2-CE (red line) was compared in
Fig. 2.12(b). For each subset size, ten randomly selected subsets with the same size were
evaluated and averaged. The solid square represents the average, and the error bar represents
the standard deviation resulting from different subsets. Figure 2.12(b) indicates that the ℓ1-
CE demonstrates a higher deviation from the ground-truth solution and converges more
slowly to it than the ℓ0ℓ2-CE as the training set is increased. This result unambiguously
demonstrates the robustness of ℓ0ℓ2-CE to work with small input data sets.
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2.4.5 ECIs with improved physics

From a general perspective of machine learning, the predictions of energies are made by
fitting statistical models on a group of data points. The statistical models can predict the
absolute energy with high accuracy by minimizing the cost function, which is constructed
by the difference between the prediction and observation of the training data. However,
in materials science, relative energy quantities are of greater significance than the absolute
one (such as energy above the hull, phase diagram, and the derivatives of formation energy
with respect to the compositional variables). Bartel et al. [97] critically examined several
ML models for energetics prediction and found that while the models predict the formation
energy (∆Hf ) of materials well, they failed to predict the relative phase stability. Such a
dilemma indicates that the prediction error (CV or RMSE) is not the only thing one should
consider when constructing a statistical model for the energy.

To demonstrate that the ℓ0ℓ2-CE also leads to a more physically informed solution,
a multicomponent system is studied: Li–Mn–Ti–O oxide in an FCC rocksalt framework,
with Li+–Mn2+–Mn3+–Mn4+–Ti4+–vacancy disorder on the octahedral cation sites and Li+-
Mn2+–Mn3+–vacancy disorder on the interstitial tetrahedral sites. The Li–Mn–Ti–O compo-
sition space contains a number of battery-relevant systems [17]. These battery systems are
charged and discharged by adding or removing lithium (i.e., lithiation or delithiation) and a
charge-compensating electron, which reduces or oxidizes a transition metal. As a result, an
important physical property to correctly model in the Li–Mn–Ti–O system is the energetics
of Li in octahedral vs. tetrahedral sites. One significant battery-relevant system in which
the effects of Li local environment preference are especially presented is the LiMn2O4 spinel.
When fully lithiated to Li2Mn2O4, Li-ions occupy octahedral sites while the Li-ions occupy
tetrahedral sites for compositions LixMn2O4 when x ≤ 1.

CE models for Li-Mn-Ti-O systems

The CE was generated with pair interactions up to 7.1 Å, triplet interactions up to
4.0 Å, and quadruplet interactions up to 3.0 Å based on a primitive cell of the rocksalt
structure with lattice parameter a = 3 Å. A sinusoid site basis as shown in Fig. 2.29
was used. In total, 1475 ECIs (including the constant term J0) were predefined in the CE
Hamiltonian. The dimension of the feature matrix is 1137 × 1475. Because of the high
compositional dimensionality, the possible number of ECIs within the interaction cutoffs
is large. In addition, there are some constraints on the occupancies in the Li–Mn–Ti–O
system, such as (1) the total number of Li, transition metals, and vacancies is fixed between
octahedral and tetrahedral cation sublattice; (2) the net charge of the system must be neutral,
etc. These relations and the inability to sample all possible configurations with DFT reduce
the rank of the feature matrix below the dimension (rank(ΠS) = 557), which indicates that
a sparse solution is required.

From the test results in Fig. 2.12, it is noticed that when the sparseness varies, the
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variation of the CV error is smaller when the CE is regularized with the ℓ0ℓ2-norm than
with the ℓ1-norm. This result indicates that ℓ0ℓ2 has a hyperparameter space that is larger
and more tunable, whereas the ℓ1-CE is more deterministic with a small range of optimal µ1

obtained by minimizing the CV error. Motivated by this observation, the selection of ECIs
for the Li–Mn–Ti–O system was completed as follows.

The regularization strength µ1 in the ℓ1-CE was selected from the stable plateau region
when minimizing the CV error in lasso (e.g., the µ1 associated with points between sparseness
of 50 to 100 in Fig. 2.12). For the ℓ0ℓ2-norm, the µ2 was selected from the stable plateau
region by minimizing the CV error in ridge regression, similar to what is done for ℓ1-CE. After
obtaining the optimal µ2, the solution for ℓ0ℓ2-CE was further determined by searching µ0 for
a solution with the proper sparseness (at least ||J ||0 < rank(ΠS), µ1, µ2, µ0 ∈ [10−6, 10−1]).
For both ℓ1-CE and ℓ0ℓ2-CE, several models with low CV error were tested for their ability
to well reproduce physical properties, such as minimal violation of DFT ground states in
the phase diagram, voltage profile comparison against DFT, as well as the Li-site energy
difference between tetrahedral and octahedral occupancy. The best-performing models for
both ℓ1 and ℓ0ℓ2 are presented in Fig. 2.13, respectively.

Ground-state phase diagrams
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Figure 2.13: Phase diagram generated with DFT, ℓ0ℓ2-CE, and ℓ1-CE. The DFT ground
states are labeled in blue text. The incorrectly predicted ground states are labeled with red
circles and text. (Ref. [83])

Figure 2.13 presents a comparison of ground-state phase diagrams with the ℓ1-CE pre-
dictions, ℓ0ℓ2-CE predictions, and DFT calculations. The phase diagrams were generated
with in-sample training data (all 1137 structures evaluated with DFT) for both DFT and
CE models. The DFT phase diagram is taken as the ground truth. In formation-energy pre-
diction, the phase diagram is a key quantity that directly demonstrates the correct physics
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near the ground states. As the ground states are formed variationally, they are particularly
discerning towards spurious ECIs, as the non-physical noisy interactions often create new
ground states leading one to miss the true ground states. Thus, a well-reproduced phase
diagram is desirable for a CE model. In our tests, the ℓ1-CE creates 12 new ground states,
indicating that the correct physics in terms of cluster interactions is not well captured. How-
ever, the ℓ0ℓ2-CE preserves most of the DFT ground states, with only four spurious ”ground
states” in the ℓ0ℓ2-CE phase diagram.

Voltage profiles & Li-site energy

To further evaluate the performance of the ℓ0ℓ2-CE and ℓ1-CE, two additional tests are
introduced to ensure that the CE models accurately represent the physics of Li octahe-
dral and tetrahedral site preferences. Specifically, it is compared how well the CE model
reproduces: (1) energy differences between the Li in the tetrahedral and octahedral sites
in layered MnO2 and spinel MnO2 frameworks and (2) a simplified spinel voltage profile
against the DFT ground truths. The simplified spinel voltage profile includes the fully lithi-
ated rocksalt-like Li2Mn2O4, the spinel LiMn2O4, the commonly seen Li0.5Mn2O4 ordering,
and the fully delithiated Mn2O4 and is calculated by taking the average voltage between each
set of adjacent orderings. The average voltage is calculated using DFT and the following
equation:

V̄ (x1, x2) ≈ −
ELix1Mn2O4 − ELix2Mn2O4 − (x1 − x2)ELi

F (x1 − x2)
, (2.49)

where x1 and x2 are adjacent Li contents with x1 > x2, ELi is the DFT energy of bcc Li
metal, and F is the Faraday constant [98].

The improvement in the physics of the predictions associated with applying the ℓ0ℓ2-norm
with hierarchy constraints is further demonstrated by the voltage profile and Li-occupancy
energy. In Fig. 2.14(a), the voltage profiles generated by prediction using the ℓ1-CE and
ℓ0ℓ2-CE (blue lines) are compared with those from DFT (orange lines), taken as the ground
truth. One can see that the ℓ1-CE incorrectly predicts the voltage plateau between x = 0.5
to 1 in the LixMn2O4 spinel-like structure such that the x = 0.5 configuration is no longer
stable (the voltage between x = 0.5 and x = 1.0 is higher than that between x = 0.0
and x = 0.5). In contrast, the ℓ0ℓ2-CE matches very well with the DFT-generated voltage
profiles. The erroneous predictions of the ℓ1-CE are further confirmed by the Li-occupancy
energy. In Fig. 2.14(b), the energy difference between Li in octahedral and tetrahedral
occupancy was evaluated in the layered-MnO2 and spinel-MnO2 frameworks. The absolute
error compared with DFT is 0.52 eV (layered) and 0.18 eV (spinel) for the ℓ1-CE, whereas
that for the ℓ0ℓ2-CE is 0.09 eV (layered) and 0.09 eV (spinel), respectively. A significant
reduction of prediction error is observed with the ℓ0ℓ2-norm regularized CE.
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Figure 2.14: (a) The simplified spinel voltage profile (blue line) generated by ℓ1-CE and
ℓ0ℓ2-CE for spinel orderings in LixMn2O4 is compared with the DFT ground-truths (orange
line). (b) Energy difference of Li occupation in octahedral and tetrahedral sites in layered
MnO2 (upper) and spinel MnO2 framework (lower). (Ref. [83])

Discussion of MIQP for ℓ0ℓ2-norm regularization

To obtain a model that represents the physics of a system well, the relative difference
of energies between configurations is of greater significance than the absolute ones. In or-
dinary least-squares fitting, the cost function only focuses on the global averaged error of
the training set, which leads to over-fitting. Adding regularization of the ECIs can alleviate
this issue by constraining the optimization space of parameters, but our results show that
not all regularization creates physically meaningful solutions. It is beneficial to include the
physically inspired constraints into the design of the cost function, such as adding hierarchy
constraints with ℓ0ℓ2-norm implementation. The ℓ0ℓ2-CE can improve the physical meaning
of the solution and break the correlation between coupled clusters, which is achieved by di-
rectly penalizing the number of non-zero ECIs for feature selection and enforcing hierarchy
relations between ECIs via the slack variables in the MIQP paradigm.

In two complex oxide systems, it is shown that the ℓ0ℓ2-CE with hierarchy constraints
outperforms the conventional ℓ1-CE in terms of sparseness against CV error, convergence
rate with a subset of training data, and some critical physical quantities in Li intercalation
materials. More generally, the optimization of the ECIs is not deterministic within a single
method, and the successful construction of a CE model typically relies on two aspects: (1)
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Figure 2.15: (a) The procedure to obtain an ℓ0ℓ2-norm regularized solution, including finding
the µ2 by minimizing the CV error in ridge regression, sparseness engineering with ℓ0 using
MIQP, and terminating if the solution is converged with good sparseness, as well as good-
reproduction-relevant physical properties. (b) The CV error vs. regularization strength for
both pure ℓ1-norm and ℓ2-norm, depicted using the Li-Mn-V-Ti-O-F system as an example.
A suitable choice for the regularization strength is identified from the plateau in the region
with low CV error, which is then used for further MIQP optimization.

choosing a valid interaction space by truncating the clusters or orbits and (2) applying a
proper optimization algorithm to obtain the ECIs. The results in this paper show that for the
second step, the ℓ0ℓ2-norm method is the superior choice for a robust and physical solution
compared to the conventional ℓ1 method.

One limitation of the ℓ0ℓ2-norm method within the MIQP paradigm that has been ob-
served is its computational efficiency. As solving the ℓ0-norm is an NP-hard problem, more
computational time is required to solve the MIQP when more predefined ECIs are included.
The ℓ0ℓ2-CE works well for relatively small or well-predefined systems (dim(ΠS) ≤ 2000).
Therefore, the most applicable way to use ℓ0ℓ2-norm regularized CE with hierarchy con-
straints is likely to be as follows: (1) define a CE within a relatively small cutoff and trun-
cate to quadruplet or quintuplet clusters at most (ideally staying within dim(ΠS) ≤ 2000)
and (2) follow the procedure described in Fig. 2.15(a) and (b) to determine the optimal
hyperparameter to obtain the ECIs. However, it is noted that dim(ΠS) ≤ 2000 applies to
virtually all known published CE.
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Figure 2.16: (a) Formation energy convex hull in LixTi1−xO system predicted by DFT
(black), CE without GS preservation (red) and CE with GS preservation (green). Blue
arrows label the spurious GS. (b) The conditions for GS preservation. (Ref. [99])

2.4.6 Ground state preservation method

While the ℓ0ℓ2-CE estimates the ECIs that are reasonably consistent with the physics near
the ground states (GS), it does not strictly enforce the preservation of these ground states
(i.e., phase stability). Figure 2.16(a) shows three cases of the formation energy convex hull
of the LixTi1−xO system. The black line represents the ground truth from DFT calculations.
The red line represents the convex hull predicted by CE without GS preservation, generating
many spurious GS. To address the exact preservation of ground states, GS preservation can
be further introduced by adding inequality constraints on the energies to optimize ECIs. As
shown in Fig. 2.16, two types of inequalities need to be satisfied to ensure GS preservation.
Let H be a set of GS, (1) a meta-stable configuration’s energy is higher than the convex hull
(any linear combination of {σh, h ∈ H}); (2) a stable configuration’s energy is lower than
any linear combination of other stable configurations {σh, h ∈ H\h}). These conditions are
formalized mathematically by Huang et al. [99]:

Π(σs)J ≥
∑
i∈H

xi ·Π(σi)J + ε, ∀ σs ̸∈ H,

Π(σh)J ≤
∑
i∈H\h

xi ·Π(σi)J − ε, ∀ σh ∈ H.
(2.50)

where σi represents the meta-stable configuration, σh represents the meta-stable configura-
tion (on the DFT energy convex hull), and xi is the fraction of stable composition that σi

can decompose into. The ε is a tolerance value for numerical stability (e.g., ε = 0.001). Eq.
(2.50) can be straightforwardly formulated with MIQP as boundary conditions in mathe-
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matical programming. As such, the corrected convex hull of LixTi1−xO system is shown in
the green line in Fig. 2.16, where no spurious GS is predicted.

2.5 Conclusion

Chapter 2 lays out the broad methodology employed for analyzing thermodynamics in
lattices from first-principles calculations. The chapter initiates with the quantum mechanics
of many-electron systems and subsequently introduces the formalism of DFT. Given that
the disordered rocksalt cathodes are complex oxides with substantial configurational disor-
der, investigating the statistical mechanics in lattices is of great significance. This can be
approached via Monte Carlo simulation, which typically involves millions of energy evalua-
tions for equilibrium sampling. Such a high amount of calculations necessitates an effective
Hamiltonian to approximate DFT calculation with ab-initio accuracy.

Further, the chapter delves into the mathematical formulation and development of the
cluster expansion method for practical applications. In particular, ℓ0ℓ2-norm regularization
and structural hierarchy constraints are introduced into linear regression, thereby facilitat-
ing the construction of robust cluster expansions. The approach is implemented through
mixed integer quadratic programming (MIQP). The ℓ2-norm regularization serves to miti-
gate intrinsic data noise, while the ℓ0-norm is employed to penalize the number of non-zero
elements and incorporate the hierarchical relationship between clusters. As such, sparseness
and cluster hierarchy can be well optimized to obtain a robust, converged set of effective clus-
ter interactions with improved physical meaning. It is demonstrated that the effectiveness
of ℓ0ℓ2-norm regularization in two high-component disordered rocksalt cathode material sys-
tems, where several metrics are compared, including the cross-validation error, convergence
speed, and the reproduction of phase diagrams, voltage profiles, and Li-occupancy energies
with those of the conventional ℓ1-norm regularized cluster expansion models.

The chapter culminates with a general discussion on the development of robust, accurate,
and predictive lattice models for battery materials modeling, including some other high-
lighted features (e.g., CE with ground-state preservation in phase diagram). This chapter
thereby provides the theoretical foundation for the investigation of configurational disorder
in disordered rocksalt cathode materials, which will be discussed in-depth in the following
chapters.
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Chapter 3

Short-range order in disordered
rocksalt cathodes

3.1 Introduction

For the design of cathode materials, Li diffusion is a critical factor in determining its
electrochemical performance. For rocksalt-type Li cathode, the Li diffusion occurs through
an intermediate tetrahedral site (Td, denoted as t) between two octahedral sites (Oh, denoted
as o) as illustrated in Fig. 3.1, which is referred to as o-t-o diffusion. In layered LiTMO2,
the Td sites are coordinated by either LiTM3 clusters (3-TM channels, not contributing to
diffusion) or Li3TM clusters (1-TM channels, facilitating Li migration). The o-t-o diffusion
solely takes the 1-TM channel as intralayer diffusion within the Li slab. Van der Ven et
al. [100] computed the Li migration barriers for hops between adjacent octahedral sites in
LiTiS2 (depicted in Fig. 3.1(b)), revealing that the Li hop mechanism is primarily mediated
by neighboring vacancy clusters: (1) the single vacancy hop leads to strong Coulombic
interactions between Li in the activated Td site and Li in the face-sharing Oh site; whereas
(2) the divacancy hop lacks such repulsion, resulting in a lower Li diffusion barrier compared
to hops into isolated vacancies.

The local environment of the Td site significantly influences the diffusion energy barrier.
In disordered rocksalt cathodes (DRX), it ranges from 0-TM to 4-TM. The 2/3/4-TM chan-
nel does not contribute to Li diffusion due to the substantial electrostatic interaction between
Li in the activated Td site and the TM in face-sharing octahedra, while the 1-TM channel
allows limited Li diffusion, and only the 0-TM channel offers a low-barrier-energy pathway
for facile diffusion. The calculated o-t-o migration barriers of 0-TM and 1-TM channels given
by Lee et al. [25] with a divacancy diffusion mechanism in disordered LiCrO2 and Li2MoO3

are presented in Fig. 3.2. For typical tetrahedral heights in a rocksalt structure, the 0-TM
channel displays a barrier energy of approximately 300 meV, and the 1-TM channel exhibits
around 500 meV. Furthermore, unlike the layered structure with well-defined intralayer dif-
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Figure 3.1: (a) Layered LixTMO2 compounds exhibit 1-TM and 3-TM Td sites, correspond-
ing to Li3M and LiM3 clusters. (b) Li migration barriers for hops between neighboring Oh

sites in layered LixMO2 are meditated by neighboring vacancy clusters. The barrier for hops
into single vacancy (green) is significantly larger than for di-vacancy hops (red line). (c)
Cation-disorder results in all types of tetrahedral clusters. In this case, 0-TM channels (and
with limited 1-TM channels) contribute to Li diffusion. (Ref. [14])

fusion (Li slab), facile Li diffusion requires that the 0-TM channels be connected over a
long-range, i.e., a percolating 0-TM Li network. Lee et al. [25] discovered that a certain
amount of Li-excess is necessary to enable such Li percolation (x > 0.09 in Li1+xTM1−xO2

in the fully random limit), which explains why the stoichiometric DRX LiTMO2 found in
the early 1990s primarily exhibited poor electrochemical performance with limited capacity
and rate capability [101], whereas the disordered Li1.211Mo0.467Cr0.3O2 identified in Ref. [25]
demonstrated a significant charge/discharge capacity with Li-excess.

The diffusion of Li in various ordered and partially disordered rocksalts can be examined
using a similar approach. Urban et al. [102] calculated the critical Li concentrations (xc)
necessary for 0-TM Li percolation in layered (α-NaFeO2), spinel-like (LT-LiCoO2), and γ-
LiFeO2 ordering, as depicted by black contour lines in Fig. 3.3. The x-axis represents the
degree of Li-excess, while the y-axis signifies the level of cation mixing (0% for ordered
structures and 100% for disordered structures in the random limit). The color map displays
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E

Figure 3.2: (a) Local environments for an o–t–o Li hop in LiTMO2 oxides: two tetrahedral
paths connect each pair of neighboring octahedral sites. The activated state in Td can share
faces with no octahedral TM (0-TM channel), one TM (1-TM channel), or two TM (2-TM
channel). Calculated Li migration barriers along 1-TM channels for Mo4+ (red line) and
Cr3+ (blue line), and 0-TM channels (black line) as a function of the average tetrahedron
height. The error bars denote standard deviation, and the shaded area highlights typical
tetrahedron heights of disordered materials (Ref. [25])

the available Li content per f.u., with the red region indicating non-percolating stoichiometry.
The outcomes reveal that the lack of reversible Li+ intercalation in the γ-LiFeO2 structure
is attributed to the presence of only 2-TM tetrahedral environments [17], necessitating a
substantial Li-excess (xc > 1.3). The spinel-type ordering results in segregation into 0-TM,
2-TM, and 4-TM environments, wherein the connected 0-TM facilitates easy Li+ diffusion
[26] (xc > 0.8).

The determination of cation ordering in practical cases depends on the thermodynamic
equilibrium states of the compositions. In thermodynamic equilibrium, the atomic structure
is governed by internal energy and entropy. The long-range order (LRO) describes the atomic
structure exhibiting periodic repetition throughout the material, which is commonly found
at low temperatures, while it tends to diminish at elevated temperatures and goes along with
a phase transition. In contrast, the correlations between atoms may still exist across finite
spatial extents (e.g., several neighboring shells), and the atomic configuration may retain
certain non-random characteristics and exhibit short-range order (SRO).

Ferrari et al. [32] presents an introductory example of configurations of a two-dimensional
binary alloy at low-, medium-, and high temperatures, where the interactions between
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Figure 3.3: Critical Li concentrations (xc) for 0-TM Li percolation and the accessible Li
content via 0-TM channels as a function of Li content and degree of cation mixing in
LixTM2−xO2 with layered (α-NaFeO2), spinel-like (LT-LiCoO2), and γ-LiFeO2 structures.
Thick black contour lines indicate structure-specific xc values. (Ref. [102])

opposite-type pairs are attractive (see Fig. 3.4). The purple and green shaded areas rep-
resent LRO and SRO, respectively. Figure 3.4(d) presents the temperature dependence of
the LRO and SRO parameters, indicating that the LRO disappears rapidly after the crit-
ical temperature Tcrit (order-disorder transition), while the SRO decays much more slowly,
even at significantly higher temperatures. SRO is particularly important in understanding
the properties of DRX materials, as it captures the subtle correlations between atoms on
a local scale and affects the available Li content thermodynamically and kinetically (e.g.,
percolating Li in 0-TM channels).

This chapter delves into the computational modeling of SRO in DRX materials, intro-
ducing two main groups of SRO: (1) cation-anion SRO and (2) cation-cation SRO. The
thermodynamic (Li-F locking effect) and kinetic effect (formation of 0-TM channel) will be
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Figure 3.4: Illustration of short-range ordering (SRO) and long-range ordering (LRO) in a
binary alloy system. (Ref. [32])

discussed in the following sections.

3.2 Equilibrium thermodynamics with SRO

As discussed above, a sufficient amount of Li-excess is always desired to create 0-TM
channels that can be long-range connected and enable percolation. However, the higher Li
content in DRX cathodes results in a decrease in available transition metal (TM) redox and
increased reliance on oxygen redox, which is detrimental to long-term capacity retention
[103–106]. Hence, a key objective in DRX cathode design is to maximize the TM redox
capacity while maintaining a high level of Li excess. The substitution of the labile oxygen
with species with lower valence (e.g., fluorine or oxygen vacancy) improves the capacity
by increasing the redox-active TM content or by lowering the TM valence [107–110]. For
example, the Ni2+ content in Li1.15Ni0.375Ti0.375Mo0.1O2 can increase from 0.375 to 0.45 when
0.15 O is substituted with F, which was shown to reduce the oxygen loss by 73% [111]. In
Li2MnO2F, the Mn valence is lowered to +3, which significantly increases the reversible
capacity from the Mn redox reservoir relative to that for Li2MnO3 [112]. In Li5Mn3O6.5,
the incorporation of oxygen vacancies leads to a substantial increase in the theoretical Mn
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Figure 3.5: (a) Phase diagram of LiMnO2–LiF system derived from cluster expansion Monte
Carlo simulations [16]. (b) Schematic illustration of F local environment in ordered (layered)
and disordered structure. The partial occupancy of the cation sites provides the possibility
of a Li-rich bonding environment to accommodate fluorine.

redox capacity (353 mAh/g) compared to cation-disordered Li5Mn3O8. Oxygen vacancies are
twice as effective in reducing the metal valence compared to fluorine substitution, and they
significantly enhance cyclability by decreasing the reliance on oxygen redox, which delivers
a reversible capacity above 270 mAh/g for 25 cycles with negligible voltage fade (0.02 V)
[19]. While there are numerous strategies to improve long-term capacity retention through
elemental substitution, the fluorination effect, as an example, is used to discuss equilibrium
thermodynamics modeling with cluster expansion methods and DFT calculations in this
section.

Fluorination of DRX

The introduction of fluorination to Li-TM oxides is not a trivial process, as the bonding
energy of F with TM is typically higher than that of Li. In a layered LiTMO2 structure, the
anion is always surrounded by three TM and three Li atoms, as shown in Fig. 3.5(b). Such a
local environment makes fluorine substitution energetically unfavorable (the 3 TM and 3 Li
surrounding F make the local charge non-balanced), therefore making the fluorine solubility
in a layered LiTMO2 phase extremely low. It becomes thermodynamically favorable in
disordered rocksalt phases due to the Li-rich anion local environment having a statistically
higher occurrence. Using DFT and cluster expansion Monte Carlo, Richards et al. [16]
demonstrated that the solubility of F in LiMnO2-LiF, for instance, can reach up to 30%
above T = 2000 K as shown in Fig. 3.5(a). Such solubility can be achieved through mechano-
chemical ball-milling experiments as reported in [112, 113].
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Figure 3.6: Schematic illustration of Li-rich local environment around anion and its statistical
occurrence in disordered rocksalt structure. Two cation configurations are illustrated here
(Li6X and Li5MX (X=anion)). The orange and green bars represent the fluorinated and
unfluorinated composition of Li1.25Mn0.45Ti0.3O1.8F0.2 and Li1.25Mn0.25Ti0.5O2.0, respectively.
(Ref. [114])

The bonding preference between Li and F also generates SRO in DRX structures. The
effect of Li-F SRO has been discussed from several perspectives in previous research. Using
DFT and solid-state nuclear magnetic resonance (NMR) spectroscopy, Clément et al. [31]
demonstrated the existence of Li-F SRO and its coupling to unusual modes of nickel redox
in DRX cathodes. Mozhzhukhina et al. [115] confirmed the existence of Li-F SRO by Raman
spectroscopy. Lun et al. [113] argued that the degree of fluorination has a significant impact
on cathode material design by improving the Li percolating network and thus achieving
faster ionic diffusion. In addition, Ouyang et al. [116] recently showed that fluorination
could substantially affect SRO and, at sufficiently high concentrations, is beneficial to Li-ion
transport.

Li-F locking effect

Although fluorination brings several performance improvements to DRX materials, Li-F
SRO also has some negative effects on the capacity and energy density of DRX cathodes. One
problem is the Li-F ”locking effect”. This effect manifests itself as a high voltage required to
extract all Li-ions from the Li-rich environment that coordinates with F as shown in Fig. 3.6.
Using DFT calculations, Kitchaev et al. [117] reported that the voltage is greater than 5.0
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(a) (b)

Figure 3.7: Electrochemical accessibility of Li in Li1.171Mn0.343V0.486O1.8F0.2 DRX. Distribu-
tion of F–cation (a) and Li–anion (b) environments by coordination number, among sim-
ulated partially charged structures derived from the pristine structure, according to the
voltage at which they appear. (Ref. [117])

V to extract the Li from a fluorine coordination shell and make the fluorine uncoordinated
(see Fig. 2.49). The voltage is well above the typical electrolyte stability limit, which means
a fraction of Li is ”locked” to fluorine and cannot be extracted.

To illustrate the significance of the Li locking effect in oxyfluorides, Fig. 3.6 shows the
frequency with which Li6X and Li5MX (X=anion) environments are found in Li1.25Mn0.45Ti0.3
O1.8F0.2 and Li1.25Mn0.25Ti0.5O2.0. These results were obtained by averaging over structures
obtained fromMonte Carlo simulations at T = 1273 K, using a cluster expansion Hamiltonian
parameterized by DFT. In Fig. 3.6, the orange and green bars represent the oxyfluoride and
pure oxide compounds, respectively. The frequency with which these two types of anion
environments occur in oxyfluorides is much higher than in pure oxides; in particular, the
presence of Li6X is almost never found in the oxide but occurs frequently in the oxyfluoride.
At least one Li-ion is impossible to be extracted from the Li6F environment, which limits
”extractable lithium” capacity. Thus, to achieve higher capacity and energy density, one of
the key factors is to reduce the number of ”locked” lithium ions around fluorine in DRX
materials.
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3.3 Resolve Li-F locking effect by Mg-doping

3.3.1 Computational modeling

Screening cation elements

An initial screening of metals is used to find the metal that prefers to bond with F.
The M-F bonding energy is calculated from the formation enthalpy per F atom, ∆Hf/y, of
the metal fluoride MFy. The values of ∆Hf/y, where ∆Hf is obtained from the Materials
Project [118], are shown in Fig. 3.8. As a baseline, the bonding energy of Li per F is −3.18
eV. No other element has stronger bonding with F than Li. The fluorides of the {Sc, Y} and
{B, Al, Ga} groups have less negative enthalpy than the {Be, Mg, Ca} group. Thus, only
group-II elements have comparable interaction with F to Li.

Figure 3.8: Screening of main group elements on bonding preference with F and ionic size
difference with Li. The black and red lines represent formation enthalpy per F and the per-
centage of ionic radius difference with Li-ion, respectively. The dashed red line corresponds
to a 15% radius difference. (Ref. [114])

Another criterion is the ability to accommodate the dopant in the disordered rocksalt
structure. Empirically, the Hume-Rothery rule predicts that species with similar electroneg-
ativity form a solid solution when their atomic radii differ by no more than 15% [119]. Even
though this criterion is determined for metallic alloys, it is adopted here to determine whether
a candidate element might be substituted in the cation-disordered phase. In Fig. 3.8, the
red squares represent the percentage of ionic radii difference with Li+, and the red dashed
line represents 15% difference [120]. Only Mg2+ and Sc3+ satisfy this criterion, although Y3+
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and Ga3+ are only slightly above the 15% line. Incorporating both the radius information
and energetic preferences suggests that Mg2+ is a suitable cation.

DFT calculations

The DFT calculations were performed with VASP using the projector-augmented wave
method [95, 96], a plane-wave basis set with an energy cutoff equal to 520 eV, and a reciprocal
space discretization of 25 k -points per Å−1. All calculations were converged to 10−6 eV in
total energy for electronic loops and 0.02 eV/Å in interatomic forces for ionic loops. The
GGA+U is used to compensate for the self-interaction error on all transition metal atoms
except titanium (3.9 eV for Mn and 1.5 eV for Nb) [33].

Cluster expansion Monte Carlo

To evaluate the equilibrium ordering of multicomponent DRX compounds, a cluster ex-
pansion (CE) Hamiltonian was constructed in the configurational space LiF–MgO–LiMnO2,
LiF–MgO–LiMnO2–Li3NbO4, and LiF–LiMnO2–Li2TiO3 on a rocksalt lattice. As in the
LiF–LiMnO2–Li2TiO3 system, the anion FCC lattice comprises O2− and F−, while the lat-
tice of octahedral cation is composed of Li+, Mn3+, and Ti4+/Nb5+. The cluster expansion
models were fitted consisting of pair interactions up to 7.1 Å, triplet interactions up to 4.0
Å and quadruplet interactions up to 4.0 Å based on a primitive cell of the rocksalt struc-
ture with lattice parameter a = 3 Å. Effective cluster interactions (ECIs) were obtained
from ℓ1-norm regularized linear regressions with the best regularization parameter selected
to minimize the cross-validation (CV) score [75, 76], as the ℓ1-norm regularized CE works
well for these systems without basis function explosion. The root-mean-squared CV errors
were converged to below 8 meV/atom.

Monte Carlo simulations on these cluster expansion Hamiltonians were performed in a
canonical ensemble using Metropolis-Hastings sampling on a 8 × 8 × 10 supercell (1,280
atoms) of the primitive unit cell of the rocksalt structure. All the statistical quantities were
obtained from 1,000 sampled structures of the equilibrium ensemble. Percolation analysis
was completed on these sampled structures using the dribble package [121].

Li-F SRO analysis

To characterize in more detail how Mg addition affects cation ordering and Li-F SRO in
DRX materials, two compounds are investigated computationally, Li1.25Mn0.45 Ti0.3O1.8F0.2

(LMTF) and Li1.25Mg0.1Mn0.45Nb0.2O1.8F0.2 (LMMNF) with identical Li-excess, redox-active
TM and fluorination content. Canonical cluster expansion Monte Carlo (CEMC) simulation
was applied at 1,000 ◦C to simulate the as-synthesized samples. The frequency of different
cation configurations around F and their percolation properties were averaged over 1,000
structures sampled from the equilibrium ensemble.
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Figure 3.9: (a) Frequency of different types of fluorine environments averaged over 1000
sampled structures from the equilibrium ensemble. LMTF/LMMNF is represented by the
blue/green bar, respectively. The brown dashed bar represents the LiMg5F environment in
LMMNF. (b) Percolation analysis of LMTF and LMMNF. The solid bar represents perco-
lating Li-content in the 0-TM percolating network, and the dashed bar (1-TM) represents
additional percolating Li-content when one jump through a 1-TM barrier into the 0-TM
network is included. (Ref. [114])

Figure 3.9(a) shows the frequency with which several types of cation environments around
F occur. The Li6F and Li5MF environments dominate both LMTF and LMMNF. In LMTF,
without Mg-doping, over 50% of F ions are surrounded by six Li-ions. However, the peak of
the distribution shifts to Li5MF in LMMNF, and the Li6F frequency is lowered to 35%. In
particular, the LiMg5F environment, shown as the brown dashed bar, makes up around 37%
of the Li5MF environments. This finding indicates that modifying the DRX composition
with Mg can effectively reduce the number of Li6F environments and render Li-ions more
accessible.

It is noted that LMTF and LMMNF also differ in their d0 charge compensating element.
Although Ti4+ and Nb5+ are both electrochemical inactive, they can affect atomic ordering
and thus the percolating Li-content of DRX cathodes [15, 122]. To rule out that the capacity
improvement of LMMNF is caused by the change in charge compensator, the fraction of Li
content in the percolating network of each compound is plotted in Figure 3.9(b). The gray
dashed line indicates that a percolating Li content of approximately 78% is achieved when
the cations are randomly arranged. The solid bar represents the fraction of Li content in
the 0-TM network, and the dashed bar represents the Li that can reach the 0-TM network
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with a single 1-TM hop. LMTF has a higher fraction of Li content in both the 0-TM
and 1-TM networks, as compared to LMMNF. These results are consistent with percolation
predictions in previous work [17] on Li-TM oxides. Thus, the larger fraction of accessible Li
ions in LMMNF more likely originates from the fact that Mg displaces Li from the F-bonded
position than from the percolating Li content. Compared with LMTF, Mg-doped LMMNF
has a much lower frequency of Li6F environments, leading us to predict a higher achievable
electrochemical capacity for LMMNF than for LMTF.

3.3.2 Experimental verification

Synthesis

LMTF and LMMNF were synthesized through a solid-state reaction, using Li2CO3,
Mn2O3, TiO2, Nb2O5, MgF2, and LiF as precursors. The precursor mixture was pelletized
and sintered at 600 ◦C for 2 hours in an Ar atmosphere to decompose the carbonates, fol-
lowed by calcination at 1000 ◦C for 4 hours in Ar. Rietveld refinement revealed simple
disordered rocksalt structures (space group: Fm-3m) with lattice parameters of 4.1560 Å
for LMTF and 4.1790 Å for LMMNF. The increase in lattice parameter is expected when
transitioning from LMTF to LMMNF, as the only change involves substituting Ti4+ (74.5
pm) with Mg2+ (86 pm) and Nb5+ (78 pm). The coin cells were prepared with LMTF and
LMMNF as cathode materials and Li-metal as anode materials for electrochemical tests.

Electrochemistry

Figure 3.10 presents the electrochemical properties of LMTF and LMMNF using galvano-
static cycling between 1.5 – 4.8 V at 20 mA/g and room temperature. The blue dashed lines
represent the theoretical capacity based on Mn3+/4+ redox in each sample. LMTF delivered
a first charge capacity of 337 mAh/g and a discharge capacity of 279 mAh/g (899 Wh/kg).
LMMNF delivers a similar initial charge capacity of 332 mAh/g but a larger discharge ca-
pacity of 290 mAh/g (905 Wh/kg). Charging extracted 1.01 Li and 1.08 Li per formula unit
(f.u.) from LMTF and LMMNF, respectively. The locked Li content decreases by about 29%
from 0.24 per f.u. in LMTF to 0.17 per f.u. in LMMNF with the substitution of Ti by Mg
and Nb, as shown in Fig. 3.10c. To verify that this improvement is not caused by the change
in the chemistry of the charge-compensating element, Li1.25Mn0.6Nb0.15O1.8F0.2 (LMNF) was
synthesized and compared with LMMNF. LMNF exhibits a lower initial charge capacity of
293 mAh/g as compared to LMMNF (see Fig. 3.10(d)), and the amount of non-extractable
Li at the top of the charge is increased to 0.28 per f.u. in un-substituted LMNF. Therefore,
from the experimental perspective, the decrease of locked Li is not caused by the change of
high-valent charge compensators. For a more detailed characterization and electrochemical
performance of LMTF and LMMNF, please refer to Ref. [114].
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Figure 3.10: Voltage profiles of the first 5 cycles and capacity retention of (a) LMTF and
(b) LMMNF within voltage window of 1.5 – 4.8V at 20 mA/g at room temperature. The
initial charge and discharge capacity and energy density are shown in the figure. (c) Direct
comparison of extractable Li ions in LMTF and LMMNF in the electrochemical test. The
amount of remaining Li content is 0.17/0.24 per f.u. at the top of charge for LMTF/LMMNF,
respectively. (d) Direct comparison of extractable Li ions in LMMNF and LMNF (non-Mg-
doped) in the electrochemical test. (Ref. [114])
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3.3.3 Discussion on Mg-doping strategy

To further illustrate the validity of the Mg-doping strategy and critically examine the
Mg-doping effect without the effect of different d0 TM charge compensators, several DRX
systems based on composition Li1.333Mn0.667O1.333F0.667 (LMF) were further studied [112,
113], which delivers a first charge and discharge capacity of 276 mAh/g and 267 mAh/g (see
Fig. 3.11), respectively. The LMF shows lower capacity but better capacity retention than
the related disordered Li2MnO3 [123], which is consistent with our understanding of the role
that F plays: its locking effect reduces capacity, but it also mitigates the irreversible oxygen
redox process and reduces oxygen loss, which improves cycling.

Mg can be introduced in a variety of ways into DRX compounds depending on how
charge compensation is achieved. Using the Li-Mn-O-F system as an example, it is shown
that this degree of freedom can be used to tune the initial capacity versus cyclability. In the
previous examples of LMTF and LMMNF, Mg was incorporated by substituting Ti with a
charge-equivalent combination of Mg and Nb. Other strategies would be to (1) substitute
Mn with Mg, leading to a higher Mn valence and constant Li-excess level; (2) substitute
Li with Mg, leading to a lower Mn valence and Li-excess level. To test both strategies,
Li1.333Mg0.1Mn0.567O1.333F0.667 (ms-LMF) and Li1.233Mg0.1Mn0.667O1.333F0.667 (ls-LMF) were
prepared by mechanochemical ball-milling. The notation ms-LMF refers to the sample where
Mn was substituted by Mg, and the notation ls-LMF refers to the sample where Li was
substituted by Mg.

As the Li-excess content remains high in ms-LMF, Mg can free the locked Li to achieve
a larger capacity. In agreement with this prediction, ms-LMF exhibits an initial charge (and
discharge) capacity of 305 mAh/g (and 309 mAh/g), which is larger than for LMF (see Fig.
3.11(c)). Through this substitution strategy, a specific discharge energy of 1001 Wh kg−1 can
be achieved. With more capacity contribution from anionic redox, a slightly lower capacity of
252 mAh/g is retained (81.6% of the initial capacity) compared to that of LMF (226 mAh/g,
84.3%) over 30 cycles (Fig. 3.12(d)). In contrast, a lower capacity is expected in ls-LMF
as it lowers the Li-excess level. Indeed, it delivers initial charge and discharge capacities of
271 mAh/g and 260 mAh/g (a specific energy of 806 Wh kg−1), respectively (Fig. 3.11(b)).
However, the capacity retention of ls-LMF is improved over LMF (248 mAh/g after 30 cycles,
91.5% of the initial capacity), presumably as a result of the theoretical TM capacity that is
gained from Mn by lowering its valence in the as-synthesized sample, leading to less oxygen
redox.

These results show the two different Mg substitution strategies in fluorinated Li-excess
DRX materials, each serving a different purpose: Mg can either substitute for the TM to
free some locked Li, resulting in a higher initial capacity with reasonable capacity retention,
or Mg can substitute for Li and lower the TM valence, which increases the theoretical TM
capacity and results in improved capacity retention. In both cases, the amount of non-
extractable Li is lower than that of undoped LMF. This trade-off can be influenced by the
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Figure 3.11: Voltage profiles of (a) LMF, (b) ls-LMF, (c) ms-LMF, and (d) LMMF within
voltage window of 1.5 – 4.8V at 20 mA/g at room temperature. (Ref. [114])

fluorination level as shown by Lun et al. [113] as a high F content enables one to combine
high TM redox capacity with high Li excess. The comparison of cyclability after 30 cycles
is shown in Fig. 3.12(b) and Fig. 3.12(d).

Computational analysis of Mg-doping effect in Li-Mn-O-F DRXs

The co-substitution of Li and Mn by Mg is also considered. The voltage profiles of
Li1.28Mg0.11Mn0.61O1.333F0.667 (LMMF) cycled between 1.5 V and 4.8 V are presented in Fig.
3.11(d). LMMF delivers the first charge and discharge capacities of 272 mAh/g and 275
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Figure 3.12: (a) Voltage profiles and remaining Li per formula unit (f.u.) for LMF, LMMF,
ms-LMF, and ls-LMF within a voltage window of 1.5 – 4.8 V at 20 mA/g at room tem-
perature. Gray curves represent the first cycle voltage profile of LMF for comparison. (b)
Cyclability of all Li–(Mg)-Mn–O–F compounds. (c) Direct comparison of remaining Li per
f.u. for LMF and LMMF, with short-range order analyzed computationally. (d) Discharge
capacity of the 1st cycle and the 30th cycle for the four compounds. (Ref. [114])
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Figure 3.13: (a) Frequency of different types of fluorine environments averaged 1000 sampled
structures from cluster expansion Monte Carlo simulation. (b) Frequency and normalized
short-range order parameter λ of Li6F environment of LMF and LMMF. (Ref. [114])

mAh/g, respectively. Over 30 cycles, a capacity of 236 mAh/g is retained (85.8% of the
initial capacity). The capacity retention of LMMF is intermediate between that of ls-LMF
and ms-LMF. Although slightly less charge capacity is delivered compared with LMF (276
mAh/g), the amount of non-extractable Li at the top of the charge state decreases from 0.53
Li per f.u. for LMF to 0.47 Li per f.u. for LMMF as shown in Fig. 3.12(b).

To relate the performance of the co-substituted sample to its structure, a CEMC sim-
ulation with temperature T = 1750◦C as a heuristic limit of the mechanical ball-milling
condition was run [124]. The transition metals in LMF and LMMF are Mn3+ and thus
present a similar chemical environment and do not require charge transfer in Monte Carlo
simulation. As shown in Fig. 3.13(a), the frequency of the Li6F configuration is approxi-
mately 10% lower in LMMF than in LMF, whereas the frequency of the Li5MF configuration
is quite similar in both compounds. The reduced amount of locked Li in Li6F indicates that
Li ions have been displaced to other non-locking sites and can thus be effectively extracted
within the working voltage window. Considering that the Li-excess amount is different in
LMF and LMMF, a normalized short-range order parameter is introduced λ to measure the
occurrence of Li6F configuration in the solid solution:

λ =
Pcalc(Li6F)− Prand(Li6F)

Pmax(Li6F)− Prand(Li6F)
, (3.1)

where Pcalc, Prand represent the calculated and fully random frequency of the Li6F configu-
ration. Pmax is the max probability for Li6F that can be achieved for the given Li and F
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Table 3.1: Design principles of Mg-doping in Mn-based DRX materials. The notations of all
compositions chosen in this study are listed. In each case, the compositional design objective
is briefly described in the Note.

Notation Composition Note

LMTF Li1.25Mn0.45Ti0.3O1.8F0.2 solid-state synthesis, low F content,
Ti0.3 to Mg0.1Nb0.2 by charge balanced substitutionLMMNF Li1.25Mg0.1Mn0.45Nb0.2O1.8F0.2

LMF Li1.333Mn0.667O1.333F0.667 ball-milling synthesis, high F content,
Li to Mg substitution, O redox ↓, retention ↑

Mn to Mg substitution, extractable Li ↑, capacity ↑
mixed substitution, all Mn3+, non-extractable Li ↓

ls-LMF Li1.233Mg0.1Mn0.667O1.333F0.667

ms-LMF Li1.333Mg0.1Mn0.567O1.333F0.667

LMMF Li1.28Mg0.11Mn0.61O1.333F0.667

content. For all of our samples, Pmax = 1. In Fig. 3.13(b), the black solid bar represents
the direct frequency of the Li6F configuration, and the dashed bar represents the normalized
SRO parameter λ. The frequency by which the Li6F configuration occurs decreases from
0.41 for LMF to 0.32 for LMMF, and the corresponding SRO parameter λ decreases from
0.35 to 0.28, respectively. Both experimental and computational results confirm that the
co-substitution of Li/TM with Mg reduces the amount of locked Li.

Summary of fluorination and Mg-doping

Fluorine substitution in DRX materials has proven to be beneficial, as it stabilizes com-
pounds with oxygen redox and generally leads to better capacity retention in many systems
[18, 26]. The strategy of fluorination is not fully optimized. While Li-excess is needed for
percolation, not all Li near F can be extracted, which has motivated the strategy of displacing
some Li by adding other metal cations, such as Mg.

Through computational investigation, Mg has been identified as one of the few elements
with an appropriate binding strength to F that can displace Li. Replacing Ti0.3 in LMTF with
Mg0.1Nb0.2 in LMMNF reduces non-extractable Li content by about 30% despite reducing
percolation. There are other strategies to compensate for the introduction of Mg in DRX
materials, such as substituting Li or TM with Mg, which can be used to tune capacity or
capacity retention. Substituting Li results in better capacity retention due to reduced TM
average charge valence and less irreversible oxygen redox while substituting TM increases
capacity by maintaining Li-excess levels and reducing Li-F locking.

Introducing Mg-doping to unlock Li from the Li6F configuration in DRX oxyfluorides has
proven beneficial, with energy densities of 905 and 1001 Wh/kg in LMMNF (solid-state syn-
thesis approach) and ms-LMF (mechanochemical ball-milling approach), respectively. This
study demonstrates the successful computational prediction and experimental realization
of Mg-doped disordered oxyfluoride cathodes with improved electrochemical performance.
Mg2+, with its similar ionic radius to Li+ and strong bonding preference to F, is a suitable
candidate for resolving the Li-F locking effect and increasing the achievable capacity of DRX
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materials.

3.4 Transport kinetics with SRO

e

f

Figure 3.14: Elecron diffraction (ED) patterns of LMTO (a) and LMZO (c) along the zone
axis [100]. The round spots are indexed to the Fm–3m space group, while the diffuse scatter-
ing patterns nearby are attributed to SRO. Several intensity maxima in the diffuse scattering
patterns are highlighted with yellow arrows in LMZO. Simulation of ED patterns for LMTO
(b) and LMZO (d) along the same zone axis shows good agreement with experimental ob-
servation. Representative MC structures for (e) LMTO and (f) LMZO. Li ions are labeled
with green spheres and 0-TM-connected Li sites are bridged with green bonds. (Ref. [17])

In previous sections, the cation-anion SRO and its effect on rocksalt structures are dis-
cussed. The interaction strength between cation and anion species, being nearest neighbors,
is typically strong, which consequently influences the equilibrium thermodynamic properties
such as synthesizability and voltages. In the following sections, the impact of cation SRO
on Li transport kinetics will be discussed.

As pointed out in the introduction, a percolating 0-TM network is required throughout
the structure to realize bulk-scale Li transport [25]. Percolation is controlled by the amount
of 0-TM environments and their arrangement, both of which are influenced by the cation
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SRO. Unlike in ordered compounds, remarkable variations in local environments can exist
within DRX, influenced by composition [116], annealing time [125], the number of metal
cations [28], and even local transition metal migration [126]. As revealed by Ji et al. [17],
the cation SRO demonstrates a deviation from fully random cation ordering, which has a
significant influence on the electrochemical performance. The cation SRO is important in
determining the Li transport kinetics by modifying the percolating network via connected 0-
TM channels. It is found that Li1.2Mn0.4Ti0.4O2.0 (LMTO) and Li1.2Mn0.4Zr0.4O2.0 (LMZO)
have almost similar chemistry (e.g., both are Mn3+-based redox, both have Ti4+ and Zr4+

as an electrochemical inert element but only differ in ionic radius). However, experimental
results reveal that LMTO delivers a substantial first-cycle capacity of approximately 260
mAh/g (0.79 Li per formula unit), while LMZO offers a limited capacity with only 0.52 Li
per formula unit. This striking difference between the two systems suggests the presence of
hidden structural and chemical ordering that governs Li transport in such cation-disordered
oxides.

Electron diffraction analysis demonstrates that LMTO and LMZO exhibit distinctly dif-
ferent diffraction patterns. As depicted in Fig. 3.14(a)-(d), the round spots are indexed to
the Fm-3m space group (disordered rocksalt), while the nearby diffuse scattering patterns
are attributed to SRO. Several intensity maxima in the diffuse scattering patterns of LMZO
are highlighted with yellow arrows, in contrast to the ring-like diffusion scattering patterns
observed in LMTO. Simulated electron diffraction patterns for LMTO and LMZO along the
same zone axis are shown in Fig. 3.14(b) and (d), exhibiting good agreement with experi-
mental observations. Figure 3.14(e) displays representative structures for LMTO and LMZO
obtained from cluster expansion Monte Carlo simulations, where Li-ions are marked with
green dots, and 0-TM connected Li sites are linked with green bonds. A significant reduction
in the number of 0-TM channels within the bulk structures can be observed in LMZO, which
aligns with the experimentally observed decrease in extractable Li content.

Ji et al. [17] provides further insights into the formation of SRO in various TMs. Figure
3.15(a) illustrates the accessible Li content (percolation Li content) as a function of the
average TM ionic radius for DRXs containing trivalent redox-active TMs. In Fig. 3.15(b),
the accessible Li content is plotted against the divalent TM ionic radius for DRXs containing
divalent redox-active TMs and various d0 stabilizers (Ti4+, Nb5+, Mo6+). The results reveal
that both an increase in the ionic radius and a decrease in the valence of d0 TM stabilizers
lead to a reduction in the accessible Li content.

It is found that cation SRO in DRX materials is influenced by both charge balance and
ionic radius differences. High-valent TMs tend to mix with Li+ in order to maintain local
electroneutrality, thereby reducing 0-TM formation. This effect is due to the charge balance
between high-valent TMs (e.g., Mn3+, Ti4+, Nb5+) and Li+ in DRXs, which discourages Li
segregation into Li4 tetrahedra. On the other hand, the size mismatch between Li+ and TM
cations contributes to Li segregation by minimizing strain, thus promoting 0-TM formation.
The interplay between these two effects is best exemplified by the case of LMTO and LMZO.
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Figure 3.15: (a) Accessible Li content plotted as a function of the average TM ionic radius for
DRXs containing trivalent redox-active TMs, considering only 0-TM jumps (red) or allowing
a single 1-TM jump to reach the 0-TM percolating network. (b) Accessible Li content plotted
as a function of the divalent TM ionic radius for DRXs containing divalent redox-active TMs
and various stabilizers, considering only 0-TM jumps. The Li+ ionic radius is indicated at
0.76Å. All listed compositions exhibit the same Li-excess level of 20%. (Ref. [17])

Despite having the same valence, Zr4+ displays a stronger net attraction to Li+ compared
to Ti4+. This phenomenon can be attributed to the difference in ionic radii between Ti4+

(0.605 Å) and Li+ (0.76 Å), which leads to Li+ segregation away from the smaller Ti4+ cation
in order to minimize strain. In contrast, the size of Zr4+ (0.72 Å) is closer to that of Li+,
causing electrostatic interactions to dominate over the size effect. This results in a maximal
separation between high-valent Zr4+ and local ordering between Zr4+ and Li+.

3.5 Optimize Li transport by partial Li deficiency

Based on the observations of SRO effects, this section presents another approach to mod-
ulating SRO to improve Li transport kinetics. Using Mn-based DRX as a proof-of-concept,
materials with nominally the same chemistry can be simply controlled by introducing Li
deficiency during synthesis. Consequently, this novel approach can therefore be used to en-
hance the capacity and rate performance of a DRX without the need to change the transition
metal content.
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3.5.1 SRO with Li vacancy & Mn2+ to Mn3+ substitution

The low cost and abundance of Mn, coupled with the excellent thermal stability of the
Mn4+ charged state, make Mn-based DRX materials promising candidates for cathode appli-
cations [113]. A common challenge faced by researchers when designing Mn-based DRX ma-
terials is deciding between Mn2+ and Mn3+ in the as-synthesized state. Theoretically, Mn2+

offers a higher transition metal capacity as it provides double electron redox, reducing reliance
on oxygen redox [107]. However, Mn2+ (0.83 Å), being closer in size to Li+ (0.76 Å) than
Mn3+ (0.65 Å), tends to mix more with Li+, leading to fewer 0-TM channels and consequently
lower rate performance. Ideally, it would be desirable to synthesize DRXmaterials with Mn3+

for good rate performance while still utilizing Mn2+/Mn3+ redox for high capacity. In this
work, it is demonstrated that this can be achieved by synthesizing the material in a partially
delithiated state, where the vacancy sites in the as-synthesized Mn3+-based DRX are refilled
with Li+ after the initial discharge process. Specifically, a series of Mn-Nb-based DRX ma-
terials were investigated: Li1.3Mn2+

0.4Nb0.3O1.6F0.4 (L13MNOF), Li1.1Mn2+
0.2Mn3+

0.2Nb0.3O1.6F0.4

(L11MNOF), and Li0.9Mn3+
0.4Nb0.3O1.6F0.4 (L09MNOF). It is found that substituting Mn2+

with Mn3+ by incorporating cation vacancies improves both the discharge capacity and rate
performance. The rationale for these improvements is discussed in the following parts.

3.5.2 Computational modeling

DFT calculations

The DFT calculations were performed with VASP using the projector-augmented wave
method [95, 96], a plane-wave basis set with an energy cutoff equal to 520 eV, and a recipro-
cal space discretization of 25 k -points per Å−1. All calculations were converged to 10−6 eV
in total energy for electronic loops and 0.02 eV/Å in interatomic forces for ionic loops. The
regularized strongly constrained and appropriately normed meta-GGA exchange-correlation
functional (r2SCAN) was used [127], which is believed to better capture cation-anion hy-
bridization and Li-coordination and would improve the accuracy of the energetics when
cation vacancies are introduced into the rocksalt [47]. r2SCAN functional has better compu-
tational efficiency performance than the earlier version of SCAN [128].

Cluster expansion Monte Carlo

A cluster-expansion Hamiltonian was generated in the chemical space of Li+–Mn2+–
Mn3+–Nb5+–vacancy–O2−–F−, with pair interactions up to 7.1 Å, triplet interactions up
to 4.0 Å, and quadruplet interactions up to 4.0 Å based on a primitive cell of the rocksalt
structure with lattice parameter a = 3 Å. In total, 281 ECIs (including the constant term J0)
were defined, and the CE Hamiltonian was fitted with 1206 different structures. As the CE
Hamiltonian was defined on a high-dimensional multicomponent system, the ECIs were fitted
using the appropriate method to address the complexity-induced over-fitting [63]. The ECIs



64

were determined with the optimal sparseness and cross-validation error (< 7 meV/atom)
with an ℓ0ℓ2-norm regularized regression [83].

To simulate atomic orderings at equilibrium, canonical Monte Carlo simulation with the
Metropolis-Hastings algorithm was used. Overall, 1,000 representative structures (960 atoms
per structure) were sampled from the equilibrium ensemble. The percolating Li content and
the different types of tetrahedra clusters were analyzed in these representative structures
using the dribble package [121].

Computational SRO analysis

Since Mn2+-Nb5+-based DRX systems exhibit SRO that leads to less favorable Li per-
colation than their Mn3+-Nb5+-based counterparts [17, 116]. The argument put forward is
that synthesizing Mn3+-Nb5+-based DRX in a partially delithiated state could allow uti-
lization of Mn2+/Mn3+ redox while maintaining the superior SRO from Mn3+. To achieve
a more quantitative understanding of the percolation properties of L13MNOF, L11MNOF,
and L09MNOF, ab-initio cluster-expansion Monte Carlo (CEMC) was implemented to in-
vestigate their SRO and percolating Li content. The atomic orderings of the as-synthesized
compounds with different concentrations of cation vacancies (Li1.3/1.1/0.9Mn0.4Nb0.3O1.6F0.4)
were simulated by using canonical CEMC at T = 2023 K. This simulation temperature
was calibrated for the ball-milling synthesis condition from the previously reported Li–Mn–
O–F DRX system [117]. For percolation purposes, lithium and vacancies were considered
equivalent since the latter can be occupied by Li in the discharge.

As shown in Fig. 3.16(a), the amount of Li sites that are part of the percolating clus-
ters increases in the order of L13MNOF (75%) < L11MNOF (80%) < L09MNOF (87%),
confirming that the presence of cation vacancies and Mn3+ in the synthesis of L11MNOF
and L09MNOF improves their SRO and thus Li diffusion kinetics. It is noted that for
L09MNOF, the simulation temperature (T = 2023 K) and composition put the system in a
part of the phase diagram where phase separation is occurring (see Fig. 3.16(c)). Therefore,
even though a higher percolating Li content is predicted for L09MNOF in the Monte Carlo
simulation, the increased percolating Li content comes from the Li-rich phase rather than
from the desirable disordered phase. This result also indicates that the concentration of
cation vacancies that can be achieved in high-temperature synthesis is limited. The phase
behavior of these simulated compounds is consistent with the experimental observation, as
L13MNOF and L11MNOF can be synthesized as single-phase DRX compounds while an
obvious impurity phase exists in the as-synthesized L09MNOF.

The SRO within L13MNOF and L11MNOF is further evaluated by comparing the oc-
currence (fcalc) of different tetrahedral clusters (0/1/2-TM channels) with respect to their
frequency (frand) in the random limit (fcalc − frand) /frand (see Fig. 3.16(b)). As mentioned
above, the cation SRO in DRX systems is found to be affected by two major factors: the
local charge balance and the ionic radius of the cations [14, 17]. These insights can be used
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Figure 3.16: (a) Fraction of percolating Li content in L13MNOF (orange), L11MNOF
(green), and L09MNOF (red dashed). The dashed bar indicates that the state of L09MNOF
is non-disordered at the simulation temperature T = 2023 K. (b) Occurrence of various
tetrahedral clusters (0-TM, 1-TM, and 2-TM) in cation-disordered L13MNOF (orange) and
L11MNOF (green) as compared to the random limit. (c) Illustration of simulated structures
for L13MNOF, L11MNOF, and L09MNOF. The green ball represents the Li atom, and the
magenta line represents the distribution of the bond between Mn and its nearest anion. (Ref.
[20])
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to rationalize the effect of cation vacancies. Because the cation vacancy has a lower charge
than the Li-ion, there is a higher tendency for a cation vacancy to mix with a high-valent
cation (Nb5+) so as to maintain local charge balance. For example, assuming all four anions
(Fig.3.16(b) inset) on a tetrahedron to be O2−, the average charge of the anions is −2. The
cluster Li2Nb2 has an average charge of (1 × 2 + 5 × 2)/4 = +3, which is highly charge
unbalanced. Therefore, its occurrence should be minimal in L13MNOF (the lowest orange
bar of L13MNOF in Fig. 3.16(b)). However, the average charge of the Vac2Nb2 cluster is
(0× 2+ 5× 2)/4 = +2.5, which is closer to the charge balance than L13MNOF. As a result,
the Vac2Nb2 forms with higher frequency than Li2Nb2. The size effect of a vacancy versus
a Li-ion is more difficult to gauge, but their incorporation will induce distortion and strain
to neighboring sites. In DRX compounds, the energy penalty to accommodate such lattice
distortion is significantly lower for d0 TM cations (e.g., Nb5+) than for those with partially
filled d-orbitals (e.g., d5 for Mn2+ and d4 for Mn3+) [15]. On this basis, one would also
expect the Vac2Nb2 cluster formation to be energetically more favored than the Li2Nb2 one.
Taken together, both local charge balance and lattice distortion promote the formation of
Vac-Nb clusters. On the other hand, due to the larger lattice mismatch of Li with Mn3+ than
with Mn2+, there is a higher tendency for Mn3+ to segregate from Li, which increases 0-TM
channels and decreases Mn-containing 1-TM and 2-TM channels: the total occurrence of Mn-
containing 2-TM (Li2Mn2 and Li2MnNb) and 1-TM (Li3Mn) channels is lower in L11MNOF
(42%) than L13MNOF (48%) (see Fig. 3.16(b)). Indeed, such Vac-Nb gathering and Li-Mn
separation becomes even more significant in the CEMC-simulated L09MNOF compound,
where the compound decomposes into (1) Li-Vac-Nb-rich and (2) Mn-rich regions with a
majority of Nb atoms (∼ 80%) and vacancies (∼ 95%) located in region (1). Although
region (1) has excellent Li percolation, it lacks Mn redox and is not useful as a cathode
material, which may explain why the impure L09MNOF compound performs slightly worse
than L11MNOF. Therefore, to fully utilize the superior SRO enabled by cation vacancies
while keeping sufficient TM redox, a single-phase disordered structure must be maintained,
which in turn requires that an appropriate amount of cation vacancies be introduced (e.g.,
10% of vacancies in L11MNOF).

3.5.3 Experimental results

Synthesis and characterization

A mechanochemical ball-milling method was employed to synthesize cation-disordered
Li1.3Mn2+

0.4Nb0.3O1.6F0.4 (L13MNOF), Li1.1Mn2+
0.2Mn3+

0.2Nb0.3O1.6F0.4 (L11MNOF), and Li0.9
Mn3+

0.4Nb0.3O1.6F0.4 (L09MNOF) [107, 113]. The X-ray diffractions (XRD) of L13MNOF and
L11MNOF compounds can be indexed to a DRX structure without obvious impurity peaks
(see Fig. 3.17). The Rietveld refinement results indicate that L13MNOF has a larger lattice
parameter (4.2261 Å) than L11MNOF (4.2110 Å), consistent with the larger ionic radius of
Mn2+ (0.83 Å) than Mn3+ (0.65 Å) [120]. For L09MNOF, several Mn2O3 peaks appeared
in the XRD pattern in addition to the DRX phase. Therefore, Mn2O3 was included as an
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(a) (b) (c)

Figure 3.17: XRD patterns and refinement results for (a) L13MNOF, (b) L11MNOF, and (c)
L09MNOF, where a is the refined lattice constant, and the Bragg positions are indicated by
vertical magenta and olive bars. Obs., Calc., Diff. represent the observed pattern, calculated
pattern, and the difference between the observed and calculated patterns, respectively. (Ref.
[20])

impurity phase in the refinement for L09MNOF, in addition to a simple rocksalt structural
model. The compound was refined to contain 4.5% Mn2O3 and 95.5% DRX phase. The syn-
thesizability is consistent with the CEMC simulation, where phase segregation (inaccessible
homogeneous distribution) is observed for L09MNOF.

Electrochemistry

The electrochemical performance of the Li-Mn-Nb-O-F compounds was tested in galvano-
static mode at room temperature (Fig. 3.18). The open circuit voltage of as-synthesized
samples increases in the order of L13MNOF < L11MNOF < L09MNOF, consistent with
their increased Mn valence. When cycled between 1.5 and 5 V at a current density of 20
mA/g, the first-cycle charge capacity decreased in the order of L13MNOF (334 mAh/g) >
L11MNOF (280 mAh/g) > L09MNOF (218 mAh/g), consistent with their decreasing theo-
retical Li capacities. Interestingly, upon discharge, L13MNOF delivered the lowest capacity
among the three compounds: 258 mAh/g (810 Wh/kg) for L13MNOF, 283 mAh/g (885
Wh/kg) for L11MNOF, and 272 mAh/g (832 Wh/kg) for L09MNOF. The effect of cation
vacancies on improved Li transport is further corroborated by the superior rate performance
of L11MNOF and L09MNOF (Fig. 3.18(d) and (f)). For example, upon increasing the
current density from 20 to 1000 mA/g, the discharge capacity for L13MNOF decreased from
258 to 113 mAh/g, corresponding to a 56.2% capacity loss at the high rate. In contrast, the
capacity loss was reduced to 50.4% for L09MNOF and to 43.1% for L11MNOF, and a large
discharge capacity of 161 mAh/g continued to be delivered at 1000 mA/g for L11MNOF.
Note that these three compounds can be essentially regarded as three different states of a
single material under a topotactic transformation, which in principle would not give rise
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Figure 3.18: Voltage profiles of (a) L13MNOF, (b) L11MNOF, and (c) L09MNOF within the
voltage window of 1.5 – 5 V at 20 mA/g and room temperature. The voltage profiles of cycle
1 are plotted in red, and the rest are plotted in black. The corresponding capacity-retention
plots for each compound over 25 cycles are shown as insets. First-cycle voltage profiles of
(d) L13MNOF, (e) L11MNOF, and (f) L09MNOF at different current densities. (Ref. [20])
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to observable differences in overall performance. Therefore, the electrochemical test results
strongly suggest that introducing cation vacancies during the synthesis modifies the local
chemical ordering within the compound, improving its percolation properties.

In summary, using a combination of ab-initio and experimental investigations, it is con-
firmed that partial Li deficiency strategy results in both Mn2+/Mn3+ redox and excellent Li
percolation due to the presence of Mn3+, therefore delivering increased discharge capacity and
rate performance. The vacancy concentration needs to be appropriately controlled as exten-
sive vacancy doping (e.g., 20% vacancies in Li0.9Mn3+

0.4Nb0.3O1.6F0.4) creates phase separation
between a Li-Nb-rich phase and Mn-rich phase, which impairs the cathode performance. This
work extends the DRX design space to non-stoichiometric compounds, providing additional
opportunities to optimize their performance.

3.6 Conclusion

Chapter 3 discusses the application of ab-initio modeling, facilitated by cluster expansion
methods, to simulate the SRO distribution in DRX materials. It is demonstrated that cluster
expansion could effectively model configurational disorder by incorporating pair, triplet, and
quadruplet interactions between inter- and intra-sublattices in oxides. This approach enabled
us to obtain effective cluster interactions and accurately reproduce thermodynamic properties
through Monte Carlo simulations.

Applying cluster expansion in simulating SRO offers profound insights into the funda-
mental understanding of DRX materials. For instance, in the first example, Li-F SRO stems
from the strong attraction between Li and F, displaying a locking effect that limits the num-
ber of extractable Li within a specific voltage range. This thermodynamically controlled
effect can be mitigated by introducing Mg-doping, which presents the possibility of increas-
ing capacity and enhancing the electrochemical performance by increasing the amount of
extractable Li. In the second example, cation-SRO and its impact on Li transport kinetic
are discussed by analyzing the percolating Li content in the connected 0-TM diffusion net-
works. It is demonstrated that a novel approach to modulate cation-SRO by introducing
partial Li deficiency, resulting in both Mn2+/Mn3+ redox and excellent Li percolation in the
presence of Mn3+.

These examples highlight the importance of understanding the relationship between local
structural orderings and electrochemical performance. Since DRX materials exhibit long-
range randomness but possess SRO, statistical modeling is required to accurately sample
the thermodynamical quantities. Cluster expansion Monte Carlo provides a natural way for
sampling configurations. And the insights obtained from these simulations (e.g., percolating
Li content, the specific amount of clusters, etc) are crucial in guiding the design of DRX
materials and optimizing existing ones for next-generation energy storage applications.
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Chapter 4

Atomistic modeling with charge
information – Methodology

4.1 Introduction

In Chapter 2 and Chapter 3, the principles of the cluster expansion method and its
application in modeling short-range order within DRX materials are discussed. Within
this context, canonical MC simulations are used to sample the equilibrium states of atomic
orderings, where the DRX compounds are conceptualized as alloy systems without consid-
ering the charge transfer between ions. However, many essential phenomena (e.g., charg-
ing/discharging) are correlated with the charge transfer effect in cathode materials. A more
comprehensive understanding of these materials mandates an examination of the electronic
degrees of freedom.

This chapter is dedicated to addressing methodological advancements that incorporate
charge information into the atomistic modeling framework. Specifically, two key method-
ological approaches will be discussed: (1) charge-decorated cluster expansion and (2) charge-
informed interatomic potentials. These methodologies enable a more holistic representation
of the DRX materials by considering the interplay between atomic arrangements and charge
distributions. Through these multifaceted approaches, one can achieve a more accurate
understanding of the structural and electrochemical properties of DRX materials.

4.2 Charge-decorated cluster expansion

Similar to the definition in Eq. (2.28), the internal energy in multicomponent ionic
systems can be expressed through the cluster expansion method as

E(σ) =
∑
β

mβJβ ⟨Φα∈β⟩β +
E0

εr
. (4.1)
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In this equation, E0 represents the unscreened electrostatic energy, and 1/εr is treated as
one of the ECIs with the constraint 1/εr ≥ 0. The inclusion of this additional term is crucial
for capturing not only the short-range interactions but also the long-range interactions [94].

4.2.1 Inclusion of long-range electrostatic energy

The unscreened electrostatic energy (Ewald energy E0) is computed with decorated
charges {qi} in a structure via

E0 = ES + EL − Eself

=
1

2

∑
n

N∑
i,j=1

qiqj
|ri − rj + nL|

erfc

(
|ri − rj + nL|√

2σ

)

+
1

2V ε0

∑
k ̸=0

N∑
i,j=1

qiqj
k2

eik·(ri−rj)e−σ2k2/2 − 1

4πε0

1√
2πσ

N∑
i

q2i ,

(4.2)

where ES, EL, and Eself represent the short-range, long-range, and self-interaction terms,
respectively. The unscreened electrostatic energy E0 can be computed efficiently and with
high accuracy using the Ewald summation method [129] or the fast multipole method [130].

Why need to include long-range electrostatic energy?

Despite some early studies revealed that the systems with long-range interactions can
be well-represented and converged by a CE with only considering short-range interactions,
as long as the sampling space stays in a certain low-energy domain [131]. The situation
may complicate when constructing CE with many species. As the feature dimension of the
CE grows combinatorially with the number of components, the DFT samplings can hardly
fully cover the predefined ECIs space. The out-of-distribution configurations can be easily
reached in MC simulation with a CE only fitted on certain low-energy structures. To partially
prevent this, including the long-range electrostatic energy can impose physicality. This effect
is illustrated by the example in the following.

Inaccessible configurations and out-of-distribution

When fitting a CE model of a complex ionic material, there will usually exist configu-
rations that cannot be reached due to convergence issues in DFT calculations. There are
two main categories of configurations that can be inaccessible to DFT: geometrical inac-
cessibility and charge-valence inaccessibility. (1) Geometrical inaccessibility occurs when
the DFT-relaxed structures drift far from their original lattice sites and cannot be correctly
mapped. For example, anion drift destroys the FCC anion framework of a rocksalt. Although
the initial configuration may have been in the rock-salt configuration space, the resulting
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/  Void   Correlation Functions

(a)

𝚷! =

O / vacancy

Li / Mn

(b)

Unphysical domain

Figure 4.1: (b) Illustration of feature matrix ΠS with inaccessible (non-sampled) configu-
rations using an indicator basis. The red columns represent the correlation functions that
are covered by DFT calculations, while the gray (shaded) columns represent the inaccessible
atomic configurations. (e.g., the blue sites are occupied by high-valent transition metals such
as Nb5+, Mo6+, which have strong repulsion in one tetrahedron and cannot be well evalu-
ated via DFT. And the blue row represents the correlation vector of one specific structure
(Ref. [63]). (c) Simulated unphysical domain from a CE Hamiltonian without the inclusion
of electrostatic energy, such a trial CE is based on the DRX systems where cation can be
occupied by Li/Mn and the anion sites can be occupied by O/vacancy (Ref. [19]).

relaxed structure no longer is. This becomes a very notable problem when considering con-
figurations with a large number of vacancies. (2) Charge-valence inaccessibility happens
when the DFT-relaxed configuration can be appropriately mapped back to a lattice model
with oxidation-assigned ionic species; however, charge transfer prevents specific oxidation
states for particular configurations of the predefined lattice model. This happens mostly
in transition metal oxides when the valence of the transition metal cannot be well assigned
and results in non-charge-balanced configurations. This can also result from internal charge
transfer in very high electrostatic energy configurations.

The efficiency of structure sampling is thus reduced depending on how many physically
inaccessible states occur in the sampled training configurations. For example, as shown
in Fig. 4.1(a), the blue sites in the cluster figures are occupied by high-valent transition
metal (e.g., Nb5+, Mo6+), which have strong repulsion in a single tetrahedron. Such features
cannot be appropriately computed by DFT calculations. The effect on sampling is most
clear when using an indicator basis since this will result in a void correlation function in
the feature matrix ΠS. The void correlation function manifests itself as a column with
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all elements equal to zero. This happens since no information has been obtained for those
particular configurations, such that this correlation function is rendered uninformative and
should be removed prior to fitting. Such inaccessibility can lead to issues with configuration
sampling in Monte Carlo simulations due to the lack of information regarding the ECIs
associated with inaccessible high-energy configurations. This problem becomes evident when
a configuration exhibiting inaccessible features is situated close to a low-energy configuration
in the configuration space, i.e., only a few Monte Carlo steps away. Such a configuration
may be accepted since its energy is inaccurately predicted, thereby resulting in the incorrect
sampling of unfavorable configurations in Monte Carlo simulations, which can skew ensemble
statistics and calculated thermodynamic properties.

An illustrative example of an extreme case for unphysical configurations is provided by
the MC simulations of Li-Mn DRX using a trial CE. In this system, the cation sites can be
occupied by Li/Mn, while anion sites can be occupied by either oxygen or vacancy [19]. The
simulated ground state, as shown in Fig. 4.1(b), exhibits phase segregation for Li and vacan-
cies, implying a preference for forming a metallic Li phase over rocksalt oxides. This is clearly
an incorrect result and likely stems from an over-fitted CE model. As these configurations
are neither included in the training set nor can they be obtained from DFT calculations, a
practical solution to this out-of-distribution issue is to incorporate the electrostatic energy.

Alternatively, in a charge-decorated CE model, the valences of Li and the vacancy are
assigned as +1 and 0, respectively. The segregation of Li and vacancies results in high charge
polarization and, consequently, high electrostatic energy. During MC simulations, even if
the CE is not explicitly fitted on such configurations, the electrostatic energy can deter
the sampling from entering such domains, i.e., preventing reaching the out-of-distribution
configurations and thereby enhancing the robustness and physicality of the simulation results.
The inclusion of electrostatics has been shown to yield reasonable simulated configurations
and insightful short-range order analysis, as demonstrated in Ref. [19].

Other approaches regarding inaccessible and electrostatics

Apart from the approach with electrostatic energy, there are other general flavors to
enhance the sampling and avoid inaccessible configurations. Two approaches are suggested
that are useful to deal with the issue. (1) First, the ECI can be regularized with more impor-
tance given to those corresponding to lower-degree clusters (such as pair-wise interactions).
This can be achieved by using hierarchy constraints as detailed in Chapter 2. These fitting
strategies are effective when the configuration energy can be well depicted by correlations
of clusters with small support. Therefore, void or under-sampled correlation functions for
clusters with larger support will contribute minimally to the total energy. (2) If the resulting
CE model still under-predicts the energy of configurations that are likely to be high energy,
rejection of these configurations can be easily achieved in MC. The rejection can be done by
including a cluster indicator function of the orbit β associated with such inaccessible atomic
configurations. The probability evaluated in Monte Carlo that guarantees the rejection of
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inaccessible configurations is,

P (σ) ∝ exp

(
−
ECE(σ) +

∑
β∈voidM · 1β

kBT

)
, (4.3)

where ECE is the CE energy evaluated with actual ECIs,M is a large positive number, and 1β

is the indicating function of orbit β. Since the cluster indicator function will only be nonzero
when the specific inaccessible cluster configuration is present, all other configurations that
do not include such configuration will not be affected. This approach requires practitioners
to detect the inaccessible configurations in the first place explicitly.

Additionally, such a rejection flavor is further adopted for the grand-canonical MC simu-
lations with charge-decorated CEs. Xie et al. [61] introduced the square-charge bias method
that allows the system to temporarily drift away from charge neutrality, with a penalized
Hamiltonian on the square of unbalanced net charge

P (σ) ∝ exp

(
−ECE(σ)−

∑
s µsns + λkBTC(σ)

2

kBT

)
, (4.4)

where C(σ) is the net charge, λ is the hyperparameter for penalization, and ECE(σ)−
∑

s µsns

is the grand canonical energy. The square-charge bias method is particularly useful in the
grand canonical simulation of ionic materials with many components, especially when the
single excitation energy is too high to be achieved at low temperatures with the conventional
table-exchange method [61].

4.2.2 Charge decoration with magnetic moments

To compute the electrostatic energy, a valence state qi needs to be assigned for each
atom, which necessitates the determination of the atomic charge state. Additionally, the
importance of an ion’s valence derives from the fact that it can engage in very different
bonding with its environment depending on its electron count. For example, according to
crystal field theory, valence electron d-filling of the TM-oxygen states is one factor controlling
whether a TM ion prefers tetrahedral or octahedral coordination. High spin Mn4+ is a
non-bonding spherical ion that almost always resides in octahedral coordination by oxygen
atoms, whereas Mn3+ is a Jahn–Teller active ion that radically distorts its environment, and
Mn2+ is an ion that strongly prefers tetrahedral coordination [132]. Such strong chemical
interaction variability across different valence states exists for almost all transition metal
ions and requires the specification of an ion beyond its chemical identity.

Several methods can be used to represent charge information, ranging from simplistic
oxidation state labels to intricate wave functions derived from quantum mechanics. Walsh
et al. [133] overviewed several approaches for partitioning electron density between atomic
centers to determine the oxidation states of atoms using the case of the CdO system. Fig-
ure 4.2(a) introduces the simple approach using geometric charge partitioning based on the
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Figure 4.2: Examples of charge density partition in CdO system overviewed by Walsh et
al. [133]: (a) Geometric partitioning based on space-filling for a Wigner–Seitz polyhedral
decomposition of CdO. (b) Topological analysis of the electron density ρ(r) using Bader’s
charge. (c) Analysis of electron pair probability distribution as determined using the elec-
tron localization function (ELF). (d) Changes in electric polarization ∆ρ from topological
analysis of the electron distribution using the Berry phase formalism. (e) Projection of ex-
tended electronic wavefunctions onto localized orbitals (Wannier functions) that combine to
reproduce the full electron density of the crystal (Ref. [133])

Wigner–Seitz polyhedral. Figure 4.2(b) illustrates a topological analysis of the electron
density ρ(r) in a rocksalt CdO structure through Bader’s ’atoms in molecules’ approach,
highlighting the partitioning of electron density based on zero-flux surfaces [134]. Figure
4.2(c) delves into the analysis of the electron pair probability distribution using the electron
localization function (ELF). The ELF is calculated via the Kohn-Sham orbitals {ϕi} and
charge densities ρ [135], which have values between 0 and 1 (one corresponds to perfect lo-
calization). Alternatively, changes in electric polarization ∆ρ(r) derived from a topological
analysis of electron distribution using the Berry phase formalism can be used for represen-
tation (Fig. 4.2(d)). And Figure 4.2(e) highlights the projection of extended electronic
wavefunctions onto localized orbitals (Wannier functions) [136]. The approaches such as us-
ing Bader’s charge [137], incorporating maximally localized Wannier functions for long-range
electrostatic interactions [138], and neural network prediction of MLWF have been reported



76

𝑒!∗

𝑡#!

Mn4+

𝑒!∗

𝑡#!

Mn3+

𝑒!∗

𝑡#!

Mn2+

Figure 4.3: The magnetization distribution of Mn calculated with GGA+U in the system of
Li1.2Mn0.6Nb0.2O2.0. (Ref. [63])

in previous research associated with the charge-information representation [139].

Nonetheless, when evaluating the formal valence of transition metal ions, particularly
those with d-orbital transitions, directly using the charge density from DFT is favorable. This
is because the density remains unchanged across various valence states due to hybridization
with neighboring anions. This is elegantly discussed by Wolverton and Zunger [140] for
LixCoO2, where the charge density around Co in CoO2 and LiCoO2 is surprisingly similar,
as described by the authors:

This self-regulating response [141, 142] (minimizing the effect of external pertur-
bations via rehybridization) is characteristic of systems having localized d states
that communicate with a covalent manifold.

Therefore, a more reliable method is to assign a formal charge based on the magnetic
moment for a given metal site, which can be derived from the sum of s, p, and d- local orbital
contributions or from the individual d-orbital contribution. This local contribution can be
obtained by integrating the difference between spin-up and spin-down magnetic moments
surrounding each atom. Figure 4.3 displays the magnetization distribution of Mn calculated
with GGA+U in a DRX system with composition Li1.2Mn0.6Nb0.2O2.0. From the histogram,
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one can estimate the boundary for Mn4+/3+ and Mn3+/2+ classification to be 3.6µB and 4.2µB

and use the charge-decorated species to construct the CE Hamiltonian with multi-component
basis functions as described in Chapter 2.

Since the d-electron occupancy is most relevant to capture the local bonding environment
of a TM (e.g., its size, coordination preference, any tendency for Jahn–Teller distortion),
the charge decoration on TM based on the magnetic moment is important to project the
interactions into cluster expansion basis functions accurately.

4.3 Charge-informed interatomic potential

Although charge-decorated cluster expansion offers an ideal toolkit to understand the
equilibrium thermodynamics of ionic materials, it is not capable of modeling the dynamics
when the degrees of freedom are continuous in space rather than the coarse-grained lattice.
The computational modeling of kinetic properties, such as ion migrations, phase transfor-
mation, and chemical reactions, is highly desired for the study of computation materials
science. For example, large-scale molecular dynamics (MD) are essential for the computa-
tional design of solid-state materials [143]. Although ab-initio molecular dynamics (AIMD)
with DFT can provide high-fidelity results, they are computationally expensive, especially
when the AIMD is implemented with spin-polarized DFT, which hinders the application to
the multicomponent ionic materials.

4.3.1 Overview of machine learning interatomic potential

The application of machine learning in computational materials science has experienced
a surge in recent years, largely driven by the impressive capacity of these models to predict a
variety of material properties [144–146]. Neural network (NN) machine learning interatomic
potentials (MLIPs) have emerged as powerful tools that can provide efficient and accurate
predictions by learning from high-fidelity data with quantum mechanical accuracies. The
first high-dimensional neural network potential was proposed by Behler and Parrinello [147],
where the total energy is expressed as a summation of atomic energy E =

∑
iEi with Ei

predicted by a NN. There are many designs of MLIPs that can broadly be categorized into
two types: (1) descriptor-based potentials and (2) end-to-end NN potentials [148]. The
descriptor-based MLIP typically uses atomic-centered symmetry functions to encode the
information of the local chemical environment of atoms, such as two-body terms and three-
body terms proposed by Behler and Parrinello [147]:

G1
i =

∑
j ̸=i

e−η(Rij−Rs)2fc(Rij)

G2
i = 21−ζ

∑
j,k ̸=i

(1 + λ cos θijk)
ζ × e−η(R2

ij+R2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk).
(4.5)
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with θijk = Rij · Rik/(RijRik) and hyperparameters λ = ±1, η, and ζ. The radical cutoff
function reads

fc(Rij) =

{
0.5×

[
cos
(

πRij

Rc

)
+ 1
]

for Rij ≤ Rc

0 for Rij > Rc

, (4.6)

which ensures that G1
i and G

2
i vary smoothly at the cutoff radius. The descriptor-based NN

potentials such as ænet [149] have provided promising solutions to bridge the gap between
expensive electronic structure methods and efficient classical interatomic potentials in energy
storage systems [150].

Another type of descriptor-based MLIP is Gaussian process (GP) force fields, also known
as Bayesian force fields. The GP force fields have a significant impact on the application
of atomistic modeling, such as catalysis [151] and solid-state phase transformation [152]. In
GP (or sparse GP) formalism, the local atomic environment ρi consists of neighboring atoms
within a cutoff radius with a label yi (e.g., local energy εi on atom i. The kernel function
k(ρi, ρj) quantifies the similarity between two atomic environments i and j. For example,
the inner product kernel is defined as

k(ρi, ρj) = σ2

(
d1 · d2

d1d2

)2

, (4.7)

where σ2 is the signal variance which can be optimized by maximizing the log-likelihood of
GP, d1 and d1 are descriptors derived from atomic cluster expansion (ACE) [153].

The total energy is a sum of local energies E =
∑

i ε(ρi), where the local energy is
evaluated by a weighted sum of kernels between ρi and a step of representative environments:

ε(ρi) =
∑
t∈S

k(di,dt)αt. (4.8)

The α is a vector of training coefficients given by

α = ΣKSFy, (4.9)

where Σ = (KSFΛ
−1KFS +KSS)

−1, KSF is the matrix of kernel values between a chosen
sparse set S (for efficient evaluation) and the training set F , KSS is the matrix of kernel
values between the sparse set S and itself, and Λ is a diagonal matrix quantifying the noise of
the system. The total potential energy of a structure of N atoms is a sum of all local energies
ε(ρi). The most significant feature of GP is that the uncertainty of the prediction can be
simultaneously given. For example, the sparse GP predicted variance VE under deterministic
training condition approximation is [154]

VE = kEE − kESK
−1
SSkES + kESΣkSE (4.10)
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where kEE =
∑

ij k(di,dj) is the GP covariance between E and itself, kES is a row vector
describing the covariance between potential energy E and the local energies of set S. Since
GP force fields are uncertainty aware, they have been widely used in autonomous “on-the-fly”
training for generating fast and accurate force fields for MD simulations [155].

Nonetheless, one significant drawback of the descriptor-based MLIP is that the number
of input dimensions can grow quickly when applying it to multi-component systems. This
limits its application in complex materials such as DRXs. In contrast, the end-to-end NN
potentials directly learn from the atomic types and positions as inputs for suitable rep-
resentations via data-driven approaches [148]. For example, the DeepMD model utilized
the translational/rotational-invariant coordinates to encode the local environment of atom i
given by all neighbors {j}

{Dij} =

{
1

Rij

,
xij
Rij

,
yij
Rij

,
zij
Rij

}
(4.11)

where (xij, yij, zij) is the local coordinate transformed from the global coordinate to ac-
commodate the rotational invariant [156]. The total potential energy is E =

∑
iEi, where

Ei = DNN({Dij}) is the local energy given by a deep NN prediction. The DeepMD has
shown various successes in large-scale MD simulations with ab-initio accuracy, such as phase
diagrams of water [157], solid-state electrolytes [158], and metallic alloys [159].

Furthermore, the development of graph neural networks (GNN) has led to more sophis-
ticated models, such as the message-passing neural network (MPNN) models. Atoms are
represented as nodes and bonds as edges. The nodes are initialized as an embedding vector
with elemental information, and the edges embody the pair-wise bonding information. The
updates of node information are achieved via a message-passing mechanism (graph convolu-
tion), which can be written in general as

x
(t+1)
i = x

(t)
i + L

[∑
j ̸=i

F(x
(t)
i ,x

(t)
j , g(rij))fc(rij)

]
, (4.12)

where the summation runs over all atoms within a cutoff distance rc, x
(t)
i is the atom feature

vector for the i-th atom in the t-th layer of MPNN, g(rij) is the embedded bond feature vec-
tor describing the bond information between atom i and j, fc(rij) is a smooth function and
F is an interaction block which operates the graph convolution. L is a general linear or iden-
tical transformation. The translation, rotation, and permutation invariance are preserved
in GNNs [144, 160, 161]. The GNN-based MLIPs such as DimeNet [162], NequIP [163],
TeaNet [164], and MACE [165] have been shown to achieve state-of-the-art performance by
incorporating invariant/equivariant symmetry constraints.

Most recently, GNN-based MLIPs trained on the periodic table (e.g., M3GNet) have
demonstrated the possibility of universal interatomic potentials that may not require chemistry-
specific training for each new application [137, 166, 167]. It is critical to acknowledge that the
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Figure 4.4: (a) CHGNet workflow: a crystal structure with unknown atomic charge is used
as input to predict the energy, force, stress, and magnetic moments, resulting in a charge-
decorated structure. (b) The model consists of atom graphs and bond graphs. (c) Graphs
run through basis expansions and embedding layers to create atom, bond, and angle features.
(d) Interaction block in which the atom, bond, and angle share and update information. (e)
Atom convolution layer where neighboring atom and bond information is calculated through
weighted message passing and aggregates to the atoms. (Ref. [168])

emphasis of past research has primarily been on advancing the state-of-the-art performance
of the model itself. The capability to capture the charge information of ions, especially for
d-orbital transition-metal-containing battery materials, is another crucial aspect that was
not well discussed until the introduction of CHGNet [168].

4.3.2 Crystal Hamiltonian Graph Neural Network

Crystal Hamiltonian Graph neural-Network (CHGNet) is another MLIP with charge
information. The foundation of CHGNet is a GNN, as shown in Fig. 4.4, where the graph
convolution layer is used to propagate atomic information via a set of nodes {vi} connected by
edges {eij}. Unlike other GNNs, where the updated atom features {vni } after n convolution
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layers are directly used to predict energies, CHGNet regularizes the node-wise features {vn−1
i }

at the n − 1 convolution layer to contain the information about magnetic moments. The
regularized features {vn−1

i } carry rich information about both local ionic environments and
charge distribution. In CHGNet, the energy is calculated by a sum of non-linear projection
ϕE(·) of the site-wise feature vector over all atoms {vni }. The forces and stress are calculated
via auto-differentiation of the energy with respect to the atomic Cartesian coordinates and
strain, and the site-wise magnetic moment is calculated by a linear projection ϕm(·) of the
feature vector in the hidden layer {vn−1

i }.

Etot =
∑
i

ϕE(v
n
i ), f⃗i = −∂Etot

∂x⃗i
, σ =

1

V

∂Etot

∂ε
, mi = ϕm(v

n−1
i ). (4.13)

Therefore, the atomic charge information can be inferred from the CHGNet predicted mag-
netic moments, using only the nuclear positions and atomic identities as input. Such an
approach allows the study of charge distribution in atomistic modeling. For non-magnetic
systems or systems with small magnetic moments, the atomic charge inference may not be
adequate enough from the CHGNet prediction. But the interatomic interactions can still be
learned and well represented as the model is trained on energy, force, and stress primarily,
while the magmom is added as an additional regularization.

Table 4.1: The mean-absolute-errors (MAEs) of pretrained CHGNet on MPtrj test set.

Energy
(meV/atom)

Force
(meV/Å)

Stress
(GPa)

Magmom
(µB)

Test Error 30 77 0.348 0.032

The CHGNet was pretrained on the Materials Project Trajecotry (MPtrj) database, con-
sisting of a vast collection of DFT calculations on ∼ 146, 000 inorganic materials composed
of 94 elements [118]. Around 1.37 million Materials Project tasks of structure relaxation and
static calculations using either the generalized gradient approximation (GGA) or GGA+U
exchange-correlation were included. The MPtrj dataset contains 1,580,395 atom configu-
rations, 1,580,395 energies, 7,944,833 magnetic moments, 49,295,660 forces, and 14,223,555
stresses. The GGA/GGA+U mixing compatibility correction was applied to ensure the
consistency of energies within the MPtrj dataset, as described by Wang et al. [169]. The
pretrained CHGNet demonstrates mean-absolute-errors (MAEs) of 30 meV/atom for energy,
70 meV/Åfor interatomic force, 0.348 GPa for stress, and 0.032µB (µB is the Bohr magneton)
for the magnetic moments.
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(a)

(b)

(c)

(d)

(e)

Figure 4.5: (a) The LiFePO4 structure shown with PO4 (purple) and FeO6 (brown) polyhe-
dra and Li atoms (green).(b) Illustration of Li and Fe sublattices. (c) Experimental LixFePO4

phase diagram with boundary data from Delacourt et al. [170] and Dodd et al. [171]; (d)
Computeed LixFePO4 phase diagram by Zhou et al. [58] with Li/vacancy and electron de-
grees of freedom and (e) with Li/vacancy degree of freedom only. (Ref. [58])

4.4 Example: LixFePO4 phase diagram

After introducing the background and methodology of atomistic modeling with charge
information, the LixFePO4 phase diagram is used as a preliminary example to demonstrate
(1) the importance of incorporation of electronic degrees of freedom in materials modeling
and (2) how to combine charge-decorated CE and charge-informed MLIP to practically
address the charge-correlated thermodynamics.

The configurational electronic entropy has a significant effect on the temperature-dependent
phase stability of mixed-valence oxides, and its equilibrium modeling therefore requires an
explicit indication of the atomic charge. However, no current MLIPs can provide such in-
formation. By using DFT calculations and Monte Carlo simulations with CEs, previous
research has shown that the formation of a solid solution in LixFePO4 is mainly driven by
electronic entropy rather than by Li+/vacancy configurational entropy [58] (see Fig. 4.5).
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(a)

(b)

Figure 4.6: The phase diagrams in (a) and (b) are calculated with and without electronic
entropy on Fe2+ and Fe3+. The colored dots represent the stable phases obtained in semi-
grand canonical MC. The dashed lines indicate the two-phase equilibria between solid solu-
tion phases. (Ref. [168])

Cluster expansion Monte Carlo with CHGNet

In this example, CHGNet is used as an energy calculator to generate two distinct CEs
for MC simulations, followed by the approaches in Ref. [58]. The CEs are constructed with
pair interactions up to 11 Å and triplet interactions up to 7 Å based on the relaxed unit cell
of LiFePO4. For better energy accuracy, a fine-tuned CHGNet is parameterized with the
Materials Project structures in the Li-Fe-P-O chemical space with a MSE loss function for 40
epochs, which results in a 12 meV/atom training energy error and 19 meV/atom validation
energy error. The fine-tuned CHGNet is used to relax 456 different structures in LixFePO4

(0 ≤ x ≤ 1) and predict the energies and magmoms, where the 456 structures are generated
via an automatic workflow including CE fitting, canonical CE Monte Carlo for searching the
ground state at varied Li+ composition and CHGNet relaxation. The charge-decorated CE
is defined on coupled sublattices over Li+/vacancy and Fe2+/Fe3+ sites, where Fe2+ and Fe3+
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are treated as different species. In addition, the non-charge-decorated CE is defined only
on Li+/vacancy sites. In the charge-decorated CE, Fe2+/Fe3+ is classified with magmom in
[3µB, 4µB] and [4µB, 5µB], respectively.

The semigrand canonical Monte Carlo simulations are implemented using the Metropolis-
Hastings algorithm, where 20% of the MC steps are implemented canonically (swapping
Li+/vacancy or Fe2+/Fe3+), and 80% of the MC steps are implemented grand-canonically
using the table-exchange method [61, 172]. The simulations are implemented on a 8×6×4 of
the unit cell of LiFePO4. In each MC simulation, the chemical potentials in the [−5.6,−4.8]
range are scanned with a step of 0.01 and sampled the temperatures from 0 to 1000 K.
The boundary for the solid solution stable phases is determined with a difference in the Li
concentration < 0.05 by ∆µ = 0.01 eV.

Discussion

The calculated PD with charge decoration in Fig. 4.6(a) features a miscibility gap be-
tween FePO4 and LiFePO4, with a eutectoid-like transition to the solid-solution phase at
intermediate Li concentration, qualitatively matching the experiment result [170, 171]. In
contrast, the calculated PD without charge decoration in Fig. 4.6(b) features only a single
miscibility gap without any eutectoid transitions, in disagreement with experiments. This
comparison highlights the importance of explicit inclusion of the electronic degrees of free-
dom, as failure to do so can result in incorrect physics. The effects of configurational and
electronic entropy can be further investigated via

S(Li, e) = S ′(Li) + S ′(e) + I(Li, e), (4.14)

where S ′ represents the conditional entropy S(X|Y ) from X (either Li or e) degree of freedom
given fixed Y (e or Li), and I(Li, e) denotes the mutual information of the two degrees of
freedom. The acquisition of S ′(e/Li) is accomplished by a canonical MC with the frozen
configuration of either Li+/vacancy or Fe2+/Fe3+ ordering. This operation can be facilitated
by explicitly incorporating the charge decoration within CE, a necessity substantiated by
the atomic charge inference derived from CHGNet.

4.5 Conclusion

Chapter 4 presents two computational methodologies incorporating charge information:
(1) charge-decorated CE and (2) charge-informed MLIP. The pivotal parameters across these
methods are the magnetic moments, serving as the basis for valence state assignment in CE
and charge regularization in MLIP.

As a combined application of the two methodologies, the LixFePO4 phase diagram is
provided as an introductory example. By comparing phase diagrams calculated with and
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without charge degrees of freedom, the example underscores the importance of accommo-
dating heterovalent states in simulations and how practitioners may benefit from CHGNet
for equilibrium atomistic modeling. More comprehensive examples of DRX systems are
discussed in Chapter 5.
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Chapter 5

Atomistic modeling with charge
information – Application

5.1 Introduction

Chatper 5 delves into the application of charge-informed atomistic modeling to DRX ma-
terials, emphasizing the importance of incorporating charge information for both equilibrium
and kinetic modeling.

The first example centers on equilibrium modeling. A charge-decorated cluster expansion
is used to model intercalation chemistry involving multi-redox reactions in Li1.3−xMn0.4Nb0.3

O1.6F0.4. This involves overcoming challenges posed by a combinatorial increase in config-
urational degrees of freedom with the growth in species number. The solutions to these
challenges are twofold: (1) constructing a robust cluster-expansion Hamiltonian using sparse
regression techniques and (2) implementing semigrand-canonical Monte Carlo for sampling
charge-balanced ionic configurations.

The second part of this chapter explores kinetic modeling using CHGNet – a charge-
informed interatomic potential – for studying the transition metal migration-induced phase
transformation in Li0.6Mn0.8Ti0.1O1.9F0.1 DRX. Through fine-tuned CHGNet and novel sam-
pling methods, the formation of a partial spinel-like ordering is revealed via MD simulation.
A subsequent analysis of the electrochemical properties induced by the structural ordering
changes is discussed.

5.2 Equilibrium modeling: intercalation chemistry

The equilibrium voltage is one of the fundamental quantities that help characterize the
electrochemical performance of a particular material and is defined by the difference in Li
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Figure 5.1: Overview of reported methods for computing voltage profiles in (a) ordered and
(b) disordered electrode materials. The green arrows represent the configurational samplings
that can be accelerated by using cluster expansion as an effective Hamiltonian fitted from
DFT calculations.
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chemical potentials between the cathode and anode [24, 98, 173]:

V = −µ
cathode
Li − µanode

Li

zF
. (5.1)

In Eq. (5.1), z is the charge transferred per ion, F is Faraday’s constant, and µLi is the
chemical potential of Li. For example, considering a Li transition-metal oxide LixTMO2

(x1 ≤ x ≤ x2) as the cathode and Li metal as the anode with the cell reaction

Lix1TMO2 −→ Lix2TMO2 + (x1 − x2)Li, (5.2)

the approximated equilibrium voltage can be computed as [174]

V̄ (x1, x2) ≈ −
ELix1TMO2 − ELix2TMO2 − (x1 − x2)ELi

F (x1 − x2)
. (5.3)

The internal energy of the bcc Li metal ELi, the lithiated structure ELix1MO2 , and the delithi-
ated structure (ELix2MO2) can be obtained from first-principles density functional theory
(DFT). In this approach, the entropic effect is assumed to be small at low temperatures,
and the change in internal energy is used to approximate the chemical potential change. By
computing the formation energy of LixTMO2 structures with varied Li concentrations x, a
convex hull can be constructed from the energy of ground-state structures at each concen-
tration. A piece-wise voltage profile can then be built from Eq. (5.3) via the ground states
on the convex hull by using relevant constructive values of x on the hull.

5.2.1 Practical complexity in modeling intercalation chemistry

When the cathode is charged/discharged, Li is removed/inserted into the cathode struc-
ture accompanied by oxidation/reduction, resulting in various oxidation states among the
redox-active metal M’ and oxygen atoms. Different oxidation states of a TM can exhibit very
different local chemistry preferences (e.g., Mn3+ has a substantial Jahn–Teller effect com-
pared to Mn2+/4+). To capture these chemical differences in simulations, different valence
states of the same elements must be treated as distinct species. This treatment is called
charge decoration, which has been demonstrated to be essential in capturing the electronic
entropy effect to construct the correct phase diagram in some compounds [58]. Charge dec-
oration intrinsically increases the number of components and therefore the complexity of
modeling the intercalation voltage profiles of DRXs.

Intractability of composition enumeration

To obtain the voltage profile of a DRX material, most previous studies have used the
convex-hull construction approach by finding the ground states (GS), which is referred to as
the GS-algo. In this approach, one tries to find the low-energy structures at varied Li content
x using a variety of algorithms [175, 176]. These low-energy configurations are calculated by
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DFT to construct the piece-wise voltage profile following Eq. (5.3). The GS-algo has shown
reasonable predictions for voltages and redox mechanisms [124, 175–179]. When a high num-
ber of components and valence states are present, the GS-algo can become impractical as all
possible valence combinations at each stage of delithiation must be enumerated. For example,
when evaluating a delithiated supercell of composition Li21□18Mn12Nb9O48F12, the combi-
nation of valence in Mn and O can take Mn3+

6 Mn4+
6 , Mn2+

1 Mn3+
4 Mn4+

7 , Mn2+
2 Mn3+

2 Mn4+
8 ,

and even Mn3+
7 Mn4+

5 O−
1 , etc. Enumerating all the possible compositions and searching for

the possible ground states under each charge-decorated composition are NP-hard problems
and become intractable, in particular when the supercell grows. To resolve the enumera-
tion problem, Monte Carlo (MC) sampling is a better choice for studying configurational
energetics in a high-dimensional space.

Fast growth of cluster basis caused by charge decoration

Li/Mn3+
O2-/F-

Li/Mn3+/Nb5+
O2-/F-

Li/Mn3/4+/Nb5+
O2-/F-

Li/Mn2/3/4+/Nb5+
O2-/F-

Li/Vac/Mn2/3/4+/Nb5+
O2-/F-

Li/Vac/Mn2/3/4+/Nb5+
O2-/O-/F-

Figure 5.2: An illustration of cluster basis growth: number of correlation functions vs.
number of components included in the CE with pair/triplet/quadruplet cutoff radius of
7/4/4 Å based on a rocksalt primitive cell with lattice parameter a = 3 Å.

To bridge the gap between 0 K ground states and sampling at finite temperatures, MC
simulation with a cluster expansion (CE) as an effective Hamiltonian is typically used for
intercalation chemistry in ordered cathode materials [64, 65, 180, 181]. Since the cluster
site basis functions are defined by the number of components [72], the charge decoration
can significantly increase the model complexity of the CE, resulting in a rapid growth in the
number of clusters. Figure 5.2 illustrates how the number of cluster basis functions grows as
the number of cation species included in the DRX increases, where the cutoff radius is fixed
with pair/triplet/quadruplet interactions up to 7/4/4 Å. For the full description of Mn and
O redox, more than 800 ECIs are predefined and need to be fitted, whereas the number of
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DFT calculations is typically much smaller than that of predefined ECIs. When building
a CE, the ECIs J∗ = {Jβ} can be obtained by fitting the DFT energy EDFT,S of training
structures S to their correlation functions with (regularized) linear regression:

J∗ = argmin
J

||EDFT,S −ΠSJ ||22 + ρ(J), (5.4)

where ΠS is the feature matrix formed by the correlation functions and ρ(J) is a regular-
ization term. High-component CE can easily be overfitted as the rank of the feature matrix
(ΠS) is typically smaller than the dimension of ECIs dim(J). The low-rank structure (re-
ferred to as rank deficiency) of the feature matrix ΠS in Eq. (5.4) requires selecting the most
physically informative ECIs and avoiding overfitting in CE fitting [75, 182]. The rank defi-
ciency can also arise from other physical constraints in ionic systems. For example, charge
balance creates a linear dependency between the number of charge-decorated species and the
corresponding correlation functions. And another challenge is that the training structures
calculated with DFT are predominantly low in energy, and such low-energy structures often
narrow the configurational space that can be represented in the training structures, which
in principle, high-energy configurations could be included. DFT tends not to cover such
configurations or relax them to lower-energy configurations by moving ions and electrons.
The number of non-zero ECIs must be constrained (||J ||0 ≤ rank(ΠS)) to prevent ECI fit-
ting from being an underdetermined problem. This constraint can be achieved by properly
introducing µ||J ||0 as a regularization term in Eq. (5.4) to penalize the number of non-zero
ECIs and impose sparsity [83].

Charge-neutrality constraint in MC sampling

After fitting the ECIs, MC simulations can be used to sample the energy of configurations
under finite temperatures. Applying semigrand-canonical Monte Carlo (sGCMC) sampling is
most suited for calculating voltage profiles [140, 183]. The relation between the Li content x
and a Li chemical potential can be obtained by applying the Metropolis–Hastings algorithm
with the Boltzmann distribution

f(E(σ), µ) ∝ exp

(
−E(σ)− µLi · xLiN

kBT

)
. (5.5)

In Eq. (5.5), E is the energy of the configuration σ given by the CE Hamiltonian, µLi

is the Li chemical potential, xLi is the Li content in the configuration σ, N is the total
number of Li and vacancy sites, kB is the Boltzmann constant, and T is the simulation
temperature. Computing voltage profiles using sGCMC has been successful in the study of
several simple binary electrode materials, such as LiCoO2/LiNiO2 [140, 184, 185], MgTiS2

[186], and disordered Li3V2O5 [187].

When charge-decorated CEs are used, the requirement of charge neutrality must be en-
forced in MC sampling. Because the training set only includes charge-balanced structures
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Figure 5.3: Distribution of total on-site magnetizations of (a) Mn and (b) O atoms among
all DFT-r2SCAN calculated structures in the chemical space of Li1.3−xMn0.4Nb0.3O1.6F0.4.
The valence of each Mn and O atom is determined by the on-site magnetization. From the
histogram, the classification boundary between Mn4+/3+ and Mn3+/2+ is estimated to be
3.25µB and 4.1µB, and the O− classification is estimated to be 0.5µB. (As the percentage of
O2− with a low magnetization is too large compared to the percentage of O−, the panel (d)
is truncated on the y-axis.)

with no information about the charge-unbalanced structures, the energy predicted by the CE
will be unphysical if configurations with non-zero net charge are assessed during sGCMC.
Techniques for enforcing strict charge neutrality in sGCMC have been applied to several elec-
trolyte systems [172, 188]; however, few have been demonstrated in a system with complex
redox reactions such as DRX [61].
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Figure 5.4: (a) An illustration of the rank deficiency in the ECI fitting. The left empty
bar represents the dimension of predefined ECIs with dim(J) = 858. The middle empty bar
indicates the number of structures sampled in the feature matrix with dim(ΠS) = (463×858).
The blue shaded area overlapping the middle bar indicates a feature matrix of rank(ΠS) =
287. The right solid blue bar represents the number of non-zero ECIs after an ℓ0ℓ2-norm
regularized sparse regression, giving ||J ||0 = 169. (b) An illustration of the TEs used in
charge-balanced sGCMC.

5.3 Multi-redox reactions in Li1.3−xMn0.4Nb0.3O1.6F0.4

To overcome all the abovementioned issues, a voltage-calculation framework is proposed
that combines several state-of-the-art methods in CE-MC. With this framework, it is demon-
strated how to correctly model the intercalation voltage profile in DRX and, more generally,
any complex ionic systems with redox-active ions and configurational disorder. In the fol-
lowing methodology sections, the chapter will introduce the construction of a robust and
predictive cluster-expansion Hamiltonian with ℓ0ℓ2-norm regularized sparse regression [83],
demonstrate an effective sampling strategy of the intercalation stages with sGCMC under
charge balance using the table-exchange (TE) method [61] , and illustrate an ensemble av-
erage method over representative structures to handle various chemical environments. In
the results section, the equilibrium voltage profile of Li1.3−xMn0.4Nb0.3O1.6F0.4 (LMNOF) is
presented and compared with the experiments. To explain the redox mechanism, the pro-
portion of multiple redox-active species at varied Li content is analyzed. It is found that
the calculated voltage profile and redox mechanism agree well with experiments and argue
that the ability of our method to describe oxygen redox in the Li-excess cathode accurately
is particularly noticeable.
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5.3.1 Approaches for modeling multi-redox reactions

Training structure generation for DFT

To describe DRX materials well, two configurational degrees of freedom need to be accu-
rately represented: the Li/vacancy interactions and the different local chemical environments
(i.e., the SRO of TMs and anions). A two-step procedure for generating the training set is
proposed:

(1) Pristine states : Generate several fully lithiated structures with different transition-
metal and anion configurations in relatively small supercells (e.g., supercell structures with
10× or 20× the formula unit of Li1.3Mn0.4Nb0.3O1.6F0.4). These structures can be generated
from canonical MC samplings using a pre-fitted cluster expansion as the effective Hamiltonian
or using solely the electrostatic energy for simplicity.

(2) Delithiated states : Starting from the structures generated in Step 1, fix the TM and
O/F orderings and enumerate different Li/vacancy configurations at varied Li contents (e.g.,
x = 0.3/0.5/0.7 in Li1.3−x). As the total number of enumerated structures can be large, one
can further sort the structures at each Li content by their electrostatic energy and only keep
the low-energy ones.

All the sampled structures are in the chemical space of Li1.3−xMn0.4Nb0.3O1.6F0.4, and
this two-step procedure covers different Li/vacancy orderings in varied local chemical envi-
ronments formed by TM and anion SRO to be calculated with DFT. The DFT calculations
were performed with the VASP package using the projector-augmented wave method [95,
96], a plane-wave basis set with an energy cutoff of 520 eV, and a reciprocal space dis-
cretization of 25 k -points per Å−1. The calculations were converged to 10−6 eV in total
energy for electronic loops and 0.02 eV/Å in interatomic forces for ionic loops. To model
the Li–Mn–Nb–O–F oxyfluoride system, we relied on the regularized strongly constrained
and appropriately normed meta-GGA exchange-correlation functional (r2SCAN) [34, 127],
which is believed to better capture the cation-anion hybridization and Li coordination pref-
erence [48]. r2SCAN provides better computational efficiency than the earlier version of
SCAN [128]. It is noted that the choice of different functionals has an impact on the an-
ionic redox activities [189]. As a proof-of-concept in this study, r2SCAN is selected for both
computational efficiency and accuracy [190].

Sparse regression for charge-decorated CE

To obtain effective valence states of redox-active Mn and O species from a DFT calcu-
lated configuration, the on-site magnetization can be used [63, 191]. For example, Figure
5.3(a) and (b) show the distribution of magnetic moments representing Mn2+/3+/4+ and
O2−/− in our set of 463 DFT-calculated structures. The valence of each Mn and O atom
is classified by the site magnetization using 3.25µB for distinguishing Mn4+/3+, 4.1µB for
separating Mn3+/2+, and 0.5µB to indicate O− [192] (µB is the Bohr magneton). For the
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sparse regression of ECIs, the ℓ0ℓ2-norm regularization with hierarchy constraints is applied
[83]. The ECIs are optimized in the following mixed-integer quadratic programming (MIQP)
problem:

min
J

JTΠT
SΠSJ

T − 2ET
DFTΠSJ + µ0

∑
c∈C

z0,c + µ2||J ||22 (5.6)

s.t. Mz0,c ≥ Jc, ∀c ∈ C
Mz0,c ≥ −Jc, ∀c ∈ C
z0,b ≤ z0,a, ∀a ⊂ b, {a, b} ∈ C
z0,c ∈ {0, 1}, ∀c ∈ C,

where ΠS is the feature matrix, J are the ECIs, z0,c is the slack variable representing
Jc = 0, z0,c = 0, and Jc ̸= 0, z0,c = 1. M = 100 is set to constrain the optimization
boundaries, and ||J ||22 = JTJ is a ridge regression term (ℓ2-norm). (See Section 2.4 for a
detailed description)

The CE Hamiltonian was constructed with pair interactions up to 7 Å, triplet interactions
up to 4 Å, and quadruplet interactions up to 4 Å based on a rocksalt primitive cell with lattice
parameter a = 3 Å leading to a possible 858 ECIs (including the constant term J0). The
ECIs were fitted using 463 training structures, forming a feature matrix of rank(ΠS) = 287.
The resulting ECIs using the sparse regression in Eq. (5.6) contain 169 non-zero elements
(||J ||0 = 169). The relationship between dimension, rank, and the number of non-zero
elements is illustrated in Fig. 5.4(a).

Charge-balanced Monte Carlo sampling

The sGCMC simulations on the Li/vacancy occupancy and the charge decoration degrees
of freedom are used to obtain the voltage curve of Li1.3−xMn0.4Nb0.3O1.6F0.4 composition.
The delithiation is achieved by step-wise removal of Li atoms. In each MC step, the Li+ is
removed/inserted, accompanied by the oxidation/reduction of an Mn or O atom. The net
charge of each configuration is maintained at zero by only executing a combination of site
occupancy changes that are charge neutral. This type of MC step is referred to as table
exchange (TE) [61, 188]. In the calculations, three elemental classes of perturbations are
considered:

1. Li+ + Mn2+ → Mn3+ + Vac.

2. Li+ + Mn3+ → Mn4+ + Vac.

3. Li+ + O2− → O− + Vac.

Any other charge-conserving MC step can be expressed as a linear combination of these three
classes and their inverses. For example, charge transfer such as 2Mn3+ → Mn2++Mn4+ and
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Figure 5.5: An illustration of charge-balanced sGCMC on an ensemble of disordered struc-
tures (Green: Li, white: vacancy, other colors: different TM species, anions are not dis-
played). An ensemble of fully lithiated disordered structures is first generated and referred
to as the pristine state. The sGCMC is performed to topotactically delithiate each pristine
structure at decreasing Li chemical potentials µLi (i.e., increasing voltages V ). The content
of species is averaged over each sGCMC sampling and all the pristine structures.

Mn4+ +O2− → Mn3+ +O− can be achieved by a combination of elementary perturbations.
As the intercalation is assumed to be topotactic, Mn, O, and F ions do not change sites.
The acceptance probabilities of each MC step are scaled to ensure detailed balance (see
Appendix).

In a series of sGCMC simulations, the chemical potentials are scanned between two
limiting values µLi ∈ [µmin, µmax] at finite temperature. For each sGCMC simulation with
a given Li chemical potential µ, the content of each charge-decorated species is averaged
over the sampled MC structures from the equilibrium. The Li chemical potential can be
converted into the cathode voltage using V = −(µ − ELi)/e. In this work, the numerical
simulations were implemented with the open-source software package smol [193], and the
ECIs optimization was solved using the gurobi package [90].
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The ensemble average method

Unlike ordered intercalation compounds which are characterized by a small number of
local environments, the configurational disorder in DRX creates an abundance of local chem-
ical environments, leading to a significant variation of Li extraction energy from different
sites [194, 195]. This multitude of environments is difficult to capture in a single small unit
cell. Instead, the delithiation processes were sampled from multiple distinct structures to
obtain the true intercalation curve as the ensemble average of them.

A canonical MC simulation was used to generate an ensemble of fully lithiated (i.e.,
pristine) configurations {σi}, from which multiple representative structures are drawn. The
CE model used to generate the canonical MC structures is reported in Ref. [20]. To recover
the actual SRO in DRX, it is required that the average of physical quantities in the collection
of representative structures be approximately equal to the actual ensemble average, assuming
infinitely many structures are drawn from the ensemble (⟨Π⟩ens ≈ ⟨Π⟩∞ = Π̄SRO). For
simplicity, in this work, it is verified that the average energy ⟨E⟩ens = ⟨Π⟩ens · J ≈ Π̄SRO · J
converges to the ensemble average with an increasing number of selected structures.

Each simulated fully lithiated structure contains 120 atoms (Li39Mn12Nb9O48F12) with a
supercell lattice constant of ∼ 10 Å. The choice of such a supercell size is rational because ∼
10 Å is a good cut-off to maintain enough distance between each atom and its periodic images
and to encapsulate all cluster-interaction distances. Subsequently, sGCMC simulations are
performed for every structure in the ensemble, and for a given chemical potential, the species
(e.g., Li) content is computed using the following average

⟨xµLi⟩ =
1

Nens

(x̄1 + x̄2 + ...), (5.7)

where {x̄1, x̄2...} are the averaged Li content given by the thermally equilibrated sGCMC
sample starting from each structure. In this work, 30 disordered structures were used for
the ensemble average.

5.3.2 Simulated intercalation voltage profiles

The procedures presented above demonstrate how to model the intercalation thermody-
namics of Li1.3−xMn0.4Nb0.3O1.6F0.4 (LMNOF). Figure 5.6(a) presents the simulated and the
experimental voltage profiles [20]. The solid green line is the experimental charging profile
under a low current density (20 mA/g) between 1.5 and 5.0 V. The bottom of the discharge
state (1.5 V) is aligned to be the fully lithiated state (Li1.3Mn0.4Nb0.3O1.6F0.4). The green
dots represent the computed voltage profile at T = 300 K. The slope and turning point in
the slope are in good agreement with the experimental profile for 0.4 ≤ x ≤ 1.3, indicating
that the Li/vacancy interaction and redox potentials of Mn and O are well described in our
model. In the highly charged region (x < 0.7) specifically, the simulation shows remarkably
good agreement with the experiment reproducing the fact that the slope of the profile be-
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(a)

(b)

Figure 5.6: (a) Calculated (circle) and experimental (solid line) voltage profiles of
(Li1.3−xMn0.4Nb0.3O1.6F0.4). (b) Calculated content of Mn2+, Mn3+, Mn4+ and O− per f.u.
as a function of Li content (x).
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comes flatter at x ∼ 0.7 (marked by the gray dashed line in Fig. 5.6(a)). The computed
voltage profile is systematically lower than the experimental one, which is well-known for
most DFT functionals that are not augmented with a Hubbard U correction [41]. Even
though the SCAN functional removes more self-interaction than previous LDA and GGA
[34], it does not fully remove it and underestimates the intercalation voltage. This could
potentially be resolved by using Hubbard U correction to the SCAN functional, which is
evidenced to reduce the prediction error on formation energies of transition metal oxides
[196, 197].

The fraction of each redox-active species during intercalation is presented in Fig. 5.6(b).
Mn2+/3+/4+ are represented by orange/green/blue dots, and O− are represented by red dots.
Comparing Fig. 5.6(a) and (b) makes it apparent that the Li content where the voltage profile
flattens (x ∼ 0.7) corresponds to the start of the oxidation of O2− to O−. The lowering of the
voltage slope as the system changes from TM redox to O redox is consistent with the higher
dilution of the oxygen charge compared to TM redox centers. Figure 5.6(b) also reveals
several key points about the redox mechanism in LMNOF. The oxidation of Mn does not
appear consecutively from Mn2+ to Mn3+ to Mn4+. The amount of Mn3+ and Mn4+ increase
simultaneously as Mn2+ begins to be oxidized. The fact that different oxidation states of
Mn co-exist over a wide range of Li content is likely due to the variety of local chemical
environments induced by cation disorder. The co-existence is consistent with the marginal
stability of Mn3+ and its propensity to disproportionate into Mn2 and Mn4+ when it cannot
exist in an environment where it can lower its energy significantly through a Jahn–Teller
distortion [132]. O-redox occurs after all the Mn2+ has been consumed but before all the Mn
atoms are fully oxidized to +4 valence. The hybridized redox mechanism between Mn and O
has been confirmed by previous synchrotron characterization experiments [20] and on related
materials Li1.2Mn0.4Ti0.4O2.0 by mass spectroscopy [198]. Since the cluster expansion method
coarse-grains the energetics into lattices (e.g., only considering octahedral occupancies in a
rocksalt), the dimerization of oxygen and tetrahedral Li occupancy are not considered.

5.3.3 Discussion

Typical modeling of the intercalation energetics only includes the Li/vacancy degree of
freedom, assuming that the electronic degrees of freedom can be integrated out. Integrating
out degrees of freedom is based on two key assumptions [51]: (1) One assumes that the degree
of freedom that is variationally removed is always optimized in the DFT calculation. More
specifically, this would require that for a given Li/vacancy configuration, the DFT calculation
can easily find the charge decoration with the lowest energy. While this is a reasonable
assumption for systems with a highly delocalized charge such as LixCoO2 [199], it is unlikely
to be the case for disordered systems where the variation of local environments and the highly
localized charge easily lead to charge metastability in DFT. (2) The second assumption
when degrees of freedom are variationally removed is that their entropy contribution can be
neglected, as their variational optimization is supposed to find their ground state. The role
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Figure 5.7: Comparison of voltage profiles generated with a charge-decorated CE (green
dots) and a CE without charge decoration (red dots). The shaded area represents the
distribution of the derivative quantity | dx

dV
|, which reflects the Li-site energy distribution

during the intercalation process.

of electronic entropy in intercalation systems is yet to be fully understood, but at least in
LixFePO4 it has been shown to be critical to reproduce the correct intercalation behavior
[58]. Both assumptions are unlikely to be valid in DRX cathodes, given their multitude of
possible redox couples and large variations of energetic environments.

To illustrate the significance of accurately capturing the electronic degree of freedom in
DRX materials, another CE was fitted by parameterizing only the Li/vacancy interactions.
Mn and O atoms are considered single charge-less species regardless of their oxidation states
in such a CE. The computed voltage profiles with the charge-decorated CE (in green) and the
undecorated CE (in red) are compared in Fig. 5.7. The undecorated CE yields a featureless
voltage profile and virtually no change of slope as a function of Li content. The mechanism-
related details are poorly portrayed in the profile. The shaded areas in Fig. 5.7 are the
relative derivative of capacity with respect to voltage (dx/dV ). Two distinct peaks are
observed in the charge-decorated calculation (green), indicating the contribution from the
Mn-redox and O-redox, whereas they cannot be adequately distinguished in the undecorated
version (red).
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(a) (b)

Figure 5.8: (a) Average energy (per atom) among pristine structures as a function of the
number of pristine structures selected in an ensemble. The red-shaded region indicates a
variation of ±1 meV/atom of ⟨E⟩∞. The orange/green lines represent the results of the
supercell structure with 120/960 atoms, respectively. (b) Comparison of computational
efficiency (defined in Eq. (5.8)) between supercells with 120 and 960 atoms, computed and
averaged over all the pristine structures in the ensembles.

Necesscity of using ensemble average

The importance of using the ensemble average method to capture the multitude of en-
vironments in disordered systems is also highlighted. In principle, one can approach the
representation of disordered systems by using a single structure in a very large supercell
(e.g., special quasi-random structure (SQS) approach [200]) or by making an ensemble of
multiple smaller-sized supercell structures and taking an average of the computed quantities.
These two approaches are statistically equivalent, given that enough structures have been
used with the smaller-sized supercells. Figure 5.8(a) shows the number of the structures re-
quired for the average energy per atom over structures to convergence within ±1 meV/atom
of the equilibrium average ⟨E⟩∞ when choosing from an ensemble of representative struc-
tures in canonical MC [20]. The green line represents the results in a supercell of 960 atoms,
whereas the orange line represents the results in a supercell of 120 atoms. The smaller-sized
supercell requires drawing ∼ ten times more structures to converge, with the number of
structures required roughly scaling with the supercell size (960 = 120× 8). A large supercell
approaches the actual distribution of SRO with fewer structures. However, a much longer
MC sampling time is required in a large supercell, whereas in a smaller supercell, one can
easily benefit from parallelizing multiple pristine structures to require much less total time
consumption. To illustrate this factor, computational efficiency as a quantitative benchmark
for sGCMC is introduced in Note. 1.

Note 1 (Computational efficiency) At each Metropolis step p in semigrand-canonical
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MC, the Li content (xLi) at the current configuration is recorded as xLi,p. xLi,[p,q] is denoted
as the average of xLi in a block from simulation step p to step q. After thermal equilibra-
tion, the block mean-variance is defined at block length L, Var(xLiL), as the variance of the
block means xLi,[p,p+L], xLi,[p+L,p+2L], ... for each block containing L samples. The block mean-

variance can be used as a measure of uncertainty when estimating θ using a block mean.
With the block mean-variance, the computational efficiency is further defined,

efft(xLi) =
τ 2

TLVar(xLiL)
, (5.8)

where τ 2 is the ensemble variance of Li content xLi approximated by the variance of all
MC steps after thermal equilibration, TL is the average CPU time spent in each L-steps
block. Given the same set of hardware used in MC simulations, the higher the computational
efficiency, the less sampling time required for the uncertainty of the average Li content (i.e.,
the block mean-variance) to be decreased below the same threshold. In brief, higher sampling
efficiency means less sampling time.

Figure 5.8(b) shows the computational efficiency in sGCMC at varied voltages in su-
percells with 120 (orange) and 960 (green) atoms. Higher efficiency indicates that less
computational time is required (see details about the definition in the Appendix). Approx-
imating the computational efficiency, the sampling time required in each pristine structure
scales ∼ O(N1) with the supercell size. Therefore, with the help of parallelization, using an
ensemble of smaller structures is statistically as accurate but practically more efficient than
using fewer large structures. An ensemble of smaller structures is also more tractable in DFT
for computing other properties when necessary, such as electronic structure, whereas DFT
is computationally prohibitive in large supercells even when the SRO can be well presented.

Finally, it is argued that using enough structure samples is necessary when smaller-sized
supercells are used to model disordered systems. Figure 5.9 shows the variance of redox-
active species with respect to the averaged Li content. As a result of the disorder, the
variance in the content of each species among pristine structures is not negligible. This
further discourages the methods based on convex-hull and direct DFT evaluations (e.g., GS-
algo) to accurately determine voltage profiles for materials with significant disorder such
as DRX. When the size of the supercell in which one enumerates possible Li/vacancy and
charge configurations is too small or the number of structure samples is too few, as is often
the case in GS-algo, the variance resulting from different local chemical environments cannot
be adequately captured.

Summary and Outlook

In DRX materials, the abundance of available redox-active transition metals creates new
opportunities for cathode design, such as using the redox reactions between Cr3+/Cr4+/Cr6+

[28, 126], V3+/V4+/V5+ [201], or even Fe2+/Fe3+/Fe4+ [202]. However, the high number of
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Figure 5.9: Contents of each redox species per formula unit as a function of the Li con-
tent x in LixMn0.4Nb0.3O1.6F0.4 as computed from sGCMC simulations at T = 300 K. The
statistics are computed based on an ensemble of disordered structures of in supercells of
Li30xMn12Nb9O48F12. The average values over different disordered structures are marked
with colored dots, the median values are marked with orange lines, and the variances are
marked with error bars around the medians.

chemical components, distinguished by their valence states in DRX materials, renders the
“curse of dimensionality” (CoD) the main simulation obstacle [203]. As the complexity of
the energy model grows with the number of components and charge decoration, the compu-
tational cost grows exponentially fast. For example, CoD has been an essential impediment
for the computational design of high-entropy cathodes [21, 28].

This work proposes the following procedure to obtain accurate intercalation voltage pro-
files in DRX with multi-redox reactions: (1) build a training set containing different fully
lithiated structures and enumerate the Li/vacancy orderings at varied delithiation levels cal-
culated by DFT; (2) construct a charge-decorated CE Hamiltonian and fit the ECIs using
the sparse regression technique to address the fast growth of the cluster basis and rank-
deficiency issues (e.g., ℓ0ℓ2-norm regularized regression); and (3) run sGCMC in an ensemble
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of disordered structures under charge balance to obtain physically rational energetics and
compute the voltage profiles.

5.4 Kinetic modeling: transition metal migration

Investigating ionic rearrangements is crucial for comprehending ion mobility and interac-
tions among ionic species. Contrasting with the previous section’s discussion, the migration
of TMs constitutes a kinetic process, necessitating an in-depth description of migrating ion
dynamics across various local environments. Traditional MC simulations may be inadequate
for this purpose, as MC exchanges between two microstates consider only the energy differ-
ences and ignore the dynamics (e.g., energy barriers between the two microstates). While
Kinetic Monte Carlo (KMC) addresses this limitation by incorporating migration barriers,
the complex environments within DRX (particularly those coupled with charge transfer)
challenge the application of KMC with the necessity of calibrating migration barriers. Thus,
molecular dynamics (MD) emerges as a suitable approach for investigating TM migrations.

This section starts with the background of an intriguing example, spinel-like phase for-
mation, which has been widely observed in Mn-rich cathode materials during electrochemical
cyclings. The mechanism of such a process is explained by charge-informed MD in LixMnO2.
The method is further used to explain the formation of spinel-like ordering (δ-phase) in DRX
materials and reveal the relation between the structural ordering and electrochemical per-
formance.

5.4.1 Spinel-like phase formation

The LiMnO2 battery cathode demonstrates substantial phase transformations from either
layered [204] and orthorhombic ordering [205] to spinel ordering during battery cycling (0 ≤
x ≤ 1 in LixMnO2) because of the TM migrations [205, 206]. Figure 5.10 presents the
spinel ordering, which can be represented by the cation occupancy in AB2O4 of a FCC
anion framework with 8a, 16c and 16d sites. Cation A occupying on the tetrahedral 8a
sites with four face-sharing 16c octahedral sites. The four 16c sites (8a tetrahedron) form a
0-TM channel. Cation B occupying on the octahedral 16d sites. The intercalation of spinel
LixMnO2 is characterized by varying the Li occupancy on 8a and 16c sites. For example, the
intercalation process between LiMn2O4 and Li2Mn2O4 is the conversion of 16c octahedral
Li into 8a tetrahedral Li occupancy, and the intercalation process between LiMn2O4 and
Mn2O4 is the insert/removal of 8a Li.

Figure 5.10(a) presents the characteristic voltage profile of spinel LixMnO2 displays a
strong two-phase reaction with a sharp voltage decrease from 4 V to 3 V. Due to the sub-
stantial collective Jahn-Teller distortion of Mn3+ in spinel LiMnO2, the large octahedral
distortion results in lattice incompatibility and a first-order phase transformation. Because
of this, the strong compositional inhomogeneity and large stresses in cathode particles lead
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(a) (b)

Spinel ordering
in FCC

Figure 5.10: (a) The intercalation voltage profile and free energy of spinel LixMn2O4 (Ref.
[24]). (b) An AB2O4 spinel structure showing tetrahedral 8a sites (atom A) with neighboring
octahedral 16c (vacancy) and octahedral 16d sites (atom B). (Ref. [6])

to capacity loss and battery degradation. For practical use of spinel LixMnO2, Li cycling
is confined to the 4 V range between MnO2 and Li0.5MnO2, exploiting merely half of the
theoretical capacity. It is essential to assess how the intercalation chemistry around the 3 V
voltage could extend the capacity.

Ji et al. [26] and Cai et al. [27] have proposed that creating a partially disordered spinel
could resolve the two-phase reaction issue by successfully synthesizing several ball-milled
cathode materials in a series of compositions Li1+x+yMn2−y(O,F)4. The mechanism to unlock
the Li capacity in partially disordered spinel is explained by Chen et al. [207]. It is found that
introducing approximately 25% cation disorder can remove the two-phase reaction by increas-
ing the solubility (decreasing the defect energy) of cation vacancy in spinel LiMnO2. More-
over, the spinel-like ordering formation is more commonly observed across several DRX sys-
tems via electrochemical cyclings, including Li1.2Mn0.6Nb0.2O2 [208], Li1.2Ti0.2Mn0.6O1.8F0.2

[30], and Li1.1Mn0.8Ti0.1O1.9F0.1 [209]. These Mn-rich DRX compounds exhibit a gradual
phase transition towards spinel-like ordering. No two-phase reaction has been observed for
the Li intercalation of the transformed materials.

The phase transformation is believed to be related to the mobile Mn ion when cation
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vacancies are created. The mechanism of Mn migration has been under debate and investi-
gation. It is typically concluded that Mn migration is strongly coupled with its charge state,
Mn4+ is generally considered immobile, while Mn3+ and Mn2+ are considered more mobile
[210–212]. However, revealing the charge-coupled dynamics of Mn ion migration has been
challenging over the past decades, as the time scale and computational cost of observing
such phenomena are far beyond any possible ab-initio methods.

5.4.2 Transition metal migration in LixMnO2

In early quasi-static ab-initio investigations, Reed et al. [204] rationalized the remark-
ably rapid phase transformation observed at room temperature via a charge disproportion
mechanism: 2Mn3+

oct → Mn2+
tet +Mn4+

oct. Here, the subscript refers to a location in either the
tetrahedral or octahedral site of face-centered cubic anion packing (see Fig. 5.13). The
hypothesis proposed that Mn2+ presented a lower energy barrier for migration between
tetrahedral and octahedral sites, showing a preference for the tetrahedral site. However,
a subsequent magnetic characterization experiment by Jang et al. [210] demonstrated that
the electrochemically transformed spinel LiMnO2 hosts lower-spin (high-valence) Mn ions at
the tetrahedral sites. This finding suggested the potential for higher-valence Mn to stabilize
at tetrahedral sites during phase transformation.

In a recent study, Deng et al. [168] applied the pre-trained CHGNet to thoroughly describe
this process via a charge-informed MD simulation. The simulation started from a partially
delithiated supercell structure featuring orthorhombic ordering, characterized by peaks at
15°, 26°, and 40°in the X-ray diffraction (XRD) pattern (see the bottom line in Fig. 5.11(b)).
A phase transition from orthorhombic to spinel-like ordering was observed as the simulation
proceeded. Figure 5.11(b) showcases the simulated XRD patterns of MD structures at
various time intervals ranging from 0 to 1.5 ns. These patterns exhibit a discernible increase
in characteristic spinel peaks (18°, 35°) and a decrease in the orthorhombic peak, which agree
well with the experimental in-situ XRD results [206, 210].

The advantage of CHGNet is illustrated in its capacity to predict charge-coupled physics,
as demonstrated in Fig. 5.11. The figure shows the CHGNet-predicted energy of the LMO
supercell structure as a function of simulation time, coupled with the peak strength of
2θ = 15◦ and 18◦. A clear correlation between the structural transformation and energy
landscape is observed. In the early stage of the simulation, the magnetic moments of Mn
ions predominantly range between 3µB and 4µB, corresponding to Mn4+ and Mn3+. Ap-
proximately at 0.8 ns, there is a substantial increase in Mn2+ quantity, which is accompanied
by a decrease in the potential energy and changes in the XRD peaks. Following this major
transition point, Mn3+ ions undergo charge disproportionation, resulting in the coexistence
of Mn2+, Mn3+, and Mn4+ in the transformed spinel-like structure.

Another key observation made by Deng et al. [168] is the correlation between ionic rear-
rangements and the charge-state evolution. In particular, the timescale of charge dispropor-
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Figure 5.11: (a) orthorhombic LiMnO2 (o-LMO) unit cell plotted with the tetrahedral site
and the octahedral site. (b) Simulated XRD pattern of CHGNet MD structures as the system
transforms from the o-LMO phase to the s-LMO. (c) Average magmoms of tetrahedral and
octahedral Mn ions vs. time. (d) Top: total potential energy and the relative intensity of
o-LMO and s-LMO characteristic peaks vs. time. Bottom: the histogram of magmoms on
all Mn ions vs. time. The brighter color indicates more Mn ions distributed at the magmom.

tionation, with a notable emergence of Mn2+ occurring at ∼ ns scale, is considerably longer
than the timescale of ion hops, with the manifestation of Mntet at ∼ ps scale. This implies
that the migration of Mn to the tetrahedral coordination is less likely associated with the
emergence of Mn2+. Instead, the emergence of Mn2+tet is correlated with the formation of
long-range spinel-like ordering, as evidenced in Fig. 5.11(c).

5.5 Molecular dynamics of Li1.1−xMn0.8Ti0.1O1.9F0.1

Inspired by the success of using CHGNet to simulate Mn migration in Li0.5MnO2 for
the formation of spinel ordering, the studies in this section have extended to more complex
scenarios, i.e., understanding how phase transformation happens from DRX compounds
using MD simulations.
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Figure 5.12: The fine-tuning workflow of CHGNet in Li-Mn-Ti-O-F chemical space with
r2SCAN-DFT, including relaxation of existing datasets (Materials Project and DRX), passive
sampling of TM migration and MD simulations.

5.5.1 Sampling the Potential Energy Surface

To tackle this challenge, it is crucial to parameterize an effective machine learning in-
teratomic potential (MLIP) within the desired chemical space with high-fidelity DFT data.
The crux of this task lies in creating an effective training dataset for model parameterization,
which essentially involves sampling the potential energy surface (PES) in the Li–Mn–Ti–O–F
chemical space. The PES sampling needs to address three primary aspects: (1) compositional
space, incorporating various pristine compositions and Li concentrations; (2) cation ordering
space, spanning from ordered phases (e.g., orthorhombic, layered, and spinel) to disordered
ones; and (3) migration paths, indispensable for assessing the energy of rare events. The
following procedures outline our approach to PES sampling.

Initial sampling from pre-existing datasets

For the initial sampling, the compounds on Materials Project within the Li–Mn–Ti–O–
F chemical space that has a decomposition energy (energy above the convex hull, Ehull)
lower than 0.1 eV/atom [118] are selected. To sample the configurational space of disordered
phases, a training dataset for DRX cluster expansion models containing Mn2+/Mn3+ is used,
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Figure 5.13: Illustration of TM migration in various local environments in DRX compounds.
The gradient color ball represents partial occupancy of cation (Li/Mn/Ti). The gray ball
represents an anion (O/F). Two types of migration are demonstrated: (1) o-t-o migration
through an intermediate tetrahedral site and (2) o-o migration directly connected by two
octahedral sites.

as reported in Refs. [17, 116]. The structures obtained from pre-existing datasets are relaxed
using r2SCAN-DFT (see Fig. 5.12). Upon initial sampling and DFT calculations, the relaxed
structures were used to fit a trial CHGNet and a CE Hamiltonian in Li–Mn3+–Ti–O–F space.

The DFT calculations were performed with the VASP package using the projector-
augmented wave method [95, 96], a plane-wave basis set with an energy cutoff of 680 eV,
and a reciprocal space discretization of 25 k -points per Å−1. The calculations were con-
verged to 10−6 eV in total energy for electronic loops and 0.02 eV/Å in interatomic forces
for ionic loops. The regularized strongly constrained and appropriately normed meta-GGA
exchange-correlation functional (r2SCAN) [34, 127] was used with consistent computational
settings as MPScanRelaxSet [128].

Sampling of TM migration paths

The TM migration is a rare event with high energy in MD simulations, as the diffusivity
of TM is considerably slower than that of Li [179]. To augment the sampling of the migration
pathway of TM, TMmigration events are generated across varying local environments, taking
into account different TM compositions, Li concentrations, and cation ordering.

A CE Hamiltonian fitted in Li–Mn3+–Ti–O–F space is used to generate pristine (lithi-
ated) DRX structures via MC simulations at T = 1273 K for representing solid-state syn-
thesis conditions and capturing the underlying SRO. Next, for varying Li concentrations
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Figure 5.14: Coherent transformation: a structure ordering change that only allows TM local
migration, whereas the anion framework and non-neighboring cation orderings are fixed. The
coherent transformation can be implemented several times to transform the disordered phase
to a spinel-like phase.

(x = 0.2/0.4/0.6), delithiated structures are generated by removing Li from octahedral
sites based on the pristine structures. The two procedures covered the compositional sam-
pling of such as Li1.2−xMn0.5Ti0.3O1.9F0.1, Li1.2−xMn0.6Ti0.2O1.8F0.2, Li1.1−xMn0.8Ti0.1O1.9F0.1,
Li1.1−xMn0.7Ti0.2O2.0, etc. To scrutinize local migration in these delithiated structures, a
heuristic approach is proposed for inducing cation ordering changes from disordered to dif-
ferent degrees of spinel orderings, which includes:

• Classifying and labeling all transition metals based on their occupancy in the 16c/16d
sites within the spinel structure.

• Initiating a possible local octahedral hop, either through an exchange between 16d TM
and another 16d cation or between 16c TM and 16d Li.

• Removing extraneous octahedral cations that face-share with the tetrahedral site along
the o-t-omigration path, thereby constructing three distinct structures: initial (prior to
TM exchange), intermediate (with TM occupying an intermediate tetrahedral site), and
final (post TM exchange). Such a local migration is called a coherent transformation
step, where the ordering of other atoms not associated with the migration is fixed.
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Figure 5.15: The calculated ”migration barrier” of Mn in different local environments of host
structure Li14Mn13Ti2O32 in a dilute vacancy concentration. The barrier is estimated from
the static DFT calculations of interpolated images along the migration pathway. The differ-
ent valences of Mn are shown, which are determined by the calculated magnetic moments
(Mn2+ in green, Mn3+ in yellow, Mn4+ in red).
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• Implementing coherent transformation many times until there is no 16cMn occupancy.

• Employing the trial CHGNet to relax these structures (initial, intermediate, and final)
in each coherent transform step and linearly interpolating between migration pathways
based on the relaxed structures.

• Computing the energies, forces, stress, and magnetic moments of these interpolated
structures using static calculations via r2SCAN-DFT.

Figure 5.15 displays the calculated energy landscape as an approximated ”migration
barrier” of Mn in different local environments, which is estimated from the static DFT
calculations of interpolated images along the migration pathway.

Molecular dynamics trajectory

Following the passive sampling of local migration paths and DFT-relaxed structure from
pre-existing datasets, a new CHGNet model is parameterized. This model is further used
for MD simulations of the delithiated structures of various compositions as described above.
The MD simulations are conducted using supercells ranging from 10 to 40 formula units (f.u.)
under various temperature conditions (T = 1000/1500/2000 K) with a time step of ∆t = 2
fs. The resulting MD trajectories are uniformly sampled for DFT evaluations and further
partitioned into training and test datasets. Specifically, the test dataset is constructed by the
MD trajectories of the Li0.6Mn0.8Ti0.1O1.9F0.1 composition at T = 1000 K with a supercell
size of 40 f.u. (including 80 anions), which is the composition of interest to simulate.

Table 5.1: The model errors of pretrained CHGNet and fine-tuned CHGNet.

Energy
(meV/atom)

Force
(meV/Å)

Stress
(GPa)

Magmom
(µB)

Pretrained 30 77 0.348 0.032
Fine-tuned 2 68 0.086 0.019

As depicted in Fig. 5.12, the model was subjected to iterative refinement until conver-
gence criteria were met. In practice, we reached the convergence after two iterations. The
first fit only takes the MD trajectories under T = 1000 K. And the second fit takes the
MD trajectories under T = 1000/1500/2000 K. Finally, all the training data within the Li–
Mn–Ti–O–F chemical space (including 88,852 structures) is used to fine-tune the pretrained
CHGNet to achieve a MAE of 2 meV/atom for energy and 68 meV/Å for interatomic forces
on the validation set as shown in Table. 5.1 (The training errors are 3 meV/atom for energy
and 31 meV/Å for interatomic forces).
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Figure 5.16: Simulated XRD, potential energy, charge distribution on Mn ions, and SRO
analysis of the LMTOF MD trajectories

5.5.2 DRX to partially disordered spinel-like transformation

The fine-tuned CHGNet is used for MD production to study the structure change from
DRX to the spinel-like ordering of Li1.1−xMn0.8Ti0.1O1.9F0.1. The structure with partial dis-
order and spinel-like ordering is denoted as δ-phase. The initial structure (Li88Mn64Ti8
O152F8) is derived from a canonical CEMC simulation at T = 1273 K. The Li ions are ran-
domly removed from the MC structure to create the delithiated structure (Li48□40Mn64Ti8
O152F8). The delithiated structure is relaxed by CHGNet with a force convergence to < 0.1
eV/Å and then used for MD simulation at T = 1273 K for t = 2 ns with a time step of
∆t = 2 fs under the NVT ensemble.
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Structure ordering analysis

Figure 5.16(a) presents the simulated XRD patterns observed within the time interval
of t = 0 to t = 2 ns. The minor diffraction peaks, noticeable in the low-angle region, are
primarily due to artifacts originating from finite-sized structures (Li48□40Mn64Ti8O152F8).
The characteristic peaks of spinel ordering (18◦, 35◦, etc.) within the FCC rocksalt frame-
work become increasingly significant as MD proceeds. Figure 5.16(b) illustrates the energy
landscape across the simulated MD trajectories. The black data points denote the poten-
tial energies, while the colored ones represent the total energies. The energies are depicted
relative to their values at the initial state. A notable decrease in energy is observed for the
δ-phase (approximately 60 meV/anion) following a t = 2 ns of MD simulation, implying that
the spinel-like cation ordering is thermodynamically favorable for the Li0.6Mn0.8Ti0.1O1.9F0.1

composition in the presence of cation deficiencies.

Figure 5.16(c) provides an analysis of short-range order variations as a function of time.
To obtain this, the cations in the MD structures are coarse-grained to their nearest octahedral
sites (occupying the Wyckoff positions 16c/d) to evaluate the occurrence of the 0/1-TM
channel. The solid green line indicates the occurrence of the 0-TM channel, with the dashed
green line signifying its random limit for two Li contents (Li1.0 and Li1.1). The purple line
corresponds to the occurrence of 1-TM channel, which remains relatively stable and akin to
the random limit for TM0.9 throughout the MD trajectories. At the onset (t = 0 ns), the
occurrence of the 0-TM channel is approximately 0.03, which increases to around 0.06 after
t = 2 ns. The rise in the number of 0-TM channels explains the enhanced rate performance
of the δ-phase compared to the DRX phases, which is ascribed to its spinel-like ordering
formation.

Charge distribution with ion rearrangement

A key feature of CHGNet lies in its ability to simultaneously predict atomic charge
(inferred from magnetic moments) along with energetics. This attribute proves particularly
significant for the phase transition from DRX to δ, as the Mn migration is correlated with its
heterovalent state. Figure 5.17(a) illustrates the site-wise distribution of magnetic moments
for Mn ions. Heterovalent states of Mn are categorized as follows: Mn2+ ∈ [4.1µB, 5.0µB],
Mn3+ ∈ [3.25µB, 4.1µB], and Mn4+ ∈ [2.5µB, 3.25µB]. At the onset of the MD simulation,
Mn predominantly exists in valence states of +3 and +4. As the simulation proceeds, the
content of Mn2+ gradually increases, as highlighted by the yellow circles in Fig. 5.17(a).
Figure 5.17(b) details the per formula unit content of Mn2+ and Mn2+ on both octahedral
and tetrahedral sites.

The atomic charges predicted by CHGNet reveal the emergence of Mn3+
tet in the early

stages of the simulation. The crystal field theory suggests that Mn2+ exhibits no site pref-
erence between octahedral and tetrahedral positions, and the low migration barrier energy
makes Mn2+ as an ideal candidate to contribute to the TM migration [132]. The results
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Figure 5.17: Simulated charge distribution of Mn ions along the MD trajectories

carried out by CHGNet simulation clearly indicate that a significant amount of Mn3+ starts
to migrate and emerges on the tetrahedral sites almost at the beginning of the simulation.

The emergence of Mn2+
tet is more likely to correlate with the formation of long-range order

rather than the phenomenon of local migration in the phase transformation from DRX. The
small quantity of Mn2+

oct can be attributed to the variety of local chemical environments in
DRX as compared to the ordered structure. Within these diverse environments, Mn3+ with
marginal stability can disproportionate into Mn2+ and Mn4+. The simulation result also
agrees with the phase transformation simulation from orthorhombic to spinel-like Li0.5MnO2

as revealed by pretrained CHGNet simulation in Ref. [168], whereas this simulation addresses
a more complex compound with significant configurational disorder and substantial SRO of
TMs and anions.

5.5.3 Intercalation voltage profile of δ-phase

To assess the impacts of structural disorder and partial spinel-like ordering on the elec-
trochemical performance of the transformed structure (δ-phase), the fine-tuned CHGNet is
used as an energy calculator to examine the equilibrium voltage profile.

According to experimental results, the spinel-like structure transformed after electro-



115

chemical cyclings manifests a pronounced 3 V plateau in both charge and discharge voltage
profiles [209]. The 3 V voltage plateau is a characteristic feature of the intercalation of spinel
with 0-TM to Litet conversion reaction (see Fig. 5.18), which is defined as

4Lioct → 3□oct + 1Litet. (5.9)

To compare the computed intercalation voltage profiles of the δ-phase with those of the
DRX and spinel, the delithiation process involves the 0-TM to Litet conversion is primarily
assessed. The energy preferences associated with other types of delithiation processes after
such the 0-TM conversion is assessed subsequently.

Given that the intercalation problem involves identifying ground-state related energetics
and considering that the partially disordered δ-phase possesses a high-dimensional configu-
rational space, constructing a comprehensive CE model that includes both tetrahedral and
octahedral cation occupancy is significantly more complex than for normal DRX with only
octahedral occupancy. Therefore, a simplified voltage profile using a beam search algorithm
is resorted:

1. Select an initial structure with composition Lix1TMO2, relax the structure by the fine-
tuned CHGNet and get the internal energy E1.

2. Generate 20 different delithiated structures, each with a different vacancy occupancy
and composition Lixi

2
TMO2 (x

i
2 may not be equal for all {i} structures. This generation

process is referred to as an intercalation step.

3. Relax these 20 structures and obtain their corresponding internal energies Ei
2 (i denotes

the index of each structure).

4. The proposed next delithiated structure is chosen based on the minimum (maximum
for lithiation process) voltage calculated using Eq. (5.3) with respect to the initial
structure Lix1TMO2.

5. Repeat Step 1 until all possible intercalation steps are used.

It is noted that different 0-TM channels may share the same Li atoms in a FCC framework.
The conversion of different 0-TM to Litet may result in delithiated structures of varying Li
concentrations in Step 2. Therefore it is rational to use the minimum voltage as a selecting
criterion in the beam search algorithm.

Computed voltage profile of δ-phase

Figure 5.18(a) illustrates the formation energy convex hull constructed using all the
relaxed structures. In the range of 0.5 ≤ x ≤ 1.1, only 0-TM to Litet conversion reactions
are evaluated. The voltage profile exhibits a plateau around 3 V, with a minor slope. Upon
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Figure 5.18: Computed formation energy convex hull and voltage profile of
Li1.1−xMn0.8Ti0.1O1.9F0.1 of the δ-phase. Voltage profiles constructed from the GS of en-
ergy convex hull. The inset illustrates the 0-TM to tet-Li conversion in the intercalation
process.
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reaching x = 0.5, all 0-TM channels have been converted into tetrahedral lithium (Litet)
occupancy, marking the start of another type of delithiation process, which involves the
removal of either Litet or (Lioct). Although a slight increase of voltage is observed at x = 0.5
after the consumption of all 0-TM conversions, the quantity is much reduced compared to the
two-phase reaction as shown in Fig. 5.10(a) and Fig. 5.19(d). For 0 ≤ x ≤ 0.5, delithiation
of both Lioct and Litet is considered using the aforementioned method.

The low-energy configurations near the convex hull within the range 0.25 ≤ x ≤ 0.5
correspond to the removal of Lioct. In contrast, the high-energy configurations, represented
in dark red, correspond to the removal of Litet. Notably, the removal of Litet is characterized
by a high defect energy in the formation energy convex hull, identified by a steep slope that
almost parallels the delithiation process for x < 0.25. For x < 0.25, all Li-ions are located
at the tetrahedral site, and the delithiation process entails the removal of Litet.

The intercalation voltage profiles constructed using Eq. 5.3 are displayed in Fig. 5.18.
The 0-TM conversion reaction contributes to approximately 0.6 Li capacity (∼ 181 mAh/g)
within the voltage window centered around 3 V. This 0-TM capacity contribution arises
from an increased spinel-like characteristic and the presence of 0-TM channels, as indicated
by the statistics of the MD trajectories from the CHGNet simulation. Although the δ-phase
(from the MD simulation) does not reach the highest amount of 0-TM compared to the
ordinary LiMnO2 spinel, the capacity contributed by 0-TM conversion does not necessarily
decrease. This is because the correlations between 0-TM channels are less frequent than
ordinary LiMnO2 spinel. For instance,

1. An independent 0-TM conversion results in 3 Li capacity per 0-TM

4Lioct → 3□oct + 1Litet

2. Two correlated 0-TM with two point-sharing Li-ion (7 Lioct in total) results in 2.5 Li
capacity per 0-TM:

7Lioct → 5□oct + 2Litet.

It is noted that, for spinel LiMnO2, all Li resides on the 16c sites and is shared by two 0-TM
tetrahedra. Therefore, the Li capacity is shared by two 0-TM channels, resulting in 2 Li
capacity per 0-TM. These findings clarify why the δ-phase, despite having a lower number
of 0-TM channels, can still yield a comparable (or even greater) Li capacity around 3 V
through the 0-TM conversion.

Comparision to DRX and spinel phase

To further elucidate the variations in intercalation voltage profiles between the DRX and
spinel phases, we conducted additional evaluations for comparison. The DRX structure is
selected as the initial structure derived from the CEMC simulations (the configuration at
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Figure 5.19: Computed formation energy convex hull of Li1.1−xMn0.8Ti0.1O1.9F0.1 of (a) DRX
and (b) spinel phase. Voltage profiles constructed from the GS of energy convex hull of (c)
DRX and (d) spinel phase. The voltage profiles of partially transformed δ-phase are shown
in red dashed lines for comparison.

t = 0 s in MD simulation). The spinel Li1.1Mn0.8Ti0.1O1.9F0.1 is generated through another
CEMC simulation by fixing the 16d occupancy of Mn and Ti and the 16c occupancy of Li,
which could capture the underlying SRO of anions and cations (e.g., Li-F SRO).

Figure 5.19(a) illustrates the formation energy convex hull and voltage profile of the DRX
phase, where the δ-phase is plotted in the red dashed line for comparison. Due to the absence
of 0-TM channels in the DRX structure, a relatively limited amount of 0-TM conversion Li
capacity (approximately 0.3 per f.u.) can be achieved. The absence of spinel-like ordering
results in a profile marked by a mildly steep increase as delithiation progresses. Notably,
the overall voltage profile for x > 0.25 of the DRX phase is higher than that of the δ-phase.
This restricts the accessible capacity within an operational voltage window, as previously
reported in experimental studies [209].

Figure 5.19(b) depicts the calculated results for spinel Li1.1−xMn0.8Ti0.1O1.9F0.1. The
voltage profile clearly displays a two-phase reaction between Li1.1 and Li0.6. Due to the ab-
sence of disorder, the spinel phase manifests a lower average voltage for the 0-TM conversion
reaction, which is in full agreement with the previous finding by Chen et al. [207] in cation
disorder effect in LiMnO2 spinel.
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In summary, two conclusions can be drawn from the simulation results: (1) The pres-
ence of partial cation disorder in the δ-phase effectively removes the two-phase reaction, as
demonstrated in Fig. 5.19(d). (2) The introduction of partial spinel-like ordering increases
the 0-TM occurrence and thus expands the available Li capacity around the 3 V. The 0-TM in
a partially disordered spinel-like structure is less inter-correlated compared to ordinary spinel,
providing enough Li capacity. The two characteristics of δ-phase Li1.1−xMn0.8Ti0.1O1.9F0.1

make it a promising candidate for the next-generation of cathodes with earth-abundant
cathode materials.

5.6 Conclusion

In this chapter, the thesis has addressed the computational challenges associated with
modeling the complex oxides embedded with charge information for modern battery materi-
als applications, including disordered rocksalt cathodes and their derivatives. Charge degrees
of freedom or charge information play a pivotal role in modeling battery materials and un-
derstanding atomistic-scale reaction mechanisms. This aspect is typically coarse-grained as
a degree of freedom that can be variationally removed in many previous pieces of research.
However, the examples presented in this chapter underscore the importance of incorporat-
ing charge information, as well as elucidate how to apply it to complex, multi-component
systems effectively.

The first example showcases the equilibrium modeling using a charge-decorated cluster
expansion for intercalation chemistry with multi-redox reactions in Li1.3−xMn0.4Nb0.3O1.6F0.4.
The application of commonly used cluster expansion techniques to model the intercalation
thermodynamics is challenged by the combinatorial increase in configurational degrees of
freedom as the number of species grows, which necessitates the efficient generation of lattice
models without over-fitting and proper sampling of the configurational space under the re-
quirement of charge balance in ionic systems. In this work, we introduce a combined approach
that addresses these challenges by (1) constructing a robust cluster-expansion Hamiltonian
using the sparse regression technique, including ℓ0ℓ2-norm regularization and structural hi-
erarchy; and (2) implementing semigrand-canonical Monte Carlo to sample charge-balanced
ionic configurations using the table-exchange method and an ensemble-average approach.
The simulated voltage profile is found to be in good agreement with experimental data and
particularly provides a clear demonstration of the Mn and oxygen contribution to the redox
potential as a function of Li content.

The second example presents the kinetic modeling using CHGNet as a charge-informed
interatomic potential to study the transition metal migration-induced phase transformation
in Li0.6Mn0.8Ti0.1O1.9F0.1 DRX. A fine-tuned CHGNet with high-fidelity quantum accuracy
of r2SCAN-DFT is built. For this purpose, structures from the existing dataset are initially
computed. A unique sampling method is developed to span the configurational space from
disordered to spinel phases with coherent structure transformation. Throughout this trans-
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formation, interpolated structures are generated along various migration pathways for DFT
evaluations. The structures produced via MD simulations are further evaluated and included
for data augmentation. A fine-tuned MLIP is constructed from the pretrained CHGNet and
such a comprehensive dataset in the Li–Mn–Ti–O–F chemical space. And the MLIP is
further applied to diverse applications, such as structure relaxation and MD simulations.

The studies reveal that a partial spinel-like ordering (referred to as the δ-phase) can
be attained via MD simulation of the disordered Li0.6Mn0.8Ti0.1O1.9F0.1. Analysis of struc-
tural ordering changes (e.g., simulated XRD and SRO) is conducted on the MD structures.
Particularly, the charge information on Mn ions revealed a correlation between charge dis-
proportionation and the formation of spinel-like long-range order. It is found that Mn3+

contributes significantly to the migration, starting almost immediately at the onset of the
MD simulation. Moreover, it is identified that these structural characteristics profoundly
influence the electrochemical properties of the material, especially its intercalation voltage
profile. When compared to the spinel phase, the simplified voltage profile derived from the
MD-simulated δ-phase demonstrates that partial cation disorder can effectively remove the
two-phase reaction. In contrast to the DRX phase, the introduction of partial spinel-like
ordering in the δ-phase extends the available Li capacity around the 3V plateau, which is
facilitated by the increased number of 0-TM channels with reduced inter-correlation.

Looking forward, the recently developed universal MLIP (or fine-tuned version of such
universal MLIP) provides new opportunities to accelerate the training structure generation
process by accurately approximating DFT calculations [166, 168]. The CE Hamiltonian
demonstrated in the first case can be further obtained by coarse-graining the MLIP predicted
configurational energy, especially using the charge-informed MLIP to include the heterovalent
states of transition metals [168, 213]. It is believed such an approach has the potential to
bridge up first-principles calculations, force fields, and cluster expansions and give a higher
accuracy sampling at a lower computational cost to study the thermodynamic and kinetic
properties of energy storage materials.
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Chapter 6

Deep learning of experimental
cathode electrochemistry

6.1 Introduction

In previous chapters, the thesis discusses atomistic modeling approaches derived from
ab-initio, such as the cluster expansion Monte Carlo and molecular dynamics. While these
methodologies are powerful tools for comprehending the structure-property relationships in
materials science, their computational demands present a significant challenge when applied
to disordered systems. Additionally, many experimentally measured quantities (e.g., high-
rate reactions) are far from the equilibrium, while the ab-initio modeling struggles with these
representations due to both temporal and spatial scale challenges. Furthermore, virtual high-
throughput screening for materials optimization demands an approach that is accurate and
versatile yet also cost-efficient. An alternative approach to well represent and predict the
electrochemistry of cathode materials is desired beyond ab-initio modeling.

Artificial intelligence (AI) has emerged as a powerful tool in discovering and optimizing
novel battery materials [214]. By leveraging vast amounts of experimental and computational
data, AI-assisted techniques can accelerate the battery design process by identifying promis-
ing candidates within large chemical spaces [215], predicting battery remaining lifespan [216–
218], and optimizing the fast charge/discharge protocol [219]. These efforts significantly re-
duce the time and cost required for conventional trial-and-error approaches. Most recently,
the battery data genome initiative has been proposed to use AI assistance to accelerate the
discovery and optimization of battery materials [220].

Despite these advancements, current machine-learning efforts in battery research primar-
ily focus on predicting the lifespan within one battery system in a rather simple chemical
space, such as NMC (Ni–Mn–Co). The development of exploratory machine learning for rep-
resenting chemical effects in a more complicated multi-dimensional chemical space remains
underdeveloped due to the challenges associated with simultaneously optimizing multiple
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Figure 6.1: The voltage profile illustrates the relationship between capacity (Q) and voltage
(V ), which is strongly correlated with the composition of transition metal (TM) species. The
derivative quantity dQ/dV peaks at the redox potential of TM, where a pronounced peak
indicates a flat plateau in the voltage profile. (Ref. [222])

electrochemical properties (e.g., rate capability, cyclability, and various test voltage win-
dows) and capturing the complex chemistry among different transition metal (TM) species
[221]. Moreover, the scarcity of high-fidelity data further hinders the progress of AI in the
battery field.

Owing to the nearly unlimited compositional design space and considerably more com-
plex structure-property relationship of DRX cathodes compared with conventional layered
cathodes, their rational design requires the extensive involvement of advanced characteri-
zation techniques as well as complicated computational tools under a conventional frame
of investigation. Data-driven methods offer alternative means of compositional design and
optimization of high-dimensional DRX cathodes without having to fully construct their
structure-property relationships. Instead of computing from ab-initio, this chapter presents
an exploratory deep-learning model (DRXNet) for the discovery and optimization of battery
cathode materials.

As shown in Fig. 6.1, the discharge-voltage profile presents a negative voltage slope
against capacity. This profile shape is tied to various factors, such as the DRX composition,
applied current density rate, and degradation that may have occurred in various cycles. In
experiments, the capacity Q is measured by determining the cumulative charge transfer using
galvanostatic tests. Another relevant quantity of the voltage profile, dQ/dV , is obtained by
taking the derivative of Q with respect to V . The dQ/dV curve is a crucial physical quantity
for analyzing characteristic redox potentials from different TMs.
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6.2 Data collection from electrochemical test

(b)
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Figure 6.2: (a) The elemental distribution of collected experimental electrochemistry data.
In total, the dataset contains 19,259 discharge profiles collected from DRX oxides and 11,604
discharge profiles from oxyfluorides. The color-coded boxes indicate the number of discharge
profiles (cycles) on compounds that contain that specific element. The number within each
elemental box represents the count of individual experiments conducted. (b) A histogram of
the number of cycles (Ncycle) and current density (rate) for all the individual electrochemical
tests.

Unlike conventional NMC-based layered cathodes, DRX materials exhibit much more
diverse electrochemical performance due to their significantly larger chemical existence and
the more complex structure-property relationship involving not only long-range ordering but
also short-range ordering [17]. For instance, Mg doping in Mn-based oxyfluoride DRX can
increase the discharge capacity while retaining similar voltage-profile shapes [114]; Cr doping
in Li1.2Mn0.4Ti0.4O2.0 results in comparable low-rate capacity but significantly improves the
high-rate performance due to the non-topotactic TM migration [126]. These non-linear
effects arising from compositional changes make both material design and machine-learning
modeling challenging, thereby necessitating a comprehensive, high-fidelity dataset to address
such issues.

To address these issues, the electrochemical test data related to DRX compounds over the
past five years have been compiled by mining electronic experimental notebooks in CEDER
Group to construct the DRX Test Dataset (DRX-TD). The dataset contains not only the
successful materials using galvanostatic charge/discharge tests in several papers but also less
well-performing DRX compounds. This endeavor yielded a comprehensive dataset containing
30,000 discharge profiles across 16 elements (14 metal species) from lab experiments and
published literature.
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Coin-cell electrochemical test data from the lab starting in 2016 were collected and con-
verted into a digital format (.json). Each .json file contains information on one individual
electrochemical test, including the electrode composition, electrode mass (g), active mass
(g), test current rate (mA/g), low and high voltage value of the working window (V), and
charge/discharge profiles of Ncycle collected cycles.

An individual electrochemical test is defined as a group of Ncycle discharge profiles with
a fixed current density rate, where Ncycle is the number of cycles conducted in such a test,
corresponding to the results obtained from one coin-cell in experiments. The distribution
of elements in the DRX-TD is shown in Fig. 6.2(a), where the number in each element’s
box represents the number of times that element is presented in a compound for which an
electrochemical test is present. The box’s color indicates the number of times that element
is presented in a discharge profile. Comprising 19,259 discharge profiles of DRX oxides and
11,604 discharge profiles of oxyfluorides, the dataset offers extensive coverage of major redox-
active TMs. Figure 6.2(b) displays the histograms of the Ncycle and the loading current rates.
Most of the electrochemical tests were conducted at a low current rate (20 mA/g).

The UnivariateSpline and average convolution were used to denoise the experimental
profile and compute the dQ/dV curve. One hundred points were uniformly sampled to form
the voltage series V = [V1, V2, ..., Vi, ...] and a capacity series Q = [Q1, Q2, ..., Qi, ...] for each
discharge profile. As dQ/dV is a more intrinsic property for battery materials representing
the redox information, including this value in the modeling allows for a more representative
analysis of the electrochemical performance of DRX compounds under various conditions.
The dQ/dV series were calculated accordingly based on V .

Dataset from lab experiments

For the in-house battery tests, the CR2032 coin cells were assembled using commercial
1 M LiPF6 in an ethylene carbonate and dimethyl carbonate solution (volume ratio 1:1) as
the electrolyte, glass microfiber filters (Whatman) as separators, and Li-metal foil (FMC)
as the anode. The coin cells were tested on an Arbin battery cycler at room temperature.
The cathode consisted of a mixture of active material (DRX), Super C65 carbon black,
and polytetrafluoroethylene (PTFE). The capacity signal, collected in units of Ah from the
Arbin battery cycler, was normalized to mAh/g using the mass of the active material (active
mass). The data from the failed tests (e.g., Arbin cycler breakdown, electrolyte failure,
strong signal fluctuations ...) were removed from the dataset. Figure 6.3 demonstrates the
typical examples of failed data collection during experimental electrochemical testing.

Dataset augmentation from published literature

To enhance the generalization and expressibility of DRXNet, the dataset was expanded by
figure mining published voltage profiles in related systems not covered by the lab tests, which
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Table 6.1: This table presents supplementary electrochemical cycling data extracted from
previously published literature, which has been used to augment the training dataset.

Composition Voltage window Rate Reference

Li1.333V0.667O2.0 1.3 – 4.1 V C/20 Chen et al. [110]
Li1.333V0.667O1.333F0.667 1.3 – 4.1 V C/20
Li1.211Mo0.467Cr0.3O2 1.5 – 4.3 V C/20 Lee et al. [25]
Li1.2Mo0.6Fe0.2O2 2 – 4.4 V 0.1C Liu et al. [223]

Li1.2Ni0.333Ti0.333Mo0.133O2 1.5 – 4.5 V 20 – 400 mA/g
Li1.15Ni0.375Ti0.375Mo0.1O2 1.5 – 4.5 V 20 mA/g
Li1.1Ni0.416Ti0.416Mo0.06O2 1.5 – 4.5 V 20 mA/g Lee et al. [103]
Li1.05Ni0.458Ti0.458Mo0.03O2 1.5 – 4.5 V 20 mA/g

LiNi0.5Ti0.5O2 1.5 – 4.5 V 20 – 400 mA/g
Li1.15Ni0.375Ti0.375Mo0.1O2 1.5 – 4.6 V 20 mA/g
Li1.2Ni0.333Ti0.333Mo0.133O2 1.5 – 4.6 V 20 mA/g Lee et al. [111]

Li1.15Ni0.45Ti0.3Mo0.1O1.85F0.15 1.5 – 4.6 V 20 mA/g
Li1.333Mo0.667O2 1 – 4 V 10 mA/g

Li1.286Mo0.428Nb0.286O2 1 – 4 V 10 mA/g
Li1.2Mo0.4Ti0.4O2 1 – 4 V 10 mA/g Hoshino et al. [224]

Li1.4Mo0.4667Ti0.1333O1.333F0.667 1.2 – 4 V 10 mA/g
Li1.333Mo0.667O1.333F0.667 1.2 – 4 V 10 mA/g

Li1.33Nb0.3Mn0.4O2 1.5 – 4.8 V 10 – 1600 mA/g Yabuuchi et al. [104]
Li1.25Nb0.25Mn0.5O2 1.5 – 4.8 V 10 mA/g Wang et al. [225]
Li1.3Nb0.3V0.4O2 1.5 – 4.2 V 10 mA/g
Li1.25Nb0.25V0.5O2 1.5 – 4.8 V 10 mA/g Nakajima and Yabuuchi [201]
Li1.3Nb0.3V0.4O2 1.5 – 4.8 V 10 mA/g
Li1.2Ti0.4Fe0.4O2 2.5 – 4.8 V 7.5 mA/g

Li1.273Ti0.546Fe0.18O2 2.5 – 4.8 V 7.5 mA/g Tabuchi et al. [226]
Li1.111Ti0.222Fe0.667O2 2.5 – 4.8 V 7.5 mA/g

Li1.333Cr0.667O1.333F0.667 1.3 – 4.8 V 13 mA/g
Li1.333Cr0.533V0.133O1.333F0.667 1.3 – 4.7 V 13 mA/g Ren et al. [227]
Li1.333Cr0.333V0.333O1.333F0.667 1.3 – 4.1/4.5/4.7 V 13 mA/g
Li1.333Cr0.133V0.533O1.333F0.667 1.3 – 4.1/4.3/4.5/4.7 V 13 mA/g

Li1.0Ni0.5Ti0.5O2.0 1.3 – 4.5 V 20 mA/g
Li1.05Ni0.458Ti0.458W0.033O2.0 1.3 – 4.5 V 20 mA/g
Li1.10Ni0.416Ti0.416W0.066O2.0 1.3 – 4.5 V 20 mA/g Cambaz et al. [228]
Li1.15Ni0.375Ti0.375W0.10O2.0 1.3 – 4.5 V 20 mA/g
Li1.20Ni0.333Ti0.333W0.133O2.0 1.3 – 4.5 V 20 – 400 mA/g

was accomplished using the WebPlotDigitizer [229]. The information of the augmented
dataset from published literature is summarized in Table. 6.1.

6.3 Model design of DRXNet

DRXNet aims to draw a connection between chemistry and cathode performance by es-
tablishing a mapping between V and Q for arbitrary cathode compositions under various
test conditions. This idea is conceptualized as identifying a function F that maps cath-
ode parameters and the voltage state Vi to produce the capacity state Qi as an output.
The function F is conditionally defined by the parameters O, which consider the electrode
composition, current rate, and cycle number

Qi = F(Vi|O). (6.1)
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Test of Li1.05Mg0.15Mn0.55Ti0.25O2.0 at 20 mA/g Test of Li1.20Mn0.48Zr0.24Ti0.08O2.0 at 50 mA/g 
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Figure 6.3: Two examples of failed data collection during experimental electrochemical test-
ing. (a) The Arbin cycler accidentally stopped, and the test resumed later. Discharge cycles
after the stoppage were excluded from the dataset. (b) The electrochemical test experienced
a complete breakdown with significant signal fluctuations. Only the first and second cycles
were retained, while the remaining cycles were discarded.

With this intuition, the DRXNet is designed with two main components, as shown in Fig.
6.4(a) and Fig. 6.4(b): (1) an electrochemical condition network that generates a feature

vector X⃗O based on the compound composition and additional features of the electrochem-
ical test information; (2) a state prediction network to approximate the discharge state of
the cathode as a function of the voltage state, Qi = F(Vi|O), given the electrochemical
conditional encoding of O.

Preliminaries

Define a linear layer with trainable weight W and bias b as

L(X⃗) = X⃗W + b. (6.2)

A multi-layer perceptron (MLP) is denoted as

ϕ(X⃗) = σ
(
L(X⃗)

)
= σ ◦ L(X⃗), (6.3)

where σ is a non-linear activation function. In this thesis, σs represents the Sigmoid activa-
tion function

σs(x) = Sigmoid(x) =
1

1 + exp(−x)
, (6.4)



127

Linear, Softplus, 32

(c)

= ℎ!" + 𝑐# ⋅ ℎ#Li

Mn Ti

Weighted
Message Passing

𝑋$%&'Weighted
Pooling

Compositional
Encoding

DRX Composition
(e.g., Li1.25Mn0.45Ti0.3O1.8F0.2)

𝑑𝑄!"

𝑑𝑉!

+

Softplus

Linear, Softplus, 32

ℒ = ℓ 𝑄() + ℓ 𝑄(* + ℓ +,-
+.!

Loss Function

GNN

Embedding

Make Battery

MLP

𝑋𝒪

Encoding Electrochemical Condition

𝑋$0$12

𝑋$%&'

Auto-Diff

𝑉#$% , 𝑉&!'& 𝑉!

Linear, 64 Linear, 64

(𝑄!(, 𝑄!")

(a)

⊕

𝑋3452

⨀ ⨁

⨀ ⨁⨂

×	(𝑁 − 1)

ℱ(𝑉!|𝒪)

(b)

⨀⨁ Addition

⨂ Multiplication

AttnGate

Embedding

Figure 6.4: An end-to-end pipeline that maps Qi = F(Vi|O), which consists of the electro-
chemical condition network O and the state prediction network F . (A) The electrochemical
condition network encodes the DRX composition, current density rate, and cycle informa-
tion. The three encoded vectors are synthesized through gated-MLPs with soft attention to
obtain the condition vector X⃗O [144]. (B) The state prediction is approximated as a forward
deep neural network that takes the voltage state Vi and cycling voltage window Vlow, Vhigh as

inputs. The encoded condition vector X⃗O is element-wise added in the hidden layer of F .
The circled symbols are all element-wise operations. (C) The message-passing graph neural
network (GNN) is used for compositional encoding of DRX, adapted from the Roost model
[230].
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σg represents the SiLu activation function

σg(x) = SiLu(x) = x · σs(x), (6.5)

and σF represents the Softplus activation function

σF(x) = Softplus(x) = log(1 + exp(x)). (6.6)

Compositional encoding

Roost (Representation Learning from Stoichiometry) model is used for compositional
encoding [230]. Roost takes elements as graph nodes and updates the correlation between
elements through weighted message passing based on each element’s fractional concentra-
tion (see Fig. 6.4(c)). For elemental information, each element is embedded into a 200-
dimensional vector using mat2vec to capture as much prior chemical information as possible
through text mining of previously published literature [231]. The node information is up-
dated by message passings as follows:

h⃗t+1
i = h⃗ti +

∑
j,m

at,mi,j · σg ◦ Lc

(
h⃗ti||⃗htj

)
,

at,mi,j =
wj exp(e

t,m
i,j )∑

k wk exp(e
t,m
i,k )

, et,mi,k = σg ◦ La

(
h⃗ti||⃗htj

)
.

(6.7)

In these equations, h⃗ti represents the t-th hidden layer for the i-th element; || denotes the
concatenation operation; and the soft-attention coefficient at,mi,j describes the interaction be-
tween elements i and j, with m as the index of multi-head attention. Lc and La denote
the linear layer for the core and attention layer, respectively. The fractional concentration
wj of element j depends on the specific compound (e.g., wj = 0.6/0.2/0.2 for Li/Mn/Ti in
Li1.2Mn0.4Ti0.4O2.0). σg is the SiLu activation function. After n graph convolution layers,

the encoded composition vector X⃗comp is obtained by average pooling over the elements with
weighted attention

X⃗comp = Pooling

 wi exp
(
σg ◦ La(⃗h

n
i )
)

∑
k exp

(
σg ◦ La(⃗hni )

) ·
(
σg ◦ Lc(⃗h

n
i )
) (6.8)

Secifically, only the cation species are considered as independent nodes in Roost, treating
the anion-species information (fluorine) as a mean-field background, i.e., h⃗′Li = h⃗Li + cF · h⃗F,
where cF is the fractional concentration of fluorine and h⃗Li/F is the embedded vector of Li/F.
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Electrochemical condition encoding

The electrochemical test primarily involves two pieces of information: the current density
rate and cycle number. Rate and cycle information is encoded using multi-layer perceptrons
(MLPs). MLPs are used to encode the rate and cycle number:

X⃗rate = σg ◦ L(rate), X⃗cycle = σg ◦ L(cycle). (6.9)

As the actual rate and cycle performance are strongly correlated with cathode materials, the
relationship between the composition, rate, and cycle is synthesized using gated-MLPs with
soft attention [144, 232]:

X⃗O1 = X⃗comp + σf1(X⃗comp||X⃗rate) · f1(X⃗comp||X⃗rate)

X⃗ON
= X⃗O1 + σf2(X⃗O1 ||X⃗cycle) · f2(X⃗O1||X⃗cycle) ·W n(N − 1)

(6.10)

where σf = σs ◦B ◦ L is an MLP, σs is the Sigmoid activation function, and f = σg ◦B ◦ L
is an MLP with SiLu activation function σg. The BatchNormalization layer B is added

before the activation function. In this equation, X⃗O1 is a feature vector jointly determined
by the composition and rate information, which is used to predict the first cycle property.
X⃗ON

is a feature vector jointly determined by the composition, rate, and cycle information,

which is used to predict the N -th cycle property. The difference between X⃗O1 and X⃗ON
is

linearly dependent on the number of cycles with a trainable weight W n, allowing the model
to learn cycle performance contrastively.

State prediction network

The state prediction network F is constructed with several MLPs (see Fig. 6.4(b)),
which takes the inputs of voltage state (Vi) and outputs the discharge-capacity state (Qi)
Qi = F (Vi|O). In practice, the voltage profile is measured within the applied voltage window
[Vlow, Vhigh]. To accommodate the voltage window in the discharge state prediction, the first
layer in F is encoded via an MLP:

Z⃗0
i = σF

(
[Vlow, Vhigh]

T W 1 + [Vi]
TW 2

)
, (6.11)

where σF(·) is the Softplus activation function andW 1/2 is the trainable weight. A ResNet-

like structure is used to incorporate the test-condition information from X⃗O [233]

Z⃗1
i = σF ◦ L0

(
Z⃗0

i + X⃗O1

)
Z⃗N

i = σF ◦ L0

(
Z⃗0

i + X⃗ON

) (6.12)

The state of capacity is obtained by

Q1
i = σF ◦ L2 ◦ σF ◦ L1(Z⃗

1
i )

QN
i = σF ◦ L2 ◦ σF ◦ L1(Z⃗

N
i )

(6.13)
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Algorithm 1: The workflow of DRXNet with an example of Li1.2Mn0.4Ti0.4O2

Condition Inputs:

O =


composition = Li1.2Mn0.4Ti0.4O2

rate = 20 mA/g,

cycle = 1

Condition Outputs:

X⃗O1 = X⃗comp + σf1(X⃗comp||X⃗rate) · f1(X⃗comp||X⃗rate)

X⃗ON
= X⃗O1 + σf2(X⃗O1||X⃗cycle) · f2(X⃗O1||X⃗cycle) ·W n(N − 1)

Inputs: V = [1.5, ..., Vi, ..., 4.8] → N series

for i = 1 to N do

Compute Qi = F(Vi|X⃗O) → F is an NN
end

Outputs: Q = [Q1, ..., Qi, ..., QN ] → N series

where Q1
i is the capacity for the first cycle and QN

i is the capacity for the N -th cycle. Because
the discharge capacity is always positive, σF is added to constrain the predicted capacity
to be positive and accelerate the training process. dQ/dV for the redox potential can be
obtained via PyTorch auto-differentiation [234]

dQ

dV

∣∣∣∣
i

= AutoDiff(Qi, Vi). (6.14)

For instance, Algo. 1 demonstrates how DRXNet predicts the first-cycle discharge profile of
Li1.2Mn0.4Ti0.4O2 at a current rate of 20 mA/g between 1.5 and 4.8 V by using electrochemical
condition and state prediction network.

Model training

The model is trained to minimize the sum of multi-task losses for the capacity of the first
cycle, the n-th cycle, and dQ/dV :

L = wQℓ(Q
N
i ) + wdQℓ(

dQN

dVi
) + wQ1ℓ(Q

1
i ) +R. (6.15)

The MSE loss function is used for ℓ(QN
i ) and ℓ(

dQN

dVi
), whereas the MAE loss function is employed

for the first cycle as a contrastive term ℓ(Q1
i ). The weights for QN

i , dQ/dV , and Q1
i are
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set to wQ = 1, wdQ = 1, and wQ1 = 5. The combination of loss functions performs well
empirically according to the tests (e.g., correct prediction of redox potential). The term R
represents regularization, which consists of two parts: (1) an ℓ2-norm regularization of the
network’s parameters ||θ||2 and (2) a smoothing term ||dQ/dc||2 to avoid large, unphysical
performance fluctuations (c denotes the fractional concentration of elements). The weight
of regularization is 10−4.

To make predictions, an ensemble of five independent models was trained to make pre-
dictions. Each model was trained with a batch size of 1024 within 30 epochs. The Adam

optimizer was used with 10−3 as the initial learning rate. The ExponentialLR scheduler was
used to adjust the learning rate with a decay of 0.9 per epoch.

6.4 Applicability domain of DRXNet

In this section, the scope of DRXNet’s applicability in the realm of composition space
is explored. Determination of the applicability domain in battery machine-learning models
can be challenging due to the unavailability of a sufficient test dataset, as generating new
data necessitates the synthesis of new solid-state materials or conducting battery cycling
tests for weeks to months [221, 235]. For example, simply separating the sequence of voltage
and capacity signals {Vi, Qi} into training and test sets can result in data-leakage issues and
a failure to represent the expected error in real applications. To evaluate the expressibility
and generalization of DRXNet, several experiments are designed by partitioning the dataset
based on compositions. The electrochemical tests with no more than two metal species
(2TM, excluding Li) were designated as the training set, whereas the tests with three metal
species (3TM) and higher numbers of TM components (high-entropy, HE) were assigned as
test sets. An ensemble of five independent models was trained for each test to enhance the
overall prediction accuracy and robustness and quantify the model variance. Predictions
were generated by averaging the predicted capacities of each DRXNet model.

Figure 6.5(a) and (b) present the performance of the DRXNet models trained on the
2TM dataset and tested on the 3TM and HE datasets. Mean absolute errors (MAEs) of
0.1/0.13 V for the average voltage (V̄ =

∑
i Vi∆Qi/

∑
i ∆Qi) and 23.38/29.97 mAh/g for

the capacity were obtained for the 3TM/HE test datasets, respectively, by comparing the
prediction to the experimental Q–V curve within the voltage range of 2.0 – 4.4 V. As a
baseline, the mean absolute deviation (MAD) of average voltage is 0.16/0.21 V for 3TM/HE
and the MAD of discharge capacity is 36.59/38.54 mAh/g for 3TM/HE for comparisons. It
is found that large prediction errors already occurred at the first cycle and propagated into
the subsequent cycles. Notably, a systematic underestimation of capacity is observed for HE
(see Fig. 6.5(b)), which can be rationalized by the fact that 2TM represents low-entropy
DRX and cannot capture the improved performance arising from the novel high-entropy
physics [28].
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Figure 6.5: (a)–(b) Models are trained on DRX compositions with only two TM species
(denoted as 2TM). The models are tested on predicting the delivered capacity between
2.0 and 4.4 V for DRXs composed of three metal species (denoted as 3TM) and higher
components (denoted HE for high entropy). (c)–(d) Models are trained on a 2TM dataset
along with the first cycles of 3TM and HE as corrected models. The corrected models are
tested for subsequent cycles on 3TM and HE to assess the prediction error. (e)–(f) Models
are trained on a 3TM dataset and tested on 3TM and HE dataset.
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For practical applications, there are two approaches to improving the model’s accuracy
and enhancing its predictive capabilities: (1) new data points can be continuously collected
as experiments progress, enabling on-the-fly training with in-situ data to improve predic-
tive performance in data-scarce chemical space; and (2) incorporating a diverse range of
information from chemical space and test conditions to deliver well-pretrained models. Re-
garding (1), this concept was tested by evaluating the improvement when DRXNet was
trained on a dataset containing all 2TM data and was provided with the first cycle data
from 3TM/HE materials. The knowledge of just the first cycle data reduced the capacity
MAE from 23.38/29.97 mAh/g to 14.84/17.58 mAh/g for 3TM/HE. The enhanced perfor-
mance achieved by explicitly training with the first cycle indicates that the model can better
generalize cycling performance, even when experiments for a specific composition are not
extensively sampled. This capability has the potential to significantly reduce the month-
long timeframe typically required for electrochemical testing. Regarding (2), the results for
models trained on the 3TM dataset are, where Fig. 6.5(e) displays the training errors (6.0
mAh/g), and the test error on the HE data is 19.63 mAh/g, reduced by 10 mAh/g from
those trained on 2TM data.

To rationalize the improvement and assess the expressibility for extrapolation in untrained
domains, the prediction error and model variance is examined as a function of cycle number
(see Fig. 6.6). The standard deviation of the prediction from the ensemble of five DRXNet
models (σQ) was used to represent the model variance as an approximation of how uncertain
the predictions are. The 2TM model exhibited moderate model variance for 3TM predictions
and high model variance for HE predictions (> 50 mAh/g) as shown in Fig. 6.6(a) and (b).
Training the model with first-cycle data led to a substantial decrease in both the prediction
error and model variance for the initial few cycles, although the model variance increased
subsequently with the cycle number for untrained domains (see Fig. 6.6(c) and (d)).

It is important to note that the models trained on 3TM data show a significantly reduced
prediction error and model variance for the HE prediction compared to those obtained when
training the 2TM model (see Fig. 6.6(f)). This finding suggests that the 2TM dataset is
inadequate for extracting relevant information and generalizing to other compositions. The
scaling to high-component electrodes necessitates capturing more than 2TM correlations or
interactions in training the graph neural network. Failure to do so may lead to systematic
prediction errors, as demonstrated in Fig. 6.5(b). When the model is able to acquire suffi-
cient chemical domain knowledge (e.g., 3TM-model), it becomes feasible to extrapolate the
electrochemical properties of high-component electrodes.

6.5 Exploratory predictions in electrochemical spaces

The following sections will present several examples to illustrate how DRXNet learns the
underlying cathode chemistry and assists in designing new materials. The models used for
these applications are pretrained on all discharge profiles.
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Figure 6.6: The prediction error of discharge capacity between 2.0 and 4.4 V (y-axis) vs.
cycle number (x-axis). The model variance is represented by σQ, a standard deviation of
the ensemble of the models’ prediction, which is plotted as scaled colored dots. (a)–(b):
Predictions on 3TM/HE using models trained on the 2TM dataset. (c)–(d): Predictions on
3TM/HE using models trained on both the 2TM dataset and the first cycles of the 3TM/HE
dataset. (e)–(f): Predictions on 3TM/HE using models trained on the 3TM dataset.
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6.5.1 Synergistic prediction in Li-Mn-O-F
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Figure 6.7: (A) Design principle from theory, where the Li/Mn/F content jointly determines
the performance of battery materials (see Ref. [113]). (B) Prediction of discharge capacity
for the 1st and 30th cycle in Li–Mn–O–F chemical space between 1.5 – 4.8 V at a current
density rate of 20 mA/g, with the blue stars indicating the compositions included in the
training set.

Manganese is an attractive earth-abundant, non-precious TM for next-generation cathode
design [107]. Lun et al. [113] proposed three primary design degrees of freedom for Mn-based
DRX (see Fig. 6.7(a)): (1) the Li-excess content, which controls the presence of a percolating
network creating facile Li diffusion; (2) the Mn content, as low amounts of Mn can lead to
severe oxygen redox and poor cyclability; and (3) the fluorine content, which lowers the total
cation valence and provides greater freedom to optimize the Li and Mn content. Fluorine
modifies cation short-range order through the strong Li–F attraction and lowers the initial
capacity [114, 116]. These theoretical principles are highly correlated and exert non-linear
effects on performance, making it challenging to predict.

DRXNet is used to predict the discharge capacity between 1.5 and 4.8 V at a current rate
of 20 mA/g for the 1st and 30th cycles as a function of Li and F content, which is illustrated
in Fig. 6.7(b). The amount and valence of Mn follow directly from the Li and F content.
The critical feature of fluorine that has been extensively characterized experimentally is well
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captured by the model. A higher F content (y in O2−yFy) results in a lower discharge capacity
for the 1st cycle but a higher capacity for the 30th cycle. In particular, Li1.333Mn0.667O2

is predicted to have the highest capacity (> 320 mAh/g) for the first cycle but the lowest
capacity for the 30th cycle. This prediction is consistent with the understanding the capacity
originates from oxygen as the valence of Mn is 4+. Such a large amount of O-redox leads
to rapid capacity fade and aligns with the experimental observations of disordered Li2MnO3

reported in Ref. [123].

To rationalize the extrapolation ability of DRXNet, Fig. 6.7(b) displays the compositions
in the training dataset using blue stars. It is evident that despite the sparse distribution of
training points across the composition map, DRXNet delivers accurate predictions that align
with the experimental observations beyond the scope of the training points. As DRXNet
is trained on various compositions beyond the Li–Mn–O–F chemical space, the ability to
extrapolate to other domains can be attributed to the transfer learning from other F- and
non-F-containing compounds. The example in this section demonstrates how practitioners
can generalize the design principles from a data-driven perspective purely starting from
experiments.

6.5.2 Exploratory search for high-entropy cathodes

High-entropy DRXs are composed of many species and present a vast chemical space to
explore for battery materials discovery. To demonstrate the power of DRXNet, virtual high-
throughput screening is conducted in the system with composition Li1.2A0.2B0.3Ti0.2Nb0.1O1.8

F0.2 (see Fig. 6.8), where A2+/B3+ represent divalent/trivalent redox-active transition met-
als. Particularly, two compounds with both good discharge capacities and rate performances
are selected:

• HE-1: Li1.2Mn0.1Mg0.1Cr0.3Ti0.2Nb0.1O1.8F0.2

• HE-2: Li1.2Mn0.1Mg0.1Cr0.15V0.15Ti0.2Nb0.1O1.8F0.2

The predicted discharge profiles of HE-1/2 under various current densities are shown in Fig.
6.9.

For HE-1, DRXNet predicts a discharge capacity of 276 mAh/g at a low current rate of
20 mA/g. The discharge voltage profile shows a clear transition from a flat curve to a slopy
curve after at around 3 V, which has been widely observed in Mn redox and/or Cr redox-
based DRXs [28, 126, 227]. A capacity of 196 mAh/g is predicted at 1000 mA/g, retaining
71% of that delivered at a slow rate of 20 mA/g. From previous studies, multi-elemental
substitution (i.e., high-entropy strategy) frustrates unfavorable SRO that leads to sluggish
kinetics; Cr incorporation and Cr6+-migration at high voltage upon delithiation opens up a
better-extended 0-TM network for Li transport, both of which can improve the Li diffusion
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Figure 6.8: Design map for high-entropy DRX with composition in formula of
Li1.2A0.2B0.3Ti0.2Nb0.1O1.8F0.2 with the predicted electrochemical performance. The A2+/B3+

represent divalent/trivalent redox-active transition metals. All compositions contain some
Cr3+ and Mn2+. The discharge profiles at various current density rates are displayed in dis-
tinct colors. Each profile plot’s inset shows the cyclability performance, depicting capacity
versus cycle number.
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Figure 6.9: Predicted discharge profiles of two high-entropy DRX materials with various cur-
rent density rates (from 20 mA/g to 1000 mA/g). (A) Li1.2Mn0.1Mg0.1Cr0.3Ti0.2Nb0.1O1.8F0.2

(HE-1) and (B) Li1.2Mn0.1Mg0.1Cr0.15V0.15Ti0.2Nb0.1O1.8F0.2 (HE-2). The inset displays the
cycled discharge capacity at a current density rate of 20 mA/g.

kinetics [28, 126]. DRXNet clearly learns those benefits and extrapolates rationally into
electrochemistry prediction of the high-entropy compositions.

As a comparison, partial V3+ to Cr3+ substitution in HE-1, yielding HE-2 is expected
to change the shape of the voltage curves dramatically due to the low potential of V5+/V3+

reduction, which is also predicted using DRXNet as shown in Fig. 6.9(b). It is clearly
demonstrated that with V3+ incorporation, a nearly constant slope can be observed down to
the low-voltage region, which is characteristic for V-based DRX cathodes reported previously
[110, 201]. Nevertheless, V5+ has a similar migration mechanism to enhance Li transport as
Cr and is likely to be beneficial for the rate capability [201]. Consistently, although a slightly
lower discharge capacity is predicted (266 mAh/g) for HE-2, it retains 171 mAh/g capacity
at 1000 mA/g (64% of the capacity at 20 mA/g), which is better than the majority of the
DRX cathodes reported to date.

In terms of cyclability, the inset plot shows the predicted discharge capacity of DRX
materials within 20 cycles for both materials. A more dramatic capacity drop from the first
5 cycles is predicted, which slows down upon further cycling. This result is in full agreement
with experimental findings, which indicate that some of the irreversibility in the initial cycles,
such as surface carbonate decomposition [236] or cathode–electrolyte interface formation
[237]. These examples illustrate how practitioners can effectively use DRXNet to navigate
the extensive chemical space of high-entropy DRXs and identify promising candidates for
cathode design and optimization.
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Discussion on experimental conditions

The pursuit of carbon neutralization by optimizing the discovery and application of
energy-storage materials using AI has long captivated materials scientists. Numerous ef-
forts have been made in this area, and the Battery Data Genome is proposed as a potential
breakthrough along with the fast development of AI technologies [217–220]. With this en-
deavor, it is proposed a deep learning approach for battery electrochemistry representation
and learning from the experimental data. A machine-learning model (DRXNet) trained on
over 30,000 experimental discharge voltage profiles is developed, encompassing diverse com-
positional chemistry in DRX cathodes. This was achieved through a novel model design
consisting of an electrochemical condition network (O) and a state prediction network (F).

The design of the two networks promotes modularity in the architecture, streamlining the
optimization and interpretation of each network individually and their learned features. For
instance, the hierarchical network structure in O properly synthesizes the information from
composition, rate, and cycle via soft attention. The feature of the N -th cycle is intrinsically
embedded with the difference between the first cycle to learn the capacity change (see Eq.
(6.10)). As highlighted in model training, the loss function is designed for multi-task learning.
The first and N -th cycle capacities are trained simultaneously in each update, constructing
contrastive terms to make the model informative of the cyclability rather than learning an
average (see Eq. (6.15)).

In addition, the electrochemical condition network design provides flexibility in terms
of model application. It is recognized that most training datasets are derived from the lab
experimental results, which do not encompass critical testing parameters such as particle
size, electrolyte type, electrode fabrication methods, etc. These factors have been coarsely
integrated into the compositional model in the dataset. In principle, researchers can choose
to include any factors to design the electrochemical feature vector, depending on the specific
problem they are addressing. Given the vast amount and complexity of these properties,
a synthetic data collection approach is necessary. Data-mining techniques, such as text
mining and figure mining, can automatically retrieve valuable experimental information from
decades of published literature [238, 239]. This has the potential to enhance the model’s
generalizability and incorporate extensive prior domain knowledge in electrochemical fields.

The depth and transferability of DRXNet’s predictive capabilities for exploration are also
discussed, especially for the state prediction network F . The electrochemical performance
of HE-2 is further tested by varying the voltage window and cycling rate, which are the
parameters that typically require multiple individual electrochemical tests in experiments.
Figure 6.10(a) displays the discharge profiles between 2.0 – 4.4 V, with two additional rates
tested (10 mA/g for a low rate and 104 mA/g for an extremely high rate). These conditions
are infrequently incorporated into the training data. The low rate exhibits a discharge profile
very similar to 20 mA/g, which is entirely consistent with experimental findings, as the
discharge process at a low rate exhibits a reduced overpotential. The 10 A/g rate discharge
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Figure 6.10: Predicted discharge profiles with various current density rates (from 10 mA/g
to 10 A/g) of Li1.2Mn0.1Mg0.1Cr0.15V0.15Ti0.2Nb0.1O1.8F0.2 (HE-2) between (a) 2.0 – 4.4 V
and (b) 2.0 – 4.0 V. The inset displays the cycled discharge capacity at a current density
rate of 20 mA/g.

profile demonstrates a sharp drop in voltage, reasonably indicating poor performance at
an extremely high rate. In contrast, Fig. 6.10(b) presents the discharge profiles between
2.0 – 4.0 V, which starts to show some unphysical predictions. Small offsets appear at the
beginning of discharge for the low rate profiles, resulting in a non-zero discharge capacity
at 4.0 V. This discrepancy can be attributed to (1) the connection between voltage state Vi
and window [Vlow, Vhigh] being achieved by linear combinations in the hidden layer (see Fig.
6.4(b)), which is a data-driven encoding and requires training; and (2) a limited number of
experiments being conducted with Vhigh lower than 4.0 V, which leads to data scarcity in
such voltage range. These two reasons may rationalize why the predictions for 2.0 – 4.4 V
show better accuracy (no offsets) while the ones for 2.0 – 4.0 V deviate higher.

Based on the tests, the primary conclusion is that DRXNet exhibits a reasonable abil-
ity to learn chemical interactions and generalize to test conditions included in the dataset
among different chemical compositions. However, for test conditions that the model has
not encountered (e.g., experiments with Vhigh < 4.0 V), discrepancies or unphysical profiles
may arise (e.g., non-zero capacity at the beginning). This highlights the data scarcity is-
sue, which arises from human bias and outliers in experimental setups or poorly performing
systems, as researchers may discontinue their discovery efforts when faced with unfavorable
results [240]. In the future, automated labs can address this scarcity issue by enabling more
extensive exploration of the experimental space (e.g., various voltage windows to find the
optimal trade-off between energy density and cyclability, along with a combination of differ-
ent current density rates), even for ”failed” experiments [241]. This approach can result in
a more comprehensive dataset for building machine-learning models and understanding the
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electrochemical properties of battery materials.

6.6 Conclusion

This chapter describes a notable shift from the atomistic modeling discussed in previous
chapters, presenting a significant step forward in applying artificial intelligence for battery
materials research with the introduction of DRXNet. The core strength of DRXNet lies in its
ability to extract and represent critical features (e.g., rate capability and cyclability) that are
typically non-equilibrium and cannot be well derived from ab-initio modeling. Training on a
substantial dataset of over 30,000 discharge voltage profiles across 14 different metal species,
collected from experimental findings over the past five years, has empowered DRXNet with
the capability to directly predict the electrochemical performance upon cycling under various
conditions.

The first case study demonstrates how DRXNet can provide rational predictions of the
discharge capacity for a wide range of compositions in the Li–Mn–O–F chemical space under
cycled conditions. The direct prediction of the cycled discharge performance unveils the de-
sign principles of DRX in such chemical space, aligning well with reported literature informed
by ab-initio calculations [113]. The second example underscores the power of DRXNet in
its ability to conduct exploratory searches for high-entropy compositions under various rate
and cycling conditions. Enabled by a universal training scheme across diverse chemistries,
DRXNet proposes two high-entropy compounds as viable candidates for experimental valida-
tion. It is believed that the approach provides a data-driven solution for the fast identification
of novel cathode materials, thereby accelerating the development of next-generation batteries
for carbon neutrality. By continuously refining the model and incorporating additional data
and parameters, such a machine-learning framework will play an increasingly critical role in
the discovery and optimization of next-generation battery materials.
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Chapter 7

Concluding remarks

7.1 Summary

The computational modeling of multicomponent disordered rocksalt cathodes (DRX) is a
subject of great interest given the increasing need for efficient and sustainable energy storage
applications. This thesis has addressed this timely topic through a combination of advanced
computational techniques that cover a range of scales, from first-principles calculations to
deep learning.

• Chapter 2 of this thesis explores the broad methodology for modeling thermodynamics
in lattices from first principles. It demonstrates an effective use of density functional
theory (DFT) and statistical mechanics to investigate complex oxides with substantial
configurational disorder, such as disordered rocksalt cathodes. It introduces cluster
expansion (CE) methods as effective Hamiltonians to approximate DFT for sampling
equilibrium states via Monte Carlo (MC) simulation. Significantly contributing to
this modeling methodology is incorporating ℓ0ℓ2-norm regularization and structural
hierarchy constraints into linear regression for robust cluster expansion.

• Chapter 3 advances the understanding of DRX materials through the use of ab-initio
calculation and CEMC for simulating short-range order (SRO). It discusses two ap-
proaches to optimize the SRO in DRX: (1) using Mg-doping to reduce the Li-F locking
effect to improve Li capacity and (2) introducing partial Li deficiency to modify the
overall cation-SRO to improve the Li transport kinetics. The examples highlight the
importance of understanding the relationship between local structural orderings and
electrochemical performance and demonstrate that CEMC is a natural way to simu-
late configurational thermodynamics, which is crucial in guiding the design of DRX
materials and optimizing performance.

• Chapter 4 and 5 shift the discussion towards atomistic modeling incorporating charge
information. Chapter 4 first introduces the background and foundation of two advanced
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computational methodologies: (1) charge-decorated CE and (2) charge-informed ma-
chine learning interatomic potentials (MLIP). The importance of including charge in-
formation in the modeling process is highlighted, specifically for ionic materials.

• Chapter 5 discusses the application of the two methods to DRX systems. The equilib-
rium modeling sample showcases the application of charge-decorated CE for interca-
lation chemistry with multi-redox reactions in Li1.3−xMn0.4Nb0.3O1.6F0.4. It is demon-
strated that using a sparse lattice model with ℓ0ℓ2-norm regularized regression and
charge-neutral semigrand-canonical MC can adequately resolve the issue and sample
the equilibrium states. Using CHGNet as a charge-informed interatomic potential, the
second example illustrates how to approach the modeling o transition metal migration-
induced phase transformation in Li0.6Mn0.8Ti0.1O1.9F0.1. The insights obtained show-
case the effects of structural ordering change on the electrochemical properties (e.g.,
the intercalation voltage profiles) and reveal the TM migration mechanism that is
correlated with atomic charge states.

• Chapter 6 introduces another novel approach for modeling DRX materials via deep
learning, where the electrochemical performance properties (discharge profiles) are di-
rectly represented and learned from experiments. The introduction of our comprehen-
sive machine-learning model, DRXNet, demonstrates the power of artificial intelligence
in extracting and representing critical features of battery materials. DRXNet can pre-
dict electrochemical performance under various cycling conditions, enabled through
training on an extensive dataset of discharge voltage profiles from diverse metal species
collected over five years. The examples in this chapter showcase the highlights of con-
ducting exploratory searches for an extensive range of chemical spaces under various
test conditions. The work with DRXNet ultimately provides a data-driven solution to
identify novel cathode materials for next-generation battery applications.

7.2 Outlook on future directions

This thesis represents a concerted effort to advance simulation and learning methodologies
for compositionally complex oxides, particularly on disordered rocksalt cathode materials.
The works leverage the ab-initio calculations and statistical learning tools such as the clus-
ter expansion method and machine learning to successfully model the thermodynamic and
kinetic properties.

Future endeavors will undoubtedly continue to drive the development of computational
methodologies to contribute to designing and optimizing energy materials. Here I present
several directions, aiming to achieve comprehensive, efficient, and accurate computational
modeling of energy materials at scale, which are posited as potentially fruitful avenues for
exploration:
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• While DFT-based modeling has demonstrated significant success for ground-state cal-
culations in energy storage materials, the excited-state-related physics (e.g., optical
absorption) of these materials remains less understood in modeling complex oxides.
Techniques such as X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray
absorption spectroscopy (RIXS) play pivotal roles in characterizing and quantifying the
oxidation states of elements, crucial to understanding charge transfer effects in cath-
odes [242]. Although there are several advanced electronic structure methods, such as
the OCEAN package based on the Bethe-Salpeter-Equation (BSE) [243, 244], which
have shown success in calculating these quantities of several battery cathode materi-
als [245, 246], it is still not well known how to properly apply it to multicomponent
oxides, as DRX materials typically require a large number of atoms to well represent
the configurational disorder but the computational cost of GW-BSE can scale up to
O(N4) to O(N6) depending on the computational task [247].

• The relevance of electronically excited states extends to their incorporation in statis-
tical learning or machine learning models [248, 249]. Although the works presented in
this thesis demonstrate that charge-decoration of species can represent charge states,
this approach is typically effective when the electronic states are localized [58]. For a
comprehensive description of interatomic potentials with electronic degrees of freedom,
the charge information should serve as an input rather than an output regularization.
Several studies have successfully addressed this issue by including charge or spin states
from ab-initio calculations [250–252]. However, obstacles remain in the form of com-
putational costs and a lack of large-scale datasets for training universal potentials for
general materials design.

• Rethinking the approach to designing new functional materials for energy applica-
tions represents another fundamental trajectory. The design of energy materials has
predominantly been property or phenomenologically guided to date, i.e., applying
computational modeling to elucidate emergent phenomena and understand underly-
ing mechanisms based on experimental observations. This process, which can often be
implemented in a high-throughput way (termed forward design), has seen considerable
success over the past decade [118]. However, there are vast structural, chemical, and
configurational spaces that remain unexplored. Forward design is inherently an NP-
hard approach, as enumeration-based algorithms are required to search the designing
space. In contrast, inverse design, especially the score-based diffusion generative model
[253], has emerged as a novel and essential tool for generating protein structures [254],
molecules [255, 256], and crystal materials [257] via property-guided design [258]. The
prospect of integrating the universal interatomic potential, statistical mechanics model
(e.g., cluster expansion), and generative model to establish a closed-loop materials dis-
covery framework [259] presents an intriguing avenue for exploration.

• Automated experiments and laboratories promise to revolutionize experimental dis-
coveries within materials science [260, 261], which is particularly relevant to the future



145

evolution of DRXNet. As a performance-based prediction model, DRXNet may be
influenced by human biases and discrepancies in experimental conditions, which can
occur when researchers may halt discovery processes or neglect to record suboptimal
results. Automated laboratories, however, can document nearly all aspects of experi-
mentation, offering a comprehensive view of experimental conditions. This expanded
perspective and design space can significantly enhance the representation and express-
ibility of future versions of DRXNet. The integration of an automated electrochemical
laboratory could herald the arrival of a truly universal battery model.

To conclude, I hope the demonstrated progress in this thesis and the outlook on fu-
ture directions benefit the computational modeling and materials science community for
developing energy and sustainability technologies. I will continuously pursue solving the
abovementioned challenges in my future career. Fiat Lux!
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