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ABSTRACT OF THE DISSERTATION

Optimal Bipartite Network Clustering

by

Zhixin Zhou

Doctor of Philosophy in Statistics
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Professor Arash Ali Amini, Chair

We consider the problem of bipartite community detection in networks, or more generally

the network biclustering problem. We present a fast two-stage procedure based on spectral

initialization followed by the application of a pseudo-likelihood classifier twice. Under mild

regularity conditions, we establish the weak consistency of the procedure (i.e., the conver-

gence of the misclassification rate to zero) under a general bipartite stochastic block model.

We show that the procedure is optimal in the sense that it achieves the optimal convergence

rate that is achievable by a biclustering oracle, adaptively over the whole class, up to con-

stants. The optimal rate we obtain sharpens some of the existing results and generalizes

others to a wide regime of average degree growth. As a special case, we recover the known

exact recovery threshold in the log n regime of sparsity. To obtain the general consistency

result, as part of the provable version of the algorithm, we introduce a block partitioning

scheme that is also computationally attractive, allowing for distributed implementation of

the algorithm without sacrificing optimality. The provable version of the algorithm is derived

from a general blueprint for pseudo-likelihood biclustering algorithms that employ simple EM

type updates. We show the effectiveness of this general class by numerical simulations.
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CHAPTER 1

Introduction

Network analysis has become an active area of research over the past few years, with ap-

plications and contributions from many disciplines including statistics, computer science,

physics, biology and social sciences. A fundamental problem in network analysis is de-

tecting and identifying communities, also known as clusters, to help better understand the

underlying structure of the network. The problem has seen rapid advances in recent years

with numerous breakthroughs in modeling, theoretical understanding, and practical applica-

tions [FH16]. In particular, there has been much excitement and progress in understanding

and analyzing the stochastic block model (SBM) and its variants. We refer to [Abb17] for

a recent survey of the field. Much of this effort, especially on the theoretical side has been

focused on the univariate (or symmetric) case, while the bipartite counterpart, despite nu-

merous practical applications, has received comparatively less attention. Of course, there has

been lots of activity in terms of modeling and algorithm development for bipartite clustering

both in the context of networks [ZRMZ07; LCJ14; WFL14; Roh15; RAL17] as well as other

domains, such as topic modeling and text mining [Dhi01; Dhi03], as well as in biological ap-

plications [CC00; MTSCO10]. But much of this work either lacks theoretical investigations

or has not considered the issue of statistical optimality.

In this paper, we provide a unified treatment of the community detection, or clustering, in

the bipartite setting with a focus on deriving fundamental theoretical limits of the problem.

The main goal is to propose computationally feasible algorithms for bipartite network clus-

tering that exhibit provable statistical optimality. We will focus on the bipartite version of

the SBM which is a natural model for bipartite networks with clusters. SBM is a stochastic

network model where the probability of edge formation depends on the latent (unobserved)

community assignment of the nodes, often referred to as node labels. The goal of the com-

munity detection problem is to recover these labels given an instance of the network. This is
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a non-trivial task since, for example, maximum likelihood estimation involves a search over

exponentially many labels.

Community detection in bipartite SBM is closely related to the biclustering problem,

for which many algorithms have been developed over the years [Har72; CC00; TSS02;

GLMZ16]. On the other hand, in recent years, many algorithms have been proposed for clus-

tering in univariate SBMs, including global approaches such as spectral clustering [RCY11;

Krz+13; LR13; Fis+13; Vu14; Mas14; YP14; BLM15; GLM17; PZ17] and convex relax-

ations via semidefinite programs (SDPs) [AL14; HWX16a; Ban15; GV16; MS16; RTJM16;

ABKK17; PW17], as well as local methods such as belief propagation [DKMZ11], Bayesian

MCMC [NS01] and variational Bayes [CDP12; BCCZ13], greedy profile likelihood [BC09;

ZLZ+12] and pseudo-likelihood [ACBL+13] maximization, among others. A limitation of

spectral clustering approaches is that they are often not optimal on their own, and the SDPs

have the drawback of not being able to fit the full generality of SBMs. Various algorithms

can further improve the clustering accuracy, and adapt to the generality of SBM. Profile

likelihood maximization was proposed and analyzed in [BC09], but the underlying optimiza-

tion problem is computationally infeasible and the approach only applicable to networks of

limited size. Pseudo-likelihood ideas were used in [ACBL+13] to derive EM type updates to

maximize a surrogate to the likelihood of the SBM based on a block compression which is

computed using initial labels obtained by spectral clustering.

The pseudo-likelihood approach belongs to the general class of algorithms based on “Good

Initialization followed by Fast Local Updates” (GI-FLU) which has been a staple of recent

developments in devising optimal clustering algorithms, as was pointed out by [GMZZ17].

The GI-FLU strategies often use a spectral initialization and due to their often cheap local

updates are scalable to very large networks. In cases where they are accompanied by op-

timality guarantees they seem to occupy the ideal sweet spot in the computational versus

statistical trade-off. We build on these ideas and especially the approach in [ACBL+13] to

extend the algorithms to the bipartite settings. Moreover, we provide modifications to the

general blueprint suggested by [ACBL+13]—in addition to the natural modification required

for the bipartite setup—which allows us to demonstrate optimality of the procedure under

the full generality of the bipartite SBM.

In the univariate setting, there has been interesting recent advancements in understanding
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optimal recovery in what we refer to as the semi-sparse regime, where the (expected) average

network degree dav is allowed to grow to infinity but rather slowly, as the number of nodes

n increases to infinity. In a series of papers [MNS15; ABH16; HWX16a; HWX16b] the

thresholds for optimal exact recovery, also known as strong consistency, were established in

the context of simple planted partition models, and SDPs where shown to achieve the optimal

threshold. In [AS15], the problem of strong consistency was considered for a general SBM and

the optimal threshold for strong consistency was established. In subsequent work [ZZ+16;

GMZZ17; GMZZ16], the results were extended to include weak consistency, i.e., requiring

the fraction of misclassified nodes to go to zero, rather than drop to exactly zero (as in

strong consistency), and rates of optimal convergence where established (with some slack

in the exponent). To achieve the more relaxed consistency results, [GMZZ17] limited the

model to what we refer to as strongly assortative SBM (see [AL18] for a definition).

Our work from a theoretical perspective is mostly inspired by the insightful work of [AS15;

GMZZ17]. We extend these ideas by presenting results that are sharper and more general

that what has been obtained so far. In short, we only assume that the clusters are distin-

guishable (in the sense of Chernoff divergence) and the network is not very dense. Relative

to [GMZZ17], our results are shaper, removing the o(1) term in the exponents of the rates,

and hold for the full generality of the SBM (i.e., no assortativity assumption needed). Com-

pared to [AS15], our work greatly relaxes the assumptions on degree growth. It is well-known

that for strong consistency one needs at least dav = Ω(log n), i.e., average degree should

grow at least logarithmically, and this is the regime considered in [AS15]. In our work, dav

could grow to infinity arbitrarily slowly or at the other extreme as fast as dav = O(
√
n).

Thus, our results establish optimal rates of weak consistency below the sequare-root regime

dav = O(
√
n) and above the sparse regime dav = O(1), and in particular, between the log n

and O(1) regimes, where weak consistency is possible but not the strong consistency. In

addition, in contrast to [AS15] (and some results in [GMZZ17]), we allow all the param-

eters of the model, including the number of communities, the spread of mean parameters

(ω) and the community balance parameter (β) to grow subject to two compact conditions

(namely (A3) and (A4)); these conditions encapsulate in a simple way how much cumula-

tive growth these auxiliary parameters can exhibit relative to the information growth of the

model (I = Imin∧ Icol
min) for the optimal rate to still be achieved by the algorithm we present.
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We make more detailed comparisons with the work of [AS15; GMZZ17] in Chapter 3.

Contributions. Establishing these results require a fair amount of technical and algorith-

mic novelty over the previous work. Here, we highlight some of these features and point out

to the relevant parts of the paper for details:

1. We introduce an efficient block (or graph) partitioning scheme for the provable version

of the algorithm, Algorithm 3, which for example replaces the edge splitting idea of [AS15]

(cf. Chapter 3.1 and Remark 10 for the shortcomings of edge splitting in our setting). The

block partitioning is mainly introduced to generate enough independence for the technical

arguments to go through. However, the idea turns out to be computationally appealing

as well. The computational bottleneck of GI-FLU approaches discussed earlier is often

the spectral initialization. The subsequent (often likelihood based) local updates are usually

quite fast, O(n), computations. Our block partitioning scheme allows one to break the costly

initial step into the application of spectral methods—as well as likelihood ratio classifiers—

on smaller subblocks, without losing optimality. If done in parallel, spectral clustering on

subblocks will be in fact computationally cheaper than performing a spectral decomposition

of the entire matrix. Although, from a theoretical perspective breaking into Q = 4 blocks is

enough (in the bipartite settings), our results allow for the number of blocks Q to even grow

slowly to infinity. Thus, the provable version of our algorithm has computational appeal,

esp. in distributed settings and for very large networks where it is prohibitive to perform

eigendecomposition of the entire adjacency matrix. The algorithm is naturally parallelizable

since it proceeds in stages and in each stage the operations on the underlying subblocks can

be performed in parallel; see Chapter 6 for details.

2. Our algorithms being an extension of [ACBL+13], are modifications of a natural EM

algorithm on mixtures of Poisson vectors, hence very familiar from a statistical perspec-

tive. In other words, they are not tailor-made to the community detection problem and are

derived from fairly general well-known principals. Although other (optimal) algorithms in

the literature are more or less preforming similar operations, the link to EM algorithms and

mixture modeling is quite clear in our work. We provide in Chapter 4.2 the general blueprint

of the algorithms based on the pseudo-likelihood idea and block compression (Algorithm 1).

We then show how a provable version can be constructed by combining with the block par-
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titioning ideas in Chapter 6. It is worth noting that although we can provide no guarantees

for the general algorithms of Chapter 4.2, empirically they perform very well, as illustrated

in Chapter 9.

3. In order to get the sharper rate, analyzing a single step of an EM type algorithm is

not enough, and thus we analyze the second step as well. We will show that the first step

gets us from a good (but crude) initial rate γ1 to the fast rate ≈ exp(−I/Q) which is in

the vicinity of the optimal rate, and then repeating the iteration once more, with the more

accurate labels obtained in the first step—hence more accurate parameter estimates—gets

us to the optimal rate ≈ exp(−I).

4. Among the technical contributions, are a uniform consistency result (Lemma 5) for

the likelihood ratio classifier (LRC) over a subset of the parameters close to the truth, sharp

approximations for the Poisson-binomial distributions (Chapter 10.4), and extension (and

elucidation) of a novel technique of [AS15] in deriving error exponents to general exponential

families (cf. Chapter 10.3). The uniform consistency result for LRCs lets us tolerate some

degree of dependence among the statistics from iteration to iteration, allowing the subblock

partioning idea to go through. That is, we can run LRCs on the same blocks used in

estimating their parameters; see Sections 6 and 7.1 for details.

5. The bipartite clustering setup (as opposed to the symmetric case) allows us to intro-

duce an oracle version of the problem which helps in understanding the nature of the optimal

rates observed in community detection and their relation to classical hypothesis testing and

mixuture modeling. That is, we try to answer the curious question of why or how the

Chernoff exponent of a (simple binary) hypothesis testing problem seems to control the mis-

classification rate in community detection and network clustering. The oracle also provides

a lower bound on the performance of any algorithm. See Chapter 3 and Proposition 1 for

details.

The rest of the paper is organized as follows. We introduce the model and the biclustering

oracle in Chapter 2, and then present our main results in Chapter 3. The general algorithms

based on the pseduo-likelihood idea and spectral clustering are presented in Chapter 4 and

Chapter 5. A provable version will be proposed in Chapter 6. The proofs of the consis-

tency results will appear in Sections 7 and 8. In Chapter 9, we demonstrate the numerical
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performance of the methods.
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CHAPTER 2

Network biclustering

We start by introducing the network biclustering problem based a stochastic block modeling,

and set up some notation that will be used throughout the paper. We then discuss how a

biclustering oracle with side information can optimally recover the labels. These ideas will

be the basis of the algorithms discussed in this paper.

2.1 Bipartite block model

We will be working with a bipartite network which can be represented by a biadjacency

matrix A ∈ {0, 1}n×m, where for simplicity we assume that the nodes on the two sides are

indexed by the sets [n] and [m]. We assume that there are K and L communities for the

two sides respectively, and the membership of the nodes to these communities are given by

two vectors y = (yi) ∈ [K]n and z = (zj) ∈ [L]m. Thus, yi = k if node i on side 1 belongs

to community k ∈ [K]. We call yi and zj the labels of nodes i and j respectively. We often

treat these labels as binary vectors as well, using the identification [K] ' {0, 1}K via the

one-hot encoding, that is yi = k ⇐⇒ yik = 1, yik′ = 0, k′ 6= k.

Given the labels y and z, and a connectivity matrix P ∈ [0, 1]K×L (also known as the edge

probability matrix), the general bipartite stochastic block model (biSBM) assumes that: Aij

are Bernoulli variables, independent over (i, j) ∈ [n]× [m] with mean parameters,

E[Aij] = yTi Pzj = Pk`, if yi = k, zj = `. (2.1)

We denote this model compactly as A ∼ SBM(y, z, P ). It is helpful to consider the Poisson

version of the model as well which is denoted as A ∼ pSBM(y, z, P ). This is the same model

as the Bernoulli SBM, with the exception that each entry Aij is drawn (independently) from

a Poisson variate with mean given in (2.1). These two models behave very closely when the
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entries of P are small enough. Throughout, we treat y, z and P as unknown deterministic

parameters. The goal of network biclustering is to recover these three sets of parameters

given an instance of A.

In fact, as we will see, the parameters P themselves are not that important. What

matters is the set of (Poisson) mean parameters which are derived from P and the sizes of

the communities. In order to define these parameters, let n(z) = (n1(z), . . . , nL(z)) ∈ NL,

be the number of nodes in each of the communities of side 2. That is, n`(z) =
∑M

j=1 1{zj =

`} =
∑M

j=1 zj`. A similar notation, namely n(y) ∈ NK , denotes the community sizes of side

2. The row mean parameters are defined as

Λ = (λk`) = (Pk` n`(z)) = P diag(n(z)) ∈ RK×L (2.2)

where diag(v) for a vector v = (vk) is a diagonal matrix with diagonal entries vk. The column

mean parameters can be defined in a similar fashion, namely,

ΓT =
(
nk(y)Pk`

)
= diag(n(y))P ∈ RK×L. (2.3)

Note the transpose in the above definition, i.e., Γ ∈ RL×K , and this convention allows us to

define information measures based on rows of matrices Λ and Γ in a similar fashion, as will

be discussed in Chapter 3.

2.2 Biclustering oracle with side information

The key idea behind the algorithms discussed in this paper, as well as our consistency

arguments is the following simple observation: Assume that we have prior knowledge of P

and the column labels z, but not the row labels y. For each row, we can sum the columns of

A according to their column memberships, i.e., we can perform the (ideal) block compression

b∗i` :=
∑

j Aijzj`. The vector b∗i∗ = (b∗i1, . . . , b
∗
iL) contains the same information for recovering

the community of i, as the original matrix A—i.e., it is a sufficient statistic. Assume that

we are under the pSBM model. Then, b∗i∗ has the distribution of a vector of independent
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Poisson variables. More precisely,

b∗i∗ ∼ Qk :=
L∏

`=1

Poi(λk`), if, yi = k, (2.4)

where λk` are the row mean parameters defined in (2.2). Note that the distributions Qk, k =

1, . . . , K are known under our simplifying assumptions. The problem of determining the row

labels thus reduces to deciding from which of these K known distributions it comes from.

Whether node i belongs to a particular community k can be decided optimally by performing

a likelihood ratio (LR) test of Qk against each of Qr, r 6= k.

The above LR test is the heart of the algorithms discussed in Sections 4 and 6. The

difficulty of the biclustering problem (relative to a simple mixture modeling) is that in

practice, we do not know in advance either y or Λ—hence neither the exact test statistics

(b∗i∗) nor the distributions {Qk} are known. We thus proceed by a natural iterative procedure:

Based on the initial estimates of y and z, we obtain estimates of (b∗i∗) and {Qk}, perform the

approximate LR test to obtain better estimates of z, and then repeat the procedure over the

columns to obtain better estimates of y. These new label estimates lead to better estimates

of (b∗i∗) and {Qk}, and we can repeat the process.

We refer to the algorithm that has access to the true column labels z and parameters

Λ, and performs the optimal LR tests, as the oracle classifier. Note that the performance

of this oracle gives a lower bound on the performance of any biclustering algorithm in our

model. The performance of the oracle in turn is controlled by the error exponent of the

simple hypothesis testing problems Qk versus Qr, r 6= k, as detailed in Proposition 1. This

line of reasoning reveals the origin of the information quantities Ikr and Icol
`r —defined in (3.1)

and (3.2)—that control the optimal rate of the biclustering problem. Note that the bipartite

setup has the advantage of disentangling the row and column labels, so that a non-trivial

oracle exists. It does not make much sense to assume known column labels in the unipartite

SBM, since by symmetry we then know the row labels as well, hence nothing left to estimate.

On the other hand, due to the close relation between the bipartite and unipartite problems,

the above argument also sheds light on why the error exponent of a hypothesis test is the

key factor controlling optimal misclassification rates of community detection in unipartite

SBM.
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2.3 Notation on misclassification rates

Let Πn the set of permutations on [n]. The (average) misclassification rate between two sets

of (column) labels ŷ and y is given by

Mis(ŷ, y) := min
σ ∈Πn

1

n

n∑

i=1

1
{
σ(ŷi) 6= yi

}
. (2.5)

Letting σ∗ be a minimizer in (2.5), the misclassification rate over cluster k is

Misk(ŷ, y) :=
1

nk(y)

∑

i:yi=k

1
{
σ∗(ŷi) 6= yi

}
=
|i : σ∗(ŷi) 6= k, yi = k|

nk(y)
, (2.6)

using the cardinality notation to be discussed shortly. Note that (2.6) is not symmetric in

its arguments. We will also use the notation σ∗(ŷ → y) to denote an optimal permutation

in (2.5). When Mis(ŷ, y) is sufficiently small, this optimal permutation will be unique. It is

also useful to define the direct misclassification rate between ŷ and y, denoted as dMis(ŷ, y),

which is obtained by setting the permutation in (2.5) to the identity. With σ∗ = σ∗(ŷ → y),

we have Mis(ŷ, y) = dMis(σ∗(ŷ), y). We note that

Mis(ŷ, y) =
∑

k∈K
πk(y) Misk(ŷ, y) ≤ max

k∈K
Misk(ŷ, y), (2.7)

as well as maxk∈K Misk(ŷ, y) ≤ Mis(ŷ, y)/mink′ πk′(y). We can similarly define the misclas-

sification rate of an estimate ẑ relative to z. Our goal is to derive efficient algorithms to

obtain ŷ and ẑ that have minimal misclassification rates asymptotically (as the number of

nodes grow).

Other notation. We write w.h.p. as an abbreviation for “with high probability”, meaning

that the event holds with probability 1−o(1). To avoid ambiguity, we assume all parameters,

including m, are functions of n. For example, f(n) = o(g(n)) denotes limn→∞ f(n)/g(n) = 0.

We write ZQ = Z/QZ to denote a cyclic group of order Q. Our convention regarding

solutions of optimization problems, whenever more than one exist is to choose one uniformly

at random. We use the shorthand notation |i : yi = k| := |{i : yi = k}| for cardinality of sets,

where i ∈ [n] is implicit, assuming the y is a vector of length n. For example, if ŷ, y ∈ [K]n,
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we have the identity |i : ŷi 6= yi| =
∑

k∈[K] |i : yi = k, ŷi 6= k|. It is worth nothing that we

use community and cluster interchangeably in this paper, although some authors prefer to

use community for the assorative clusters, and use “cluster” to refer to any general group of

nodes. We will not follow this convention and no assortativity will be implicitly assumed.
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CHAPTER 3

Main results

Let us start with some assumptions on the mean parameters. Recall the row and column

mean parameter matrices Λ and Γ defined in (2.2) and (2.3). Let Λmin and ‖Λ‖∞ be the

minimum and maximum value of the entries of Λ, respectively, and similarly for Γ. We

assume

‖Λ‖∞
Λmin

∨ ‖Γ‖∞
Γmin

≤ ω, (A1)

for some ω > 0. That is, ω measures the deviation of the entries of the mean matrices from

uniform. We assume that the sizes of the clusters are bounded as

1

βK
≤ πk(y) ≤ β

K
and

1

βL
≤ π`(z) ≤ β

L
(A2)

for all k ∈ [K] and ` ∈ [L]. The following key quantity controls the misclassification rate:

Ikr := Ikr(Λ) := sup
s∈ (0,1)

L∑

`=1

(1− s)λk` + sλr` − λ1−s
k` λ

s
r`, (3.1)

for k, r ∈ [K]. We can think of I(Λ) := (Ikr(Λ)) ∈ RK×K
+ , as an operator acting on pairs of

rows of a matrix Λ ∈ RK×L
+ , say λk∗ and λr∗, producing a K×K pairwise information matrix.

We often refer to the function of s being maximized in (3.1) as s 7→ Is, with some abuse of

notation assuming k and r are fixed, and we note that this function is strictly concave over

R whenever λk∗ 6= λr∗, and we have I0 = I1 = 0.

Recalling the product Poisson distributions {Qk}, (3.1) is the Chernoff exponent in testing

the two hypothesis Qk and Qr [Che52]. The difference with the classical setting, in which

the Chernoff exponent appears, is that we work in the regime where we are effectively testing

based on a sample of size of 1 and instead of the sample size, we let Ikr → ∞. We define
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the column information matrix similarly

Icol
``′ := I``′(Γ) = sup

s∈(0,1)

K∑

k=1

(1− s)Γ`k + sΓ`′k − Γ1−s
`k Γs`′k, (3.2)

for all `, `′ ∈ [L]. Another set of key quantities in our analysis are:

εkr := max
`∈[L]

(λk`
λr`
∨ λr`
λk`

)
− 1, εk := min

r∈[K]
εkr, and ε := min

k∈[K]
εk. (3.3)

The relation with hypothesis testing is formalized in the following proposition:

Proposition 1. Consider the likelihood ratio (LR) testing of the null hypothesis Qk against

Qr, based on a sample of size 1. Let Λ = [λk∗;λr∗] ∈ R2×K
+ . Assume that as Λmin →∞, (a)

lim inf εkr > 0, and (b) ω = O(1). Then, there exist constants C and C ′ such that

P(Type I error) + P(Type II error)





≤ C exp
(
−Ikr − 1

2
log Λmin

)
,

≥ exp
(
−Ikr − L

2
(log Λmin + C ′)

)
.

(3.4)

See Corollary 10 and Appendix Chapter A.6 for the proof. Any hypothesis testing pro-

cedure can be turned into a classifier, and a bound on the error of the hypothesis test (for

a sample of size 1) translates into a bound on the misclassification rate for the associated

classifier. This might not be immediately obvious, and we provide a formal statement in

Lemma 6. Proposition 1 thus provides a precise bound on the misclassification rate of the

LR classifier for deciding between Qk and Qr.

The significance of the Chernoff exponent of the hypothesis test in controlling the rates

is thus natural, given the full information about the {Qk} and the test statistics. What

is somewhat surprising is that almost the same bound holds when no such information is

available a priori. Our main result below is a formalization of this claim. In our assumptions,

we include a parameter Q ∈ N that controls the number of subblocks when partitioning, the

details of which are discussed in Chapter 6. Under the following two assumptions:

(Q2 logQ)β2ω3KL(K ∨ L) log(K ∨ L)(‖Λ‖∞ ∨ ‖Γ‖∞)2 = O(n ∧m), and (A3)

(Q logQ)2β3ω2(K ∨ L)3(α ∨ α−1)(‖Λ‖∞ ∨ ‖Γ‖∞) = o
(

(Imin ∧ Icol
min)2

)
, (A4)
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where α := m/n, there is an algorithm that achieves almost the same rate as the oracle:

Theorem 1 (Main result). Consider a bipartite SBM (Chapter 2.1) satisfying (A1)–(A4).

Then, as Imin∧Icolmin →∞ and Λmin →∞, the row labels ŷ output by Algorithm 3 in Chapter 6

satisfies for some ζ = o(1),

Misk
(
ŷ, y

)
= O

(
ω
∑

r 6=k

(
1 +

1

εkr

)
exp

(
−Ikr −

(1

2
− ζ
)

log Λmin

))
(3.5)

for every k ∈ [K], with high probability. Similar bounds holds for ẑ w.r.t. z.

One can replace the big O with the small o in (3.5) to obtain an equivalent result (due

to the presence of ζ = o(1)). Let us discuss the assumptions of Theorem 1. The only real

assumptions are (A3) and (A4). The other two, namely (A1) and (A2) can be more or less

thought of as definitions of ω and β. For example, (A2) only imposes the mild constraint

that no cluster is empty. Similarly (A1) imposes the mild assumption that no entry of Λ or

Γ is zero. The main constraints on ω and β are encoded in (A3) and (A4) in tandem with

other parameters of the model.

Remark 1. In the first reading, one can take β, ω,Q = O(1), n � m and ‖Λ‖∞ � ‖Γ‖∞. In

this setting, (A3) is a very mild sparsity condition, implying that the degrees should not grow

faster than
√
n. (A4) guarantees that the information quantities grow fast enough so that

the clusters are distinguishable. We only need (A4) for Algorithm 3 which uses a spectral

initialization. In Chapter 6.2.1, we present Theorem 7, for the likelihood-based portion of

the algorithm, assuming that a good initialization is provided. Theorem 7 only requires a

weakened version, (A4′), of assumption (A4).

Depending on the behavior of εkr, the rate obtained in Theorem 1 can exhibit different

regimes which are summarized in Corollary 1 below. Consider the additional assumption:

max
k,r∈ [K]

ω
(

1 +
1

εkr

)
= O(1). (A5)

Corollary 1. Under the same assumptions as Theorem 1, w.h.p., for all k ∈ [K],

Misk
(
ŷ, y

)
= o
(∑

r 6=k
exp(−Ikr)

)
. (3.6)
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If in addition we assume (A5), then for some ζ = o(1), w.h.p., for all k ∈ [K],

Misk
(
ŷ, y

)
= O

(∑

r 6=k
exp

(
−Ikr −

(1

2
− ζ
)

log Λmin

))
. (3.7)

Remark 2. Consider the oracle version of the biclustering problem where the connectivity

matrix P and the true column labels z are given. Then, the optimal row clustering reduces

to the likelihood ratio tests in Proposition 1. That is, given the row sums within blocks

as sufficient statistics, we compare the likelihoods at two different mean parameters. By

Proposition 1, the optimal misclassification rate for the oracle problem is

E
[

Misk
(
ŷ, y

)]
= O

(∑

r 6=k
exp

(
−Ikr −

1

2
log Λmin

))
, (3.8)

where the sum over r is due to the need to compare against all other clusters. The gap

between 1/2 and 1/2 − ζ is not avoidable when stating high probability results, due to the

Markov inequality; see Lemma 6 for the details. This error rate coincides with (3.7), which

merely loses a constant due to the unknown mean parameters and column labels. The rate is

sharp up to a factor of exp(−1
2
(L−1) log Λmin) according to the lower bound in Proposition 1.

In order to understand the rates in Corollary 1 better, let us consider some examples

which also clarify our results relative to the previous literature.

Example 1. Consider a simple planted partition model where

n = m, K = L, Pkk =
a

n
, Pk` =

b

n
, ∀k 6= `.

Then, λkk ∈ [ a
βK
, βa
K

] and λk` ∈ [ b
βK
, βb
K

] when k 6= `. Applying (3.1) with s = 1/2,

Ikr ≥
1

2

∑

`

(
√
λk` −

√
λr`)

2 ≥ (
√
a−
√
b)2

βK
.

Assume that (A3) and (A4) hold, that is (using ‖Λ‖∞ ≤ βa/K)

β4ω3(K logK)a2 = O(n ∧m) and β6ω2K4a = o
(

(
√
a−
√
b)4
)
.
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and further assume that βω2K3 = o(a ∧ b). Then w.h.p., we have

Misk
(
ŷ, y

)
= o
(

exp
(
−(
√
a−
√
b)2

βK

))
. (3.9)

For the details of (3.9), see Chapter 8.4. In particular, if

lim inf
n→∞

(
√
a−
√
b)2

βK log n
≥ 1, (3.10)

we have Misk
(
ŷ, y

)
= o(1/n) w.h.p., that is, we have the exact recovery of the labels by

Algorithm 3. (Whenever misclassification rate drops below 1/n, it should be exactly zero.)

Note that this result holds without any assumption of assortativity, i.e., it holds whether

a > b or b > a.

Example 2. Suppose that P := P̃ (log n)/n where P̃ is a symmetric constant matrix, n = m,

K = L, and y = z. Then K,ω and εkr are constants. Then,

λk` = λ̃k` log n, where λ̃k` := P̃k`πk(y), and Ikr = Ĩkr log n

where Ĩkr is defined based on λ̃k` and λ̃r` as in (3.1). Assuming in addition that π(y) is

constant, both λ̃kr and Ĩkr are constants. In this regime, our key assumptions (A3) and (A4)

are satisfied. By Corollary 1, w.h.p., we have

Misk
(
ŷ, y

)
= o
(

exp
(
−min

r 6=k
Ĩkr log n

))
= o
(
n−minr 6=k Ĩkr

)
. (3.11)

As a consequence if mink 6=r Ĩkr ≥ 1, then Misk
(
ŷ, y

)
= o(1/n) w.h.p., that is we have exact

recovery by Algorithm 3.

3.1 Comparison with existing results

Let us now compare with [GMZZ17] and [AS15] whose results are closest to our work. Both

papers consider the symmetric (unipartite) SBM, but the results can be argued to hold in

the bipartite setting as well. The setup of Example 1 is more or less what is considered

in [GMZZ17]. They have shown that there is an algorithm with misclassification error
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bounded by

exp
(
−(1− o(1))(

√
a−
√
b)2

βK

)
. (3.12)

We have sharpened this rate to (3.9) under assumption (A3) (i.e., assuming the average

degree grows slower than O(
√
n)). Bound (3.12) implies that when

lim inf
n→∞

(
√
a−
√
b)2

βK log n
> 1,

one has exact recovery. Our bound on the other hand, imposes the relaxed condition (3.10).

We note that the results in [GMZZ17] are derived for a more general class of (assortative)

models than that of Example 1, namely, the class with connectivity matrix satisfying Pkk ≥
a/n and Pk` ≤ b/n for k 6= `. The rate obtained in [GMZZ17] uniformly over this class is

dominated by that of the hardest within this class which is the model of Example 1. For

other members of this class, neither their rate (3.12) or the one we gave in (3.9) is optimal.

The optimal rate in those cases is given by the general form of Theorem 1 and is controlled

by the general form of Ikr in (3.1). In other words, Algorithm 3 that we present is rate

adaptive over the class considered in [GMZZ17], achieving the optimal rate simultaneously

for each member of the class.

A key in our approach is to apply the likelihood-type algorithm twice, in contrast to the

single application in [GMZZ17]. After the second stage we obtain much better estimates of

the labels and parameters relative to the initial values, allowing us to establish the sharper

forms of the bounds. Another key is the result in Lemma 5(b) which provides a better

error rate than the classical Chernoff bound, using a very innovative technique introduced

in [AS15]. Moreover, we keep track of the balance parameter β in (A2) throughout, allowing

it to go to infinity slowly. Last but not least, assortativity is a key assumption in [GMZZ17],

while our result does not rely on it. Besides consistency, our provable algorithm is more

computationally efficient in a practical sense. To obtain initial labels, we will apply spectral

clustering on very few subgraphs (8 to be exact). However, the provable version of the

algorithm in [GMZZ17] applies spectral clustering for each single node on the rest of the

graph excluding that node. If the cost of running the spectral clustering on a network of n

nodes is Cn, then our approach costs ≈ 8Cn/8 while that of [GMZZ17] costs roughly nCn−1.
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Our algorithm thus has a significant advantage in computational complexity when n→∞.

To be fair, the algorithm introduced in [GMZZ17] was for the symmetric SBM, which has

the extra complication of dependency in A due to symmetry. Our comparison here is mostly

with Corollary 3.1 in [GMZZ17]. In addition, [GMZZ17] have a result (their Theorem 5) for

when ω grows arbitrarily fast which is not covered by our result. See the discussion below

for comments on the symmetric case and dependence on ω.

The problem of exact recovery for a general SBM has been considered in [AS15], again

for the case of a symmetric SBM, though the results are applicable to the bipartite setting

(with y = z) as well. The model and scaling considered in [AS15] is the same as that

of Example 2, and they show that exact recovery of all labels is possible if (and only if)

mink,r:k 6=r Ĩkr ≥ 1 which is the same result we obtain in Example 2 for Algorithm 3. Thus,

our result contains that of [AS15] as a special case, namely in the log n-degree regime with

other parameters (such as K and the normalized connectivity matrix) kept constant. The

results and algorithms of [AS15] do not apply to the general model in our paper; consider

the following two points:

1. Only the regime P ∼ log n/n, i.e., the degree grows as fast as log n, is investigated

in [AS15], while we allow the degree to grow in the range from “arbitrarily slowly” up to “as

fast as O(
√
n)”.

2. One needs independent versions of the adjacency matrix in different stages of the

algorithm. To achieve this goal, edge splitting was introduced in [AS15]. The idea is that one

can regard the two (or more) graphs obtained from edge splitting to be nearly independent.

To be specific, let P1 be the joint probability measure corresponding to a pair of graphs G1

and G2 generated independently with connectivity matrices qP and (1 − q)P . Let P2 be

the joint probability measure on G1 and G2 obtained by edge splitting from a single SBM

with connectivity matrix P , assigning every edge independently to either G1 or G2 with

probabilities q and 1− q. Then, P1 and P2 have the same marginal distributions. Having a

vanishing total variation between P1 and P2 is necessary for further analysis which, as was

pointed out by [AS15, pp. 46-47], is equivalent to showing that under P1, G1 and G2 do no
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share any edge, with high probability. Letting P̃min = mink` P̃k`,

P1(G1 and G2 do not share edges) ≤
(

1− (1− q)qP̃ 2
min(log n)2

n2

)n2

which is strictly bounded away from 1 unless (1 − q)qP̃ 2
min(log n)2 = o(1), that is, the con-

nectivity matrix of either G1 or G2 should vanish faster than 1/n. Our consistency result

will not hold in this regime. Thus, edge splitting cannot be used to derive the results in

this paper, and we introduce the block partitioning idea to supply us with the independent

copies necessary for analysis. Another technical issue about edge splitting is discussed in

Remark 10.

3.2 Discussion

Our results do not directly apply to the symmetric case, due to the dependence between the

upper and lower triangular parts of the adjacency matrix A. However, a more sophisticated

two-stage block partitioning scheme can be used to derive similar bounds under mild extra

assumptions. One starts with an asymmetric partition into blocks of sizes {qn, (1− q)n} ×
{qn, (1 − q)n}, for q = 1/Q → 0 very slowly. In the first stage, one applies a similar

procedure as described in Algorithm 3 on the upper triangular portion of the large subblock

(1−q)n×(1−q)n, followed by the application of the LR classifier on the fat block qn×(1−q)n
to obtain very accurate row labels of the small block qn× qn.. One then repeats the process

using the “leave-one-out” of [GMZZ17], but applied to small blocks qn × qn rather than

individual nodes. We leave the details for a future work.

It was also shown by [GMZZ17, Theorem 5] that their equivalent of condition (A1)

can be removed by modifying the algorithm. In their setting, without assuming a � b, a

misclassification rate of exp(−(1−ε)I) is achievable, where ε ∈ (0, 1) is a variable in the new

version of their algorithm. If those arguments can be extended to the general block model,

it will be possible to relax the requirements on ω in (A3) and (A4). When K,L = O(1),

one can completely remove sparsity condition (A3) using a much sharper Poisson-binomial

approximation than what we have used in this paper. Finally, we suspect that our result

could be generalized beyond SBMs to biclustering arrays where the row and column sums
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over clusters follow Poissonian central limit theorems. We will explore these ideas in the

future.

20



CHAPTER 4

Pseudo-likelihood approach

In this section, after introducing the local and global mean parameters which will be used

throughout the paper, we present our general pseudo-likelihood approach to biclustering.

4.1 Local and global mean parameters

Let us define the following operator that takes an adjacency matrix A and row and column

labels ỹ and z̃, and outputs the corresponding (unbiased) estimate of its mean parameters:

[L (A, ỹ, z̃)]k` =
1

nk(ỹ)

n∑

i=1

m∑

j=1

Aij1{ỹi = k, z̃j = `}, k ∈ [K], ` ∈ [L]. (4.1)

Note that L (A, ỹ, z̃) is a K × L matrix with nonnegative entries. In general, we let

Λ̂ = (λ̂k`) := L (A, ỹ, z̃), (4.2)

Λ(ỹ, z̃) = (λk`(ỹ, z̃)) := L (E[A], ỹ, z̃), (4.3)

for any row and column labels ỹ and z̃. Here Λ̂ is the estimate of the true row mean matrix.

Its expectation is E[Λ̂] = Λ(ỹ, z̃) due to the linearity of L . We call Λ(ỹ, z̃), the (global) row

mean parameters associated with labels ỹ and z̃. (We do not explicitly show the dependence

of Λ̂ on the labels, in contrast to the mean parameters.) We have the following key identity

Λ(ỹ, z̃) |ỹ=y, z̃=z = Λ (4.4)

where Λ is the true (global) row mean parameter matrix defined in (2.2). In words, (4.4)

states that the global row mean parameters associated with the true labels y and z, are the

true such parameters. We will also use parameters such as Λ(y, z̃) which are obtained based
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on the true row labels y and generic column labels z̃.

We also need local versions of all these definitions which are obtained based on subma-

trices of A. More precisely, let A(q′,q) be a submatrix of A, and let y(q′) and z(q) be the

corresponding subvectors of z and y (i.e., corresponding to the same row and column in-

dex sets used to extract the submatrix). Here q, q′ range over [Q] = {1, . . . , Q} creating a

partition of A into Q2 subblocks. We call

Λ(q′,q)(ỹ, z̃) := (λ
(q′,q)
k` (ỹ, z̃)) := L (E[A(q′,q)], ỹ(q′), z̃(q)), (4.5)

the local row mean parameters associated with submatrix A(q′,q) and sublabels y(q′) and z(q).

The corresponding estimates are defined similarly (by replacing E[A(q′,q)] with A(q′,q)). We

will mostly work with submatrices obtained from a partition A(q′,q), q′, q ∈ [Q] of A into

(nearly) equal-sized blocks—the details of which are described in Chapter 6. In such cases,

Λ(q′,q)(ỹ, z̃) ≈ 1

Q
Λ(ỹ, z̃), ∀q′, q ∈ [Q]

assuming the each subblock in the partition has nearly similar cluster proportions: n(z(q)) ≈
n(z). This is the case, for example, for a random partition as we show in Chapter 7.2. Of

special interest is when we replace both ỹ and z̃ with true labels y and z. In such cases,

Λ(q′,q) does not depend on q′. More precisely, we have for any q ∈ [Q],

λ
(q′,q)
k` (y, z) = Pk` n`(z

(q)), ∀q′ ∈ [Q], (4.6)

where n`(z
(q)) is the number of labels in class ` in z(q), consistent with our notation for

the full label vectors. We often write Λ(q) = (λ
(q)
k` ) as a shorthand for Λ(q′,q)(y, z) which is

justified by the above discussion. These will be called the true local row mean parameters

(associated with column q subblock in the partition).

4.2 General pseudo-likelihood algorithm

Let us now describe our main algorithm based on the pseudo-likelihood (PL) idea, which is a

generalization of the approach in [ACBL+13] to the bipartite setup. The pseudo-likelihood
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Algorithm 1 Pseudo-likelihood biclustering, meta algorithm

1: Initialize row and column labels ỹ and z̃.
2: while ỹ and z̃ have not converged do
3: b← B(A; z̃)
4: while Λ̂ and π̂ not converged (optional) do
5: Λ̂← L(b; ỹ)
6: Option 1: π̃ ← 1, or option 2: π̃ ← π(ỹ)
7: ỹ ← F(b, Λ̂, π̃)
8: (Optional) Convert ỹ to hard labels.
9: end while

10: Repeat lines 3–7 with appropriate modifications to update z̃ and columns parameters
(by changing A to AT and swapping z̃ and ỹ.)

11: (Optional) Convert ỹ and z̃ to hard labels if they are not.
12: end while

algorithm (PLA) is effectively an EM algorithm applied to the approximate mixture of

Poissons obtained from the block compression of the adjacency matrix A. It relies on some

initial estimates of the row and column labels to perform the first block compressions (for

both rows and columns). The initialization is often done by spectral clustering and will be

discussed in Chapter 5 once we introduce the provable version of the algorithm. Subsequent

block compressions are performed based on the label updates at previous steps of PLA.

Let us assume that we have obtained labels ỹ and z̃ as estimates of the true labels y and z.

We focus on the steps of PLA for recovering the row labels. Let us define an operator B(A; z̃)

that takes approximate columns labels and produces the corresponding column compression

of A:

B(A; z̃) := b(z̃) :=
(
bi`(z̃)

)
∈ Zn×L+ , bi`(z̃) :=

m∑

j=1

Aij1{z̃j = `}. (4.7)

The distribution of bi`(z̃) is determined by the row class of i. It is not hard to see that

E[bi`(z̃)] = λk`(y, z̃) = λk`(y, z̃)|z̃=z, if yi = k, (4.8)

where λk`(y, z̃) are the (global) row mean parameters defined in (4.3).

Now consider an operator L(b; ỹ) that given the column compression b and the initial
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estimate of the row labels ỹ, produces estimates of the (row) mean parameters λk`(y, z̃):

L(b; ỹ) := Λ̂ := [λ̂k`] ∈ RK×L
+ , λ̂k` :=

1

nk(ỹ)

n∑

i=1

bi`1{ỹi = k}. (4.9)

Note that if ỹ = y, we have E[λ̂k`] = λk`(y, z̃). The definition of the estimates in (4.9) are

consistent with those of (4.2) due to the following identity:

L(B(A; z̃); ỹ) = L (A, ỹ, z̃)

which holds for any row labels ỹ and column labels z̃. Let us write

π(ỹ) := (πk(ỹ)), πk(ỹ) :=
1

n

n∑

i=1

1{ỹi = k} (4.10)

for the estimate of (row) class priors based on ỹ. We note that the operation B and L
remain valid even if ỹ and z̃ are soft labels with a minor modification. By a soft row label

z̃j ∈ [0, 1]L we mean a probability vector on [L]: z̃j` ≥ 0 and
∑L

`=1 z̃j` = 1, which denotes

a soft assignment to each row cluster. To extend (4.7) to soft row labels, it is enough to

replace 1{zj = `} with zj`. Extending (4.9) to soft column labels ỹ is done similarly.

Now, given any block compression b = (bi`) and any estimate Λ̂ of the (row) mean

parameters and any estimate π̃ ∈ [0, 1]K of the (row) class prior, consider the operator

that outputs the (row) class posterior assuming that the rows of bi approximately follow
∑

k π̃k
∏

` Poi(λ̂k`):

F(b, Λ̂, π̃) := (π̂ik) ∈ [0, 1]n×K , π̂ik :=
π̃k
∏L

`=1 ϕ(bi`, λ̂k`)∑K
k′=1 π̃k′

∏L
`=1 ϕ(bi`, λ̂k′`)

(4.11)

where ϕ(x, λ) = exp(x log λ − λ) is the Poisson likelihood (up to constants). In practice,

we only use π(ỹ) or a flat prior 1 as the estimated prior π̃ in this step; similarly, we only

use a block compression which is based on estimates of row labels, i.e., bi` = bi`(z̃) for some

z̃ ∈ [n]L. Note that F outputs soft-labels which can be considered our new estimates of y.

We can convert (π̂ik) to hard labels if needed.

Algorithm 1 summarizes the general blueprint of PLA, which proceeds by iterating the

three operators (4.7), (4.9) and (4.11). Optional conversion from soft to hard labels is
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Algorithm 2 Simplified pseudo-likelihood clustering

1: Input: Initial column labels z̃, and Λ̃ that estimates Λ.
2: Output: Estimate of row labels ŷ.
3: b← B(A; z̃)
4: ŷ ← F(b, Λ̃,1)
5: Convert ŷ to hard labels, by computing MAP estimates.

performed by MAP assignment per row. With option 2 in step 6, the inner loop on lines

4–9 is the EM algorithm for a mixture of Poisson vectors. We can also remove the inner

loop and perform iterations 5–8 only once. In total, Algorithm 1 has (at least) 6 possible

versions, depending on whether we include each of the steps 8 or 11 (for the soft to hard

label conversion) and whether to implement the inner loop till convergence or only for one

step. We provide empirical results for two of these versions in Chapter 9. In practice, we

recommend to keep soft labels throughout, and only run the inner loop for a few iterations

(maybe even one if the computational cost is of significance).

Remark 3 (PL naming). We have borrowed the name pseudo-likelihood (PL) from [ACBL+13]

based on which the algorithms in this paper are derived. In [ACBL+13], the setup is that of

the symmetric SBM, and in order to treat the full likelihood as the product of independent

(over nodes i = 1, . . . , n) of the mixture of Poisson vectors, one has to ignore the dependence

among the upper and lower triangular parts of the adjacency matrix, making the PL naming

more inline with the traditional use of the term. In our bipartite setup, there is no such

dependence to ignore, but we have kept the name PL for consistency with [ACBL+13] and

ease of use. We interpret the “pseudo” nature of the likelihood as the approximation used

in the block compression stage (with imperfect labels) and in replacing Poisson-binomial

distribution with the Poisson.

4.3 Likelihood ratio classifier

A basic simplified building block of the PLA is given in Algorithm 2. This operation—

which will play a key role in the development of the provable version of the algorithm in

Chapter 6—can be equivalently described as a likelihood ratio classifier (LRC). Let us write
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the joint Poisson likelihood (up to a constant) as:

Φ(x, λ) =
L∏

`=1

ϕ(x`, λ`) =
L∏

`=1

exp(x` log λ` − λ`), x ∈ RL, λ ∈ RL
+, (4.12)

and the corresponding likelihood ratio as:

Ψ(x;λ | λ′) = log
Φ(x, λ)

Φ(x, λ′)
=

L∑

`=1

x` log
λ`
λ′`

+ λ′` − λ`, x ∈ RL, λ, λ′ ∈ RL
+. (4.13)

Recalling the column compression (4.7), the likelihood ratio classifier, based on initial row

labels z̃ and an estimate Λ̃ of the row mean parameter matrix, is

[LR(A, Λ̃, z̃)]i ∈ argmax
r∈ [K]

log Φ(bi∗(z̃), λ̃r∗), i ∈ [n]. (4.14)

which gives us a refined estimate of the row labels (i.e., y). It is not hard to see that the

output of Algorithm 2 is ŷ = LR(A, Λ̃, z̃)].
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CHAPTER 5

Spectral clustering

5.1 Notation

In this chapter, it will be convenient to consider another set of notations.

Orthogonal matrices. We write Sn for the set of symmetric n × n matrices, and On×k

for the set of n× k matrices with orthonormal columns. The condition k ≤ n is implicit in

defining On×k. The case On×n is the set of orthogonal matrices, though with some abuse of

terminology we also refer to matrices in On×k as orthogonal even if k < n. Thus, Z ∈ On×k

iff ZTZ = Ik. We also note that Z ∈ On×k1 and U ∈ Ok1×k implies ZU ∈ On×k. The

following holds:

‖Ux‖2 = ‖x‖2, ∀x ∈ Rk, U ∈ Ok1×k, (5.1)

for any k1 ≥ k. On the other hand,

‖UTx‖2 ≤ ‖x‖2, ∀x ∈ Rk1 , U ∈ Ok1×k, (5.2)

where equality holds for all x ∈ Rk1 , iff k1 = k. To see this latter inequality, let u1, . . . , uk ∈
Rk1 be the columns of U , constituting an orthonormal sequence which can be completed

to an orthonormal basis by adding say uk+1, . . . , uk1 . Then, ‖UTx‖2
2 =

∑k
j=1〈uj, x〉2 ≤

∑k1
j=1〈uj, x〉2 = ‖x‖2

2.

Memebership matrices and misclassification. We let Hn×k denote the set of hard

cluster labels: {0, 1}-valued n× k matrices where each row has exactly a single 1. A matrix

Z ∈ Hn×k is also called a membership matrix, where row i is interpreted as the membership
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of node i to one of k clusters (or communities). Here we implicitly assume that we have a

network on nodes in [n] = {1, . . . , n}, and there is a latent partition of [n] into k clusters.

In this sense, Zik = 1 iff node i belongs to cluster k. Given, two membership matrices

Z,Z ′ ∈ Hn×k, we can consider the average misclassification rate between them, which we

denote as Mis(Z,Z ′): Letting zTi and (z′i)
T denote the ith row of Z and Z ′ respectively, we

have

Mis(Z,Z ′) := min
Q

1

n

n∑

i=1

1{zi 6= Qz′i} (5.3)

where the minimum is taken over k×k permutations matrices Q. We also let Misr(Z,Z
′) be

the misclassification rate between the two, over the rth cluster of Z, that is, Misr(Z,Z
′) =

1
nr

∑
i: zi=r

1{zi 6= Q∗z′i} where nr =
∑n

i=1 1{zi = r} is the size of the rth cluster of Z, and

Q∗ is the optimal permutation in (5.3). Note that in contrast to Mis, Misr is not symmetric

in its two arguments. We also write Mis∞ := maxr Misr. These definitions can be extended

to misclassification rates between k-means matrices introduced in Section 5.3.4.

5.2 Stochastic Block Model

Stochastic Block Model (SBM) with bi-adjacency matrix A ∈ {0, 1}n1×n2 . We assume

throughout that n2 ≥ n1, without loss of generality. We have membership matrices Zr ∈
Hnr×kr for each of the two sides r = 1, 2, where kr ≤ nr denotes the number communities on

side r. Each element of A is an independent draw from a Bernoulli variable, and

P := E[A] = Z1BZ
T
2 , B =

Ψ√
n1n2

(5.4)

where B ∈ [0, 1]k1×k2 is the connectivity— or the edge probability—matrix, and Ψ is its

rescaled version. We also use the notation

A ∼ Ber(P ) ⇐⇒ Aij ∼ Ber(Pij), independent across (i, j) ∈ [n1]× [n2]. (5.5)

Classical SBM which we refer to as symmetric SBM in this paper corresponds to the following

modifications:
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(a) A is assumed to be symmetric: Only the upper diagonal elements are drawn inde-

pendently and the bottom half is filled symmetrically. For simplicity, we allow for

self-loops, i.e. draw the diagonal elements from the same model. This will have negli-

gible effect in the arguments.

(b) n1 = n2 = n, k1 = k2 = k, Z1 = Z2 = Z.

(c) B is assumed symmetric.

We note that (5.4) still holds over all the elements. Directed SBM is also a special case,

where (b) is assumed but not (a) or (c). That is, A is not assumed to be symmetric and all

the entries are independently drawn, while B may or may not be symmetric.

We refer to P as the mean matrix and note that it is of rank at most k := min{k1, k2}.
Often k � n1, n2, that is P is a low-rank matrix which is the key in why spectral clustering

works well for SBMs. Let us write P in a form which is more suitable for understanding its

spectral properties. We let Nr = diag(nr1, . . . , nrkr) for r = 1, 2 where nrj is the size of the

jth cluster of Zr; that is, Nr is a diagonal matrix whose diagonal elements are the sizes of

the clusters on side r. We note that ZT
r Zr = Nr. (To see this, let zTri be the ith row of Zr

and note that ZT
r Zr =

∑n
i=1 zriz

T
ri. Since zri ∈ H1×kr , each zriz

T
ri is a diagonal matrix with a

single 1 on the diagonal at the position determined by the cluster assignment of node i on

side r.)

Letting Z̄r = ZrN
−1/2
r , we observe that Z̄r is an orthogonal matrix Z̄T

r Z̄r = Ikr . In other

words, Z̄r ∈ Onr×kr , and we can write

P = Z̄1B̄Z̄
T
2 , for B̄ := N

1/2
1 BN

1/2
2 = N̄

1/2
1 ΨN̄

1/2
2 ,

where we have further normalized Nr to get the cluster proportions:

N̄r := Nr/nr = diag(πr1, . . . , πrkr), πrj = nrj/nr. (5.6)

For sparse graphs, we expect N̄r and Ψ to remain stable as nr →∞, hence B̄ remains stable;

29



see Remark 4 below. Let B̄ have the following reduced SVD:

B̄ = UψΣV T
ψ (5.7)

where Uψ ∈ Ok1×k, Vψ ∈ Ok2×k and Σ = diag(σ1, . . . , σk), and we recall that k = min{k1, k2}.
It then follows that the mean matrix P has the following reduced SVD

P = (Z̄1Uψ) Σ (Z̄2Vψ)T (5.8)

where Z̄1Uψ ∈ On1×k and Z̄2Vψ ∈ On2×k. When dealing with the symmetric SBM, we will

drop the subscript r from all the relevant quantities; for example, we write N = N1 = N2,

Z̄ = Z̄1 = Z̄2, πj = π1j = π2j, and so on.

Remark 4 (Scaling and sparsity). Let us comment on the normalization in (5.4). As can be

seen from the above discussion leading to (5.7) and (5.8), this normalization is natural for

studying spectral clustering. In the symmetric case, where n1 = n2 = n, the normalization

reduces to B = Ψ/n, which is often assumed when studying sparse SBMs by requiring that

either ‖Ψ‖∞ is O(1) or grows slowly with n. To see why this implies a sparse network, note

that the expected average degree of the symmetric SBM (under this scaling) is

1

n
1TP1 =

1

n
1TNBN1 = 1T N̄ΨN̄1 =

k∑

i,j=1

πiπjΨij =: dav

using 1TnZ = 1TkN . (Here and elsewhere, 1 is the vector of all ones of an appropriate

dimension; we write 1n if we want to emphasize the dimension n.) Thus, the growth of

the average expected degree, dav, is the same as Ψ, and as long as Ψ is O(1) or grows very

slowly with n, the network is sparse. Alternatively, we can view the expected density of the

network (the expected number of edges divided by the total number of possible edges) as a

measure of sparsity. For the symmetric case, the expected density is (1
2
1TP1)/

(
n
2

)
∼ dav/n

and is O(n−1) if dav = O(1). Similar observations hold in the general bipartite case if we let

n =
√
n1n2, the geometric mean of the dimensions. The expected density of the bipartite
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network under the scaling of (5.4) is

1TP1

n2
=

1

n2
1TN1BN21 =

1

n
1T N̄1ΨN̄21 =

dav

n
, (n =

√
n1n2)

where dav := 1T N̄1ΨN̄21 =
∑

i,j π1iπ2jΨij can be thought of as the analog of the expected

average degree in the bipartite case. As long as ‖Ψ‖∞ grows slowly relative to n =
√
n1n2,

the bipartite network is sparse.

5.3 Analysis steps

Throughout, we focus on recovering the row clusters. Everything that we discuss goes

through, with obvious modifications, for recovering the column clusters. Recalling the de-

composition (5.8), the idea of spectral clustering in the context of SBMs is that Z̄1Uψ has

enough information for recovering the clusters and it can be obtained by computing a reduced

SVD of P . In particular, applying a k-means type clustering on the rows of Z̄1Uψ should

recover the cluster labels. On the other hand, the actual random adjacency matrix, A, is

concentrated around the mean matrix P , after proper regularization if need be. We denote

this potentially regularized version as Are. Then, by the spectral perturbation theory, if we

compute a reduced SVD of Are = Ẑ1Σ̂ẐT
2 where Ẑr ∈ Onr×k, r = 1, 2 and Σ̂ is diagonal, we

can conclude that Ẑ1 concentrates around Z̄1Uψ. Hence, applying a stable (i.e., continuous)

k-means type algorithm on Ẑ1 should be able to recover the labels with a small error.

5.3.1 Analysis sketch

Let us sketch the argument above in more details. A typical approach in proving consistency

of spectral clustering consists of the following steps:

1. We replace A with a properly regularized version Are. We provide the details for

one such regularization in Theorem 3 (Section 5.3.3). However, the only property we

require of the regularized version is that it concentrates, with high probability, around
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the mean of A, at the following rate (assuming n2 ≥ n1):

‖Are − EA‖ ≤ C
√
a, where a ≥

√
n2

n1

‖Ψ‖∞. (5.9)

Here and throughout ‖ · ‖ is the `2 → `2 operator norm and ‖Ψ‖∞ = maxij Ψij.

2. We pass from Are and P = E[A] to their (symmetrically) dilated versions A†re and P †.

The symmetric dilation operator will be given in (5.12) (Section 5.3.2) and allows us

to use spectral perturbation bounds for symmetric matrices. A typical final result of

this step is a bound of the form:

‖Ẑ1 − Z̄1UψQ‖F ≤
C2

σk

√
ka, w.h.p. (5.10)

for some Q ∈ Ok×k. We recall that ‖·‖F is the Frobenius norm. Here, σk is the smallest

nonzero singular value of B̄ as given in (5.7). The form of (5.10) will be different if

instead of Ẑ1 one considers other objects as the end result of this step; see Section 5.4

(e.g., (5.31)) for instances of such variations. The appearance of Q is inevitable and is a

consequence of the necessity of properly aligning the bases of spectral subspaces, before

they can be compared in Frobenius norm (cf. Lemma 2). Nevertheless, the growing

stack of orthogonal matrices on the RHS of Z̄1 has little effect on the performance of

row-wise k-means, as we discuss shortly.

3. The final step is to analyze the effect of applying a k-means algorithm to Ẑ1. Here,

we introduce the concept of a k-means matrix, one whose rows take at most k distinct

values. (See Section 5.3.4 for details). A k-means algorithm K takes a matrix X̂ ∈
Rn×d and outputs a k-means matrix K (X̂) ∈ Rn×d. Our focus will be on k-means

algorithms with the following property: If X∗ ∈ Rn×d is a k-means matrix, then for

some constant c > 0,

‖X̂ −X∗‖2
F ≤ ε2 =⇒ Mis(K (X̂), X∗) ≤ c ε2/(nδ2). (5.11)

Here, Mis is the average misclassification rate between two k-means matrices. As will

become more clear in Section 5.3.4, k-means matrices encode both the cluster label

information and cluster center information, and these two pieces can be recovered from
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them in a lossless fashion. Thus, it makes sense to talk about misclassification rate

between k-means matrices, by interpreting it as a statement about their underlying

label information. δ2 = δ2(X∗) in (5.11) is the minimum center separation of X∗ (cf.

Definition 2). In Section 5.3.4, we will discuss k-means algorithms that satisfy (5.11).

Applying (5.11) with X̂ = Ẑ1, X∗ = Z̄1UψQ and ε2 = C2
2 ka/σ

2
k, and combin-

ing with (5.10) leads to a misclassification rate for the spectral clustering algorithm

(cf. Theorem 2).

The preceding three steps of the analysis follow the three steps of a general spectral

clustering algorithm, which we refer to as regularization, spectral truncation and kmeans

steps, respectively. Recalling the definition of cluster proportions, let us assume for some

βr ≥ 1,

max
(t,s): t6=s

2

π−1
rt + π−1

rs

≤ βr
kr
, r = 1, 2. (A1)

The LHS is the maximum harmonic mean of pairs of distinct cluster proportions. For

balanced clusters, we have πrt = 1/kr for all t ∈ [kr] and we can take βr = 1. In general,

βr measures the deviation of the clusters (on side r) from balancedness. The following is a

prototypical consistency theorem for a spectral clustering algorithm:

Theorem 2 (Prototype SC consistency). Consider a spectral algorithm with a kmeans

step satisfying (5.11), and the “usual” spectral truncation step, applied to a regularized

bi-adjacency matrix Are satisfying concentration bound (5.9). Let K (Ẑ1) be the resulting

estimate for membership matrix Z1, and assume k1 = k =: min{k1, k2}. Then, under the

SBM model of Section 5.2 and assuming (A1), w.h.p.,

Mis(K (Ẑ1), Z̄1) . β1

( a
σ2
k

)
.

Here, and in the sequel, “with high probability”, abbreviated w.h.p., means with prob-

ability at least 1 − n−c1 for some universal constant c1 > 0. The notation f . g means

f ≤ c2 g where c2 > 0 is a universal constant. In addition, f � g means f . g and g . f .

Proof. The only remaining calculation is that of the minimum center separation of X∗ =
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Z̄1O ∈ Rn1×k, where Z̄1 ∈ On1×k1 and O := UψQ ∈ Ok1×k. We have

δ2 = δ2(Z̄1O) = δ2(Z̄1) = min
t6=s
‖n−1/2

1t et − n−1/2
1s es‖2

2 = min
t6=s

(n−1
1t + n−1

1s )

where es ∈ Rk1 is the sth standard basis vector. The second equality uses invariance of δ2 to

right-multiplication by a square orthogonal matrix. This is a consequence of ‖uTO−vTO‖2 =

‖u − v‖2 for u, v ∈ Rk1 and O ∈ Ok1×k when k1 = k; see (5.1). The third equality is from

the definition Z̄1 = Z1N
−1/2
1 . Using (A1),

(n1δ
2)−1 ≤ max

t6=s
(π−1

1t + π−1
1s )−1 ≤ β1

2k1

.

We obtain, with ε2 = C2
2ka/σ

2
k,

Mis(K (Ẑ1), Z̄1) = Mis(K (Ẑ1), Z̄1O) .
ε2

n1δ2
. β1

k

k1

a

σ2
k

which gives the result under the assumption k1 = k.

For (5.11) to hold for a kmeans algorithm, one usually requires some additional con-

straints on ε2/(nδ2), ensuring for example that this quantity is small. We will restate

Theorem 2 with such conditions explicitly once we consider the details of some k-means

algorithms. For now Theorem 2 should be thought of as a general blueprint, with specific

variations obtained in Section 5.4 for various spectral clustering algorithms.

Remark 5. To see that Theorem 2 is a consistency result, consider the typical case where

β1 � 1, and σk � a, so that Mis(K (Ẑ1), Z̄1) = O(a−1). Then, as long as a → ∞, i.e.,

average degree of the network grows with n, assuming n1 � n2 � n (for some n), we have

Mis(K (Ẑ1), Z̄1) = o(1), i.e., the average misclassification rate vanishes with high probability.

More specific examples are given in Section 5.4.

Remark 6. Condition (A1) is more relaxed that what is commonly assumed in the literature

(though the proof is the same). Stating the condition as a harmonic mean allows one to have

similar results as the balanced case when one cluster is large, while others remain more or

less balanced. For example, let πr1 = 1− c for some constant c ∈ (0, 1), say c = 0.4, and let
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πrt = c/(kr − 1) for t 6= 1. Then, we have for s 6= t

2

π−1
rt + π−1

rs

≤ 2 min{πrt, πrs} =
2c

kr − 1
≤ 4

kr

assuming kr ≥ 2. Hence (A1) holds with βr = 4. Note that as kr is increased, all but one

cluster get smaller.

In this rest of this section, we will fill in the details of the above three-step plan, starting

with Step 2.

5.3.2 Dilation and SV truncation

Let us define the symmetric dilation operator : Rn1×n2 → Sn1+n2 by

P † :=


 0 P

P T 0


 . (5.12)

This operator will be very useful in translating the results between the symmetric and non-

symmetric cases. Let us collect some of its properties:

Lemma 1. Let P ∈ Rn1×n2 have a reduced SVD given by P = UΣV T where Σ = diag(σ1, . . . , σk)

is a k × k nonnegative diagonal matrix . Then,

(a) P † has a reduced EVD given by

P † = W


Σ 0

0 −Σ


W T , W =

1√
2


U U

V −V


 ∈ O(n1+n2)×2k.

(b) P 7→ P † is a linear operator; it preserves the operator norm: ‖P †‖ = ‖P‖.

(c) ‖P †‖F =
√

2‖P‖F .

(d) The gap between k top (signed) eigenvalues of P † and the rest of its spectrum is 2σk.

Proof. Part (a) can be verified directly (e.g. W TW = I2k follows from UTU = V TV = Ik)

and part (d) follows by noting that σj ≥ 0 for all j. Part (b) and (c) also follow directly

from part (a), using unitary-invariance of the two norms.
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In addition, let us define a singular value (SV) truncation operator Tk : Rn1×n2 → Rn1×n2

that takes a matrix A with SVD A =
∑

i σiuiv
T
i to the matrix

A(k) := Tk(A) :=
k∑

i=1

σiuiv
T
i . (5.13)

In other words, Tk keeps the largest k singular values (and the corresponding singular vec-

tors) and zeros out the rest. Recall that we order singular values in nonincreasing fashion

σ1 ≥ σ2 ≥ · · · . We also refer to (5.13) as the k-truncated SVD of A. Using the dilation and

the Davis–Kahan (DK) theorem for symmetric matrices, we have:

Lemma 2. Let A
(k)
re = Ẑ1Σ̂ẐT

2 be the k-truncated SVD of Are and assume that the concen-

tration bound (5.9) holds. Let Z̄1Uψ be given by the reduced SVD of P in (5.8). Then, the

deviation bound (5.10) holds for some k × k orthogonal matrix Q, and C2 = 2C.

Proof. Let W̄ and Ŵ be the W of Lemma 1(a) for P † and A†re, respectively. Let us also

write W̄1 and Ŵ1 for the (n1 + n2) × k matrices obtained by taking the submatrices of W̄

and Ŵ on columns 1, . . . , k. We have

W̄1 =
1√
2


Z̄1Uψ

Z̄2Vψ


 , Ŵ1 =

1√
2


Ẑ1

Ẑ2


 .

Note that W̄1, Ŵ1 ∈ O(n1+n2)×k. Let ΠW̄1
be the (orthogonal) projection operator, projecting

onto Im(W̄1), i.e., the column span of W̄1, and similarly for ΠŴ1
. We have

‖ΠŴ1
− ΠW̄1

‖ ≤ 2

2σk
‖A†re − P †‖ (Symmetric DK and Lemma 1(d))

=
1

σK
‖(Are − P )†‖ (Linearity of dilation)

=
1

σK
‖Are − P‖ (Lemma 1(b)).

The next step is to translate the operator norm bound on spectral projections into a Frobe-

nius bound. The key here is the bound on the rank of spectral deviations which leads to a

36



√
k scaling as opposed to

√
n1 + n2, when translating from operator norm to Frobenius:

min
Q∈Ok×k

‖Ŵ1 − W̄1Q‖F ≤ ‖ΠŴ1
− ΠW̄1

‖F (By Lemma 28 in Appendix A.9)

≤
√

2k ‖ΠŴ1
− ΠW̄1

‖ ( rank(ΠŴ1
− ΠW̄1

) ≤ 2k )

≤
√

2k

σk
‖Are − P‖.

Since 2‖Ŵ1 − W̄1Q‖2
F = ‖Ẑ1 − Z̄1UψQ‖2

F + ‖Ẑ2 − Z̄2VψQ‖2
F , we obtain the desired result

after combining with (5.9).

Remark 7 (Symmetric case). When P is symmetric one can still use the dilation operator.

In this case, since P itself is symmetric, it has an eigenvalue decomposition (EVD), say

P = UΛUT , where Λ = diag(λ1, . . . , λk) is the diagonal matrix of the eigenvalues of P .

Since these eigenvalues could be negative, there is a slight modification needed to go from

the EVD to the SVD of P . Let si be the sign of λi and set S = diag(si, i = 1, . . . , k). Then,

it is not hard to see that with V = US and Σ = ΛS = diag(|λi|, i = 1, . . . , k), we obtain

the SVD P = UΣV T . In other words, all the discussion in this section, and in particular

Lemma 2 hold with V = US and σi = |λi|. The special case of Lemmas 1 and 2 for the

symmetric case appears in [LR15]. These observations combined with the fact that the

concentration inequality discussed in Section 5.3.3 holds in the symmetric case leads to the

following conclusion: All the results discussed in this paper apply to the symmetric SBM,

for the version of the adjacency-based spectral clustering that sorts the eigenvalues based

on their absolute values. This is the most common version of spectral algorithms in use.

On the other hand, one gets a different behavior for the algorithm that considers the top

k (signed) eigenvalues. It is also worth noting that we have borrowed the term “symmetric

dilation” from [Tro15] where these ideas have been successfully used in translating matrix

concentration inequalities to the symmetric case.

5.3.3 Concentration

Next we provide the details of Step 1, namely, the concentration of the regularized adjacency

matrix. We will use the non-symmetric version of [LLV17, Theorem 1]. We have the following

slight generalization to the rectangular case:
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Theorem 3. Assume n1 ≤ n2 and let A ∈ {0, 1}n1×n2 have independent Bernoulli entries

with mean E[Aij] = pij. Take d ≥ maxij n2 pij. Let Are be obtained from A by an arbitrary

reduction of entries, but so that the row sums of A are bounded by 2d. Then, with probability

at least 1− n−c1,

‖Are − EA‖ ≤ c2

√
d. (5.14)

The regularization described in Theorem 3 could be achieved, for example, by setting the

entries in any row of A for which the row sum is > 2d to zero. More generally, let

Id :=
{
i :

n2∑

j=1

Aij > 2d
}

=
{
i : ‖Ai∗‖1 > 2d

}

where Ai∗ ∈ Rn2 is the ith row of A. Choose vi ∈ Rn2
+ , i ∈ I to be any collection of vectors

such that ‖vi‖1 ≤ 2d for all i ∈ I. Then, letting (Are)i∗ = Ai∗ for all i /∈ Id and (Are)i∗ = vi

for i ∈ I satisfies the regularization described in Theorem 3.

Theorem 3 follows directly from [LLV17, Theorem 1], by noting that we can pad A with

rows of zero to get a square n2 × n2 matrix to which the result of [LLV17] is applicable.

Recalling the scaling of the connectivity matrix in (5.4), and applying Theorem 3 with

d = a ≥
√
n2/n1‖Ψ‖∞ = n2‖P‖∞, we obtain the desired concentration bound (5.9) for the

regularization described in Theorem 3.

Remark 8. Results of the form described in (3) hold for A itself without any regularization

if one further assumes that d & log n2; see for example [TM10; LR15; CX16] or [BVH+16]

for the more general result with d = maxi
∑

j pij. The general regularization for the ad-

jacency matrix is to either remove the high degree nodes as in [CRV15] or reduce their

effect as in [LLV17] and Theorem 3 above. The regularization for the normalized Laplacian

is somewhat different since there the low degree nodes are problematic. The general ap-

proach is to either inflate all the edges by a small amount before forming the Laplacian as

is done in [ACBL+13] and analyzed in [LLV17] (see also [JY13]), or to directly inflate just

the degrees as in [CCT12]. Since similar concentration bounds hold, at least for the former

approach based on the work of [LLV17], much of the results of this paper also apply to the

Laplacian based spectral clustering. The details have been omitted for brevity.
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5.3.4 k-means step

Let us now give the details of the third and final step of the analysis. We introduce some

notations and concepts that help in the discussion of k-means (type) algorithms.

k-means matrices. Recall that Hn×k denotes the set of hard (cluster) labels: {0, 1}-valued

n×k matrices where each row has exactly a single 1. Take Z ∈ Hn×k. A related notion is that

of a cluster matrix Y = ZZT ∈ {0, 1}n where each entry denotes whether the corresponding

pair are in the same cluster. Relative to Z, Y loses the information about the ordering of

the cluster labels. We define the class of k-means matrices as follows:

Mk
n, d := {X ∈ Rn×d : X has at most k distinct rows}

= {ZR : Z ∈ Hn×k : R ∈ Rk×d}.
(5.15)

The rows of R, which we denote as rTi , play the role of cluster centers. Let us also denote the

rows of X as xTi . The second equality in (5.15) is due to the following correspondence: Any

matrix X ∈ Mk
n, d uniquely identifies a cluster matrix Y ∈ {0, 1}n×n via, Yij = 1 iff xi = xj.

This in turn “uniquely” identifies a label matrix Z up to k! permutation of the labels. From

Z, we “uniquely” recover R, with the convention of setting rows of R for which there is no

label equal to zero. (This could happen if X has fewer than k distinct rows.)

With these conventions, there is a one-to-one correspondence between X ∈ Mk
n, d and

(Z,R) ∈ Hn×k×Rk×d, up to label permutations. That is, (Z,R) and (ZQ,QR) are considered

equivalent for any permutation matrix Q. The correspondence allows us to talk about

a (relative) misclassification rate between two k-means matrices: If X1, X2 ∈ Mk
n, d with

membership matrices Z1, Z2 ∈ Hn×k, respectively, we set

Mis(X1, X2) := Mis(Z1, Z2). (5.16)

k-means as projection. Now consider a general X̂ ∈ Rn×d. The classical k-means prob-

lem can be thought of as projecting X̂ onto Mk
n, d, in the sense of finding a nearest member of

Mk
n, d to X̂ in Frobenius norm. Let us write dF (·, ·) for the distance induced by the Frobenius

norm, i.e., dF (X̂,X) = ‖X̂ − X‖F . The k-means problem is that of solving the following
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optimization:

dF (X̂,Mk
n, d) := min

X ∈Mk
n, d

dF (X̂,X). (5.17)

The arguments to follow go through for any distance on matrices that has a `2 decomposition

over the rows:

dF (X̂,X)2 =
n∑

i=1

d(x̂i, xi)
2, (5.18)

where xTi and x̂Ti are the rows of X and X̂ respectively, and d(x̂i, xi) is some distance over

vectors in Rd. For the case of the Frobenius norm: d(x̂i, xi) = ‖x̂−xi‖2, the usual `2 distance.

This is the primary case we are interested in, though the result should be understood for the

general case of (5.18). Since solving the k-means problem (5.17) is NP-hard, one can look

for approximate solutions:

Definition 1. A κ-approximate k-means solution for X̂ is a matrix X̃ ∈Mk
n, d that achieves

κ times the optimal distance:

dF (X̂, X̃) ≤ κ dF (X̂,Mk
n, d). (5.19)

We write Pκ : Rn×d 7→ Mk
n, d for the (set-valued) function that maps matrices X̂ to κ-

approximate solutions X̃.

An equivalent restatement of (5.19) is

dF (X̂, X̃) ≤ κ dF (X̂,X), ∀X ∈Mk
n, d. (5.20)

Note that Pκ(X̂) = {X̃ ∈Mk
n, d : X̃ satisfies (5.20)}.

Our goal is to show that whenever X̂ is close to some X∗ ∈Mk
n, d, then any κ-approximate

k-means solution based on it, namely X̃ ∈ Pκ(X̂) will be close to X∗ as well. This is done

in two steps:

1. If the distance dF (X, X̃) between two k-means matrices X, X̃ ∈ Mk
n, d is small, then

their relative misclassification rate Mis(X, X̃) is so.
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2. If a general matrix X̂ ∈ Rn×d is close to a k-means matrix X ∈ Mk
n, d, then so is its

κ-approximate k-means projection. More specifically,

dF (X̃,X) ≤ (1 + κ) dF (X̂,X), ∀X̃ ∈ Pκ(X̂). (5.21)

This immediately follows from the triangle inequality dF (X̃,X) ≤ dF (X̃, X̂)+dF (X̂,X)

and (5.20). We will write (5.21) compactly as

dF (Pκ(X̂), X) ≤ (1 + κ) dF (X̂,X) (5.22)

interpreting dF (Pκ(X̂), X) as maxX̃∈Pκ(X̂) dF (X̃,X).

Combining the two steps (taking X = X∗), we will have the result.

Let us now give the details of the first step above. For this result, we need the key

notion of center separation. k-means matrices have more information that just a membership

assignment. They also contain an encoding of the relative positions of the clusters, and hence

the minimal pairwise distance between them, which is key in establishing a misclassification

rate.

Definition 2 (Center separation). For any X ∈Mk
n, d, let us denote its centers, i.e. distinct

rows, as {qr(X), r ∈ [k]}, and let

δr(X) = min
`: ` 6=r

d(q`(X), qr(X)), δ∧(X) = min
r
δr(X). (5.23)

In addition, let nr(X) be the number of nodes in cluster r according to X, and n∧(X) =

minr nr(X), the minimum cluster size.

If X has m < k, the convention would be to let qk(X) = 0 for k = m + 1, . . . , k. We

usually do not work with these degenerate cases. Implicit in the above definition is an

enumeration of the clusters of X. We note that definition of δr = δr(X) in (5.23) implies

d(q`(X), qr(X)) ≥ max{δ`, δr}, ∀(r, `) : r 6= `. (5.24)

We recall that Misr(X; X̃) is the misclassification rate over the rth cluster of X (Sec-
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tion 5.1).

Proposition 2. Let X, X̃ ∈ Mk
n, d be two k-means matrices, and write nr = nr(X), n∧ =

n∧(X) and δr = δr(X). Assume that dF (X, X̃) ≤ ε and

(a) X has exactly k nonempty clusters, and

(b) c−2
r ε2/(δ2

rnr) < 1 for r ∈ [k], and constants cr > 0 such that cr + c` ≤ 1, r 6= `.

Then, X̃ has exactly k clusters and

Misr(X; X̃) ≤ c−2
r ε2

nr δ2
r

, ∀r ∈ [k]. (5.25)

In particular, under the conditions of Proposition 2 with cr = 1/2, we have

Mis∞(X, X̃) ≤ 4 ε2

minr nrδ2
r

≤ 4 ε2

n∧δ2
∧
, Mis(X, X̃) ≤ 4 ε2

nδ2
∧
.

where the second one follows from the identity Mis(X, X̃) =
∑k

r=1(nr/n) Misr(X, X̃). The

proof follows the argument in [LR15, Lemma 5.3] which is further attributed to [Jin15].

Combining Proposition 2 with (5.21), we obtain the following corollary:

Corollary 2. Let X∗ ∈ Mk
n, d be a k-means matrix, and write nr = nr(X

∗), n∧ = n∧(X∗)

and δr = δr(X
∗). Assume that X̂ ∈ Rn×d is such that dF (X∗, X̂) ≤ ε and

(a) X∗ has exactly k nonempty clusters, and

(b) c−2
r (1 +κ)2ε2/(δ2

rnr) < 1 for r ∈ [k], and constants cr > 0 such that cr + c` ≤ 1, r 6= `.

Then, any X̃ ∈ Pκ(X̂) has exactly k clusters and

Misr(X
∗;Pκ(X̂)) ≤ c−2

r (1 + κ)2ε2

nr δ2
r

, ∀r ∈ [k]. (5.26)

As before, Misr(X
∗,Pκ(X̂)) should be interpreted as maxX̃∈Pκ(X̂) Misr(X

∗, X̃), that is,

the result hold for any κ-approximate kmeans solution for X̂. In particular, under the
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conditions of Corollary 2 with cr = 1/2, we have

Mis∞(X∗,Pκ(X̂)) ≤ 4(1 + κ)2 ε2

minr nrδ2
r

≤ 4 (1 + κ)2ε2

n∧δ2
∧

, (5.27)

Mis(X∗,Pκ(X̂)) ≤ 4 (1 + κ)2ε2

nδ2
∧

. (5.28)

Proof of Corollary 2. Using (5.21), we have dF (X∗, X̃) ≤ (1 + κ)ε for any X̃ ∈ Pκ(X̂). We

now apply Proposition 2 to X∗ and X̃, both k-means matrices, with (1 + κ)ε in place of

ε.

Proof of Proposition 2. Let Cr denote the rth cluster of X, having center qr = qr(X). We

have |Cr| = nr. Let xTi and x̃Ti be the ith row of X and X̃, respectively, and let

Tr := {i ∈ Cr : d(x̃i, qr) < crδr} = {i ∈ Cr : d(x̃i, xi) < crδr}

using xi = qr for all i ∈ Cr which holds by definition. Let Sr = Cr \ Tr. Then,

|Sr|c2
rδ

2
r ≤

∑

i∈Sr
d(x̃i, xi)

2 ≤ ε2 =⇒ |Sr|
|Cr|
≤ c−2

r ε2

nrδ2
r

< 1. (5.29)

where we have used assumption (b). It follows that Sr is a proper subset of Cr, that is, Tr is

nonempty for all r ∈ [k].

Next, we argue that if two elements belong to different Tr, r ∈ [k], they have different

labels according to X̃. That is, i ∈ Tr, j ∈ T` for r 6= ` implies x̃i 6= x̃j. Assume otherwise,

that is, x̃i = x̃j. Then, by triangle inequality and cr + c` ≤ 1,

d(qk, q`) ≤ d(qk, x̃i) + d(q`, x̃j) < crδr + c`δ` ≤ max{δr, δ`}

contradicting (5.24). This shows that X̃ has at least k labels, since all Tr are nonempty,

hence exactly k labels, since X̃ ∈Mk
n, d by assumption.

Finally, we argue that if two elements belong to the same Tr, they have the same label

according to X̃. This immediately follows from the previous step since otherwise there will

be at least k + 1 labels. Thus, we have shown that, for all r ∈ [k], the labels in each Tr are

in the same cluster according to both X and X̃, that is, they are correctly classified. The
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Algorithm 3 SC-1

1: Apply degree-reduction regularization of Theorem 3 to A to obtain Are.

2: Obtain the k-truncated SVD of Are as A
(k)
re = Ẑ1Σ̂ẐT

2 . See (5.13).

3: Obtain a κ-approximate kmeans solution for input Ẑ1, that is, Pκ(Ẑ1).

misclassification rate over cluster Cr is then ≤ |Sr|/|Cr| which establishes the result in view

of (5.29).

5.4 Consistency results

We now state our various consistency results. We start with a refinement of Theorem 2 for

the specific algorithm SC-1 given in Algorithm 3.

Theorem 4. Consider the spectral algorithm SC-1 given in Algorithm 3. Assume k1 = k =:

min{k1, k2}, and for a sufficiently small C > 0,

ka σ−2
k ≤ C(1 + κ)−2.

Then, under the SBM model of Section 5.2, w.h.p.,

Mis(Pκ(Ẑ1), Z̄1) . (1 + κ)2β1

( a
σ2
k

)
.

where β1 is given in (A1) and a is defined in (5.9).

Proof. Going through the three-step plan of analysis in Section 5.3, we observe that (5.9)

holds for Are by Theorem 3, and (5.10) holds by Lemma 2. We only need to verify conditions

of Corollary 2, so that κ-approximate kmeans operator Pκ satisfies bound (5.11) of the

kmeans step. As in the proof of Theorem 2, X∗ = Z̄1O ∈ Rn1×k, where Z̄1 ∈ On1×k1 and

O := UψQ ∈ Ok1×k. Clearly, X∗ has exactly k distinct rows (recalling k = k1). Furthermore,

using the calculation in the proof of Theorem 2,

n1t δ
2
t = n1t min

s: s 6=t
(n−1

1t + n−1
1s ) = min

s: s 6=t
(1 +

n1t

n1s

) ≥ 1.
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Algorithm 4 SC-RR

1: Apply degree-reduction regularization of Theorem 3 to A to obtain Are.

2: Obtain the best rank k approximation of Are, that is, A
(k)
re = Tk(Are). See (5.13).

3: Output ∈ Pκ(A(k)
re ), i.e., a κ-approximate kmeans solution for input A

(k)
re .

Recalling that ε2 = C2
2ka/σ

2
k, as long as

4(1 + κ)2ε2 = 4C2
2(1 + κ)2 ka/σ2

k < 1 ≤ n1t δ
2
t

condition (b) of Corollary 2 holds and Pκ satisfies (5.11) with c = 4(1 + κ)2 as in (5.27).

The rest of the proof follows as in Theorem 2.

One can take κ to be a fixed small constant say 1.5, since there are κ-approximate kmeans

algorithms for any κ > 1. In that case, (1 + κ)2 can be absorbed into other constants, and

the bound in Theorem 4 is qualitatively similar to Theorem 2.

Reduced-rank SC. We now consider a variant of SC suggested in [YP14; GLMZ16],

where one uses the entire rank k approximation of Are, and not just the singular vector

matrix Ẑ1, as the input to the k-means step. The approach, which we call reduced-rank SC,

or SC-RR, is detailed in Algorithm 4. Recall the SV truncation operator Tk given in (5.13).

It is well-known that Tk maps every matrix to its best rank-k approximation in Frobenius

norm, i.e.,

Tk(Are) = min
{
‖R− Are‖F : rank(R) ≤ k

}

with the approximation error satisfying

‖Tk(Are)− Are‖ = σk+1(Are). (5.30)

SC-RR uses this best rank-k approximation as a denoised version of Are and runs a k-

means algorithm on its rows. To analyze SC-RR, we need to replace bound (5.10) in Step 2

with an appropriate modification. The following lemma replaces Lemma 2 and provides the

necessary bound in this case.
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Lemma 3. Let A
(k)
re = Tk(Are) be the k-truncated SVD of Are and assume that the concen-

tration bound (5.9) holds. Then,

‖A(k)
re − P‖F ≤ C

√
8 ka. (5.31)

Proof. Throughout the proof, let ‖ · ‖ = ‖ · ‖ be the operator norm. Recall that P = EA is

the mean matrix itself, and let ∆re := Are − P . By Weyl’s theorem on the perturbation of

singular values, |σi(Are) − σi(P )| ≤ ‖∆re‖ for all i. Since σk+1(P ) = 0 (see (5.8)), we have

σk+1(Are) ≤ ‖∆re‖, hence

‖A(k)
re − P‖ ≤ ‖A(k)

re − Are‖+ ‖∆re‖ (triangle inequality)

= σk+1(Are) + ‖∆re‖ (by (5.30))

≤ 2‖∆re‖ (Weyl’s theorem).

Thus, in terms of the operator norm, we lose at most a constant in going from Are to A
(k)
re .

However, we gain a lot in Frobenious norm deviation. Since Are is full-rank in general,

the best bound on ∆re based on its operator norm is ‖∆re‖F ≤
√
n∧ ‖∆re‖ where n∧ =

min{n1, n2}. On the other hand, since A
(k)
re − P is of rank ≤ 2k, we get

‖A(k)
re − P‖F ≤

√
2k‖A(k)

re − P‖ ≤ 2
√

2k‖∆re‖.

Combining with (5.9), that is, ‖∆re‖ ≤ C
√
a, we have the result.

Comparing with (5.10), we observe that (5.31) provides an improvement by removing

the dependence on the singular value gap σk. However, we note that in terms of the relative

error, i.e., ‖A(k)
re −P‖F/‖P‖F this may or may not be an improvement. There are cases where

‖P‖F ≈
√
kσk, in which case the relative error predicted by (5.31) is O(

√
a/σk), similar to

the relative error based on (5.10); see Example 3 below.

Following through the three-step analysis of Section 5.3.1, with (5.10) replaced with (5.31),

we obtain a qualitatively different bound on the misclassification error of Algorithm 4. The

key is that center separation of P treated as a k-means matrix is different from that of

Z̄1UψQ. Note that P is indeed a valid k-means matrix according to Definition (5.15); in
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fact, P ∈Mk1
n1, n2

. Similarly, P T ∈Mk2
n2, n1

. Let us define

Ψ2
1,∧ := min

(s,t): s 6=t

k2∑

`=1

π2`(Ψs` −Ψt`)
2, (5.32)

Ψ̃2
1,∧ := min

(s,t): s 6=t

[
π1t

k2∑

`=1

π2`(Ψs` −Ψt`)
2
]
. (5.33)

Theorem 5. Consider the spectral algorithm SC-RR given in Algorithm 4. Assume that

for a sufficiently small C1 > 0,

ka Ψ̃−2
1,∧ ≤ C1(1 + κ)−2. (5.34)

Then, under the SBM model of Section 5.2, w.h.p.,

Mis(Pκ(A(k)
re ), P ) ≤ C−1

1 (1 + κ)2
( ka

Ψ2
1,∧

)
.

where a is defined in (5.9).

Proof. We only need to calculate δ(P ) = δ∧(P ) the minimum center separation of P viewed

as an element of Mk1
n1, n2

. Recall that

P = Z̄1B̄Z̄
T
2 = Z1N

−1/2
1 (N̄

1/2
1 ΨN̄

1/2
1 )Z̄T

2 = n
−1/2
1 Z1ΨN̄

1/2
1 Z̄T

2 .

Let es be the sth standard basis vector of Rk1 . Unique rows of P are qTs := n
−1/2
1 eTs (ΨN̄

1/2
2 )Z̄T

2

for s ∈ [k1]. We have

‖qs − qt‖2
2 = n−1

1 ‖Z̄2N̄
1/2
2 ΨT (es − et)‖2

2

= n−1
1 ‖N̄1/2

2 ΨT (es − et)‖2
2 = n−1

1

k2∑

`=1

π2`(Ψs` −Ψt`)
2.

It follows that δ2(P ) = mint6=s ‖qs − qt‖2
2 = n−1

1 Ψ2
1,∧. We apply Corollary 2, with X∗ = P

and X̂ = A
(k)
re , taking ε2 = 8C2ka according to Lemma 3. Condition (b) of the corollary
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holds if

32C2(1 + κ)2ka = 4(1 + κ)2ε2 < n1t δ
2
t (P ) = π1t min

s: s 6=t

k2∑

`=1

π2`(Ψs` −Ψt`)
2

for all t ∈ [k1], which is satisfied under assumption (5.34). Corollary 2, and specifically (5.27)

gives the desired bound on misclassification rate ≤ 4(1 + κ)2ε2/(n1δ
2(P )).

As is clear from the proof, one can take C1 = 1/(32C2) where C is the constant in

concentration bound (5.9). Condition (5.34) can be replaced with the stronger assumption

ka (π1,∧Ψ
2
1,∧)

−1 ≤ C1(1 + κ)−2 (5.35)

where π1,∧ := mint∈ [k1] π1t, since Ψ̃2
1,∧ ≥ π1,∧Ψ2

1,∧.

Although the bounds of Theorems 4 and 5 are different, surprisingly, in the case of the

planted partition model, they give the same result as the next example shows.

Example 3 (Planted partition model, symmetric case). Let us consider the simplest sym-

metric SBM, the symmetric balanced planted partition (SBPP) model, and consider the

consequences of Theorems 4 and 5 in this case. Recall that in the symmetric case we drop

index r from kr, nr, nrj, N̄r, βr, Ψr,∧ and so on. SBPP is characterized by the following

assumptions:

Ψ = bEk + (a− b)Ik, a ≥ b, πj = nj/n =
1

k
, ∀j ∈ [k].

Here, Ek ∈ Rk×k is the all ones matrix and balanced refers to all the communities being of

equal size, leading to cluster proportions πj = 1/k. In particular, β = 1, as defined in (A1).

We have B̄ = N̄1/2ΨN̄1/2 = Ψ/k, recalling N̄ = diag(πj). Hence, the smallest singular value

of B̄ is σk = (a− b)/k. Theorem 4 gives the following result:

Corollary 3. Under the SBPP model, as long as k3a/(a − b)2 is sufficiently small, SC-1

has average misclassification error of O(k2a/(a− b)2) with high probability.

Now consider SC-RR. Using definitions (5.32), we have kΨ̃2
∧ = Ψ2

∧ = 2(a− b)2/k. Then,

Theorem 5 gives the exact same result for SC-RR:
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Figure 5.1: An example of the performance boost of SC-RR (or SC-RRE) relative to SC-1. The
data is generated from the bipartite version of Example 4 with n2 = 2n1 = 1000, k1 = k2 = 4,
πr` = nr/kr for all ` ∈ [kr], r = 1, 2, and Ψ = 2bE4 + diag(16, 16, 16, 2) similar to (5.36). The key is
the significant difference in the two smallest diagonal elements of Ψ. The plot shows the normalized
mutual information (a measure of cluster quality) between the output of the two spectral clustering
algorithms and the true clusters, as b varies. Only row clusters are considered. The plot shows
a significant improvement for SC-RR(E) relative to SC-1 over a range of b. As b increases, the
relative difference between Ψ33 and Ψ44 reduces and the model approaches that of Example 3,
leading to similar performances for both algorithms as expected. It is interesting to note that the
monotone nature of the performance of SC-RR(E) as a function of b and the non-monotone nature
of that of SC-1 is reflected in the upper bounds (5.37) and (5.38).

Corollary 4. Corollary one holds with SC-1 replaced with SC-RR.

Results of Corollary 3 and 4 are consistency results as long as k2a/(a − b)2 = o(1). A

typical example is when k = O(1), a = a0fn, b = b0fn, a0 � 1 and b0 � 1 for some fn →∞
as n→∞. Then, SC-1 and SC-RR are both consistent at a rate O(f−1

n ).

Let us now give an example where SC-1 and SC-RR behave differently.

Example 4. Consider the symmetric balanced SBM, with

Ψ = bEk + diag(α1, . . . , αk), πj = nj/n =
1

k
, ∀j ∈ [k]. (5.36)

As in Example 3, we have dropped the index r determining the side of network in the

bipartite case. Let us assume that α1 ≥ α2 ≥ · · · ≥ αk ≥ 0. We have

kΨ̃2
∧ = Ψ2

∧ = k−1 min
s6=t

∑

`

(Ψs` −Ψt`)
2 = k−1(α2

k−1 + α2
k).
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Thus, Theorem 5 gives the following: With ρ defined as follows:

ρ := k2 α1 + b

α2
k−1 + α2

k

, (5.37)

as long as kρ is sufficiently small, SC-RR has average misclassification error O(ρ) with high

probability.

To determine the performance of SC-1, we need to estimate σk, the smallest singular

value of B̄ = N̄1/2ΨN̄1/2 = Ψ/k. Since Ψ is obtained by a rank-one perturbation of a

diagonal matrix, it is well-known that when {αt} are distinct, the eigenvalues of Ψ are

obtained by solving
∑k

t=1 1/(αt − λ) = −1/b; the case where some of the {αt} are repeated

can be reasoned by the taking the limit of the general case. By plotting λ 7→∑k
t=1 1/(αt−λ)

and looking at the intersection with λ 7→ −1/b, one can see that the smallest eigenvalue of

Ψ, equivalently its smallest singular value, is in [αk, αk−1], and can be made arbitrarily close

to αk by letting b → 0. Letting αk + εk(α; b) denote this smallest singular value, we have

0 ≤ εk(α; b)→ 0 as b→ 0.

It follows that σk = σk(B̄) = k−1(αk + εk(α; b)). Theorem 4 gives the following: With ρ

defined as

ρ := k2 α1 + b

(αk + εk(α; b))2
, (5.38)

as long as kρ is sufficiently small, SC-1 has average misclassification error O(ρ) with high

probability.

Comparing (5.38) with (5.37), the ratio of the two bounds is (α2
k−1+α2

k)/(αk+εk(α; b))2 →
1+(αk−1/αk)

2 as b→ 0. This ratio could be arbitrarily large depending on the relative sizes of

αk and αk−1. Thus, when the bounds give an accurate estimate of the misclassification rates

of SC-1 and SC-RR, we observe that SC-RR has a clear advantage. This is empirically

verified in Figure 5.1, for moderately dense cases. (In the very sparse case, the difference is

not very much empirically.) In general, we expect SC-RR to perform better when there is

a large gap between σk and σk−1, the two smallest nonzero singular values of B̄.
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Algorithm 5 SC-RRE

1: Apply degree-reduction regularization of Theorem 3 to A to obtain Are.

2: Obtain A
(k)
re = Ẑ1Σ̂ẐT

2 , the k-truncated SVD of Are.

3: Output K (Ẑ1Σ̂) where K is an isometry-invariant κ-approximate kmeans algorithm.

Efficient reduced-rank SC. The SC-RR algorithm discussed above has the disadvantage

of running a k-means algorithm on vectors in Rn (the rows of A
(k)
re , or in the ideal case the

rows of P ). We now introduce a variant of this algorithm that has the same performance

as SC-RR in terms of misclassification rate, while computationally is as efficient as SC-1.

This approach which we call efficient reduced-rank spectral clustering, SC-RRE, is detailed

in Algorithm 5. The efficiency comes from running the k-means step on vectors in Rk which

is usually a much smaller space than Rn (k � n in applications).

For the k-means step in SC-RRE, we need a k-means (type) algorithm K that only uses

the pairwise distances between the data points. We call such k-means algorithms isometry-

invariant :

Definition 3. A k-means (type) algorithm K is isometry-invariant if for any two matrices

X(r) ∈ Rn×dr , r = 1, 2, with the same pairwise distances among points—i.e., d(x
(1)
i , x

(1)
j ) =

d(x
(2)
i , x

(2)
j ) for all distinct i, j ∈ [n], where (x

(r)
i )T is the ith row of X(r)—one has

Mis(K (X(1)),K (X(2))) = 0.

Although the rows of K (X(1)) and K (X(2)) lie in spaces of possibly different dimensions,

it still makes sense to talk about their relative misclassification rate, since this quantity

only depends on the membership information of the k-means matrices and not their center

information. We have implicitly assumed that d(·, ·) defines a family of distances over all

Euclidean spaces Rd, d = 1, 2, . . . . This is obviously true for the common choice d(x, y) =

‖x − y‖2. If algorithm K is randomized, we assume that the same source of randomness

is used (e.g., the same random initialization) when applying to either of the two cases X(1)

and X(2).

The following result guarantees that SC-RRE behaves the same as SC-RR when one

uses an isometry-invariant approximate k-means algorithm in the final step.
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Theorem 6. Consider the spectral algorithm SC-RRE given in Algorithm 5. Assume that

for a sufficiently small C1 > 0, (5.34) holds. Then, under the SBM model of Section 5.2,

w.h.p.,

Mis(K (Ẑ1Σ̂), P ) ≤ C−1
1 (1 + κ)2

( ka

Ψ2
1,∧

)
.

Proof. Recall that A
(k)
re = Ẑ1Σ̂ẐT

2 is the k-truncated SVD of Are. Let X(1) = Ẑ1Σ̂ and

X(2) = A
(k)
re , and let (x

(1)
i )T and (x

(2)
i )T be their ith rows, respectively. Then,

‖x(i)
2 − x(j)

2 ‖ = ‖Ẑ2(x
(i)
1 − x(j)

1 )‖2 = ‖x(i)
1 − x(j)

1 ‖2, ∀i 6= j,

using Ẑ2 ∈ On2×k and (5.1). Isometry-invariance of K implies Mis(K (Ẑ1Σ̂),K (A
(k)
re )) = 0.

Since Mis is a pseudo-metric on k-means matrices, using the triangle inequality, we get

Mis
(
K (Ẑ1Σ̂), P

)
≤ Mis

(
K (Ẑ1Σ̂),K (A(k)

re )
)

+ Mis
(
K (A(k)

re ), P
)

= Mis
(
K (A(k)

re ), P
)
.

(In fact, using the triangle inequality in the other direction, we conclude that the two sides

are equal.) The result now follows from Theorem 5.

5.4.1 Results in terms of mean parameters

One useful aspect of SC-RR(E) is that one can state its corresponding consistency result in

terms of the mean parameters of the block model. Such results are useful when comparing

to the optimal rates achievable in recovering the clusters. The row mean parameters of the

SBM in Section 5.2 are defined as Λs` := Bs` n2` for (s, `) ∈ [k1]× [k2] which we collect in a

matrix Λ = (Λs`) ∈ Rk1×k2 . To get an intuition for Λ note that

E[AZ2] = PZ2 = Z1BN2 = Z1Λ.

Each row of AZ2 is obtained by summing the corresponding row of A over each of the

column clusters to get a k2 vector. In other words, the rows of AZ2 are the sufficient

statistics for estimating the row clusters, had we known the true column clusters. Note that

52



E[(AZ2)i∗] = zT1iΛ, where the notation (·)i∗ denotes the ith row of a matrix. In other words,

we have E[(AZ2)i∗] = Λs∗ if node i belongs to row cluster s. Let us define the minimum

separation among these row mean parameters:

Λ2
∧ := min

t6=s
‖Λs∗ − Λt∗‖2. (5.39)

We have the following corollary of Theorem 5 which is proved in Appendix A.8.

Corollary 5. Assume that πr,∧ := mint πrt ≥ (βrkr)
−1 for r = 1, 2, and let k = min{k1, k2}

and α = n2/n1. Consider the spectral algorithm SC-RR given in Algorithm 4. Assume that

for a sufficiently small C1 > 0,

β1β2 k k1k2 α
‖Λ‖∞

Λ2
∧
≤ C1(1 + κ)−2. (5.40)

Then, under the SBM model of Section 5.2, w.h.p.,

Mis(Pκ(A(k)
re ), P ) ≤ C−1

1 (1 + κ)2β2 k k2 α
‖Λ‖∞

Λ2
∧
.

We note that the exact same result as Corollary 5 holds for SC-RRE assuming the

k-means step uses an isometry invariant algorithm as discussed in Section 5.4.
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CHAPTER 6

Provable version

When analyzing Algorithm 2, we need the initial labels to be independent of the adjacency

matrix. Hence, we cannot apply the initialization method (e.g., the spectral clustering) and

the likelihood ratio classifier (Algorithm 2) on the same adjacency matrix A, iteratively. In

this section, we introduce an algorithm, namely Algorithm 3, that partitions A into subblocks

and operates iteratively on collections of these blocks to maintain the desired independence.

For this version of the pseudo-likelihood algorithm, our main result, Theorem 1, holds.

Let us assume that n and m are divisible by 2Q = 8. This assumption is not necessary

but helps simplify the notations. Let us write

ŷ = rowSC(A), ẑ = colSC(A)

to denote labels obtained by applying the spectral clustering, respectively, on rows and

columns of the adjacency matrix A, the details of which are discussed in Chapter 5 below.

We have colSC(A) = rowSC(AT ). We also recall the LR classifier defined in (4.14). For

matrices (or vectors) A and B, we use [A;B] to denote column concatenation and [A B] to

denote row concatenation.

The general idea behind the partitioning scheme used in Algorithm 3, which is done by

sequential sampling without replacement, is to ensure that in each step where the LR classifier

is applied, the initial labels used are independent of the subblock of the adjacency matrix

under consideration. We do not require, however, that the initial labels be independent of

the estimates of the mean parameters Λ̂, since—as will be seen in Chapter 7.1—we have

uniform consistency of the LR classifier over all Λ̂ close to the truth. For example, in step 7,

that is, in the assignment ỹ(q) ← LR(A(q,q+2), Λ̂(q+2), z̃(q+2)), the claim is that z̃(q+2)—at that

stage in the algorithm—is independent of A(q,q+2) but not necessarily of Λ̂(q+2). This will
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Algorithm 3 Provable version

1: Randomly partition the rows into 2 groups of equal size (n/2), so that

A = [Atop ; Abottom]

2: Randomly partition the rows and columns of Atop into 4 groups of equal size, so that we

have 16 sub-adjacency matrix with dimension (n/8)× (m/4), i.e.

Abottom =




A(1,1) A(1,2) A(1,3) A(1,4)

A(2,1) A(2,2) A(2,3) A(2,4)

A(3,1) A(3,2) A(3,3) A(3,4)

A(4,1) A(4,2) A(4,3) A(4,4)



.

In each of the following steps, perform the stated operation for every q ∈ Z4:

3: Obtain initial row labels: [ỹ(q−1) ; ỹ′(q)]← rowSC
(
[A(q−1,q) ; A(q,q)]

)
, ∀q.

4: Obtain initial column labels: [z̃(q) z̃′(q+1)]← colSC([A(q,q) A(q,q+1)]), ∀q.
5: Get consistent (global) labels: ỹ ←Match(ỹ, ỹ′) and z̃ ←Match(z̃, z̃′).

6: Update (local) row mean parameters: Λ̂(q+2) ← L (A(q,q+2), ỹ(q), z̃(q+2)), ∀q.
7: Update row labels: ỹ(q) ← LR(A(q,q+2), Λ̂(q+2), z̃(q+2)), ∀q.
8: Similarly update column labels z̃ as in steps 6 and 7.

9: Update (local) row mean parameters: Λ̂(q+3) ← L (A(q,q+3), ỹ(q), z̃(q+3)), ∀q.
10: Obtain (global) row mean parameters: Λ̂←∑

q Λ̂(q).

11: ŷtop ← LR(Atop, Λ̂, z̃).

12: Swap Atop and Abottom, then repeat steps 2–9 to obtain ŷbottom.

13: ŷ ← [ŷtop ; ŷbottom].

14: Apply step 1 to 10 on AT to obtain ẑ.

become clear in the following discussion where we keep track of the dependence of various

estimates through the algorithm. Note that in the description of Algorithm 3, we are using

the computer coding convention for in-place assignments, e.g., z̃q gets updated in place and

refers to different objects at different points in the algorithm.

Figure 6.1 illustrates the partitions used in steps 2–9 of the algorithm. The collection of

the submatrices in the partition is given a name in each case. For example, Gcol
1 consists of

the four submatrices in Figure 6.1(a). Note that {Gcol
1 , G2, G3} form a complete partition of

the matrix into disjoint blocks. Also, Gcol
1 and Grow

1 involve the same elements of the matrix,
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A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







(a) Gcol
1 (Step 3) (b) Grow

1 (Step 4) (c) G2 (Steps 6, 7) (d) G3 (Step 9)

Figure 6.1: The four stages of partitioning in Algorithm 3. In each case, the collection of submatrices
in the partition is given a name which is used in the text. We have used the shorthand Aqq′ = A(q,q′)

for simplicity. Block used in obtaining initial labels (a–b), in obtaining the first local parameter
estimates (c), and in the first application of LR classifier (d).

i.e. they cover the same portion of A. Thus, {Grow
1 , G2, G3} is also a complete cover of A

with disjoint blocks. Let us write G1 for the common portion of A covered by Gcol
1 and Grow

1 .

Steps 3 and 4 operate on blocks in Gcol
1 and Grow

1 respectively, producing initial row and

column labels. For example, in step 3, we apply row SC on each submatrix specified in

Figure 6.1(a) and obtain the label vectors (from the leftmost submatrix to the rightmost

one):

[ỹ′(1) ; ỹ(4)], [ỹ(1) ; ỹ′(2)], [ỹ(2) ; ỹ′(3)], [ỹ(3) ; ỹ′(4)]. (6.1)

As a result of these steps, we obtain two sets of row labels ỹ = (ỹ(q) : q ∈ Z4) and

ỹ′ = (ỹ′(q) : q ∈ Z4), and similarly for the columns labels. Neither of ỹ or ỹ′ is necessarily a

consistent set of labels for the whole matrix, since the cluster labels for individual pieces y(q)

and ỹ′(q) need not match (e.g., cluster 1 in one piece could be labeled cluster 2 in another

piece.). However, if the subblock labels (6.1) are sufficiently close to the truth, we can use the

overlap among them to find a global set of labels that are consistent with each block of ỹ and

ỹ′. This is what the Match operator in step 5 does, as will be detailed in Chapter 6.1. The

resulting updated global row and column labels only depend on G1 portion of A. Steps 6–13

go through the following phases:

First local parameter estimates (step 6): Having obtained good initial (global) row

and column labels, in Step 6, we obtain estimates of the local mean parameters Λ̂(q+2) for

the submatrices in G2 as in Figure 6.1(c). Note for example, that Λ̂(q+2) computed in

this step depends on blocks A(q,q+2) and on G1 through z̃(q+2). Collectively, the estimates

{Λ̂(q+2) : q ∈ Z4} in Step 6 depend on G1 ∪G2 portion of A.
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First LR classifier (steps 7–8): Using the estimates of the (local) row mean param-

eters, in Step 7, we apply the LR classifier, ỹ(q) ← LR(A(q,q+2), Λ̂(q+2), z̃(q+2)) to each of the

submatrices in G2 (in Figure 6.1(c)). Here, Λ̂(q+2) depends on the same block A(q,q+2) on

which we apply LR classifier, but the dependence is not problematic due the uniform consis-

tency of LR classifier in parameters (Lemma 5). However, we note that z̃(q+2) is a function

of G1 blocks of A, hence independent of A(q,q+2) which is key in our arguments. We will

similarly apply the LR classifier on the columns of G2, and obtain z̃(q). By the end of step 8,

the updated labels ỹ and z̃ will depend on blocks in G1 ∪G2; these labels will be much more

accurate (Mis ≈ exp(−I/Q)) than the initial labels obtained by spectral clustering.

Second parameter estimates (steps 9–10): Using the more accurate labels of step 8,

we obtain the local mean parameters Λ̂(q+3) in step 9 for the submatrices in G3 (Fig-

ure 6.1(d)). This step is similar to step 6, but due to the much more accurate labels,

the parameter estimates are much more accurate as well. Since the global mean parameter

is the sum of local mean parameters, i.e. Λ =
∑

q∈[Q] Λ(q), we use Λ̂ :=
∑

q Λ̂(q) to estimate

Λ in step 10. It is worth recalling that the true local mean parameters, do not depend on

the block row index; see (4.6).

Second LR classifier (step 11): Using the more accurate estimates of (global) row

mean parameters Λ̂ from step 10 and the more accurate labels z̃ in step 8, in step 11

we apply the LR classifier ŷtop ← LR(Atop, Λ̂, z̃) on Atop. We note that Atop in this step

is independent of z̃ (as well as Λ̂). This second LRC application is what brings us from

very accurate labels (Mis ≈ exp(−I/Q)) to almost optimal (Mis ≈ exp(−I)), as argued in

Chapter 8.

Bottom half (steps 12–13): The same process is repeated in step 12, after swapping

the top and bottom halves of A, to get the bottom portion of the row labels. No matching is

required in step 13 when concatenating the top and bottom pieces to form a global set of row

labels ŷ. This is because the LR classifiers produce the same cluster labels; see Chapter 8.

6.1 Matching step

Let us describe the details of the matching step in Algorithm 3. Although, the idea is

intuitively clear, formally describing the procedure is fairly technical. In order to understand
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ỹ (1)

ỹ
′(2)

ỹ (1,2) =

ỹ (2)

ỹ
′(3)

ỹ (2,3) =

y (1)

y (2)

= y (1,2)

y (3)

= y (2,3)

σ1

σ12

σ′
2

σ2

σ23

σ′
3

ỹ
′(2)

ỹ (2)

y (2)

σ∗(ỹ ′(2) → ỹ (2))

σ′2

σ−12

(a) (b)

Figure 6.2: Pictorial depiction of the matching step. (a) Two-block and subblock optimal permuta-
tions to the truth. When ỹ(1,2) ≈ y(1,2), we have σ1 = σ′2 = σ1,2 and similarly ỹ(2,3) ≈ y(2,3) implies
σ2 = σ′3 = σ2,3. (b) Commutative diagram depicting how the missing permutation σ−1

2 ◦ σ′2 can be
obtained by matching observed labels ỹ′(2) and ỹ(2). See Chapter 6.1 for details.

the idea, consider the two-block labels ỹ(q−1,q) := [ỹ(q−1) ; ỹ′(q)], for q = 2, 3, that is,

ỹ(1,2) := [ỹ(1) ; ỹ′(2)], ỹ(2,3) := [ỹ(2) ; ỹ′(3)].

We will detail how these two sets of labels can be fused together to generate a set of consistent

labels for the three-block true label vector y(1,2,3) := [y(1); y(2); y(3)]. The two (overlapping)

two-blocks of the true label vector are also denoted as

y(1,2) := [y(1) ; y(2)], y(2,3) := [y(2) ; y(3)].

More generally, we let y(q−1,q) = [y(q−1) ; y(q)], similar to the notation for estimated blocks.

Recall our notation σ∗(· → ·) for (an) optimal permutation between two sets of labels

(cf. Chapter 5.1). Let us define

σq−1,q := σ∗
(
ỹ(q−1,q) → y(q−1,q)

)
, σq := σ∗(ỹ(q) → y(q)), σ′q := σ∗(ỹ′(q) → y(q)). (6.2)

Thus, for example we have

σ1,2 = σ∗(ỹ(1,2) → y(1,2)), σ2 = σ∗(ỹ(2) → y(2)), σ′3 = σ∗(ỹ′(3) → y(3)),

and so on, as depicted in Figure 6.2(a). In other words, each of these permutations is the
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optimal permutation from the corresponding block of the underlying estimated label to that

of the truth. Let us write ỹ(1,2) ≈ y(1,2) to mean that the two sets of labels are sufficiently

close (to be made precise later).

The first claim is that ỹ(1,2) ≈ y(1,2) implies that the underlying subblocks have the same

optimal permutation to the truth as the original two-block label, i.e.,

ỹ(1,2) ≈ y(1,2) =⇒ σ1 = σ′2 = σ1,2

and similarly ỹ(2,3) ≈ y(2,3) =⇒ σ2 = σ′3 = σ2,3. The second claim is that each subblock

has “almost” the same misclassification error as the bigger two-block. To see this, recall the

direct misclassification rate introduced in Chapter 5.1, i.e., misclassification rate without

applying any permutation (or equivalently with the identity permutation). We have

dMis
(
σ2,3(ỹ(2,3)), y(2,3)

)
= Mis

(
ỹ(2,3), y(2,3)

)
≤ ε. (6.3)

where the inequality is by assumption (ε being the rate achieved by the spectral clustering

algorithm). A similar expression holds with (2, 3) replaced with (1, 2). Now (6.3) implies

dMis
(
σ2(ỹ(2)), y(2)

)
= dMis

(
σ2,3(ỹ(2)), y(2)

)
≤ 2ε = ε′ (6.4)

where the equality uses σ2 = σ2,3. To see the inequality, let n2,3, n2 and n3 be the lengths of

y(2,3), y(2) and y(3). Then,

dMis
(
σ2,3(ỹ(2,3)), y(2,3)

)
=

n2

n2,3

dMis
(
σ2,3(ỹ(2)), y(2)

)
+

n3

n2,3

dMis
(
σ2,3(ỹ′(3)), y(3)

)

and the result follows since we have n2 = n3 = n2,3/2 by construction. Note that dMis has the

property of being easily distributed over subblocks as opposed to Mis. Similarly to (6.4), we

obtain dMis
(
σ′3(ỹ(3)), y(3)

)
≤ ε′ considering the second component of ỹ(2,3) and y(2,3). Apply-

ing the same argument to indices (1, 2), we conclude similarly that dMis
(
σ1(ỹ(1)), y(1)

)
≤ ε′

and dMis
(
σ′2(ỹ′(2)), y(2)

)
≤ ε′.
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Now consider the following three block vector undergoing transformation




σ1(ỹ(1))

σ2(ỹ(2))

σ′3(ỹ(3))



→




σ−1
2 ◦ σ1(ỹ(1))

σ−1
2 ◦ σ2(ỹ(2))

σ−1
2 ◦ σ′3(ỹ(3))




=→




σ−1
2 ◦ σ1(ỹ(1))

ỹ(2)

ỹ(3)




=→




σ−1
2 ◦ σ′2(ỹ(1))

ỹ(2)

ỹ(3)



.

The leftmost vector has dMis of at most ε′ relative to y(1,2,3) by the previous arguments,

and since Mis ≤ dMis, we have the same bound on Mis rate for the leftmost vector. The

first transformation keeps the same Mis rate since we are applying a single permutation σ−1
2

to all elements. The second transformation is in fact an equality, using σ′3 = σ2 established

earlier. The third transformation/equality follows similarly by σ1 = σ′2. Thus, if we can

recover σ−1
2 ◦ σ′2 from data, we can construct a consistent three-block label having Mis ≤ ε′.

The third and final claim is that this is possible, and in fact we have

σ−1
2 ◦ σ′2 = σ∗(ỹ′(2) → ỹ(2)) (6.5)

that is, σ−1
2 ◦σ′2 can be obtained (assuming ε′ is sufficiently small) by optimally matching ỹ′(2)

to ỹ(2), both of which we observe in practice. See the commutative diagram in Figure 6.2(b).

In order to make the above argument precise, we need to justify the first and third claims. We

will discuss the details in Chapter 7.4. The above matching process can be repeated over all

the two-blocks ỹ(q−1,q) to get a consistent set of global labels whose overall misclassification

rate is no more than twice that of the original two-blocks (cf. ε′ versus ε).

6.2 Results for Algorithm 3

6.2.1 General initialization

Before studying the spectral initialization, let us give a general bound on the misclassification

rate of Algorithm 3, assuming sufficiently good quality initial labels. In particular, assume

that the initial labels obtained in steps 3 and 4 of the algorithm are γ1-good in the sense
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of (B3), with γ1 satisfying

γ1 ≤
[ 1

384β2ω

( Imin

8L‖Λ‖∞
∧ Icol

min

16K‖Γ‖∞

)]
∧ 1

4
. (6.6)

Any other initialization algorithm besides spectral clustering can be used, as long as the

above guarantee on its output holds. We also need the following weaker version of (A4):

βω(‖Λ‖∞ ∨ ‖Γ‖∞) = o
([ Imin ∧ Icol

min

Q logQ(K ∨ L)

]a)
, for some a > 0. (A4′)

Theorem 7. Assume that the model parameters satisfy Imin ∧ Icolmin → ∞, Λmin → ∞,

(A3) and (A4′), and the initial labels satisfy (6.6). Then, for some ζ = o(1), ŷ output by

Algorithm 3 satisfies

Misk
(
ŷ, y

)
= O

(
ω
∑

r 6=k

(
1 +

1

εkr

)
exp

(
−Ikr −

(1

2
− ζ
)

log Λmin

))
(6.7)

for every k ∈ [K] with probability 1− o(1).

We refer to Chapter 3 for the definition of the parameters involved in the rate given

in (6.7).
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CHAPTER 7

Preliminary analysis

We start by analyzing the properties of the operators introduced in Sections 4.1 and 4.2, for

some fixed (deterministic) initial labels ỹ and z̃. We assume that these labels satisfy:

Mis(ỹ, y) ≤ γ

βK
, Mis(z̃, z) ≤ γ

βL
. (B3)

We call such labels γ-good. Throughout, Λ̃ will be used to denote a generic deterministic

approximation of the true row mean parameter Λ. The relative `∞ ball of radius δ centered

at Λ, that is,

BΛ(δ) := {Λ̃ : ‖Λ̃− Λ‖∞ ≤ δ‖Λ‖∞}, (7.1)

will play a key role in our arguments. For sufficiently small δ and true Λ, BΛ(δ) will be the

set of δ-good row mean parameters.

7.1 Fixed label analysis

We first present the analysis assuming that all the operations are performed on the entire

adjacency matrix A. In Chapter 7.2, these results are extended to be applicable to subblocks

of A. Recall the definitions of the mean parameters an their estimates from Chapter 2.1. In

particular, we recall that λk∗(y, z̃) is the mean of bi∗(z̃) for any node i with yi = k. These

mean parameters form the kth row of Λ(y, z̃). Our first main lemma illustrate that whenever

the initial labels z̃ and ỹ are γ-good, then the parameters Λ(y, z̃) as well as the corresponding

estimates Λ̂ defined in (4.2) are close to the truth,Λ.

Lemma 4 (Parameter consistency). Let Cγ = Cγ,β = β2γ/(1 − γ), assume that 6Cγω ≤ 1,

and let hc(τ) := 3
4c
τ log

(
1 + 2c

3
τ
)
. Then under assumptions (A1), (A2) and (B3), we have
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(a) ‖Λ(y, z̃)− Λ‖∞ ≤ Cγ‖Λ‖∞, ‖Λ(y, z̃)‖∞ ≤ 2‖Λ‖∞.

(b) ‖Λ(ỹ, z̃)− Λ(y, z̃)‖∞ ≤ 2γ‖Λ‖∞, ‖Λ(ỹ, z̃)‖∞ ≤ 4‖Λ‖∞.

(c) ‖Λ̂− Λ(ỹ, z̃)‖∞ ≤ 4τ‖Λ‖∞ with probability at least 1− 2p1 where

p1 = p1(τ ; n,Λmin, β) := KL exp
(
−nΛmin h1(τ)

4βK

)
, ∀τ > 0, (7.2)

and Λ̂ is as defined in (4.2). In particular, all the estimates Λ(y, z̃), Λ(ỹ, z̃) and Λ̂ are within

relative `∞ distance of at most 4(Cγ + τ) from Λ.

The lemma is proved in Chapter 10.1. Note that the lemma implies that Λ̂ ∈ BΛ(4(Cγ +

τ)) with the stated probability.

Our second key lemma shows that the LR classifiers in (4.14) are uniformly dominated,

over Λ̃ ∈ BΛ(δ), by a single (perturbed) classifier. To state this result, recall the block

compression b(z̃) := B(A; z̃) given in (4.7), and define the following:

Yikr(bi∗, Λ̃) := Ψ(bi∗; λ̃r∗ | λ̃k∗) =
L∑

`=1

bi` log
λ̃r`

λ̃k`
+ λ̃k` − λ̃r`, (7.3)

Zik(bi∗, Λ̃) := 1{Yikr(Λ̃) ≥ 0, for some r 6= k}. (7.4)

Sk(b, Λ̃) :=
1

nk(y)

∑

i:yi=k

Zik(bi∗, Λ̃), (7.5)

where Ψ is the Poisson log-likelihood ratio defined in (4.13). Thus, Yikr is the (pseudo)

log-likelihood ratio, for k, r ∈ [K], measuring the relative likelihood of row i having label k.

We note that Yikr(Λ̃) < 0,∀r 6= k implies ŷi := (LR(A, Λ̃, z̃))i = k. Thus, Sk(bi∗, Λ̃) is the

misclassification rate for the LR classifier over the kth row-class, i.e., Misk(ŷ, y). Let

Jkr = L‖Λ‖∞/Ikr (7.6)
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and recalling definitions of εkr, ω and β from Chapter 3, set

η′ := η′(δ; Λ) = 8ωδL‖Λ‖∞ = 8ωδJkrIkr, (7.7)

ηkr := ηkr(δ;ω, β,m,Λ)

= 21δωL‖Λ‖∞ +
5βL2‖Λ‖2

∞
m

+ log
[
11ω

( 1

εkr − 2ω(1 + εkr)δ
+ 1
)]
− 1

2
log Λmin.

(7.8)

We have the following key lemma:

Lemma 5 (Uniformity of LRC in mean parameters). Fix any row label z̃ and let b = b(z̃)

be the corresponding column compression. Let Λ′ = Λ(y, z̃) be the row mean parameter

associated with b. Assume (A1), (A2), and Λ′ ∈ BΛ(δ) with 3ωδ < 1. Then, for all

k, r ∈ [K], k 6= r, and all i : yi = k, we have the following bounds:

(a) With η′ defined as in (7.7),

P
(
∃Λ̃ ∈ BΛ(δ), Yikr(bi∗, Λ̃) ≥ 0

)
≤ exp(−Ikr + η′). (7.9)

(b) If in addition εkr − 2ωδ > 0, then with ηkr defined as in (7.8),

P
(
∃Λ̃ ∈ BΛ(δ), Yikr(bi∗, Λ̃) ≥ 0

)
≤ exp

(
−Ikr + ηkr

)
. (7.10)

The proof of Lemma 5(b) appears in Chapter 10.5, and that of part (a) in Appendix A.5.

Remark 9 (Typical setting). In the error exponent in Lemma 5(b), i.e. −Ikr + ηkr, the

first three terms in (7.8) are positive and constitute the undesirable part of the bound. Our

goal is to keep these terms dominated at the final stage of the algorithm, i.e., make them

o(log Λmin), by making δ sufficiently small. For now, let us introduce a simple typical setting

to give some idea of the order of ηkr. In the first reading, one can consider the case where

β, ω = O(1), Ikr � I → ∞ for all k, r and some I, and assume that L‖Λ‖∞/I = O(1)

and (A5) holds. In this setting, Jkr = O(1) and we have ηkr = C(δ + m−1I)I − 1
2

log Λmin

for some constant C. Keeping these typical orders in mind will be helpful in understanding

the statements of the subsequent results.

It is also worth noting that we always have Jkr ≥ 1
2
. which follows from the general
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bound Ikr ≤ 2L‖Λ‖∞. Another important quantity is Cγ in Lemma 4, which in the typical

setting behaves as Cγ � γ when γ → 0.

Combining Lemma 5 with the Markov inequality, we can get uniform control on the

misclassification rate of the LR classifier in its parameter argument (i.e., Λ̂):

Lemma 6. Fix k ∈ [K] and z̃ ∈ [L]m. Let Λ̂ ∈ RK×L
+ be any random matrix and set

ŷ(z̃) := LR(A, Λ̂, z̃). Assume that (7.9) holds. Then, for any u ∈ R, we have

Misk
(
ŷ(z̃), y

)
≤
∑

r 6=k
exp

(
−Ikr + η′ + u

)
,

with probability at least 1− e−u − P
(
Λ̂ /∈ BΛ(δ)

)
. The result is also true if we replace η′ by

ηrk when (7.10) holds.

Remark 10. Edge splitting (ES) was proposed in [AS15] to generate nearly independent

copies from a single network. One might ask whether combining the edge splitting idea with

Lemma 6 is enough to give us a result similar to Theorem 1. In ES, edges are randomly

assigned to two graphs G1 and G2, with probabilities q and 1−q. The new graphs G1 and G2

will follow a SBM with a reduced connectivity matrix (by a factor of q and 1−q respectively).

Hence, the corresponding parameters Λ and I are reduced by the same factor; for example I

will be scaled to qI for G1. Let us consider the typical setting where β,K,L, ω, εkr = O(1)

and Ikr � I for all k, r and some I; assume the connectivity matrix is symmetric, i.e., Λ = Γ

and I = Icol. Let z̃ and ỹ be the labels obtained by performing biclustering on G1. Lemma 6

in the best case scenario, with the most favorable version of ηkr—i.e., ignoring the first three

positive terms in (7.8)—gives a misclassification rate

max{Mis
(
ỹ, y
)
,Mis

(
z̃, z
)
} ≤ γ2 :=

∑

r 6=k
exp

(
−qIkr −

1

2
log(qΛmin) + v

)

for some v →∞, w.h.p.. In the second stage, given the labels z̃ and ỹ, we obtain an estimate

of the (row) mean parameters based on G2, using the natural estimator Λ̂2 = L (G2, ỹ, z̃).

We then obtain the second stage labels y(z̃) := LR(G2, Λ̂, z̃). Let Λ2 = (1− q)Λ be the row

mean parameter of G2. By Lemma 4, Λ̂2 ∈ BΛ2(δ) w.h.p for some δ ≥ γ2. By Lemma 6,
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and the perturbation of information (Lemma 10) we have

Mis
(
ŷ(z̃), y

)
≤ γ3 :=

∑

r 6=k
exp

(
−(1− q)Ikr + C(1− q)δ‖Λ‖∞ −

1

2
log Λmin + u

)

for some u→∞ w.h.p.. To obtain result (3.7) in Corollary 1, we at least hope to have

qIkr + C(1− q)γ2‖Λ‖∞ = o(log Λmin).

So we need qIkr = o(log Λmin) and (1 − q)γ2‖Λ‖∞ = o(log Λmin). Assume that we have

qIkr = o(log Λmin). Then,

γ2 =
∑

r 6=k
exp

(
−qIkr −

1

2
log(qΛmin) + v

)
= O(Λ

−1/2−o(1)
min /

√
q).

However, this is not sufficient to show (1 − q)γ2‖Λ‖∞ = o(log Λmin). Therefore, applying

edge splitting and Lemma 6 does not lead to the main result of this paper.

7.2 Analysis on subblocks

We now extend the analysis of Chapter 7.1 to be applicable to the subblocks obtained

by random partitioning. Some care needs to be taken since the true (row and column)

mean parameters of the subblocks are changed by partitioning, due to the change in the

distributions of the labels within each subblock among the K ×L classes. The deviations of

the subblock class proportions from the global version will be controlled by a slack parameter

ξ which will be set at the final stage of the proof (see Chapter 8.1.2). Throughout this section,

assumptions (A1) and (A2) will be implicit in all the stated lemmas. We will also state the

result for a general 2Q×Q partitioning scheme, although Q = 4 is enough for the analysis

of Algorithm 3.

Recall that the class priors π`(z) for the full labels are defined in (4.10). We will use the

same notation for sublabels z(q), that is, π`(z
(q)) is the proportion of labels in z(q) that lie in

66



class `. Note that we have

π`(z) =
n`(z)

m
, π`(z

(q)) =
n`(z

(q))

m/Q
, hence,

π`(z
(q))

π`(z)
= Q

n`(z
(q))

n`(z)
, (7.11)

since z(q) has length m/Q. We similarly we have πk(y
(q)) = nk(y

(q))/(n/(2Q)). We will work

under the assumption that the partitioning scheme satisfies:

max
k,q
|πk(y(q))− πk(y)| ≤ ξ and max

`,q
|π`(z(q))− π`(z)| ≤ ξ, (B4a)

ξ ≤ min
( 1

2βK
,

1

2βL

)
. (B4b)

When these conditions hold, we call the scheme a good partition. We note that these condi-

tions combined with (A2) give,

∣∣∣π`(z
(q))

π`(z)
− 1
∣∣∣ ≤ ξLβ ≤ 1

2
=⇒ 1

2

1

βL
≤ π`(z

(q)) ≤ 3

2

β

L
(7.12)

and similarly for y(q). It follows that both z(q) and y(q) satisfy (A1) with β replaced with 2β.

Each count nk(y
(q)) follows a hypergeometric distribution with parameters (n, nk(y), n/(2Q)),

that is, the number of nodes labeled k, in a sample of size n/(2Q), from a population of size

n, with a total of nk(y) nodes labeled k. The concentration of the hypergoemtric distribution

gives the following:

Lemma 7. (B4a) holds for random partitioning, with probability at least 1− p2, where

p2 = 2Q(K + L) exp
(
−min(n,m)ξ2/Q

)
. (7.13)

The proof of this lemma and others in this section appear in Appendix A.1.

Lemma 8. Under (B4a) and (B4b), the true local mean parameters Λ(q) = (λ
(q)
k` ) satisfy:

∣∣∣λ(q)
k` −

λk`
Q

∣∣∣ ≤ (ξLβ)
λk`
Q
≤ 1

2

λk`
Q
, ∀q, k, `. (7.14)

In particular, Λ
(q)
min ≥ 1

2Q
Λmin, ‖Λ(q)‖∞ ≤ 3

2Q
‖Λ‖∞ and Λ(q) ∈ BΛ/Q(ξLβ) for all q ∈ [Q].

Our main lemma for the subblocks establishes the consistency of the local mean parameter
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estimates Λ̂(q′,q) for a good partitioning scheme. This lemma is an extension of Lemma 4.

We recall the operator L from (4.1):

Lemma 9 (Local parameter consistency). Let Cγ = β2γ/(1−γ) and hc(τ) := 3
4c
τ log

(
1 + 2c

3
τ
)

as in Lemma 4 and assume that 72Cγω ≤ 1. Fix the underlying partition and fix q, q′ ∈ [Q],

and labels z̃ and ỹ. Let

Λ̂(q′,q) = L (A(q′,q), ỹ(q′), z̃(q)).

Assume that the partition satisfies (B4a) and (B4b), and the pairs (z̃(q), z(q)) and (ỹ(q), y(q))

satisfy the misclassification rate in (B3). Then,

‖Λ̂(q′,q) − Λ(q)‖∞ ≤
(
24Cγ + 6τ

)
‖Λ/Q‖∞, and

‖Λ̂(q′,q) − Λ/Q‖∞ ≤
(
24Cγ + 6τ + ξLβ

)
‖Λ/Q‖∞

with probability at least 1− 2p3, where

p3 = p3(τ ; n,K,Λmin, Q) := KL exp
(
−nΛmin h1(τ)

32Q2βK

)
. (7.15)

We also have

(a) ‖Λ(q′,q)(y, z̃)− Λ(q)‖∞ ≤ 4Cγ‖Λ(q)‖∞.

(b) ‖Λ(q′,q)(ỹ, z̃)− Λ(q′,q)(y, z̃)‖∞ ≤ 2γ‖Λ(q)‖∞.

(c) ‖Λ̂(q′,q) − Λ(q′,q)(ỹ, z̃)‖∞ ≤ 4τ‖Λ(q)‖∞, with probability at least 1− 2p3.

Remark 11. Similar results to those obtained above hold for the column parameters. Recall

that the dual to the row mean parameters Λ are the column mean parameters Γ. The result

of Lemma 8 can be translated to the column version by making the following substitutions

Λ → Γ, Q → 2Q and L ↔ K. For Lemma 9, in addition we need to make n → 4m.

(The reason for this is that in (A.1), in the proof, we need to replace n/2Q with m/Q, and

Λmin/2Q with Γmin/(4Q), and the combination of the aforementioned substitutions achieves

this. We also note for future reference that the corresponding ω inflation by a factor of 3

remains true for column parameters.) After these substitutions, we obtain the same constant
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in (7.15), that is, p3 has to be replaced with

p′3 := p3(τ ; 4m,L,Γmin, 2Q) = p3(τ ;m,L,Γmin, Q). (7.16)

7.3 Perturbation of information

Recall the definition of Chernoff information from (3.1), and let us write Ikr = Ikr(Λ) to

explicitly show its dependence on the mean parameter matrix Λ. The following lemma,

proved in Appendix A.1, bounds the perturbations of Ikr(Λ) in Λ:

Lemma 10. Under (A1), for any Λ̃ ∈ BΛ(δ), we have |Ikr(Λ̃)− Ikr(Λ)| ≤ 2ωδL‖Λ‖∞.

7.4 Analysis of the matching step

In this section, we fill in the details of the argument sketched in Chapter 6.1. Specifically,

we need to give sufficient conditions so that the first and the third claims of Chapter 6.1

hold. We will use the following two lemmas. Recall the notation σ∗(ỹ → y) introduced in

Chapter 5.1 to denote the optimal permutation from the set of labels ỹ to another set y.

Lemma 11. Let ỹ, y ∈ [K]n, and assume that dMis(ỹ, y) < 1
2

mink πk(y). Then,

(a) σ∗(ỹ → y) = id, the identity permutation, and this optimal permutation is unique, and

(b) πk(ỹ) > 1
2
πk(y) for all k.

Note that Lemma 11 implies that if dMis(σ(ỹ), y) < 1
2

mink πk(y) for some permutation

σ, then σ∗(ỹ → y) = σ.

Lemma 12. Consider three sets of labels y, ỹ, ỹ′ ∈ [K]n, and assume that

max{Mis(ỹ, y), Mis(ỹ′, y) } < 1

4
min
k
πk(ỹ).

Let σ = σ∗(ỹ → y) and σ′ = σ∗(ỹ′ → y). Then, σ−1 ◦ σ′ = σ∗(ỹ′ → ỹ).

The first claim follows from Lemma 11, under the further assumption:

Mis(ỹ(q−1,q), y(q−1,q)) <
1

32βK
, q ∈ [Q]. (7.17)
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Using the permutation notations (6.2) of Chapter 6.1, we have:

Corollary 6. Under assumptions (A2), (B4a), (B4b) and (7.17), σq−1,q = σq−1 for all

q ∈ [Q].

The third and final claim of Chapter 6.1 follows from Lemmas 11 and 12, by applying

them to the subblock labels y(2), ỹ(2), ỹ′(2):

Corollary 7. Under assumptions (A2), (B4a), (B4b) and (7.17), σ−1
q ◦σ′q = σ∗(ỹ′(q) → ỹ(q))

for all q ∈ [Q].

The proofs of the results of this section are deferred to Appendix A.1.
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CHAPTER 8

Analysis of Algorithm 3

8.1 Proof of Theorem 7

We start with the high-level analysis of Algorithm 3 in Chapter 8.1.1. This analysis is

parametrized by many parameters such as ξ , τ1, τ col
1 , τ2, etc. This allows us to give the

high-level idea of the mechanics of the proof without making the arguments obscured by

the expressions ultimately chosen for these parameters. In Chapter 8.1.2, we make specific

choices about these parameters and finish the proof of Theorem 7.

8.1.1 Parametrized analysis of Algorithm 3

We now have all the pieces for analyzing Algorithm 3. Let ỹstep 5 and z̃step 5 be the labels

from step 5 of of Algorithm 3. As before, in all the lemmas stated, (A1) and (A2) will be

implicitly assumed. Consider the following event:

Aγ :=
{
ỹ

(q)
step 5 and z̃

(q)
step 5 satisfy (B3) with parameter γ, for all q ∈ [Q]

}
.

We implicitly assume that clusters in z̃step 5 and ỹstep 5 are relabeled according to optimal

permutation relative to the truth. In other words, z̃step 5 and ỹstep 5 in the above event are

not the raw output of the algorithm, but the relabeled versions (which we do not have access

to in practice, but are well-defined and can be used in the proof.) When γ is sufficiently

small, this implies that community k in z̃step 5 is the same as community k in z̃, for all k ∈ [Q].

Let Π be the random partition used in Algorithm 3, and let P be the event that Π satisfies

condition (B4a). By Lemma 7, we have P(P) ≥ 1− p2 where p2 is given in (7.13). For the

most part, we will work on events of the form Aγ1∩P. Let us also establish some terminology.

By the probability “on an event P”, we mean the probability under the restricted measure
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PP := P(· ∩ P). For example, if D = {property X holds}, we will say that “property X

fails” on P with probability at most q if P(Dc ∩ P) ≤ q. In this case, if P holds with

high probability, say ≥ 1 − p2, and q is small, then D holds with high probability as well:

P(D) ≥ 1− q − p2.

Let Λ̂
(q)
step 6 = L (A(q−2,q), ỹ(q−2), z̃(q)), q ∈ Z/QZ, be the first local parameter estimates

obtained in step 6 of Algorithm 3 (it is easier to work with the shifted index), and let

δ1 := 24Cγ1 + 6τ1 + ξLβ. (8.1)

A better name for δ1, and τ1 would be δrow
1 , and similarly τ row

1 contrasting with δcol
1 and τ col

1

defined later in (8.4). However, for simplicity, we drop the “row” qualifier here. Recall that

ξ is a parameter controlling the tail probability related to the random partition, while τ1 will

be controlling the tail probability p3(τ1) related to the local parameter estimates in Lemma 9.

These parameters will be optimized at the end of the argument (see Chapter 8.1.2).

Lemma 13 (First local parameters). Assume (B4b) and 72Cγ1ω ≤ 1, and let δ1 be as

defined in (8.1). Then, on event Aγ1 ∩P,

Λ̂
(q)
step 6 ∈ BΛ(q)(δ1), ∀q ∈ ZQ,

fails with probability at most 2Qp3, where p3 = p3(τ1) as given in (7.15).

Proof. Conditioning on blocksG1 (cf. Chapter 6) of the (bottom) adjacency matrix Abottom—

denoted as A
(G1)
bottom—the distribution of blocks A(q−2,q), q ∈ ZQ used in defining Λ̂

(q)
step 6 is not

changed. Under this conditioning, both initial labels ỹstep 5 and z̃step 5 are deterministic, hence

the results of Chapter 7.2 apply. We will apply Lemma 9 to Λ̂
(q)
step 6. Let us verify the condi-

tions of the lemma. On Aγ1 , for all q ∈ [Q], the sublabel pairs (z̃
(q)
step 5, z

(q)) and (ỹ
(q)
step 5, y

(q))

satisfy (B3). On P, condition (B4a) holds for the random partition and (B4b) holds by

assumption. Recall that the random partition is independent of all else, hence conditioning

on it does not change the distribution of blocks A(q−2,q), q ∈ ZQ either. We may then apply

Lemma 9 to conclude that for every q ∈ ZQ, conditioned on the partition Π and A
(G1)
bottom, the
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event {Λ̂(q)
step 6 /∈ BΛ(q)(δ1)} ∩ Aγ1 ∩P holds with probability ≤ 2p3. Let us write

D =
{

Λ̂
(q)
step 6 ∈ BΛ(q)(δ1), ∀q ∈ ZQ

}

which is the desired event in this lemma. Using the union bound, and removing the condi-

tioning, we have P(Dc ∩ Aγ1 ∩P) ≤ 2Qp3, unconditionally. The proof is complete.

Next we consider the first LR classifier application. Let ỹstep 7 be the row label estimates

in step 7. That is, we have

ỹ
(q−2)
step 7 = LR

(
A(q−2,q), Λ̂

(q)
step 6, z̃

(q)
step 5

)

for which we have the following bound on misclassification rate:

Lemma 14 (First LR classifier). Under the assumptions of Lemma 13, further assume that

9ωδ1 < 1. Let ηstep 7 := 2η′(δ1; Λ/Q) where η′(·) is defined in (7.8). Then, on event Aγ1 ∩P,

Misk
(
ỹ

(q)
step 7, y

(q)
)
≤
∑

r 6=k
exp

(
−Ikr
Q

+ ηstep 7 + u
)

=: γrow2k , ∀q ∈ ZQ, (8.2)

fails with probability at most Q(e−u + 2Qp3) where p3 = p3(τ1) as given in (7.15).

Proof. Fix q ∈ ZQ and consider ỹ(q−2). As in the proof Lemma 13, we condition on blocks in

G1 so that z̃
(q)
step 5 can be assumed deterministic. We will apply Lemma 5(a) to the subblock

A(q−2,q). As discussed earlier, the corresponding ω is inflated to 3ω, hence we need 3(3ω)δ1 <

1 which we have assumed. We also note that Λ(q−2,q)(y, z̃) and Λ(q) play the role of Λ(y, z̃)

and Λ in Lemma 5(b), and we have the needed condition Λ(q−2,q)(y, z̃) ∈ BΛ(q)(δ1) from

Lemma 9. Let b
(q−2,q)
i∗ be the row block compression of A(q−2,q) based on z̃

(q)
step 5. Then,

Lemma 5(a) gives

P
({
∃ Λ̃ ∈ BΛ(q)(δ1), Yikr

(
b

(q−2,q)
i∗ , Λ̃

)
≥ 0
}
∩ Aγ1 ∩P

∣∣∣A(G1)
bottom,Π

)
≤ exp

(
−I(q)

kr + η(q)
)

(8.3)

for all rows i (in row block q − 2) with yi = k. Here Λ
(q)
min is the minimum element of Λ(q),
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and

I
(q)
kr := Ikr(Λ

(q)) ≥ Ikr
Q
− 2ωδ1L‖Λ/Q‖∞

η(q) := η′(δ1; Λ(q)) ≤ (1 + δ1) η′(δ1; Λ/Q)

where η′(δ1; Λ(q)) = 8ωδ1L‖Λ(q)‖∞ as defined in (7.8). The first inequality uses Lemma 10

and the second is obtained using the definition of η′(·) combined with Λ(q) ∈ BΛ/Q(δ1)

(Lemma 8) which implies ‖Λ(q)‖∞ ≤ (1 + δ1)‖Λ/Q‖∞. By taking expectation in (8.3), the

same bound holds unconditionally.

By Lemma 13, on event Aγ1 ∩ P, we have Λ̂
(q)
step 6 /∈ BΛ(q)(δ1) with probability at most

2Qp3. Then, applying Lemma 6, we conclude that

Misk
(
ỹ

(q−2)
step 7 , y

(q−2)
)
≤
∑

r 6=k
exp

(
−I(q)

kr + η(q) + u
)

fails on Aγ1 ∩P with probability ≤ e−u + 2Qp3, for each q ∈ [Q]. Note that

−I(q)
kr + η(q) ≤ −Ikr

Q
+ (1 + δ1 + 9−1) η′(δ1; Λ/Q).

Since 9ωδ1 < 1 implies δ1 < 9−1 (recall ω ≥ 1), we have 1 + δ1 + 9−1 < 2. Combining with

the previous bound and applying the union bound over q gives the result.

Note that we have called the rate in (8.2) γrow
2 for the (column) misclassification rate based

on the row information. This rate is faster than initial rate γ1. Repeating the procedure

in steps 6 and 7 for the column labels—as prescribed in step 8 in Algorithm 3–we obtain

a similar rate for the misclassification rate of z̃
(q)
step 8 relative to z(q) which we call γcol

2 . In

deriving γcol
2 , we have to make the substitutions in Remark 11, and particular, Λ → Γ

where Γ is the column mean parameters defined in Chapter 2.1. (A minor exception is when

counting the number of blocks which will still be Q rather than 2Q.) Recall the definition

of the column information matrix (Icol
`r ) from (3.2). Letting

δcol
1 := 24Cγ1 + 6τ col

1 + ξKβ, (8.4)
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we obtain the following counterpart of Lemma 14:

Corollary 8 (First LR classifier, column version). Under the assumptions of Lemma 13,

further assume that 9ωδcol1 < 1. Let ηstep 8 := 2η′(δcol1 ; Γ/(2Q)) where η′(·) is defined in (7.8).

Then, on event Aγ1 ∩P,

Mis`
(
z̃

(q)
step 8, z

(q)
)
≤
∑

r 6=`
exp

(
−I

col
`r

2Q
+ ηstep 8 + ucol

)
=: γcol2` , ∀q ∈ ZQ, (8.5)

fails with probability at most Q(e−u
col

+ 2Qp′3), where p′3 = p′3(τ col1 ) as given in (7.16).

Let γcol
2 := maxk∈[K] γ

col
2k , γrow

2 := max`∈[L] γ
row
2` and

γ2 := max{βKγrow
2 , βLγcol

2 }. (8.6)

By (2.7), we have that (8.2) and (8.5) imply

Mis
(
ỹ

(q)
step 7, y

(q)
)
≤ γcol

2 ≤
γ2

βK
, Mis

(
z̃

(q)
step 8, z

(q)
)
≤ γrow

2 ≤ γ2

βL
(8.7)

Thus, if we consider the following event:

Bγ :=
{
ỹ

(q)
step 7 and z̃

(q)
step 8 satisfy (B3) with parameter γ, for all q ∈ [Q]

}
,

after Step 8, we can work on Bγ2 ∩ P which holds with high probability: Combining

Lemma 14 and Corollary 8, by union bound, P(Bc
γ2
∩ Aγ1 ∩ P) ≤ Q(2e−u + 2Q(p3 + p′3)),

hence

P(Bγ2 ∩P) ≥ P
(
Bγ2 ∩ Aγ1 ∩P

)

= P
(
Aγ1 ∩P

)
− P

(
Bc
γ2
∩ Aγ1 ∩P

)

≥ 1− P(Ac
γ1

)− P(Pc)−Q(2e−u +Q(p3 + p′3)).

(8.8)

Let Λ̂
(q)
step 9 = L (A(q−3,q), ỹ(q−3), z̃(q)), q ∈ ZQ, be the second local parameter estimates

obtained in step 9 of Algorithm 3. Let

δ2 := 24Cγ2 + 6τ2. (8.9)
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Lemma 15 (Second local parameters). Assume (B4b) and 72Cγ2ω ≤ 1, and let δ2 be as

defined in (8.9). Then, on event Bγ2 ∩P,

Λ̂
(q)
step 9 ∈ BΛ(q)(δ2), ∀q ∈ ZQ

fails with probability at most 2Qp3, where p3 is given in (7.15).

Proof. Conditioning on blocks G1 ∪ G2 (cf. Chapter 6) of the adjacency matrix A, the

distribution of blocks A(q−3,q) used in defining Λ̂
(q)
step 9 is not changed. Under this conditioning,

both initial labels ỹstep 7 and z̃step 8 are deterministic, hence the results of Chapter 7.2 apply.

On Bγ2 , for all q ∈ ZQ, the sublabel pairs (z̃
(q)
step 8, z

(q)) and (ỹ
(q)
step 7, y

(q)) satisfy (B3). The

rest of the proof follows that of Lemma 13.

The key is that δ2 is much smaller than δ1, due to γ2 � γ1 (typically), i.e., the second

parameter estimates are much more accurate. Let Λ̂step 10 =
∑

q Λ̂
(q)
step 9 be the estimate of

the global mean parameters obtained in step 10 of Algorithm 3. According to Lemma 15,

on Bγ2 ∩P,

‖Λ̂(q)
step 9 − Λ/Q‖∞ ≤ δ2‖Λ/Q‖∞, ∀q hence, ‖Λ̂step 10 − Λ‖∞ ≤ δ2‖Λ‖∞ (8.10)

fails with probability ≤ 2Qp3, where we have used triangle inequality. That is, on Bγ2 ∩P,

we have Λ̂step 10 ∈ BΛ(δ2) with high probability.

Remark 12. Note that we could have used QΛ̂
(q)
step 9 (for any q ∈ ZQ) as our estimate Λ̂step 10,

leading to the same bound as in (8.10). The results would be the same, though in practice,

we expect the version given in the Algorithm 3 to perform better. We also note that on Bγ2 ,

the sublabels (z̃
(q)
step 8, q ∈ ZQ) automatically define a consistent global label vector z̃step 8,

and similarly for row labels ỹstep 7.

Lemma 16 (Second LR classifier). Under the assumptions of Lemma 15, further assume

that δ2 defined in (8.9) satisfies 3ωδ2 < 1 and 6Cγ2ω ≤ 1. Let ηstep 11kr := ηkr
(
δ2; ω, β,m,Λ

)
.

Then, on event Bγ2 ∩P,

Misk
(
ŷtop, ytop

)
≤
∑

r 6=k
exp

(
−Ikr + ηstep 11rk + v

)
=: γ3, (8.11)
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fails with probability at most e−v + 2Qp3 where p3 = p3(τ2) as given in (7.15). The same

result holds for ηstep 11kr = η′(δ2; Λ).

Proof. As in the proof Lemma 15, we condition on blocks in G1 ∪ G2 so that z̃step 8 can

be assumed deterministic. We will apply Lemma 5(b) to Atop. Let Top ⊂ [n] denote

the row indices of Atop. Since all the columns are present in Atop, we can directly apply

Lemma 5(b) (in contrast to the argument in Lemma 14), that is, the relevant row mean

parameters are Λ(y, z̃) and Λ—the same as those for the whole matrix A. The needed

condition Λ(y, z̃) ∈ BΛ(δ2) is supplied by Lemma 4. Let bstep 11
i∗ = bi∗(z̃step 8) be the block

compression in step 11 of the algorithm. Then, Lemma 5(b) gives (after conditioning on

A
(G1∪G2)
bottom and then removing the conditioning as in (8.3))

P
({
∃ Λ̃ ∈ BΛ(δ1), Yikr

(
bstep 11
i∗ , Λ̃

)
≥ 0
}
∩Bγ2

)
≤ exp

(
−Ikr + ηstep 11

kr

)
. (8.12)

for any i ∈ Top with yi = k. By (8.10), on Bγ2∩P, we have Λ̂step 10 /∈ BΛ(δ2) with probability

at most 2Qp3. Then, applying Lemma 6, we conclude (8.11) as desired. The last statement

of the theorem follows if we apply Lemma 5(a) in place of Lemma 5(b) throughout.

The same exact bound holds for ŷbottom in step 12, with the same probability. Hence,

by union bound, the same bound on misclassification rate holds for the final row labels ŷ in

step 13, with probability inflated by a factor of 2; that is, Misk(ŷ, y) ≤ γ3 fails on Bγ2 ∩P,

with probability at most 2(e−v + 2Qp3).

To summarize, under the conditions of the lemmas, we have

P
(

Misk(ŷ, y) > γ3

)
≤ P

({
Misk(ŷ, y) > γ3

}
∩Bγ2 ∩P

)
+ P

(
(Bγ2 ∩P)c

)

≤ 2
(
e−v + 2Qp3(τ2)

)
+ P

(
(Bγ2 ∩P)c

)

≤ 2
(
e−v + 2Qp3(τ2)

)
+ P(Ac

γ1
) + P(Pc) +Q

(
2e−u∧u

col

+Q(p3(τ1) + p′3(τ col
1 )
)

(8.13)

where γ3 is the rate given in (8.11) and the second inequality uses (8.8).
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8.1.2 Choosing the parameters

It remains to choose the parameters, τ1, τ2, ξ, etc. to simultaneously achieve the desired

rate for γ3 and ensure that the probability in (8.13) is o(1).

Proof of Theorem 7. First row LR classifier. Let us write τ row
1 = τ1 for clarity. Under

our assumptions, we will have γ2 ≤ γ1 ≤ 1/2 so that Cγi ≤ 2β2γi for i = 1, 2, recalling the

definition of Cγ = β2γ/(1− γ). In Lemma 14, we defined (recall (8.1))

ηstep 7 = 8δ1ωL‖Λ/Q‖∞ ≤
(
384β2γ1 + 48τ row

1 + 8βLξ
)
ωL‖Λ/Q‖∞. (8.14)

By (6.6), 384β2γ1ωL‖Λ/Q‖∞ ≤ Imin/(8Q). Take

τ row
1 =

Imin

384ωL‖Λ‖∞
, ξ =

Imin ∧ Icol
min

64βω(K ∨ L)2(‖Λ‖∞ ∨ ‖Γ‖∞)
, u =

Imin

8Q
, (8.15)

where u is the parameter in (8.2). Then from (8.14) we have

ηstep 7 ≤ Imin

8Q
+
Imin

8Q
+
Imin

8Q
=

3Imin

8Q
, ηstep 7 + u ≤ Imin

2Q
.

Hence Lemma 14 implies that on event P,

Misk
(
ỹ

(q)
step 7, y

(q)
)
≤ γrow

2k :=
∑

r 6=k
exp

(
−Ikr
Q

+
Imin

2Q

)
≤ K exp

(
−Imin

2Q

)
, ∀q ∈ ZQ (8.16)

fails with probability at most Q(e−u + 2Qp3(τ row
1 )). By (A4′), Q logQ = o(Imin), hence

Qe−u = o(1). By (A3),

Q2p3(τ row
1 ) = Q2KL exp

(
−nΛmin h1(τ row

1 )

32Q2βK

)

≤ Q2KL exp
(
− nI2

min

256(3842)Q2βKL2ω3‖Λ‖∞

)
= o(1)

(8.17)

where we have used the definition (7.15) of p3, h1(τ) ≥ τ 2/8 for τ ≤ 1 and ‖Λ‖∞/Λmin ≤ ω.

Moreover, (A4′) implies (Imin∧Icol
min)/(K∨L)→∞, hence eventually (Imin∧Icol

min)/(K∨L) ≥ 1
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which gives

P(Pc) = p2(ξ) = 2Q(K + L) exp
(
−(n ∧m)ξ2/Q

)

≤ 2Q(K + L) exp
(
− n ∧m

642Qβ2ω2(K ∨ L)2(‖Λ‖∞ ∨ ‖Γ‖∞)2

)
= o(1)

(8.18)

where the last implication follows from (A3).

First column LR classifier. We can apply a similar argument to z̃step 8. Let

τ col
1 =

Icol
min

768ωK‖Γ‖∞
, ucol =

Icol
min

16Q
,

with ξ defined as in (8.15). By (6.6), and a similar argument, we obtain ηstep 8 + ucol ≤
Icol

min/(4Q). By Corollary 8, on event P,

Mis`
(
z̃

(q)
step 8, z

(q)
)
≤ γcol

2` ≤
∑

r 6=`
exp

(
−I

col
`r

2Q
+
Icol

min

4Q

)
≤ L exp

(
−I

col
min

4Q

)
, ∀q ∈ ZQ, (8.19)

fails with probability at most Q(e−u
col

+ 2Qp′3), where Q2p′3 = Q2p′3(τ col
1 ) = o(1) by (A3)

and Qe−u
col

= o(1) by (A4′), similar to how we argued for the row labels.

Second row LR classifier. Recalling γ2 from (8.6) and combining with (8.16) and (8.19),

γ2 ≤ max
(
βK2 exp

(
−Imin

2Q

)
, βL2 exp

(
−I

col
min

4Q

))
= o
( β(K ∨ L)2

(Imin ∧ Icol
min)b

)
(8.20)

for any b > 0, as Imin ∧ Icol
min →∞. By Lemma 16 and (7.8),

ηstep 11
kr := ηkr

(
δ2; ω, β,m,Λ

)

= 21δ2 ωL‖Λ‖∞ +
5βL2‖Λ‖2

∞
m

+ log
(

11ω
( 1

εkr − 2ω(1 + εkr) δ2

+ 1
))
− 1

2
log Λmin

=: T1 + T2 + T3 + T4, (8.21)
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where we have called the four summands above T1, . . . , T4 in the order they appear. We have

δ2 = 24Cγ2 + 6τ2 ≤ 48β2γ2 + 6τ2 by (8.9) and the assumption γ2 ≤ 1
2
. Then,

T1 ≤ 21(48)β2ωL‖Λ‖∞ γ2 + 21(6)ωL‖Λ‖∞ τ2 =: T11 + T12.

For any b > 0, by (8.20)

T11 = O
(
β2ωL‖Λ‖∞γ2

)
= o
(β3ω(K ∨ L)3‖Λ‖∞

[(Imin ∧ Icol
min)/Q]b

)
. (8.22)

Recall that we have βω(K∨L)‖Λ‖∞ = o([(Imin∧Icol
min)/Q]a) for some a > 0 by (A4′). Taking

b = 3a in (8.22), we obtain T11 = o(1). Letting τ2 = (ωL‖Λ‖∞)−1, we have T12 = O(1),

hence, T1 = O(1). Recalling the probability bound in Lemma 16, we have by (A3)

Qp3(τ2) = QKL exp
(
−nΛmin h1(τ2)

32Q2βK

)

≤ QKL exp
(
− n

256Q2βKL2ω3‖Λ‖∞

)
= o(1)

(8.23)

where we have used h1(τ) ≥ τ 2/8 for τ ≤ 1 and ‖Λ‖∞/Λmin ≤ ω. Using (A3) again,

T2 = 5βL2‖Λ‖2
∞/m = O(1).

Now let us consider the third piece T3 in (8.21). Recall that Jkr = L‖Λ‖∞/Ikr. By

Lemma 23 in Chapter 10.3.2, εkr ≥ 2
(
J−1
kr ∧1

)
. In bounding T1, we have shown δ2ωL‖Λ‖∞ =

O(1), hence 2ωδ2 = O((L‖Λ‖∞)−1). Since Ikr → ∞ and Jkr ≥ 1/2 (see Remark 9),

(L‖Λ‖∞)−1 = o
(
J−1
kr ∧ 2

)
. Therefore, 2ωδ2 = o(εkr ∧ 1). As a result, 2ω(1 + εkr)δ2 = o(εkr),

hence

eT3 := 11ω
(

1 +
1

εkr − 2ω(1 + εkr)δ2

)
= O

(
ω
(

1 +
1

εkr

))
. (8.24)

Finally, we let v =
√

log Λmin. Since Λmin →∞, e−v = o(1). Applying Lemma 16, combined

with T1 + T2 = O(1), and (8.24), then for ζ = 1/
√

log Λmin = o(1),

Misk
(
ŷtop, ytop

)
= O

(
ω
∑

r 6=k

(
1 +

1

εkr

)
exp

(
−Ikr −

1

2
log Λmin +

√
log Λmin

))

= O
(
ω
∑

r 6=k

(
1 +

1

εkr

)
exp

(
−Ikr −

(1

2
− ζ
)

log Λmin

))
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fails w.p. ≤ 2(e−v + 2Qp3(τ2)) +P(Pc) +Q(2e−u∧u
col

+Q(p3(τ row
1 ) + p′3(τ col

1 ))) = o(1). When

we swap Atop and Abottom and repeat the algorithm, the same misclassification rate holds.

The proof of Theorem 7 is complete.

8.2 Proof of Theorem 1

We proceed by stating a few lemmas. The proofs are deferred to Appendix A.2.

Lemma 17.
∑

`∈[L](λr` − λk`)2 ≥ 2ΛminIkr. As a consequence, Λ2
∧ ≥ 2ΛminImin.

Combining Lemma 17 with Corollary 5, and noting that ‖Λ‖∞/Λ2
∧ ≤ ω/(2Imin) as a

consequence of the lemma, we obtain the following guarantee for spectral clustering in terms

of the information matrix (Ikr):

Corollary 9. Consider the spectral algorithm given in Algorithm 5, assume that for a

sufficiently small C1 > 0,

β2ωKL(K ∧ L)α

2Imin

≤ C1(1 + κ)−2. (8.25)

Then the algorithm outputs estimated row labels ỹ satisfying w.h.p.

Mis(ỹ, y) ≤ (1 + κ)2ωβL(K ∧ L)α

2C1Imin

.

We next modify Corollary 9 to be applicable on subblocks:

Lemma 18 (Spectral clustering on subblocks). Suppose (A3) holds, and we assume for a

sufficiently small C1 > 0,

6Qβ2ω2KL(K ∧ L)α

Imin

≤ C1(1 + κ)−2. (8.26)

Using Algorithm 5 in Step 3 of Algorithm 3, w.h.p., the misclassification rate of ỹ(q) satisfies

Mis(ỹ(q), y(q)) ≤ 3Q(1 + κ)2ω2βL(K ∧ L)α

C1Imin

∀q ∈ [Q].

A similar result holds for misclassification rate of the spectral clustering for column labels,
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with appropriate modifications.

Proof of Theorem 1. Assumption (A4) implies (8.26), eventually as Imin →∞. Letting γrow
1

and γcol
1 be bounds on the misclassification rates of the spectral clustering algorithms in

steps 3 and 4, we can take, by Lemma 18 (and its column counterpart), w.h.p.

γrow
1 = O

(QωβL(K ∧ L)α

Imin

)
, γcol

1 = O
(QωβK(K ∧ L)α−1

Icol
min

)
.

That is, by the end of step 4, w.h.p., Mis(ỹ(q), y(q)) ≤ γrow
1 and Mis(z̃(q), z(q)) ≤ γcol

1 for all

q ∈ [Q]. Since the matching step increases the misclassification rate by at most a factor of

2, the same bounds hold for the overall initial labels at step 6. Taking γ1 = γrow
1 ∨ γcol

1 , we

observe that in order to satisfy condition (6.6) of Theorem 7, it is enough to have

Qωβ(K ∨ L)2(α ∨ α−1)

Imin ∧ Icol
min

= o
( 1

β2ω

Imin

L‖Λ‖∞
∧ Icol

min

K‖Γ‖∞

)

which holds if we require the stronger condition

Qωβ(K ∨ L)2(α ∨ α−1)

Imin ∧ Icol
min

= o
( 1

β2ω

Imin ∧ Icol
min

(K ∨ L)(‖Λ‖∞ ∨ ‖Γ‖∞)

)
.

But this latter condition is satisfied by assumption (A4). Thus, the assumptions of Theorem 7

hold with high probability, and so is its result. The proof is complete.

8.3 Proof of Corollary 1

Proof of Corollary 1. From the proof of Theorem 1, we have that

Misk
(
ŷ, y

)
= O

(∑

r 6=k
ω
(

1 +
1

εkr

)
exp

(
−Ikr −

1

2
log Λmin + v

))
(8.27)

fails with probability at most 2e−v + o(1). First, we show that

χr := ω
(

1 +
1

εkr

)
Λ
−1/2
min = o(1), uniformly in r. (8.28)
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By Lemma 23 in Chapter 10.3.2, εkr ≥ 2
(
J−1
kr ∧ 1

)
. Hence,

1 +
1

εkr
≤ 1 +

1

2
(Jkr ∨ 1) ≤ 3

2
(Jkr ∨ 1) ≤ 3Jkr

using 2Jkr ≥ 1 (see Remark 9). Thus, to show (8.28), it is enough to show ωJkr/
√

Λmin =

o(1). Using ω−1‖Λ‖∞ ≤ Λmin, we have

ωJkr Λ
−1/2
min =

‖Λ‖∞
Ikr

LωΛ
−1/2
min ≤

Lω3/2‖Λ‖1/2
∞

Ikr
≤ Lω3/2‖Λ‖1/2

∞
Imin

= o(1)

where the last equality is by ω3L2‖Λ‖∞ = o(I2
min) which is implied by (A4). Thus, we

have (8.28), i.e., χ := maxr χr = o(1), as desired. Now, let 2v = − logχ. It follows that

e−v =
√
χ = o(1), and we have

Misk
(
ŷ, y

)
= O

(
χ
∑

r 6=k
exp

(
−Ikr + v

))
= O

(√
χ
∑

r 6=k
exp

(
−Ikr

))
= o
(∑

r 6=k
exp

(
−Ikr

))

completing the proof.

8.4 Proof of Example 1

Proof of Example 1. Without loss of generality assume a > b so that εkr = a/b − 1. Also,

Λmin ≥ b/(βK). By (8.27), which holds in the general case, we have that

Misk
(
ŷ, y

)
= O

(∑

r 6=k
ω
( b
a

)
exp

(
−Ikr −

1

2
log
( b

βK

)
+ v
))

= O
(√

βωK3/2b−1/2 exp
(
− (
√
a−
√
b)2

βK
+ v
))

fails with probability at most 2e−v + o(1). Assumption βω2K3 = o(b) implies

χ :=
√
βωK3/2b−1/2 = o(1).

Letting 2v = − logχ, the rest of the proof follows similar to that of Corollary 1.
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CHAPTER 9

Simulations

We provide some simulation results to corroborate the theory. We generate from the SBM

model of Chapter 2.1 with the following connectivity matrix

P = C

[
log(mn)

]α
√
mn

B, B =




1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3



. (9.1)

Note that B does not have any clear assorative or dissortative structure. We let n = Kn0 and

m = Ln0, and we vary n0. All clusters (both row and column) will have the same number

of nodes n0. By changing α, we can study different regimes of sparsity. In particular, when

α ∈ (0, 1), we are in the regime where weak recovery is possible but not exact (or strong)

recovery. We consider both the misclassification rate, and the normalized mutual information

(NMI) as measures of performance. NMI is a measure of accuracy which is between 0 and

1 (=perfect match). The NMI is quite sensitive to mismatch and tends to reveal discrepancies

between methods more clearly. Figure 9.1(a) shows the overall NMI versus n0. Figure 9.1(b)

illustrates the corresponding log. misclassification rates.

We have considered four algorithms: (1) Spectral: the spectral clustering of Algorithm 5.

(2) Soft: Algorithm 1 with flat prior, no inner loop and no conversion to hard labels.

(3) Hard: Algorithm 1 with flat prior, no inner loop and conversion to hard labels after each

label computation. (4) Oracle: The oracle classifier discussed in Chapter 2.2 and Remark 2:

Assuming the knowledge of z and Λ, we obtain ŷ by the likelihood ratio classifier, and

similarly obtain ẑ, assuming the knowledge of y and Γ.

Figure 9.1 shows the results for α = .75 (regime where no exact recovery is possible)

and C = 1. Both the soft and hard versions of Algorithm 1 are initialized with the spectral
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Figure 9.1: Plots of (a) the (overall) NMI and (b) the corresponding log. misclassification rate, for
the SBM model with connectivity matrix (9.1). The four algorithms considered are the Spectral

clustering of Algorithm 5, Soft and Hard versions of Algorithm 1 and the Oracle algorithm of
Chapter 2.2.

clustering and both significantly improve over it. The soft version of Algorithm 1 also

outperforms the hard version as one would expect: soft labels carry more information between

iterations. It is also interesting to note that the slope for the log. misclassification rate of

Algorithm 1 approaches that of the oracle (esp. clear for the soft version in Figure 9.1(b))

as predicted by the theory. Simulation results for various other settings can be found in

Appendix B, showing qualitatively similar behavior.
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CHAPTER 10

Proofs of the main lemmas

In this section, we give the proof of the three main lemmas of Chapter 7.1. We we first give

the proofs of Lemma 4 and 6 in Chapter 10.1 and 10.2. The proof of Lemma 5(b) is more

technical and occupies the remainder of this section, including auxiliary results on the error

exponents and Poisson-binomial approximations, in Sections 10.3 and 10.4.

Throughout, we will use the following concentration inequality [GN15, p. 118]:

Proposition 3 (Prokhorov). Let S =
∑

iXi for independent centered variables {Xi}, each

bounded by c <∞ in absolute value a.s. and let v ≥∑i EX2
i , then

P
(
S ≥ vt

)
≤ exp[−vhc(t)], t ≥ 0, where hc(t) :=

3

4c
t log

(
1 +

2c

3
t
)
. (10.1)

Same bound holds for P(S < −vt).

Note that hc(t) � t2 as t→ 0 and hc(t) � t log t as t→∞.

10.1 Proof of Lemma 4

Let us define the confusion matrix as R(z̃, z) ∈ [0, 1]L×L with entries

Rk`(z̃, z) =
1

m

m∑

j=1

1{z̃j = k, zj = `} =
|j : z̃j = k, zj = `|

m
. (10.2)

We can similarly define Rk`(z, z̃). It is easy verify that R(z̃, z) = R(z, z̃)T . By definition (4.3)

of the (global) row mean parameters,

λk`′(y, z̃) =
m∑

j=1

L∑

`=1

Pk`1{zj = `, z̃j = `′} = mPk∗R∗`′(z, z̃). (10.3)
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To see (10.3), note that since we are using true labels y in the first argument of λk`′(y, z̃),

the averaging 1
nk(y)

∑
i 1{yi = k}

(
· · ·
)

over i, in the definition, is vacuous. That is, for any

i with yi = k, we have λk`′(y, z̃) =
∑

j E[Aij]1{z̃j = `′}. We then further break this sum

according to column labels zj = ` to get (10.3).

Recall that n(z) is the vector of sizes of clusters in z and π(z) = n(z)/m is the corre-

sponding proportions. To simplify, let

N(z) := diag(n(z)), Π(z) := diag(π(z)).

We have mIL = N(z)Π(z)−1 where IL is the L× L identity matrix, hence

mPk∗R∗`′(z, z̃) = Pk∗N(z) Π(z)−1R∗`′(z, z̃) = λk∗(y, z) Π(z)−1R∗`′(z, z̃)

using (2.2). Let use define

U(z, z̃) := Π(z)−1R(z, z̃).

Since π(z) contains the row sums ofR∗`′(z, z̃), U(z, z̃) is the row-normalized confusion matrix,

i.e. U = (Rk`/Rk+). We have

λk`′(y, z̃) = λk∗(y, z)U∗`′(z, z̃), (10.4)

and its matrix version Λ(y, z̃) = Λ(y, z)U(z, z̃). We can similarly define U(ỹ, y) = Π(ỹ)−1R(ỹ, y).

Recalling definition (4.3), and some algebra gives

λk′`′(ỹ, z̃) =
1

nk′(ỹ)

n∑

i=1

∑

k∈[K]

λk`′(y, z̃)1{yi = k, ỹi = k′}

=
1

nk′(ỹ)

∑

k∈[K]

λk`′(y, z̃) |i : yi = k, ỹi = k′|,

where to get the first equality one further breaks the sums over
∑

k 1{yi = k} and use the

expression for λk`′(y, z̃) in the comments after (10.3). Using the definition of the confusion
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matrix in (10.2), adapted to row labels, and the definition of U , we have

λk′`′(ỹ, z̃) =
1

πk′(ỹ)
Rk′∗(ỹ, y)λ∗`′(y, z̃) = Uk′∗(ỹ, y)λ∗`′(y, z̃), (10.5)

or compactly Λ(ỹ, z̃) = U(ỹ, y)Λ(y, z̃). We also define a column-normalized confusion matrix,

V (z, z̃) := R(z, z̃)Π(z̃)−1.

Lemma 19. (A2) and (B3) imply

max
k

[1− Ukk(ỹ, y)] ≤ γ, (B3.1)

max
`

[1− U``(z, z̃)] ≤ γ, and (B3.2)

max
`

[1− V``(z, z̃)] ≤ γ. (B3.3)

Proof. Without loss of generality, assume that the optimal permutation matching ỹ to y is

identity, and similarly for z̃ to z. By definition, 1 − Ukk(ỹ, y) is the misclassification rate

withing the kth community of ỹ, hence

1− Ukk(ỹ, y) =
|i : ỹi = k, yi 6= k|/n
|i : ỹi = k|/n =

|i : ỹi = k, yi 6= k|/n
|i : ỹi = k, yi 6= k|/n+ |i : ỹi = yi = k|/n.

Recall that we can write (see Chapter 5.1)

Mis(ỹ, y) =
1

n
|i : ỹi 6= yi| =

1

n

∑

k

|i : ỹi = k, yi 6= k| = 1

n

∑

k

|i : ỹi 6= k, yi = k|. (10.6)

Then, (B3) and the second equality in (10.6) implies |i : ỹi = k, yi 6= k|/n ≤ γ/(βK),

while the third equality in (10.6) gives |i : ỹi = yi = k|/n ≥ πk(y) − γ/(βK). Letting

f(x) = x/(x+ 1),

1− Ukk(ỹ, y) = f
( |i : ỹi = k, yi 6= k|/n
|i : ỹi = yi = k|/n

)
≤ γ/(βK)

γ/(βK) + πk(y)− γ/(βK)
=

γ

πk(y)βK
≤ γ

where the first inequality is by monotonicity of f , and the last by (A2). This proves (B3.1).

Similarly, 1 − U``(z, z̃) is the misclassification rate within the `th community of z, i.e.,
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Mis`(z̃, z), hence

1− U``(z, z̃) =
|j : zj = `, z̃j 6= `|/m

π`(z)
=

γ

π`(z)βL
≤ γ,

proving (B3.2). The same bound holds for 1−U``(z̃, z) by an argument similar to that used

for Ukk(ỹ, y). To prove (B3.3), we observe

U(z̃, z) = Π(z̃)−1R(z̃, z) = Π(z̃)−1R(z, z̃)T = [R(z, z̃)Π(z̃)−1]T = V (z, z̃)T

hence 1−V``(z, z̃) = 1−U``(z̃, z) ≤ γ. All statements are true for any k ∈ [K] and ` ∈ [L].

10.1.1 Proof of Lemma 4(a)

For the lower bound, by (10.4) and (B3.2),

λk`′(y, z̃) = λk∗(y, z)U∗`′(z, z̃) ≥ λk`′(y, z)U`′`′(z, z̃)

≥ (1− γ)λk`′(y, z) ≥ λk`′(y, z)− Cγ‖Λ‖∞

where the last inequality is by γ ≤ Cγ and λk`′(y, z) ≤ ‖Λ‖∞. For the upper bound, we write

λk∗(y, z)U∗`′(z, z̃) = λk`′(y, z)U`′`′(z, z̃) +
∑

`6=`′
λk`(y, z)U``′(z, z̃).

The first term obviously satisfies λk`′(y, z)U`′`′(z, z̃) ≤ λk`′(y, z), hence

λk`′(y, z̃)− λk`′(y, z) ≤
∑

`6=`′
λk`(y, z)U``′(z, z̃). (10.7)

By (B3.3), for every `′ ∈ [L],

π`′(z) ≥ 1

m
|j : zj = z̃j = `′| = π`′(z̃)V`′`′(z, z̃) ≥ (1− γ)π`′(z̃). (10.8)

By (A2), for every `′ and `, we have π`′(z) ≤ β2π`(z), hence

U``′(z, z̃) =
1

π`(z)
R``′(z, z̃) =

π`′(z̃)

π`(z)
V``′(z, z̃) ≤ β2

1− γV``′(z, z̃).
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Combining with (10.7)

λk`′(y, z̃)− λk`′(y, z) ≤
β2

1− γ
∑

`6=`′
λk`(y, z)V``′(z, z̃) ≤ β2γ

1− γ ‖λk∗(y, z)‖∞ (10.9)

where the last inequality is by (B3.3) and that V is column normalized. This proves the

upper bound, and completes the proof of ‖Λ(y, z̃) − Λ‖∞ ≤ Cγ‖Λ‖∞. Since we assume

Cγ ≤ 1, it follows that ‖Λ(y, z̃)‖∞ ≤ 2‖Λ‖∞.

10.1.2 Proof of Lemma 4(b)

Recalling (10.5), we have

λk′`′(ỹ, z̃) = Uk′∗(ỹ, y)λ∗`′(y, z̃) = Uk′k′(ỹ, y)λk′`′(y, z̃) +
∑

k 6=k′
Uk′k(ỹ, y)λk`′(y, z̃).

By (B3.1), the first term is bounded as

(1− γ)λk′`′(y, z̃) ≤ Uk′k′(ỹ, y)λk′`′(y, z̃) ≤ λk′`′(y, z̃)

and the second term as

0 ≤
∑

k 6=k′
Uk′k(ỹ, y)λk`′(y, z̃) ≤ γ‖λ∗`′(y, z̃)‖∞

recalling that U is row normalized hence
∑

k 6=k′ Uk′k = 1− Uk′k′ ≤ γ, by (B3.1). Combining

the two bounds, we have

λk′`′(ỹ, z̃)− λk′`′(y, z̃) ∈
[
−γλk′`′(y, z̃), 0

]
+
[
0, γ‖λ∗`′(y, z̃)‖∞

]

⊆ ‖λ∗`′(y, z̃)‖∞
[
− γ, γ

]

showing that ‖Λ(ỹ, z̃) − Λ(y, z̃)‖∞ ≤ γ‖Λ(y, z̃)‖∞. Combining with ‖Λ(y, z̃)‖∞ ≤ 2‖Λ‖∞
from part (a) of the lemma, we have the first assertion of part (b). The second assertion

follows from γ ≤ 1/2 and part (a) by triangle inequality. (Note that assumption 6Cγω ≤ 1

in fact implies γ ≤ 1/6 since β, ω ≥ 1 and γ ≤ Cγ.)
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10.1.3 Proof of Lemma 4(c)

Recalling definitions of λ̂k` and λk`(ỹ, z̃) from (4.2) and (4.3), we have

nk(ỹ)
[
λ̂k` − λk`(ỹ, z̃)

]
=

n∑

i=1

m∑

j=1

(
Aij − E[Aij]

)
1{ỹi = k, z̃j = `}

which is of the form S =
∑

ij Xij with independent centered terms Xij = Aij − E[Aij] with

|Xi| ≤ 1 and
∑

ij EX2
ij =

∑
ij var(Aij) ≤

∑
ij EAij = nk(ỹ)λk`(ỹ, z̃). Note that the sums

in these expressions run over {(i, j) : ỹi = k, z̃j = `}. Applying the two-sided version of

Proposition 3, with v = nk(ỹ)λk`(ỹ, z̃), t = τ and c = 1, we have

P
(∣∣λ̂k` − λk`(ỹ, z̃)

∣∣ > λk`(ỹ, z̃) τ
)

= P
(
nk(ỹ)

∣∣λ̂k` − λk`(ỹ, z̃)
∣∣ > nk(ỹ)λk`(ỹ, z̃) τ

)

≤ 2 exp
(
−nk(ỹ)λk`(ỹ, z̃)h1(τ)

)
.

Applying union bound over (k, `) ∈ [K] × [L], and using part (b) of this lemma, we have

‖Λ̂− Λ(ỹ, z̃)‖∞ ≤ τ‖Λ(ỹ, z̃)‖∞ ≤ 4τ‖Λ‖∞ with probability at least

1− 2KL
(
−min

k
nk(ỹ) min

k,`
λk`(ỹ, z̃)h1(τ)

)
.

We have nk(ỹ) ≥ nπk(y)(1 − γ) ≥ n(βK)−1/2 using (B3.1), (A2) and γ ≤ 1/2; see (10.8).

Similarly, since ‖Λ(ỹ, z̃)− Λ‖∞ ≤ 3Cγ‖Λ‖∞, we have

min
k,`

λk`(ỹ, z̃) ≥ Λmin − 3Cγ‖Λ‖∞ ≥ Λmin(1− 3Cγω) ≥ Λmin/2.

10.2 Proof of Lemma 6

Let bi∗ = bi∗(z̃). Recall (7.3), (7.4) and (7.5), and let

Ŝk = Sk(b, Λ̂), Ẑik = Zik(bi∗, Λ̂), Ŷikr = Zik(bi∗, Λ̂).
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For any event A and random variable X, let us write E[X;A] := E[X1A]. Consider the

following event: A := {Λ̂ ∈ BΛ(δ)}. Pick some i ∈ [N ] with yi = k. Then,

E
[
Ŝk;A

]
= E

[
Ẑik;A

]
= P

(⋃

r 6=k

{
Ŷikr ≥ 0

}
∩ A

)

≤
∑

r 6=k
P
(
Yikr(bi∗(z̃), Λ̂) ≥ 0, Λ̂ ∈ BΛ(δ)

)

≤
∑

r 6=k
P
(
∃Λ̃ ∈ BΛ(δ), Yikr(bi∗(z̃), Λ̃) ≥ 0

)

≤
∑

r 6=k
exp

(
−Ikr + η′

)
=: pk

where the last inequality follows from Lemma 5 with ηkr defined there. Using Markov

inequality

P
(
Ŝk ≥ tpk

)
≤ P

(
{Ŝk ≥ tpk} ∩ A

)
+ P(Ac)

≤ E[Ŝk;A]

tpk
+ P(Ac) ≤ 1

t
+ P(Ac).

for any t > 0. The version of Markov inequality used follows from (pointwise) inequality:

1{X≥u}1A ≤ (X1A)/u. Taking t = eu complete the proof.

10.3 Error exponents

We start by obtaining a bound on the error exponent (i.e., the negative logarithm of the

probability of error) for binary hypothesis testing in an exponential family. This result is

a generalization of the result that appears in [AS15], and is proved by the same technique.

The result (and the technique inspired by [AS15]) is interesting since it provides a bound

different than the classical Chernoff bound on the error exponent [Che52]; see also [Ver86]

and [CT06, Theorem 11.9.1]. This leads for example to a sharper control for the case of

Poisson hypothesis testing. We start with the result for a general exponential family and

then in Chapter 10.3.2 specialize to the case of interest in this paper, the Poisson family.

92



10.3.1 General exponential family

Let π(t; γ) denote the density of a 1-dimensional standard exponential family w.r.t. to some

measure ν on R:

π(t; γ) = h(t) exp
(
γt− A(γ)

)
. (10.10)

We consider distributions on RL that are products of these distributions, having density:

p(x; θ) =
L∏

`=1

π(x`, θ`), x = (x`) ∈ RL, θ = (θ`) ∈ RL (10.11)

with respect to µ = ν⊗L (L-fold product measure whose coordinate measures are all ν).

Proposition 4. Let pr(x) := p(x; θr), r = 0, 1 be two exponential family densities on RL

(relative to µ = ν⊗L) as defined in (10.10) and (10.11). Assume that ν is either the Lebesgue

measure on R or the counting measure on Z, and that θ0 6= θ1. For s ∈ (0, 1), let

θs` = (1− s)θ0` + sθ1`, and Is` =
[
(1− s)A(θ0`) + sA(θ1`)

]
− A(θs`), (10.12)

as well as Is :=
∑L

`=1 Is`, T := {` : θ0` 6= θ1`} and

C(α) :=

∫
e−α|t|dν(t) =





2
α

ν is Lebesgue,

1+e−α
1−e−α ≤ 2

1−e−α ν is counting.

(10.13)

Consider testing p0 against p1 using the likelihood ratio test based on a single observation. Let

pr be the probability of error under pr for r = 0, 1. Then, the sum of the error probabilities

is bounded as

Pe,0 + Pe,1 ≤ inf
`∈T

inf
s∈(0,1)

[
e−Is‖π( · ; θs`)‖∞C

(
min(s, 1− s)|θ0` − θ1`|

) ]
. (10.14)

Remark 13. The proof goes through for any translation invariant measure ν (e.g., a Haar

measure) with an appropriate constant C(α). It also goes through if we replace t in (10.10)

with a general sufficient statistic φ(t), as long as (1) φ is surjective from the support of the

exponential family to R and (2) C(α) =
∫
e−α|φ(t)|dν(t) < ∞ for all α > 0 and (3) φ has a
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measurable inverse.

Remark 14. Let s∗ be the maximizer of s 7→ Is. Then, noting that α 7→ C(α) is decreasing,

Proposition 4 implies

Pe,0 + Pe,1 ≤ exp
(
−Is∗ + log ‖π( · ; θs∗`)‖∞ + logC(α∗)

)
, where, (10.15)

α∗ = min(s∗, 1− s∗) max
`∈[L]
|θ0` − θ1`|. (10.16)

The bound is an improvement over the Chernoff bound if log ‖π( · ; θs∗`)‖∞ is negative and

logC(α∗) is controlled. This is the case for the Poisson distribution as we show in the sequel.

10.3.2 Poisson case

The Poisson case corresponds to (10.10) with γ = log λ, h(t) = (1/t!)1{t ≥ 0}, ν = the count-

ing measure and A(log λ) = λ. Letting θs` = log λs` for all s ∈ [0, 1], we have from (10.12)

λs` = λ1−s
0` λs1`, Is` =

[
(1− s)λ0` + sλ1`

]
− λs`.

We also note that |θ0` − θ1`| = | log(λ0`/λ1`)|. Let us define

s∗ = argmax
s∈(0,1)

Is, and, I∗ = max
s∈(0,1)

Is, where Is =
L∑

`=1

Is`

We will assume

λ0`/λ1` ∈ [1/ω, ω], ∀` ∈ [L], for some ω > 1. (10.17)

The following lemma shows that s∗ stays away from the boundary:

Lemma 20. Assuming (10.17), we have s∗ ∈ [ 1
2ω
, 1− 1

2ω
].

Proof of this lemma and subsequent results appear in Chapter A.4. From (10.16), we

have α∗ = min(s∗, 1− s∗) max` | log(λ0`/λ1`)| in the Poisson case. Defining

ε01 := ε01(Λ) := max
`∈[L]

(λ0`

λ1`

∨ λ1`

λ0`

)
− 1, α01 :=

1

2ω
log(1 + ε01) (10.18)
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we note that α∗ = min(s∗, 1 − s∗) log(1 + ε01), hence Lemma 20 implies α∗ ≥ α01, that

is, C(α∗) ≤ C(α01) in (10.15), where C(·) has the form given in (10.13) for the counting

measure, i.e.,

C(α01) =
1 + e−α01

1− e−α01
≤ 2

1− e−α01

(a)

≤
( 4

ε01

+ 3
)
ω (10.19)

where the last inequality is by the following lemma:

Lemma 21. Inequality (a) in (10.19) holds.

Next we bound the maximum of the density:

Lemma 22 ([HLC60]). Let π(t; log λ) = e−t(λt/t!)1{t ≥ 0} be the desnity of the Poisson

family. Then, for all λ > 0,

‖π( · ; log λ)‖∞ ≤
(

1 +
1

12λ

) 1√
2πλ

.

In particular ‖π( · ; log λ)‖∞ ≤ exp
(
−1

2
log λ

)
for λ ≥ 0.056.

Combining Lemmas 20, 21 and 22, we have the following corollary which gives the fol-

lowing overall bound on the error exponent:

Corollary 10. Consider testing two Poisson vector models with mean vectors given by the

rows of Λ = [λ0∗ ; λ1∗] ∈ R2×L
+ , satisfying (10.17). Let Λmin = minr` λr`. Then, the sum of

the error probabilities for the likelihood ratio test is bounded as

Pe,0 + Pe,1 ≤ ω
( 4

ε01

+ 3
)

exp
(
−I∗ − 1

2
log Λmin

)
. (10.20)

We also have the following general lower bound on ε01 in terms of the information I∗:

Lemma 23. Let Λ = [λ0∗ ; λ1∗] ∈ R2×L
+ . There exists ` ∈ [L] such that

∣∣∣ log
λ0`

λ1`

∣∣∣ ≥ 1

2
log
(

1 +
8I∗

L‖Λ‖∞

)
,

which implies ε01 ≥ min
(

2I∗
L‖Λ‖∞ , 2

)
.
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Although the bound in Lemma 23 holds without any further assumption, it is not always

tight. The difference in our two sets of results, namely (3.6) and (3.7) is due to using the

sharper bound (10.20) versus replacing ε01 with its universal lower bound.

Lemma 24 (Perturbation of ε01). Suppose Λ′ ∈ BΛ(δ), and let ε′01 = ε01(Λ′) and ε01 =

ε01(Λ) as in (10.18), and assume (10.17). Then ε′01 ≥ ε01 − 2ω(1 + ε01)δ.

10.4 Approximation results for Lemma 5(b)

Let us collect some approximation lemmas that will be used in the proof of Lemma 5(b).

The proofs can be found in Appendix A.4. We write pmf for the probability mass functions.

We recall that a Poisson-binomial variable with parameter (p1, . . . , pn) is one that can be

written as
∑n

i=1Xi where Xi ∼ Ber(pi), independent over i = 1, . . . , n. We write pmf for

the probability mass function.

Lemma 25 (Poisson-binomial approximation). Let ϕ(x;λ) be the pmf of a Poisson variable

with mean λ, and let ϕ̃(x, p) be the pmf of a Poisson-binomial variable with parameters

p = (p1, . . . , pn) where
∑n

j=1 pj = λ. Let p∗ := maxj∈[n] pj. Then,

ϕ̃(x; p)

ϕ(x;λ)
≤ exp

∗
, ∀x ∈ Z+.

This result immediately extends to the comparison between vector versions of the two

distributions:

Corollary 11 (Poisson-binomial approximation). Let p(`) = (p
(`)
1 , . . . , p

(`)
n` ) ∈ [0, 1]n` be a

vector of probabilities for each ` ∈ [L] and let λ(`) =
∑n`

i=1 p
(`)
i ∈ R+. Let

Φ̃(x, (p(1), . . . , p(L))) :=
L∏

`=1

ϕ̃(x`; p
(`)), for each x = (x1, . . . , xL) ∈ ZL+ (10.21)

be the pmf of a vector Poisson-binomial variable, and Φ(x, (λ(1), . . . , λ(L))) =
∏L

`=1 ϕ(x`;λ
(`))

be the corresponding vector Poisson pmf. Then, we have

Φ̃(x, (p(1), . . . , p(L)))

Φ(x, (λ(1), . . . , λ(L)))
≤ exp

(
p∗

L∑

`=1

x`

)
, ∀x ∈ ZL+,
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where p∗ = max{p(`)
i : i ∈ [n`], ` ∈ [L]}.

Lemma 26 (Poisson likelihood approximation). Suppose max(|λ1 − λ|, |λ2 − λ|) ≤ ρ ≤ 1
3
λ,

then for any x ∈ Z+, we have

φ(x;λ1)

φ(x;λ2)
≤ exp

(3ρx

λ
+ 2ρ

)
.

Lemma 27 (Degree Truncation). Let bi+ =
∑

`∈[L] bi` =
∑m

j=1Aij be the degree of (row)

node i. Then,

P(bi+ > 5L‖Λ‖∞) ≤ exp(−3L‖Λ‖∞).

Proof of Lemma 27. Let row node i belong to row cluster k, and let bi+ =
∑

`∈[L] bi` =
∑m

j=1 Aij be its degree, with expectation λk+ :=
∑

`∈[L] λk`. By definition, we have λk+ ≤
L‖Λ‖∞. We would like to find an upper bound on the probability

P
(
bi+ > 5L‖Λ‖∞

)
≤ P

(
bi+ − λk+ > 4L‖Λ‖∞

)

We let v = λk+, vt = 4L‖Λ‖∞, so t ≥ 4. By Proposition 3, we have

P
(
bi+ − λk+ > 4L‖Λ‖∞

)
≤ exp

[
−3

4
vt log

(
1 +

2t

3

)]
≤ exp

(
−3

4
vt
)
≤ exp(−3L‖Λ‖∞).

10.5 Proof of Lemma 5(b)

Fix i ∈ [n] such that yi = k, and z̃ ∈ [K]n and let bi∗ = bi∗(z̃). Throughout, let Λ′ = (λ′k`) :=

Λ(y, z̃) which belongs to BΛ(δ) by assumption. Denoting the kth row of Λ′ as λ′k∗, we have

E[bi∗] = λk∗. For r 6= k ∈ [K], i such that yi = k and Λ̃ ∈ BΛ(δ),

Yikr(bi∗, Λ̃) =
L∑

`=1

bi` log
λ̃r`

λ̃k`
+ λ̃k` − λ̃r` ≤

L∑

`=1

[
bi` log

λr` + ρ

λk` − ρ
+ λk` − λr` + 2ρ

]
:= Y ∗
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where ρ := δ‖Λ‖∞ is the radius of BΛ(δ). Hence,

P(∃Λ̃ ∈ BΛ, Yikr(Λ̃) ≥ 0) ≤ P(Y ∗ ≥ 0) = P(bi∗ ∈ F ),

where we have defined (recalling the definition of Ψ from (4.13)):

F :=
{
x ∈ ZL+ : Ψ(x;λr∗ + ρ | λk∗ − ρ) ≥ −2Lρ

}
.

Degree truncation. Let bi+ =
∑

`∈[L] bi` =
∑m

j=1 Aij be the degree of (row) node i, and

E =
{
x ∈ ZL+ :

L∑

`=1

x` ≤ 5L‖Λ‖∞
}
. (10.22)

Using Lemma 27, we have P(bi∗ /∈ E) ≤ exp(−3L‖Λ‖∞), which is faster than the rate we

want to establish. Hence, for the rest of the proof it is enough to work on {bi∗ ∈ E}. We

have the following two approximations on this event:

Poisson-binomial approximation. Recall that P is the connectivity matrix and we have,

‖P‖∞ ≤
‖Λ‖∞

mini ni(z)
≤ βL‖Λ‖∞

m
(10.23)

where the first inequality follows from definition of Λ in (2.2), and the second from assump-

tion (A2). We note that bi` = bi`(z̃) =
∑m

j=1 Aij1{z̃j = `} as defined in (4.7), follows a

Poisson-binomial distribution. In order the describe the parameters of this distribution, let

us introduce the following notation

lab`(z̃) := (zj : j ∈ [m] such that z̃j = `},

that is, the vector of true labels associated with nodes in the `th cluster of z̃. Then, Pk,lab`(z̃) =

(Pk,zj : j ∈ [m] s.t. z̃j = `) ∈ Rn`(z̃) is the probability vector associated with the Poisson-

binomial distribution of bi`. Also, let

lab(z̃) := (lab1(z̃), . . . , labL(z̃)), and Pk,lab(z̃) := (Pk,lab1(z̃), . . . , Pk,labL(z̃)).
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Then, we can say that bi∗ = bi∗(z̃) is a product Poisson-binomial distribution with parameter

Pk,lab(z̃). In particular, bi∗ has pmf Φ̃(x;Pk,lab(z̃)) as defined in (10.21). We also note that

E[bi∗(z̃)] = λk∗(y, z̃) =: λ′k∗. It follows from Corollary 11, noting that ‖Pk,lab(z̃)‖∞ ≤ ‖P‖∞
combined with (10.23),

Φ̃(x;Pk,lab(z̃))

Φ(x;λ′k∗)
≤ exp

(
‖Pk,lab(z̃)‖∞

L∑

`=1

x`

)
≤ exp

(5βL2‖Λ‖2
∞

m

)
=: ζ1, ∀x ∈ E.

Poisson likelihood approximation. Recall that ρ = δ‖Λ‖∞. Since by assumption,

ωδ ≤ 1
3
, we have ρ ≤ ‖Λ‖∞

3ω
≤ 1

3
Λmin. Recall that by assumption Λ′ = (λ′k`) ∈ BΛ(δ). By

Lemma 26,

Φ(x;λ′k∗)

Φ(x;λk∗ − ρ)
≤
∏

`∈[L]

exp
(3ρx`
λk`

+ 2ρ
)
≤ exp

(
2Lρ+

15ρ

Λmin

L‖Λ‖∞
)

≤ exp
(

17ωLρ
)

=: ζ2, ∀x ∈ E.

With some abuse of notation, we treat Φ and Φ̃ are measures as well, thus, for example,

Φ(E) =
∑

x∈E Φ(x). Then, we have

P(bi∗ ∈ E ∩ F ) = Φ̃
(
E ∩ F ;Pk∗

)
≤ ζ1 Φ

(
E ∩ F ;λ′k∗

)
≤ ζ1ζ2 Φ

(
E ∩ F ;λk∗ − ρ

)
. (10.24)

Thus, it is enough to bound Φ(F ;λk∗− ρ) which gives a further upper bound. This quantity

is closely related to testing Poisson vector distributions with mean λk∗−ρ and λr∗−ρ against

each other. Let us write p0(x) := Φ(x;λk∗ − ρ) and p1(x) := Φ(x;λr∗ + ρ) and note that

Ψ( · ;λr∗ + ρ | λk∗ − ρ) = log(p1/p0). We have

∑

x∈F
Φ(x;λk∗ − ρ) =

∑

x∈ZL+

p0(x) 1
{

log
p1(x)

p0(x)
≥ −2Lρ

}

=
∑

x∈ZL+

p0(x) 1
{e2Lρp1(x)

p0(x)
≥ 1
}

≤
∑

x∈ZL+

min
(
e2Lρp1(x), p0(x)

)
≤ e2Lρ

∑

x∈ZL+

min
(
p1(x), p0(x)

)
. (10.25)
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Let us define

Is(λ0 | λ1) =
L∑

`=1

[
sλ0` + (1− s)λ1`

]
− λs0`λ1−s

1` , λ0, λ1 ∈ RL
+. (10.26)

We can now apply Corollary 10. Since ‖Λ‖∞+ρ
Λmin−ρ ≤

ωΛmin+ 1
3

Λmin
2
3

Λmin
≤ 2ω, we need to substitute ω

in Corollary 10 by 2ω. It follows that

∑

x∈ZL+

min
(
p1(x), p0(x)

)
≤ ζ3 exp

(
−Is(λr∗ + ρ | λk∗ − ρ)− 1

2
log(Λmin − ρ)

)

≤ ζ3 exp
(
−Is(λk∗ | λr∗) + 2ωLρ− 1

2

(
log Λmin + log

2

3

))

≤ 8

√
3

2
ζ3 exp

(
−Is(λk∗ | λr∗) + 2ωLρ− 1

2
log Λmin

)
(10.27)

where ζ3 = ω/(εkr − 2ω(1 + εkr)δ) +ω from Lemma 24, and the second line follows from the

following elementary inequality:

(a− ρ)1−s(b+ ρ)s ≤ a1−s
(
bs +

sρ

b1−s

)
≤ a1−sbs + ρω

assuming a/b ≤ ω. Note that Ikr = sups∈(0,1) Is(λr∗ | λk∗). Putting the pieces (10.24), (10.25)

and (10.27) together (and taking supremum over s) we have

P(bi∗ ∈ E ∩ F ) ≤ 8

√
3

2
ζ2ζ3 e

2Lρ+2ωLρ exp
(
−Ikr −

1

2
log Λmin

)
.

We note that

log(ζ1ζ2 e
2Lρ+2ωLρ) ≤ 17ωLρ+

5βL2‖Λ‖2
∞

m
+ 4ωLρ ≤ 21ωLρ+

5βL2‖Λ‖2
∞

m
=: log ζ4

It follows that

P(bi∗ ∈ E ∩ F ) ≤ ζ3ζ4 exp
(
−Ikr −

1

2
log Λmin

)
.
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Finally we have

P(bi∗ ∈ F ) ≤ P(bi∗ ∈ E ∩ F ) + P(bi∗ ∈ Ec)

≤ 8

√
3

2
ζ3ζ4 exp

(
−Ikr −

1

2
log Λmin

)
+ exp

(
−3L‖Λ‖∞

)

≤ 11ζ3ζ4 exp
(
−Ikr −

1

2
log Λmin

)
,

assuming that Ikr and Λmin are sufficiently large. Noting that by the definition of ηkr in the

statement of the theorem, ηkr = log(2ζ3ζ4), the proof is complete.
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APPENDIX A

Remaining proofs

A.1 Proofs of Sections 7.2, 7.3 and 7.4

Proof of Lemma 7. We have nk(y
(q)) ∼ Hypergeometric(n/4, nk(y), n). For any fixed k ∈

[K] and q′ ∈ [Q], the concentration of hypergeometric distribution [Chv79] gives |πk(y(q′))−
πk(y)| ≤ ξ with probability at least 1− 2 exp(−nξ2/Q). The same probability bound holds

for |π`(z(q)) − π`(z)| ≤ ξ, for any fixed ` ∈ [L] and q ∈ [Q]. Taking the union bound over

k, `, q, q′ gives the desired result.

Proof of Lemma 8. Recall the definition of the true local mean parameters in (4.6), and the

corresponding global parameters in Chapter 4.1. We have

λ
(q)
k` −

λk`
Q

= Pk`

(
n`(z

(q))− n`(z)

Q

)

=
Pk` n`(z)

Q

(π`(z(q))

π`(z)
− 1
)

=
λk`
Q

(π`(z(q))

π`(z)
− 1
)
.

Since |π`(z(q)) − π`(z)| ≤ ξ and π`(z) ≥ 1/(βL) by assumptions (B4a) and (A2), the first

inequality in (7.14) follows, from which we have the second inequality by (B4a).

Proof of Lemma 9. From Lemma 8, we have ‖Λ(q)−Λ/Q‖∞ ≤ (ξLβ)‖Λ/Q‖∞ and ‖Λ(q)‖∞ ≤
3
2
‖Λ/Q‖∞. Note that Λ(q) is the true (local) mean parameter matrix associated with subblock

A(q′,q), and this subblock has n/(2Q) rows. We will apply Lemma 4 to the submatrix A(q′,q)

and sublabels z(q′) and y(q). In order to do so, we have to verify conditions (A1), (A2))

and (B3) for the subblock. (Condition (B3) is satisfied by assumption.) By Lemma 8, we

have

‖Λ(q)‖∞
Λ

(q)
min

≤ 3
‖Λ‖∞
Λmin

≤ 3ω.
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By (7.12), the condition (A2) holds with β replaced with 2β. We also need to replace Λmin

in Lemma 8 with Λ
(q)
min ≥ Λmin/(2Q), and Cγ with 4Cγ (more precisely, we are replacing Cγ,β

with Cγ,2β). Thus, assuming 6(4Cγ)(3ω) ≤ 1, we obtain

P
(
‖Λ̂(q′,q) − Λ(q)‖∞ ≤ 4(4Cγ + τ)‖Λ(q)‖∞

)
≥ 1− 2p1

(
τ ;

n

2Q
,
Λmin

2Q
, 2β
)

(A.1)

where p1(·) is as in (7.2). Since ‖Λ(q)‖∞ ≤ 3
2
‖Λ/Q‖∞, 4(4Cγ + τ)‖Λ(q)‖∞ ≤ (24Cγ +

6τ)‖Λ/Q‖∞. Thus, on the event in (A.1), we have by triangle inequality

‖Λ̂(q′,q) − Λ/Q‖∞ ≤ 4(4Cγ + τ)‖Λ(q)‖∞ + (ξLβ)‖Λ/Q‖∞

≤
[
4(4Cγ + τ)

3

2
+ ξLβ

]
‖Λ/Q‖∞,

which is the desired result.

Proof of Lemma 10. For the proof, it is enough to consider Λ = [λ0 ; λ1] ∈ R2×L
+ , where

λ0, λ1 ∈ RL
+ are the two rows of Λ. Similarly, let Λ̃ = [λ̃0 ; λ̃1] ∈ R2×L

+ ∈ BΛ(δ). Let us define

Is(λ0 | λ1) =
L∑

`=1

[
(1− s)λ0` + sλ1`

]
− λ1−s

0` λs1`, λ0, λ1 ∈ RL
+ (A.2)

and α` = max{|λ0` − λ̃0`|, |λ1` − λ̃1`|}. We have

∣∣Is(λ0 | λ1)− Is(λ̃0 | λ̃1)
∣∣ ≤

L∑

`=1

[
α` +

∣∣λ1−s
0` λs1` − λ̃1−s

0` λ̃s1`
∣∣
]
.

Consider the function f(a, b) = a1−sbs for a, b > 0. Assuming max{a/b, b/a} ≤ ω, we have

‖∇f(a, b)‖1 ≤ (1− s)(b/a)s + s(a/b)1−s ≤ (1− s)ωs + sω1−s ≤ ω

using ω ≥ 1. It follows that |a1−sbs − u1−svs| ≤ ωmax{|a − u|, |b − v|} for a, b, u, v > 0.

Thus,
∣∣Is(λ0 | λ1) − Is(λ̃0 | λ̃1)

∣∣ ≤ (1 + ω)
∑

` α` ≤ 2ωLδ‖Λ‖∞ since max` α` ≤ δ‖Λ‖∞ by

assumption. Taking the supremum over s gives part (a).

Proof of Lemma 11. Assume dMis(ỹ, y) ≤ α and let nk = |i : yi = k| and Nkk′ = |i : yi =
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k, ỹi = k′|. Then,

n dMis(ỹ, y) =
∑

k

∑

k′ 6=k
Nkk′ ≤ αn ≤ α

πk
nk =: εnk.

It follows that
∑

k′ 6=kNkk′ ≤ εnk for every k. We also obtain Nkk′ ≤ εnk for all k and k′

such that k 6= k′. Since
∑

k′ Nkk′ = nk, we have Nkk ≥ (1− ε)nk. Thus, as long as ε < 1/2,

we have Nkk > Nkk′ for all k and k′ such that k 6= k′. That is, the diagonal of the confusion

matrix is bigger than every element in the corresponding row. Now take σ 6= id. Then, there

exists k such that k′ := σ−1(k) 6= k.

Nσ
kk := |i : yi = k, σ(ỹi) = k| = |i : yi = k, ỹi = k′| = Nkk′ < Nkk.

Then we have

n dMis(σ(ỹ), y) =
∑

k

(nk −Nσ
kk) >

∑

k

(nk −Nkk) = n dMis(ỹ, y).

showing that id is the unique optimal permutation and proving part (a). For part (b), we

note that |{i : ỹi = k}| ≥ Nkk ≥ (1− ε)nk > (1/2)nk whenever ε < 1/2.

Proof of Lemma 12. Assume that Mis(ỹ, y) ≤ α and Mis(ỹ′, y) ≤ α where α < 1
4

mink πk(ỹ).

By definition of the optimal permutation, dMis(σ(ỹ), y) ≤ α and dMis(σ′(ỹ′), y) ≤ α. Since

dMis is a metric (being the sum of discrete metrics over the coordinates), we have

dMis(σ−1 ◦ σ′(ỹ′), ỹ) = dMis(σ′(ỹ′), σ(ỹ)) ≤ 2α <
1

2
min
k
πk(ỹ)

where the first inequality is by the triangle inequality for dMis and the second by assumption.

Applying Lemma 11 gives the desired result.

Proof of Corollary 6. Take q = 2 for simplicity. Assume that (7.17) holds with constant 8

in place of 32, which is all we need for this lemma. We have

(n/2) dMis(σ12(ỹ(1)), y(1)) ≤ n dMis(σ12(ỹ(1,2)), y(1,2))
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by the definition of the dMis. It then follows that

dMis(σ12(ỹ(1)), y(1)) < 2
1

8βK
≤ 1

2
min
k
πk(y

(1))

where the second inequality holds by the counterpart of (7.12) for row labels. Applying

Lemma (11) we conclude that σ12 = σ∗(ỹ(1) → y(1)) =: σ1 .

Proof Corollary 7. Take q = 2 for simplicity. Let ε = 1/(32βK). By assumption, we have

Mis(ỹ(1,2), y(1,2)) < ε and Mis(ỹ(2,3), y(2,3)) < ε. By Corollary 6, σ12 = σ2 and σ23 = σ′2.

Then, the argument leading to (6.4) implies Mis(ỹ(2), y(2)) < 2ε and Mis(ỹ′(2), y(2)) < 2ε. By

assumption,

Mis(ỹ′(2), y(2)) < 2ε =
1

16βK
≤ 1

8
min
k
πk(y

(2)) ≤ 1

4
min
k
πk(ỹ

(2))

where the second inequality holds by the counterpart of (7.12) for row labels, and the third in-

equality follows from the second inequality and Lemma 11(b). It thus follows from Lemma 12

that σ−1
2 ◦ σ′2 = σ∗(ỹ′(2) → ỹ(2)) which is the desired result.

A.2 Proofs of Chapter 8.1.1

Proof of Lemma 17. Let us define I := Ikr and

Is =
L∑

`=1

(1− s)λk` + sλr` − λ1−s
k` λ

s
r`.

in this proof. For s ∈ [0, 1], s 7→ Is is a concave function and I0 = I1 = 0. We have defined

I := Is∗ = sups∈[0,1] Is. Suppose s∗ ≥ 1
2
, since 0

(
1− 1

2s∗

)
+ s∗

2s∗ = 1
2

and 1
2s∗ ≥ 1

2
, by concavity,

I1/2 ≥
(

1− 1

2s∗

)
I0 +

1

2s∗
Is∗ ≥

1

2
Is∗ =

I

2

Similarly, suppose s∗ ≤ 1
2
, I1/2 ≥ I/2 still holds, from which it follows that

∑

`∈[L]

(λr` − λk`)2 =
∑

`∈[L]

(
√
λr` −

√
λk`)

2(
√
λr` +

√
λk`)

2 ≥ (I/2)(4Λmin) = 2ΛminI.
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Taking the minimum over k and r completes the proof.

Proof of Lemma 18. Recall our choice of ξ in (8.15)—which will also be assumed in this

proof—giving P(Pc) = o(1) as shown (8.18). By Lemma 8, we have Λ(q) ∈ BΛ/Q(ξLβ) for

all q ∈ [Q], which combined with Lemma 10 (applied with δ = ξLβ) gives

|Ikr(Λ(q))− Ikr(Λ/Q)| ≤ 2ω(ξLβ)L‖Λ/Q‖∞ ≤
2ω(Lβ)L‖Λ/Q‖∞

βω(K ∨ L)2(‖Λ‖∞ ∨ ‖Γ‖∞)
≤ 2

Q
,

using (8.15). Thus

Imin(Λ(q)) ≥ Imin(Λ/Q)− 2

Q
≥ Imin

2Q

as Imin → ∞. We are now ready to apply Corollary 9 to the Algorithm 5 operating on

subblocks in Gcol
1 . It remains to verify that assumption (8.26) translates to condition (8.25)

for the subblocks. Indeed, we have to replace Imin with Imin(Λ(q)), ω with 3ω (by Lemma 8),

β with 2β (by (7.12)), and α with m/4
n/2

= α
2

since the subblocks in Gcol
1 are of size n

2
× m

4
.

Therefore, by assumption (8.26),

(2β)2(3ω)KL(K ∧ L) (α/2)

2Imin(Λ(q))
≤ 6Qβ2ω2KL(K ∧ L)α

Imin

≤ C1(1 + κ)−2, (A.3)

verifying condition (8.25) on the subblocks. Applying Corollary 9, we have the misclassifi-

cation rate of ỹ(q) satisfies

Mis(ỹ(q), y(q)) ≤ (1 + κ)2(3ω)(2β)L(K ∧ L)(α/2)

2C1(Imin/2Q)

which is the desired result.

A.3 Proofs of Chapter 10.3.1

Proof of Proposition 4. Step 1: Interpolation. Assume without loss of generality that

θ01 6= θ11 and fix some s ∈ (0, 1). It is enough to establish the bound for ` = 1 and this

particular s. Let Pe,+ := Pe,0 + Pe,1 the be sum of the error probabilities under the two
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hypothesis. Then,

Pe,+ =

∫
p01{p0 ≤ p1}dµ+

∫
p11{p1 < p0}dµ (A.4)

=

∫
min(p0, p1)dµ =

∫
p1−s

0 ps1 min(ls, ls−1)dµ. (A.5)

where l = p0/p1 is the likelihood ratio. Let pr` := π( · ; θr`) so that pr(x) =
∏

` pr`(x`).

Similarly, let

ps :=
p1−s

0 ps1∫
p1−s

0 ps1dµ
, and ps` :=

p1−s
0` ps1`∫
p1−s

0` ps1`dν
(A.6)

It is easy to see that ps(x) =
∏L

`=1 ps`(x`) and each ps` is a probability density (w.r.t. ν).

One can also verify that

∫
p1−s

0` ps1`dν = e−Is` , and ps` = π( · ; θs`),

hence ps = p( · ; θs) using definition (10.11). That is, ps defined in (A.6) belongs to the

same exponential family, with parameter θs interpolating θ0 and θ1. We also note that

p1−s
0` ps1` = e−Is`ps`, hence p1−s

0 ps1 = e−Isps. Substituting into (A.4), we obtain

Pe,+ = e−Is
∫
ps min(ls, ls−1)dµ. (A.7)

Step 2: Reduction to the single component case (L = 1). Using pr`(t) = π(t; θr`),

we have pr`(t)/pr`(t
′) = exp(θr`(t− t′)), hence

p0`(t)

p0`(t′)

p1`(t
′)

p1`(t)
= exp

[
(θ0` − θ1`)(t− t′)

]

Using pr(x) =
∏

` pr`(x`), the likelihood ratio can be written as

l(x) =
p0(x)

p1(x)
=
∏

`

l`(x`), where l`(x`) =
p0`(x`)

p1`(x`)
= exp

[
(θ0` − θ1`)x− A(θ0`) + A(θ1`)

]
.

(A.8)

As long as θ0` 6= θ1`, l` is well defined on R and maps onto R++. For any (x2, . . . , xL), let
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x∗1 = x∗1(x2, . . . , xL) be the solution of the following equation:

l1(x∗1)
L∏

`=2

l`(x`) = 1

which always exists in R (and not necessarily on the support of the exponential family).

Then, we have, setting δ = θ01 − θ11,

l(x) =
l1(x1)

l1(x∗1)
=
p01(x1)

p01(x∗1)

p11(x∗1)

p11(x1)
= exp

[
(θ01 − θ11)(x1 − x∗1)

]
= exp[δ(x1 − x∗1)].

It follows that

min(l(x)s, l(x)s−1) ≤ e−min(s,1−s)|δ(x1−x∗1)| = e−α|x1−x
∗
1|

where we have defined α := |δ|min(s, 1 − s). Recall that ps(x) =
∏L

`=1 ps`(x`) which we

write compactly as ps =
∏L

`=1 ps`. Let us write µ = µ1 × µ2:L as the product of underlying

coordinate measures. By Fubini theorem, we first integrate over the first coordinate in (A.7):

eIsPe,+ =

∫ L∏

`=2

ps`

[ ∫
ps1 min(ls, ls−1)dµ1

]
dµ2:L (A.9)

Let J = J(x2, . . . , xL) denote the inner integral in (A.9) (in brackets). We have the bound

J ≤
∫
ps1(x1)e−α|x1−x

∗
1|dµ1(x1) ≤ ‖ps1‖∞

∫
e−α|x1−x

∗
1|dµ1(x1).

Note that x∗1 is the only place where dependence on (x2, . . . , xL) appears in the bound. Since

µ1 is either the Lebesgue or the counting measure, and both these measures are translation in-

variant, the bound is in fact independent of x∗1. That is, we have J(x2, . . . , xL) ≤ C(α)‖ps1‖∞
for all (x2, . . . , xL). It follows that the same bound holds for Pe,+ by (A.9), that is,

eIsPe,+ ≤ C(α)‖ps1‖∞
∫ ( L∏

`=2

ps`

)
dµ2:L = C(α)‖ps1‖∞

since
∏L

`=2 ps` is a probability density w.r.t µ2:L. Since the choice of the coordinate ` = 1

and s was arbitrary, the proof is complete.
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A.4 Proofs of Chapter 10.3.2

Proof of Lemma 20. Let f(s) =
∑L

`=1(s − 1)λk` − sλr` + λ1−s
k` λ

s
r`, then f(s) is a concave

function of s on R+. Since f(0) = f(1) = 0, s∗ ∈ (0, 1). First, we show the statement is true

when L = 1. In this case, s∗ satisfies

λk1 − λr1 + λ1−s∗
k1 λs

∗
r1 log

(
λr1
λk1

)
= 0 (A.10)

Let x = λr1
λk1

. Now (A.10) is equivalent to

1− x+ xs
∗

log x = 0.

Hence

s∗(x) =
log((x− 1)/ log x)

log x
.

We extend the domain of s∗(x) to 1 by defining s∗(1) = 1
2
, then s∗(x) is an continuous

increasing function on (0,∞). Since λr1
λk1
∈ [1/ω, ω], we have s∗ ∈ [s∗(1/ω), s∗(ω)] ⊂ (0, 1).

One can observe that s∗(x) = 1− s∗(1/x), we have s∗ ∈ [s∗(1/ω), 1− s∗(1/ω)]. One can also

observe that s∗(x) ≥ x
2

for x ∈ [0, 1], so s∗ ∈ [ 1
2ω
, 1− 1

2ω
].

Now suppose L > 1, let s∗` be the optimizer of f`(s) = (s − 1)λk` − sλr` + λ1−s
k` λ

s
r`, we

still have s∗ ∈ [ 1
2ω
, 1 − 1

2ω
]. The optimizer s∗ of f(s) =

∑L
`=1 f`(s) satisfies s∗ ∈ [ 1

2ω
, 1 − 1

2ω
]

because f`(s) is concave for every ` ∈ [L].

Proof of Lemma 21. We first note the following Laurent series:

1

1− (1 + x)−r
=

1

rx
+
r + 1

2r
+
r2 − 1

12r
x−O(x2), as x→ 0

from which we get the inequality

1

1− (1 + x)−r
≤ r−1

x
+

1 + r−1

2
, for x > 0, r < 1.
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Let ε = ε01 and α = α01. Applying this inequality with r = 1/(2ω) and x = ε, and recalling

α = 1
2ω

log(1 + ε), we have

C(α) ≤ 2

1− e−α =
2

1− (1 + ε)−1/(2ω)
= 2

2ω

ε
+ (1 + 2ω).

Using 1 ≤ ω completes the proof.

Proof of Lemma 22. We have

eλ‖π( · ; log λ)‖∞ = sup
t∈Z+

λt

t!
≤ sup

t∈R+

λt√
2πλ(t/e)t

=
eλ√
2πλ

,

where the first inequality is by Stirling’s approximation and the last equality is by plugging

in the maximizer t = λ.

Proof of Lemma 23. There exists ` ∈ L such that

(1− s∗)λk` + s∗λr` − λ1−s∗
k` λs

∗
r` ≥

Ikr
L

Without loss of generality, we assume λk` < λr`. Let s∗ be the optimizer of Ikr. Dividing

λk1 both side, we have

1− s∗ + s∗
λr`
λk`
−
(λr`
λk`

)s∗
≥ Ikr
Lλk`

≥ Ikr
L‖Λ‖∞

Let us definef(x) := 1− s∗ + s∗x− xs∗ , then for x > 1,

f(x) ≤ 1

2
(1− s∗)s∗(x− 1)2 ≤ 1

8
(x− 1)2

Thus f(x) ≥ Ikr
L‖Λ‖∞ implies x ≥

√
1 + 8Ikr

L‖Λ‖∞ , or equivalently, log x ≥ 1
2

log
(

1 + 8Ikr
L‖Λ‖∞

)
.

Proof of Lemma 24. Without loss of generality, we assume λ01/λ11 = 1 + ε01. Letting ρ =

δ‖Λ‖∞, we have ‖Λ′ −Λ‖∞ ≤ ρ by definition. Let f(x) = (λ01 − x)/(λ11 + x). Then f(x) is
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convex on (0,∞) with derivative f ′(x) = −(λ01 + λ11)/(λ11 + x)2, hence

λ′01

λ′11

≥ λ01 − ρ
λ11 + ρ

= f(ρ) ≥ f(0) + ρf ′(0)

=
λ01

λ11

− λ01 + λ11

λ2
11

ρ = 1 + ε01 −
λ01 + λ11

λ2
11

ρ.

Combined with

ρ

λ11

=
δ‖Λ‖∞
λ11

≤ ωδ and
λ01 + λ11

λ11

= 2 + ε01 ≤ 2(1 + ε01) (A.11)

we have λ′01/λ
′
11 ≥ 1 + ε01 − 2ω(1 + ε01)δ which gives the desired result.

Proof of Lemma 25. Let Xj ∼ Poi(pj) independent over j = 1, . . . , n, so that
∑n

j=1Xj ∼
Poi(λ). Fix x ∈ Z+ and let S(x) = {S ⊂ [n] : |S| = x}. For any subset S of [n] and vectors

α, β ∈ Rn
+, let ψ(α, β, S) =

∏
j∈S αj

∏
j /∈S βj. We have

ϕ(x;λ) = P
(∑

j

Xj = x
)

≥ P
(∑

j

Xj = x, Xj ∈ {0, 1}, ∀j ∈ [n]
)

=
∑

S ∈S(x)

[∏

j∈S
P(Xj = 1)

∏

j /∈S
P(Xj = 0)

]
=

∑

S ∈S(x)

ψ
(
(pje

−pj), (e−pj), S
)
.

On the other hand ϕ̃(x; p) =
∑

S ∈S(x) ψ((pj), (1− pj), S). Thus,

ϕ̃(x; p)

ϕ(x;λ)
≤

∑
S ∈S(x) ψ

(
(pj), (1− pj), S

)
∑

S ∈S(x) ψ
(
(pje−pj), (e−pj), S

) ≤ max
S∈S(x)

ψ
(
(pj), (1− pj), S

)

ψ
(
(pje−pj), (e−pj), S

)

= max
S∈S(x)

ψ
(
(epj), ((1− pj)epj), S

)

using (
∑
ai)/(

∑
i bi) ≤ max(ai/bi) which holds assuming the sums have equal number of

terms, all of which positive. Using (1− x)ex ≤ 1, It follows that

ϕ̃(x; p)

ϕ(x;λ)
≤ max

S∈S(x)
ψ
(
(epj), (1), S

)
= max

S∈S(x)

∏

j∈S
epj ≤ exp

∗
.
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Proof of Lemma 26. We have

φ(x;λ1)

φ(x;λ2)
=
(λ1

λ2

)x
eλ2−λ1 ≤

(λ+ ρ

λ− ρ
)x
e2ρ =

(
1 +

2ρ

λ− ρ
)x
e2ρ ≤ exp

( 2ρx

λ− ρ + 2ρ
)
.

Since λ− ρ ≥ 2
3
λ by assumption, the result follows.

Proof of Lemma 27. Let row node i belong to row cluster k, and let bi+ =
∑

`∈[L] bi` =
∑m

j=1 Aij be its degree, with expectation λk+ :=
∑

`∈[L] λk`. By definition, we have λk+ ≤
L‖Λ‖∞. We would like to find an upper bound on the probability

P
(
bi+ > 5L‖Λ‖∞

)
≤ P

(
bi+ − λk+ > 4L‖Λ‖∞

)

We let v = λk+, vt = 4L‖Λ‖∞, so t ≥ 4. By Proposition 3, we have

P
(
bi+ − λk+ > 4L‖Λ‖∞

)
≤ exp

[
−3

4
vt log

(
1 +

2t

3

)]
≤ exp

(
−3

4
vt
)
≤ exp(−3L‖Λ‖∞).

A.5 Proof of Lemma 5(a)

Proof of Lemma 5(a). Fix z̃ and let bi∗ = bi∗(z̃). For r 6= k ∈ [K] and i such that yi = k,

and Λ̃ ∈ BΛ(δ),

Yikr(bi∗, Λ̃) =
L∑

`=1

[
bi` log

λ̃r`

λ̃k`
+ λ̃k` − λ̃r`

]
≤

L∑

`=1

[
bi` log

λr` + ρ

λk` − ρ
+ λk` − λr` + 2ρ

]
:= Y ∗

where ρ := δ‖Λ‖∞ is the radius of BΛ(δ). Hence P(∃Λ̃ ∈ BΛ, Yikr ≥ 0) ≤ P(Y ∗ ≥ 0). By

Markov inequality, we have P(Y ∗ ≥ 0) ≤ E[esY
∗
] for any s ≥ 0. To simplify the notation, let

us write v` = s log[(λr`+ρ)/(λk`−ρ)] and w` = s(λk`−λr`+2ρ), so that sY ∗ =
∑L

`=1 bi` v`+w`.

By independence, we have

logE[esY∗ ] = logE
[ L∏

`=1

ebi` v`+w`
]

=
L∑

`=1

logE[ebi` v`+w` ] =
L∑

`=1

log
[
ew`Eebi`v`

]
.
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Since the mgf of a Poisson-binomial variable is bounded above by that of a Poisson variable

with the same mean,

logEesYikr ≤
L∑

`=1

w` + ψ
(
v`, λk`(y, z̃)

)

where ψ(t, µ) = µ(et−1) is the log-mgf of a Poi(µ) random variable. Recalling the assumption

Λ(y, z̃) ∈ BΛ, we have

L∑

`=1

w` + ψ
(
v`, λk`(y, z̃)

)
=

L∑

`=1

[
λk`(y, z̃)

(
λr` + ρ

λk` − ρ

)s
− λk`(y, z̃) + s(λk` − λr` + 2ρ)

]
.

Since Λ(y, z̃) ∈ BΛ(δ), λk`(y, z̃) ≤ λk` + δ‖Λ‖∞ = λk` + ρ. Since λk` − ρ = λk` − δ‖Λ‖∞ ≥
λk` − ‖Λ‖∞3ω

≥ λk` − 1
3
Λmin = 2

3
λk`,

λk`

(
λr` + ρ

λk` − ρ

)s
= λk`

(
λr` − ρλr`λk`

+ (1 + λr`
λk`

)ρ

λk` − ρ

)s

≤ λk`

[(λr`
λk`

)s
+ s
(λr`
λk`

)s−1((1 + λr`
λk`

)ρ

λk` − ρ
)]

≤ λk`

(λr`
λk`

)s
+

3

2
s · 2ωρ

≤ λk`

(λr`
λk`

)s
+ 3ωρ.

Moreover, λr` + ρ = λr` + δ‖Λ‖∞ = λr` + ωδΛmin ≤ λr` + 1
3
Λmin ≤ 4

3
λr`. Thus, we have

ρ

(
λr` + ρ

λk` − ρ

)s
≤ ρ
( 4

3
λr`

2
3
λk`

)s
≤ 2ωρ.

Taking infimum over s > 0, by Lemma 20, the maximizer s∗ of Ikr is always bounded between

0 and 1, hence we have

P
(
∃Λ̃ ∈ BΛ, Yikr(bi∗, Λ̃) ≥ 0

)
≤ P (Y∗ ≥ 0)

≤ exp
(
−Ikr + 8Lωδ‖Λ‖∞

)
= exp

(
−(1− η′)Ikr

)
.
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A.6 Proofs of Chapter 3

Proof of Proposition 1. The upper bound has been provided by Corollary 10. Here we will

show the lower bound, using the notation established in the proof of Proposition 4 and

Chapter 10.3.2. We rename λk∗ and λr∗, and work with λ0∗ and λ1∗ instead, and we assume

throughout that, λ0`, λ1` ≥ 1 for all ` ∈ [L]. We recall from (A.7) that

Pe,+ =

∫
min(p0, p1)dµ = e−Is

∫
ps min(ls, ls−1)dµ, (A.12)

where ps is defined in (A.6) and l in (A.8). Since µ is the counting measure, we have

Pe,+ ≥ max
x∈ZL+

min(p0(x), p1(x)) = max
x∈ZL+

e−Isps(x) min(ls(x), ls−1(x)). (A.13)

Finding the maximizer x over Z+ gives the lower bound. First, let us extend the Poisson

density as φ(t;λ) = λte−λ/Γ(t+ 1) to any t ∈ R+, so that l is well-defined on RL
+, given by

l(x) = exp
(∑

`∈[L]

x log
λ0`

λ1`

− λ0` + λ1`

)
, x ∈ RL

+.

Recall that λs` = λ1−s
0` λs1`, λs = (λs`) and Is =

∑
`[(1−s)λ0`+sλ1`−λs`] (cf. Chapter 10.3.2).

We note that

dIs
ds

=
∑

`∈[L]

−λ0` + λ1` + λs` log
(λ0`

λ1`

)
. = log(l(λs))

The function s 7→ Is is concave, smooth, nonconstant (by assumption) and we have I0 = I1 =

0. Hence, the unique maximizer s∗ of s 7→ Is belongs to (0, 1) and satisfies dIs/ds
∣∣
s∗ = 0,

that is, log(l(λs∗)) = 0, or equivalently p0(λs∗)/p1(λs∗) = l(λs∗) = 1. By the definition of ps,

we have

e−Is∗ps∗(λs∗) = p1−s
0 (λs∗)p

s
1(λs∗) = p0(λs∗) = p1(λs∗).
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We recall that ps is the product of Poisson densities with parameters λs`. By a version of

the Stirling’s inequality for the Gamma functions [Jam15]:

Γ(x+ 1) = xΓ(x) ≤ (2π)1/2xx+1/2e−xe1/(12x),∀x > 0

hence Γ(x+ 1) ≤ C0 x
x+1/2e−x for all x ≥ 1, where C0 = (2π)1/2e1/12. Then,

φ(λ;λ) =
λλe−λ

Γ(λ+ 1)
≥ C−1

0 λ−1/2,

from which it follows that

ps∗(λs∗) =
∏

`∈L
φ(λs∗`;λs∗`) ≥ C−L0

∏

`∈[L]

λ
−1/2
s∗` .

Thus, e−Is∗C−L0

∏
` λ
−1/2
s∗ is a lower bound on Pe,+ whenever λs∗ ∈ ZL+. In general, λs∗ does

not have integer coordinates. Instead, pick any x ∈ ZL+ satisfying ‖x− λs∗‖`∞ ≤ 1.

Since t 7→ φ(t;λ) is a quasi-concave function (i.e., upper-level sets are convex), we have

φ(t;λ) ≥ min{φ(a;λ), φ(b;λ)} for every t ∈ [a, b], hence, for every t ∈ [a−1, a+1], we obtain

using Γ(x+ 1) = xΓ(x),

φ(t;λ) ≥ e−λ min
{λa−1

Γ(a)
,

λa+1

Γ(a+ 2)

}
=

e−λλa

Γ(a+ 1)
min

{a
λ
,

λ

a+ 1

}
,

that is,

φ(t;λ)

φ(a;λ)
≥ min

{a
λ
,

λ

a+ 1

}
, t ∈ [a− 1, a+ 1].

Since |x` − λs∗`| ≤ 1,

p0`(x`) ≥ p0`(λs∗`) min
{λs∗`
λ0`

,
λ0`

λs∗` + 1

}
≥ (2ω)−1p0`(λs∗`)

where we have used, for any s ∈ [0, 1],

min
{λs`
λ0`

,
λ0`

λs`

}
=
(

min
{λ1`

λ0`

,
λ0`

λ1`

})s
≥
( 1

ω

)s
≥ 1

ω
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and λs∗`/(λs∗` + 1) ≥ 1/2 since λs∗` ≥ 1. Similarly p1`(x`) ≥ p1`(λs∗`)/(2ω). Hence,

min{p0(x), p1(x)} ≥ min{p0(λs∗), p1(λs∗)}
(2ω)L

=
e−Is∗ps∗(λs∗)

(2ω)L
≥ e−Is∗

(2C0ω)L

∏

`∈[L]

λ
−1/2
s∗

where we have used min{p0(x), p1(x)} = e−Isps(x) min{l(x)s, l(x)s−1} and l(λs∗) = 1. Thus,

Pe,+ ≥ exp
(
−Is∗ − L log(2C0ω)− L

2
log ‖Λ‖∞

)

≥ exp
(
−Is∗ − L log(2C0ω

3/2)− L

2
log Λmin

)

using the assumption ‖Λ‖∞ ≤ ωΛmin. The proof is complete.

A.7 Alternative algorithm for the k-means step

In this appendix, we present a simple general algorithm that can be used in the k-means

step, replacing the κ-approximate k-means solver used throughout the text. The algorithm

is based on the ideas in [Gao2015a] and [yun2014community], and the version that we

present here acheives the misclassification bound ε2/(nδ2) needed in Step 3 of the analysis

(Section 5.3.1) without necessarily optimizing the k-means objective function. We present

the results using the terminology of the k-means matrices (with rows in Rd) introduced in

Section 5.3.4, although the algorithm and the resulting bound work for data points in any

metric space.

Let X ∈ Mk
n, d be a k-means matrix and let us denote its centers, i.e. distinct rows, as

{qr(X), r ∈ [k]}. As in Definition 2, we write δr(X) and nr(X) for the rth cluster center

separation and size, respectively, and δ∧(X) = minr δr(X) and n∧ = minr nr(X). Assume

that we have an estimate X̂ ∈ Rn×d of X, and let us write d(i, j) := d(x̂i, x̂j), i, j ∈ [n] for

the pairwise distances between the rows of X̂.

Algorithm 4 which is a variant of the one presented in [Gao2015a], takes these pairwise

distances and outputs cluster estimates Ĉ1, . . . , Ĉk ⊂ [n], after k recursive passes through the

data. A somewhat more sophisticated version of this algorithm appears in [yun2014community],

where one also repeats the process for i = 1, . . . , log n and radii Ri = iR1 in an outer loop,

producing clusters Ĉ(i)
r , r ∈ [k]; one then picks, among these log n possible clusterings, the one
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Algorithm 4 k-means replacement

Require: Pairwise distance d(i, j), i, j ∈ [n] and radius ρ.
1: S ← [n]
2: for r = 1, . . . , k do
3: For every i ∈ S, let Bd(i; ρ) := {j ∈ S : d(i, j) ≤ ρ}.
4: Pick i0 ∈ S that maximizes i 7→ |Bd(i; ρ)|.
5: Let Ĉr = Bd(i0; ρ).

6: S ← S \ Ĉr.
7: end for

Ensure: Return clusters Ĉr : 1, . . . , k and output remaining S as unlabeled.

that minimizes the k-means objective. The variant in [yun2014community] also leaves no

unlabeled nodes by assigning the unlabeled to the cluster whose estimated center is closest.

In the rest of this section, we will focus on the simple version presented in Algorithm 4 as

this is enough to establish our desired bound. The following theorem provides the necessary

guarantee:

Theorem 8. Consider the cluster model above and let nr = nr(X), n∧ = n∧(X) and δ∧ =

δ∧(X). Assume that we have approximate data x̂1, . . . , x̂n such that
∑n

i=1 d(xi, x̂i)
2 ≤ ε2. In

addition, assume that for some γ ∈ (0, 1) and β ≥ 1:

(i) nr ≤ βn∧ for all r ∈ [k] (Clusters are β-balanced.),

(ii)
2ε√
γn∧

<
δ∧
3

(ε2 small enough compared to n∧δ2
∧.),

(iii) ξβ + γ < 1− γ where ξ := γ/(1− γ). (Gamma small enough relative to β.)

Let Mn(ρ) be the (average) misclassification rate of Algorithm 4 with input radius ρ. Then,

Mn(ρ) ≤ 8ε2

nρ2
, ∀ρ ∈

[ 2ε√
γn∧

,
δ∧
3

)
.

Applying the algorithm with ρ ≥ αδ∧ for α < 1/3 we obtain the misclassication bound

cα ε
2/(nδ2

∧) where cα = 8/α2. Thus, Algorithm 4 with a proper choice of the radius ρ satisfies

the desired bound (5.11) of the k-means step.

Proof of Theorem 8. The proof follows the argument in [Gao2015a]. As in the proof of

Proposition 2, let Cr denote the rth cluster of X, having center qr = qr(X). We have
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|Cr| = nr. Let xi and x̂i be the ith row of X and X̂, respectively, and let

Tr := {i ∈ Cr : d(x̂i, qr) < ρ/2} = {i ∈ Cr : d(x̂i, xi) < ρ/2}

using xi = qr for all i ∈ Cr which holds by definition. {Tr} are disjoint and clearly Tr ⊂ Cr.
Let T :=

⊎
r Tr, a disjoint union, and T c = [n] \ T . We have

|T c|ρ2/4 ≤
∑

i∈T c
d(x̂i, xi)

2 ≤ ε2 =⇒ |T c| ≤ 4ε2/ρ2. (A.14)

As a consequence of assumption (ii) and our choice of ρ, we have 4ε2/(n∧ρ2) ≤ γ, hence

|Tr| = |Cr| − |Cr \ Tr| ≥ |Cr| − |T c| ≥ n∧
(

1− 4ε2

n∧ρ2

)
≥ n∧(1− γ) (A.15)

for all r ∈ [k]. On the other hand, |T c| ≤ γn∧. In particular, combining the two estimates

|T c| ≤ ξ |Tr|, ∀r ∈ [k] (A.16)

where ξ = γ/(1− γ). These size estimates will be used frequently in the course of the proof.

Recall that d(i, j) := d(x̂i, x̂j), i, j ∈ [n], the collection of pairwise distances between the

data points x̂1, . . . , x̂n. Thus, with some abuse of notation, (i, j) 7→ d(i, j) defines a pseudo-

metric on [n] (and a proper metric if {x̂i} are distinct). For any two subsets A,B ⊂ [n] we

write d(A,B) = inf{d(i, j) : i ∈ A, j ∈ B}. For any i ∈ [n], let d(i, A) = d({i}, A).

We say that node i0 is near T if d(i0, T ) ≤ ρ, i.e., i0 belongs to the ρ-enlargement of T .

Similarly, we say that i0 is near Tr if d(i0, Tr) ≤ ρ and far from Tr otherwise. Note that i0

can be near at most one of Tr, r ∈ [k]. This is since d(Tr, T`) ≥ δ∧ − ρ for r 6= `, and we are

assuming δ∧ > 3ρ. In fact, i0 is near T iff i0 is near exactly one of Tr, r ∈ [k].

To understand Algorithm 4, let us assume that we are at some iteration of the algorithm

and we are picking the center i0 and the corresponding cluster Ĉ := {j : d(j, i0) ≤ ρ}. One

of the following happens:

(a) We pick the new center i0 ∈ Tr for some r, in which case Ĉ will include the entire Tr,

none of T`, ` 6= r, and perhaps some of T c. That is, Ĉ ⊃ Tr and Ĉ ∩ T` = ∅ for ` 6= r.
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(b) We pick i0 near Tr for some r. In this case, |Ĉ| ≥ |Tr|, otherwise any member of Tr

would have created a bigger cluster by part (a) above. Now, Ĉ cannot contain any

of T`, ` 6= r, because i0 is far from those if it is near Tr. Hence, Ĉ ⊂ Tr ∪ T c. Since

|T c| ≤ ξ|Tr| by (A.16), and |Ĉ| ≥ |Tr|, we have |Ĉ ∩ Tr| ≥ (1 − ξ)|Tr|. That is, Ĉ
contains a large fraction of Tr.

If either of the two cases above happen, we say that Tr is depleted, otherwise it is intact. If

Tr is depleted, it will not be revisited in future iterations, as long as other intact T`, ` 6= r

exist. To see this, first note that |Tr∩Ĉc| ≤ ξ|Tr| ≤ ξβn∧, using assumption (i). Taking i0 on

or near Tr in a future iteration will give us a cluster of size at most (ξβ + γ)n∧ < (1− γ)n∧

(by assumption (iii)) which is less that |T`| for an intact cluster.

To simplify notation, if either of (a) and (b) happen, i.e., we pick cluster center i0 near

Tr for some r, we name the corresponding cluster Ĉr. This is to avoid carrying around a

permutation of cluster labels different than the original one, and is valid since each Tr is

visited at most once by the above argument. (In fact, each is visited exactly once, as we

argue below.) That last possibility is

(c) We pick i0 far from any Tr, that is d(i0, T ) > ρ. This gives Ĉ ⊂ T c, hence |Ĉ| ≤ |T c| ≤
γn∧ < (1 − γ)n∧ ≤ |T`| for any intact T`. Thus as along as there are intact T`, this

case does not happen.

The above argument gives the following picture of the evolution of the algorithm: At each

step t = 1, . . . , k, we pick i0 near Tr for some previously unvisited r, making it depleted,

creating estimated cluster Ĉr and proceeding to the next iteration. After the k-th iteration

all T`, ` ∈ [k] will be depleted. We have |Ĉr| ≥ |Tr|, and Ĉr ⊂ Tr ∩ T c for all r ∈ [k].

By construction {Ĉ`} are disjoint. Let Ĉ :=
⊎
`∈[k] Ĉ`, and note that |Ĉ| ≥ |T | hence

|Ĉc| ≤ |T c|. Since Ĉ` ∩ Tr = ∅ for ` 6= r, we have Tr ⊂
⋂
`6=r Ĉc` , hence Tr ∩ Ĉcr ⊂ Ĉc. All

the misclassified or unclassified nodes produced by the algorithm are contained in [
⋃
r(Tr ∩

Ĉcr)] ∪ T c which itself is contained in Ĉc ∪ T c. Hence, the misclassification rate is bounded

above by

1

n
|Ĉc ∪ T c| ≤ 1

n
(|Ĉc|+ |T c|) ≤ 2

n
|T c| ≤ 8ε2

nρ2
.
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where we have used (A.14). The proof is complete.

Remark 15. The last part of the argument can be made more transparent as follows: Each

Ĉr consists of two disjoint part, Ĉr ∩Tr and Ĉr ∩T c. We have |Ĉr ∩T c| ≥ |Tr \ Ĉr| (equivalent

to |Ĉr| ≥ |Tr|). Then,

∑

k

|Tr \ Ĉr| ≤
∑

r

|Ĉr ∩ T c| = |Ĉ ∩ T c| ≤ |T c|

and total misclassifications are bound by
∑

k |Tr \ Ĉr|+ |T c|.

A.8 Proofs of Chapter 5.4.1

Proof of Corollary 5. We have

‖Λs∗ − Λt∗‖2 =

k2∑

`=1

n2
2`(Bs` −Bt`)

2 =

k2∑

`=1

n2
2`

n1n2

(Ψs` −Ψt`)
2 = α

k2∑

`=1

π2
2`(Ψs` −Ψt`)

2

where we have used α := n2/n1. Recall from (5.39) that Λ2
∧ := mint6=s ‖Λs∗ − Λt∗‖2. It

follows that α−1‖Λ‖2
∞ ≤ Ψ2

1,∧, using π2,` ≤ 1. We also have Ψ̃2
1,∧ ≥ π1,∧Ψ2

1,∧ ≥ π1,∧α−1Λ2
∧.

Recalling the definition of a from (5.9), and using Ψs` = (
√
n1n2/n2`)Λs`, we have

a =

√
n2

n1

‖Ψ‖∞ ≤
√
n2

n1

√
n1n2

n2,∧
‖Λ‖∞ =

1

π2,∧
‖Λ‖∞ ≤ β2k2 ‖Λ‖∞.

Hence, kaΨ−2
1,∧ ≤ k β2k2 ‖Λ‖∞(α−1Λ2

∧)
−1 = β2kk2α‖Λ‖∞Λ−2

∧ which is the desired bound. We

also note that

kaΨ̃−2
1,∧ ≤ kaπ−1

1,∧Ψ−2
1,∧ ≤ (β1k1) kaΨ−2

1,∧

which combined with the previous bound shows that the required condition (5.40) in the

statement is enough to satisfy (5.34).
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A.9 Auxiliary lemmas

Lemma 28. Let Z, Y ∈ On×k and let ΠZ = ZZT and ΠY = Y Y T be the corresponding

projection operators. We have

min
Q∈Ok×k

‖Z − Y Q‖F ≤ ‖ΠZ − ΠY ‖F .

Proof. We first note that ‖ΠZ‖2
F = tr(Π2

Z) = tr(ΠZ) = k (since projections are idempotent),

and ‖Z‖2
F = tr(ZTZ) = tr(ΠZ) = k. Let ZTY = UΣV T be the SVD of ZTY where

U, V ∈ Ok×k and Σ = diag(σ1, . . . , σk) � 0. Then, using the change of variable O = V TQU ,

1

2
min
Q
‖Z − Y Q‖2

F = k −max
Q

tr(ZTY Q)

= k − max
O ∈ Ok×k

tr(ΣO) = k − ‖Σ‖∗,

where ‖Σ‖∗ =
∑

i σi is the nuclear norm of Σ. To see the last equality, we note that since O is

orthogonal, we have |Oii| ≤ 1 for all i, hence maxO tr(ΣO) ≤ max∀i, |Oii|≤1

∑
i σiOii =

∑
i σi

by the duality of `1 and `∞ norms and σi ≥ 0. The equality is achieved by O = Ik. On the

other hand

1

2
‖ΠZ − ΠY ‖2

F = k − tr(ΠZΠY ) = k − ‖ZTY ‖2
F = k − ‖Σ‖2

F .

Since ‖Σ‖ = ‖ZTY ‖ = ‖Z‖‖Y ‖ ≤ 1, we have σi ≤ 1 for all i. It follows that ‖Σ‖2
F ≤ ‖Σ‖∗

completing the proof.
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APPENDIX B

Extra Simulation Results

Here we present extra simulation results under the setup of Chapter 9. The following figure

shows the overall NMI and log. error rate for different values of C and α:
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Figure B.1: Plots with different parameters.

The next figure illustrates the results for unbalanced cluster sizes. To be specific,

π(y) =
(1, 4, 6, 9)

20
and π(z) =

(1, 3, 4, 6, 7, 9)

30
,

which implies β ≥ 3 according to (A2):

122



200 400 600 800 1000 1200 1400 1600 1800 2000

average # of nodes per cluster

0.3

0.4

0.5

0.6

0.7

0.8

N
M

I (
O

ve
ra

ll)

C = 1.00,  = 0.75, =3.00, K=4, L=6

Spectral

Oracle

Hard

Soft

102 103

average # of nodes per cluster

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

 lo
g 

m
is

s.
 (

ov
er

al
l)

C = 1.00,  = 0.75, =3.00, K=4, L=6

Figure B.2: Plots with unbalanced cluster sizes.

We also consider the setting where the number of the clusters of one side is significantly

greater that of the other. We let K = 4, L = 12 and

B =




1 2 3 4 5 6 7 8 9 10 11 12

4 5 6 7 8 9 10 11 12 1 2 3

7 8 9 10 11 12 1 2 3 4 5 6

10 11 12 1 2 3 4 5 6 7 8 9



.

The simulation results are as follows:
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Figure B.3: Plots with different number of communities.
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