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ABSTRACT OF THE DISSERTATION

Linear Kernel Alignment for Domain Generalisation

by

Shuai Tang

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2021

Professor Virginia R. de Sa, Chair

Kernel Alignment has been developed and analysed in the field of multiple kernel learning

in the past few decades. Recent studies have shown that kernel alignment with linear kernels can

be used to measure the similarity between two sets of high-dimensional vector representations

produced by neural networks. Given its theoretical guarantees in learning and practical implication

in analysing machine learning models, this thesis examines linear kernel alignment and the

algorithm for learning kernel alignment in domain generalisation mainly in three aspects. Firstly,

with the help of sketching techniques, we demonstrate that linear kernel alignment is a decent

proxy for transferability, which is defined as a score that implies how well a pretrained model

would perform on a downstream task. Secondly, in the setting of transferring learnt knowledge

xvii



from a pretrained neural network to a downstream task, instead of finetuning the top layer or the

whole network to adapt to the new task, we propose to accumulate feature vectors from a certain

number of layers for making final predictions. The layer selection is done through an algorithm

for seeking an optimal convex combination of linear kernels from individual layers. The optimised

combination gives as good performance as combining all layers, and the performance is better than

simply finetuning the top layer of a pretrained neural network. Thirdly, in ensemble learning, by

using the algorithm for learning kernels with linear kernels constructed from individual predictors,

the optimal convex combination drastically prunes the predictors required for the inference whilst

boosting the performance of ensemble learning methods when all predictors are used. Through

these three chapters, we demonstrate the simplicity and practicality of linear kernel alignment in

domain generalisation.

xviii



Chapter 1

Introduction

Domain generalisation is a research topic that tries to address the potential of transferring

knowledge from a single source domain with ample data or from multiple source domains to the

target domain of our interest. With the increasing amount of unlabelled data available online and

the drastically increasing number of parameters, deep learning models have shown promising

results on this research topic [YCBL14]. The conventional method is to pretrain a large neural

network on an enormous dataset — billions of data samples — collected from a domain that is

relevant to the target one, and then fine-tune the network to a small dataset from the target domain

through backpropagation. It is the simplest and most straight-forward way of conducting domain

generalisation, however, the fine-tuning step can still be time-consuming and costly when the

pretrained neural network is large. When multiple pretrained models are given, fine-tuning on all

of them becomes incredibly expensive.

Prior to the current deep learning era, kernel machines dominated the theoretical and

empirical machine learning research fields due to their simplicity and interpretability. These

methods make predictions based on the pair-wise relationshp of dta samples, and the relationship

is defined through a manually selected kernel function that computes a score for two data samples.

Kernel machines also enjoyed a great success in understanding other machine learning algorithms

1



and in application domains, including text classification [Joa98], protein sequence classification

[WLI+05], etc. However, specialised kernel functions were designed for individual application

domains. Later on, neural networks were brought to the centre of the stage of the machine learning

research due to their flexibility provided by the learnable parameters which adapt themselves to

individual applications automatically, and due to their impressive performance in various domains.

Researchers are interested in augmenting kernel machines with the same level of flexibility.

Kernel-Target Alignment [CKEST06] was proposed to adjust directions in a kernel matrix

to maximally align with the target kernel that is a linear kernel constructed with the target vector.

It helps kernel functions to adapt to different datasets accordingly, as opposed to staying fixed

throughout the inference regardless of the individual difference among datasets. Built upon

the idea of aligning the kernel constructed from data and the target kernel, [CMR12] proposed

an algorithm which learns to combine multiple kernels with different hyperparameters. We

are interested in adapting the algorithm for learning kernels, which finds an optimal convex

combination of kernel functions to adapt to a given datasets, with linear kernels in domain

generalisation.

The thesis builds the connection between algorithms for multiple kernel learning and

domain generalisation using linear kernels. Specifically, we consider a practical situation when

multiple pretrained models or extracted sets of features for the target dataset are given, and instead

of directly using all of them to make predictions, a feature selection step is applied with the

algorithm for learning kernels ( with only linear kernels ) to reduce the number of models or the

number of the sets of features for making predictions. Fig. 1.1 visualises the functionality of the

three chapters in this thesis in connecting the kernel machines and domain generalisation.

In Chapter 2, we consider the scenario when many pretrained neural networks are given,

and the goal is to efficiently identify the best-performing model among all on the target dataset.

We define a transferability index that can be served as a predictive signal of the accuracy of a

certain model on a dataset, and we show that the cheaply computed alignment score with only
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Ensemble Pruning with Linear Kernel Alignment
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Sketched Linear Kernel Alignment

Chapter II: 

Deep Transfer Learning with Ridge Regression

Figure 1.1: Three chapters are structured to visualise our contribution in connecting kernel
machines and domain generalisation. Specifically, we use the idea of learning kernels with
multiple kernel functions to the situation where multiple pretrained models are provided in
transfer learning.

linear kernels can be a proxy for the index that we are interested in. As the computation for

the transferability needs to be considerably faster than the computation for obtaining the final

accuracy, sketching techniques [Woo14] are applied to speed up the computation and reduce the

memory cost of Linear Kernel Alignment. When multiple pretrained models are provided, our

proposed method can quickly identify which model is the best-performing one on a given target

dataset without fine-tuning. Simulations on randomly generated tasks from real-world datasets

with pretrained neural networks show a strong linear relationship between the alignment score

and the accuracy.

In Chapter 3, we address the question of how well a pretrained neural network performs

on a target dataset without fine-tuning, and our potential solution is to accumulate features

produced from multiple layers of a neural network. A common hypothesis, which is supported

by empirical observations, is that different layers encode different levels of abstraction of the

input data. As described in [TPB00], bottom layers have high mutual information with the input

but low mutual information with the labels, and top layers show high mutual information with
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the labels as they are very close to the loss function. Technically, all layers can be accumulated

for making predictions, but the computational cost is unbearable as intermediate layers produce

feature vectors in very high dimensional spacs. We propose to use Linear Kernel Alignment to

determine the minimum number of layers to accumulate for making predictions. Firstly, we can

show that accumulating only selected layers performs as well as using all layers, but the former

is much faster than the latter. Secondly, our proposed method provides higher accuracy for six

selected classification tasks than fine-tuning only the top layer, and, with the same time budget,

our method achieves better performance than fine-tuning the top three layers and fine-tuning the

whole neural network.

In previous chapters, provided models are neural networks, and they are able to generate

vector representations of the input data. Generated vectors are sent into Linear Kernel Alignment

for selecting the most necessary features. In Chapter 4, we consider a more restricted but more

generic scenario where we only have access to the predictions without the vector representations

produced by models. and we examine the possibility of applying Linear Kernel Alignment for

pruning provided models so that, during testing, only the remaining models are used, which leads

to faster test runtime compared against using all pretrained models. To simulate the environment,

bagging and boosting are used to create pretrained models, and the base learners include decision

trees, k-nearest neighbours and multi-layer perceptrons respectively. Linear Kernel Alignment

is applied on top of the predictors provided from all models on the training set for selecting

predictions from only a small set of pretrained models so that the combined prediction gives

the maximum alignment score with the target kernel. Experiments indicate that our proposed

pruning method boosts the performance of the original ensemble learning method in most cases,

and maintains the same performance in the remaining cases, whilst pruning a large number of

predictors.

Next, we briefly introduce the definition of Kernel Alignment and its simplified form with

only linear kernels. Then we discuss how it is applied in each chapter of the thesis.
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Given a kernel matrix KKK ∈ RN×N , where N is the number of data samples, each entry

KKKi, j = k(xxxi,xxx j) can be considered as the relationship between a pair of data samples (xxxi,xxx j), and

the relationship is defined through the kernel function k :Rd×Rd→R. When two kernel matrices

are provided KKK1 ∈ RN×N and KKK2 ∈ RN×N , where k1 : Rd×Rd → R and k2 : Rd×Rd → R are

the corresponding kernel functions, the definition of Kernel Alignment is as follows:

ρ(KKK1,KKK2) =
〈KKK1,KKK2〉F
||KKK1||F ||KKK2||F

∈ [0,1] (1.1)

where || · ||F is the Frobenius norm, and 〈KKK1,KKK2〉F = Tr(KKK1KKK>2 ) is the Frobenius inner product.

If we vectorise both kernel matrices and denote them as vec(KKK1) and vec(KKK2) ∈RN2
, Eq. 1.1 can

be written as:

ρ(KKK1,KKK2) =
vec(KKK1)

>vec(KKK2)

||vec(KKK1)||2||vec(KKK2)||2
, (1.2)

which is equivalent to computing the cosine similarity between two vectorised matrices. Since in

this thesis, we mainly consider linear kernel functions k1(xxx,yyy) = k2(xxx,yyy) = k(xxx,yyy) = xxx>yyy, where

xxx,yyy ∈ Rd , the definition of Kernel Alignment can be simplified in the following way:

ρ(KKK1,KKK2) =
〈XXXXXX>,YYYYYY>〉F
||XXXXXX>||F ||YYYYYY>||F

=
||XXX>YYY ||2F

||XXXXXX>||F ||YYYYYY>||F
, (1.3)

where XXX ∈ RN×dx and YYY ∈ RN×dy .

The algorithm proposed in [CMR12] considers the situation when multiple kernel func-

tions are provided and it finds a convex combination of kernels so that the combined kernel has the

maximum kernel alignment with the target kernel. To translate the situation in our case, there are

a set of features produced from different models for the same dataset {XXX i}p
i=1 , where XXX i ∈RN×di ,

∀i ∈ {1,2, . . . , p} and p is the number of models. The associated target is given is a vector yyy ∈RN .

Now, we aim to find a set of {µi}p
i=1 so that the combined kernel KKK = ∑

p
i=1 µiXXX iXXX>i aligns with
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the target kernel KKKY = yyyyyy> maximally. The optimisation problem can be formalised as follows:

µµµ? = argmax
{µµµ>0∧||µµµ||=1}

〈KKK,KKKY 〉F
||∑p

i=1 µiKKKi||F ||KKKY ||F

= argmax
{µµµ>0∧||µµµ||=1}

〈∑p
i=1 µiXXX iXXX>i ,yyyyyy>〉F
||∑p

i=1 µiKKKi||F

= argmax
{µµµ>0∧||µµµ||=1}

∑
p
i=1 µi||XXX>i yyy||22

||∑p
i=1 µiXXX iXXX>i ||F

, (1.4)

where µµµ > 0 is the non-negative constraint imposed on individual µis and ||µµµ|| = 1 is a norm

constraint. When the set of features {XXX i}p
i=1 are not pair-wise linearly independent from each

other, the non-negative constraint performs feature selection.

Chapter 2 discuss the application of Linear Kernel Alignment in Eq. 1.3 as a proxy for

transferability, which in our case is defined as a predictive signal for the accuracy of a pretrained

model on a downstream task. The equation is essentially the same as in Eq. 1.3 with XXX containing

the feature vectors produced by a pretrained neural network on a new task, and YYY containing

the one-hot encoded target vectors for the classification labels. Since computing the alignment

score requires us to store both XXX and YYY at the same time, with increasing number of data samples,

the memory cost and the computational complexity increase. To alleviate the issue, we propose

to sketch both matrices with the same random projection matrix SSS ∈ Rk×N , and the projection

dimension k is fixed prior to the computation. The sketched alignment score is then computed as :

ρSSS(KKK1,KKK2) =
||XXX>SSS>SSSYYY ||2F

||SSSXXXXXX>SSS>||F ||SSSYYYYYY>SSS>||F
, (1.5)

To further speed up the computation, instead of using SSS filled with samples from a Gaussian

random variable, we use the hashing-based Count-Sketch method [CW13] which has only one

non-zero entry per column in SSS. Through sketching, we improve the practicality of the alignment

score in domain generalisation.

Chapter 3 explores the possible optimal performance of a pretrained neural network
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on a downstream task without fine-tuning. Our potential solution is to combine features from

multiple layers on the same dataset, and use the algorithm for kernel alignment to determine

layers to accumulate. Given a pretrained neural network with L layers and a dataset {XXX ,YYY} where

XXX ∈ RN×d and YYY ∈ RN×C, and C is the number of classes. By forwarding the dataset into the

pretrained neural network, each layer produces a feature matrix XXX l ∈ RN×dl . Then the following

optimisation problem similar to Eq. 1.4 is solved:

µµµ? = argmax
{µµµ>0}

∑
L
l=1 µl||XXX>l YYY ||2F
||∑L

l=1 µlXXX lXXX>l ||F
, (1.6)

Features produced from layers with non-zero µls are accumulated for making final predictions. An

obvious issue is that features from intermediate layers XXX l ∈ RN×dl are in very high-dimensional

spaces, storing them for the optimisation problem is memory-intense. Empirical evidence has

shown that features produced from neural networks are approximately low-rank, which means that

we only need a few directions to approximate the covariance structure. Therefore, we consider

the Nyström method to approximate the linear kernel at each layer, and we set the maximum

approximation dimension k. The features sent to the optimisation problem are the low-rank

approximations which have maximum size RN×k. As mentioned at the beginning of this chapter,

fine-tuning is still the simplest and most straight-forward way for domain generalisation, but our

method can serve as a reliable and cheap alternative.

Chapter 4 describes a two-step method to prune the predictors in ensemble learning. The

predictors learnt in ensemble learning are not all necessary for making predictions at the test time,

as summarised in [TPV09], and pruning predictors leads to fast inference for new data samples

and sometimes better performance. We propose to first run the algorithm for learning kernels on

top of predictions generated from a large number of models provided by an ensemble learning

method, either bagging or boosting with a certain base learner. The objective function in the first
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step is similar to Eq. 1.4, and it is defined as follows:

µµµ? = argmax
{µµµ>0}

∑
p
i=1 µi(yyy>i yyy)2

||∑p
i=1 µiyyyiyyy>i ||F

= argmax
{µµµ>0}

∑
p
i=1 µi(yyy>i yyy)2(

∑
p
i=1 ∑

p
j=1 µiµ j(yyy>i yyy j)

2
) 1

2
, (1.7)

where yyyi ∈ RN contains predictions on the training set produced by the i-th predictor. After

solving the optimisation problem, predictors with non-zero µµµ remain and the rest are pruned. The

test runtime is shortened due to pruning. Our method stands out among other methods when

the base learner used in the ensemble learning is relatively low-variance. The experiments show

that not only does our method keep a very small portion of the predictors, it also boosts the

performance on top of the ensemble learning in most cases.

Individual chapters of the thesis have their own domain-specific introduction, related work

and conclusion. Technical details are left to the last section in each chapter to avoid breaking the

continuity of content in each chapter. In the final chapter, we summarise our contributions.
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Chapter 2

Sketched Centered Kernel Alignment

2.1 Introduction

Neural networks exhibit significant redundancy in learnt representations presented in

hidden units. The capability of learning high-dimensional features helps neural networks to

generalise well, as has been extensively studied in the literature of overparameterised models

[BG19]. However, this characteristic results in intolerable time and memory complexity for

methods that study the learnt representations as a probe for further understanding of neural

networks, and their usage in transfer learning. With the empirical observations that learnt feature

vectors of a neural network are practically low-rank, the bottlenack on the complexity can be

handled with approaches which drastically reduce the redundancy whilst maintaining learnt

structures within the representations. Previously proposed pruning methods can achieve this goal

by cutting uninformative connections between neurons, although it is challenging to come up with

a one-fits-all algorithm that guarantees good generalisation and low-memory cost. In this paper,

we explore techniques from the area of random projections, which we find to be particularly suited

for exploring the low-rank properties of feature representations for the purposes of analysing

trained neural networks within transfer learning scenarios.
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Empirical findings have shown that the feature representations are approximately low-rank

in most cases, including the spatial feature maps in convolutional neural networks [JVZ19] and

the attention maps in transformers [WLK+20]. Therefore, it permits low-rank approximation

techniques to be engaged in analysing and studying neural networks. Rather than directly storing

and analysing feature representations themselves, one can hope to get a low-rank approximation

of the original feature matrix, or obtain a data summary that requires less memory to store but

still maintains information, such as principal directions themselves, and the variance explained

on each. This motivates us to apply random projections in analysing and studying the encoded

information in feature vectors in neural networks, and guide us on how to transfer neural networks.

Random projection is a tool for mainly reducing the dimension of data points in Euclidean

space with theoretical guarantees on maintaining the pairwise relationship of data points. Al-

ternatively, one can create data summaries with random projections that preserve the spectral

properties, so that the number of data samples can be reduced tremendously. Recent research

also showed that random projections can be applied to construct explicit kernels [PP13] or kernel

approximations [RR+07], and it is potentially helpful in transfer learning as well. Due to the

memory limit of existing GPUs, one can only fit a batch of data samples per iteraction and use

neural networks to produce features, which is similar to the streaming setting of data processing,

therefore, ideally we want random projections with subspace embedding guarantees which are

also efficient on data streams.

In this paper, we propose to sketch feature vectors at individual layers to reduce the mem-

ory complexity of storing them, and the computational complexity in computing the alignment in

between feature vectors using Centered Kernel Alignment (CKA) [CMR12]. We theoretically

and empirically show that, with sketching, the CKA results are still reliable for illustrating prop-

erties of neural networks but can be obtained much faster, and can be served as an indicator of

transferability of a neural network. Then we combine the sketching techniques with an algorithm

for learning kernels [CMR12] in transfer learning setting to optimally combine a large number of
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pretrained models efficiently.

2.2 Related Work

Advanced tools to better understand neural networks and their learning dynamics have

been recently developed. A majority of them approach the problem through either feature or

gradient vectors [KNLH19]. The former methods consider neural networks as feature extractors.

Therefore, by studying the properties of feature vectors, one can gain insights on the input-

output relations the neural network is approximating. The latter methods take functional analysis

algorithms, and through studying the Jacobian matrix w.r.t. parameters defined by a neural

network, they provide insights into the geometry of functions that a wired neural network is

capable of approximating. For our work, we focus on the feature vectors, as given a dataset,

the forward computation that produces feature maps is easily parallelisable in batch mode in

most deep learning frameworks, however, the parallelisation of gradient computations is more

involved.

Kernel approximations by subsampling for the popular Nyström method have been

studied extensively [GM16]. As empirically illustrated [KMT12], the sampling methods on rows

or columns play an important role in the success of the approximation. As in our case, the feature

vectors are produced per batch of samples given a dataset. Therefore, the row of the feature matrix

AAA ∈ RN×d are observed sequentially. This situation limits the number of subsampling methods

we can select from. However, since we aim to directly get a data summary of AAA, it becomes a task

that requires row-wise subsampling for approximating a linear kernel.

A straightforward option is uniform sampling of the data, which has been predomi-

nantly applied in materialising a data summary in previous studies of neural networks’ features

[RGYSD17, MRB18, KNLH19]. The main issue is that uniform sampling can be arbitrarily bad

in making a query of any quantity w.r.t. the full matrix [CLM+15], thus it may cause invalid
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observations. In order to balance efficient streaming capability with strong approximation guaran-

tees [DG03], we propose using the sparse Johnson-Lindenstrauss Transform (SJLT) to summarise

the feature matrix AAA for further studies of neural networks.

Besides accelerating the computation for analysing neural networks, one can certainly

take advantages of data summaries and make predictions on a downstream task directly with a

linear model. When many pretrained neural networks are provided, we show that by taking the

data summaries of the top layer, it becomes efficient to take advantages of all models and improve

the predictive accuracy in transfer learning.

2.3 Method

[KNLH19] has shown the potential use case of CKA in comparing neural networks’

features. We now briefly reiterate the concept and discuss the complexity of applying it in

large scale. Then we introduce our approach to make CKA for neural networks comparison

computationally efficient.

2.3.1 Centred Kernel Alignment

The definition is given as:

ρ(KKK1,KKK2) =
〈KKK1,KKK2〉F
||KKK1||F ||KKK2||F

(2.1)

where KKK1,KKK2 ∈ RN×N . For linear kernels KKK1 = XXXXXX> and KKK2 = YYYYYY>, the definition can be

formalised as

ρ(KKK1,KKK2) =
||XXX>YYY ||2F

||XXXXXX>||F ||YYYYYY>||F
, (2.2)

where XXX ∈ RN×dx and YYY ∈ RN×dy are zero-centred feature vectors.
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As CKA is designed for measuring the normalised alignment between two zero-centred

kernel matrices, it is natually invariant to rotation in the feature space and isotropic scaling of

the kernel functions. The fact that it is not invariant to invertible linear transformations makes it

suitable for comparing neural networks as discussed and empirically illustrated in [KNLH19],

since a similarity measure that is invariant to invertible linear transformations, including R2

statistics and CCA, gives a similarity score 1 when one of XXX and YYY has full row rank, due to

overfitting.

Applications. CKA measures the alignment between two sets of samples given two

kernel functions. For simplicity, we stick to linear kernels in our following sections. There are

numerous applications of CKA. Besides measuring the similarity between two sets of feature

vectors from the same neural network or two different ones, CKA can also be used to study the

alignment between feature vectors and targets as its original purpose - learning kernels. Theorem

13 and 15 in [CMR12] showed the error of a binary classification task is upper bounded by

1−ρ(XXXXXX>,YYYYYY>)/Γ, where Γ is the maximum output of the classifier.

The first application helps us understand the grouping of layers {AAAi}L
i=1 within a neural

network by the CKA scores, and how individual layers evolve during learning. The second one

helps us to illustrate the alignment between individual layers AAAi ∈ RN×dl and the targets YYYYYY>.

Though it only gives a lower bound on the accuracy, we show that CKA tracks the accuracy

closely, and helps model selection.

Complexity. Unfortunately, storing the full kernel matrix of individual layers would

require O(N2) memory whilst matrix multiplication to compute the similarity indices would

require O(N(dx +dy)) in Eq. 2.2 or O(N2) in Eq. 2.1 computational time, where N is the number

of samples.
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2.3.2 Summarising Data

The numerator of CKA is the Hilbert Schmidt Independence Criterion (HSIC) [GHS+05]

scaled by the squared number of samples, and HSIC is a successful test of nonlinear dependency

between two sets of samples XXX and YYY in RKHS H1×H2 induced by k1(·, ·)× k2(·, ·). When

k1 and k2 are characteristic, HSIC(H1,H2,XXX ,YYY ) = 0 iff XXX and YYY are independent. Technically,

as long as the number of samples are the same in two datasets, HSIC or CKA can be applied

to compute a proxy score as the similarity between two datasets with carefully chosen kernel

functions [GBSS05, MFSS17].

From the perspective of testing independence of two datasets XXX and YYY in the product

kernel space, HSIC can be interpreted as measuring the distance between the joint distribution

pXXXYYY and the product of marginal distributions pXXX ⊗ pYYY [MFSS17]. Therefore, HSIC can be

rewritten as

HSIC(H1,H2,XXX ,YYY ) = ||CXXXYYY ||2HS = ||µpXXXYYY −µpXXX⊗pYYY ||H1×H2
(2.3)

where CXXXYYY is the covariance operator and µXXXYYY = EXXXYYY [XXX(X)⊗YYY (Y )] ∈ Rdx×dy . As HSIC is

the squared norm of CXXXYYY in H1×H2, and CXXXYYY is an expected value, it encourages us to apply

sketching techniques to get a summary of data samples in each dataset prior to computing HSIC,

which is the numerator of CKA. Summarising data samples reduces both the memory complexity

for storing the matrix and the time complexity for computing CKA.

2.3.3 Empirical Evidence

It has been shown that big data matrices are approximately low-rank [UT19]. However,

we aim to show empirically that feature maps from layers in a neural network have a similar

property. This will motivate using small-space summaries that preserve the directions manifest

by the feature map. Due to noise, real-world data matrices can be high (algebraic) rank, so we
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instead compute the stable (or numerical) rank of a feature matrix defined as

srank(AAA) = ||AAA||2F/||AAA||22 ≤ rank(AAA). (2.4)

Stable rank is less sensitive to small singular directions so is more robust than algebraic rank; it

measures the speed of spectral decay of the data. [CNW15] show that AAA can be approximately

reconstructed with O(srank(AAA) log(srank(AAA)/δ)/ε2) directions. A matrix with a small stable

rank indicates that one can use a few directions to approximate the matrix without losing much

information.

To show that the learnt feature maps at individual layers {AAAi}L
i=1 of a pretrained ImageNet

neural networks are approximately low-rank, we forward four datasets, CIFAR10, CIFAR100,

STL10 and SVHN to ResNet-18 and ResNet-34, and compute the stable rank value at each layer.

Fig. 2.1 presents the results. It is clear that, even though the dimension of feature vectors is

O(105), the maximum stable rank of all layers of two models is less than 40. The observation

serves as a piece of empirical evidence that feature matrices are approximately low-rank, thus it

is not necessarily required to store the full feature matrix at each layer.
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Figure 2.1: Stable Rank. The stable rank of 4 datasets in 2 networks consistently has stable
rank� d = O(105).
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2.3.4 Sketching the Kernel Matrix

We wish to ease the computational burden by using a low-rank approximation to the

feature matrices. By approximating two feature matrices with the same rank, sketching provides

a way around needing original data samples when comparing models as in [KNLH19]. We apply

a version of the CountSketch (also known as CWT) of [CW13] which is extremely sparse and

can be applied efficiently by streaming through the input, which has time complexity that is linear

in number of total data samples. The algorithm is presented in Alg. 1. The CWT can be seen

as applying a sign function to the rows of input XXX followed by hashing the rows to M buckets

uniformly at random. A detailed definition is given in Sec. 2.5.1.
Algorithm 1: Feature Sketching

Data: a neural network φ, a dataset D = {xxxi}N
i=1, number of buckets M, and batch

size bs

Result: Data Summary ÃAA

ÃAA = 0 ∈ RM×d , t = 0 while t ≤ d N
bse do

sample a batch of data XXX = {xxxi}
bs×(t+1)
i=bs×t+1, ;

compute features AAA = φ(XXX) ∈ Rbs×d , for j = 1; j ≤ bs; j++ do

sample a binary value s, ;

uniformly sample an index k ∈ {1,2, ...,M} ÃAA[k, :] = ÃAA[k, :]+ sAAA[ j, :]

end

t = t +1

end

After sketching the two matrices being compared in CKA, we have individual summaries

K̃KK1 = SSSXXXXXX>SSS> and K̃KK2 = SSSYYYYYY>SSS>, where SSS is a random projection matrix that satisfies subspace

embedding requirements. It is important to know how sketching affects the accuracy of similarities.

We provide a bound on the difference between Sketched CKA (SCKA) and CKA The first step

shows how much HSIC changes with sketching, and the second step shows how much the SCKA

differs from CKA.
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Lemma 1 With probability 1−δ,
∣∣∣||XXX>SSS>SSSYYY ||F −||XXX>YYY ||F

∣∣∣≤ ε||XXX>YYY ||F .

Lemma 2 With probability 1−δ, |ρS−ρ| ≤ 4ε

(1−ε)2 ρ,

where ρS = ρ(K̃KK1, K̃KK2) = ρ(SSSK̃KK1SSS>,SSSK̃KK2SSS>), and ρ = ρ(KKK1,KKK2). Proofs of each lemma are in

Sec. 2.5.4.
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Figure 2.2: The comparison between Sketched CKA and CKA values. The scatter plot
shows 250 pairs of CKA and Sketched CKA values, and the dashed line presents where the
value pairs are equal (y = x). It empirically verifies that the absolute difference between CKA
and Sketched CKA is small.

Lemmas 1 & 2 show that sketching approximately preserves the learnt representations.

The lemmas hold for arbitrary subspace embeddings so SSS can be sampled from a family with

better failure probability dependency than the CountSketch (e.g SJLT).

To empirically illustrate the difference between ρSCKA(XXX ,YYY ) and ρCKA(XXX ,YYY ). A data

matrix XXX ∈ R10,000×512 is generated, and 250 affine transformations {TTT i}250
i=1 are sampled to

construct {YYY i}250
i=1 with YYY i = XXXTTT i. It results in 250 ρCKA(XXX ,XXXTTT i) values that fall uniformly

in [0,1]. We apply an SJLT, SSSi ∈ R512×10,000, to XXX in each pair to compute ρSCKA(XXX ,XXXTTT i) =

ρCKA(SSSiXXX ,SSSiXXXTTT i). Fig. 2.2 shows 250 pairs of Sketched CKA and CKA values, and it is clear

that value pairs are very close to each other with Sketched CKA values being slightly larger than

CKA ones.
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Figure 2.3: SCKA between the top layer features and targets vs. Accuracy. Each solid line
describes the change of our proposed Sketched CKA between the top layer features of a ResNet
model being trained on CIFAR100 evaluated on a target task. Each dotted line presents the
change of accuracy using the same features on the target task. Dashed vertical lines indicate two
steps of decreasing the learning rate.
It is clear that Sketched CKA, which provides a lower bound on the accuracy, actually tracks
the change of performance of the top layer features on four tasks presented in the plots. Once
the learning rate decays, SCKA and Accuracy both increase when the target task is CIFAR100
itself, however, both decrease when the target task isn’t the same as the training task. It implies
that decreasing the learning rate helps the network to excel on the same dataset, but decreases
the transferability to other tasks.

2.3.5 Our Method in a Nutshell

Given a neural network φ and a dataset D with N samples, our method sketches each

data sample into M buckets. This step can be parallelised in the batch mode in deep learning

frameworks. Then, the inner product of the summary matrix and itself gives the kernel matrix

K̃KK ∈ RM×M.

2.4 Results

We present four sets of experiments to show that 1) our proposed way of sketching data

samples or feature vectors to a fixed size still demonstrates the expected behaviours of neural

networks in terms of similarity scoring between layers, 2) the Sketched CKA value can serve

as a measure of transferability of top layer features of a neural network given a target task. The

detailed experimental design and results are presented in each subsection. Since a majority of

experiments are conducted on ResNet models, we use the layer index l to denote the index of a
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Figure 2.4: SCKA between layers and targets. {ρS(AAAlAAA>l ,YYYYYY>)}7
l=2 and l = 8 is presented

in Fig. 2.3 as it is the top layer. Plots presents the convergence of each layer during the training
of a ResNet-18 model on CIFAR100 evaluated with 4 probing datasets. The observation is
relatively consistent with prior work that layer 1-6 converge faster than layer 7 and 8 when the
probing task comes from a similar domain. Whilst on SVHN, the alignment between layer 2 and
targets decreases quickly across training on CIFAR100, and higher layers converges quicker.

residual block which often contains two or three convolutional layers.

CKA takes two kernel matrices K̃KK1 and K̃KK2 as inputs and outputs an alignment score.

2.4.1 Training ResNet Models from Scratch

Two Residual Networks (ResNet) [HZRS15], ResNet-18 and 34, are trained on CIFAR100

for 200 epochs. Stochastic Gradient Descent (SGD) is used. The initial learning rate is 0.1, and

is decreased by a factor of 10 at epoch 80 and 120 as recommended in [HZRS16]. The weight

decay is set to be 5e−4. Details can be found in the publicly available implementations1. We

denote first 80 epochs as stage 1, 80 - 120 as stage 2, and the rest stage 3.

During training, we evaluate SCKA ρS(AAALAAA>L ,YYYYYY>) and accuracy of the top layer features

on predicting targets, with a simple linear model, on CIFAR100, CIFAR10, [Kri09], STL10

[CNL11] and SVHN [NWC+11]. The results are shown in Fig. 2.3. In stage 1, both SCKA

between the top layer features and the targets and the accuracy of using the same feature vectors

for predicting the targets are increasing gradually. At the beginning of stage 2, both values have a

significant increase on CIFAR100, and a small increase on CIFAR10. It implies that lowering the

learning rate helps a model become specialised on the training dataset CIFAR100, and it helps

the top layer features generalise on datasets from a similar domain.

1https://github.com/kuangliu/pytorch-cifar
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Figure 2.5: Layerwise similarity, illustrated by SCKA, of a ResNet model (ResNet18 or
ResNet34) during training on CIFAR100. At the beginning, the layers are generally grouped
into two sets by the SCKA values. During the course of training, we observe that the grouping
becomes more prominent as individual layers gradually become specialised. It takes longer for
the relatively deeper model, ResNet34, to reach the final grouping, whilst the shallower one,
ResNet18, reaches a stable grouping very early. It implies that deeper models may take longer
to converge, but may be capable of exploring more solutions.
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Figure 2.6: SCKA vs. F1 score of one-vs-all classification tasks on each dataset. Each
dataset is decomposed into one-vs-all binary classification tasks, and both SCKA and F1 score
are illustrated during the course of training a ResNet18 model on CIFAR100. The set illustrated
labels of each dataset contains two with highest SCKA values at the end of training and two
lowest.
We can observe that, the higher the SCKA value is, the higher the F1 score is. In addition, the
network trained on CIFAR100 helps the network to separate out cars and trucks easily on both
CIFAR10 and STL10.
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In Stage 3, the SCKA and the accuracy reach a higher level than they are in stage 1 on

CIFAR100, and a similar level on CIFAR10, but a lower level on STL10. Our interpretation is

that STL10 data comes from downsampled images from ImageNet [DDS+09], while CIFAR10

and CIFAR100 are from a similar data domain. Both values stay at a low level on SVHN as the

dataset is drastically different from other datasets.

The SCKA values between individual layers and the targets ρS(AAAlAAA>l ,YYYYYY>), where

l ∈ {1,2, ...,L}, are plotted in Fig. 2.4. The general observation is that higher layers are more

aligned with the targets than the lower layers are, but exceptions also exist. Lower layers tend to

converge faster than the higher layers do on CIFAR100, CIFAR10, and STL10. An unexpected

observation is that, on SVHN, the SCKA value between features from layer-2 with the target

gradually decays across the training. A potential explanation for this observation is that, even

though bottom layers are considered to be learning more general filters than abstract concepts,

the training dataset still matters in determining the generality of learnt filters.

Fig. 2.5 presents cross-layer similarity scores measured by ρS(AAAiAAA>i ,AAA jAAA>j ), where

i, j ∈ {1,2, ...,L}. Both ResNet-18 and ResNet-34 models group layers in a certain fashion,

and the grouping becomes prominent during the training. This observation is consistent with

[KNLH19]. However, at the 50-th epoch, ResNet-34 model still expresses high alignment scores

between bottom layers and top layers, whilst ResNet-18 already reaches a stable grouping of

layers that is similar to the grouping at the end of training. It suggests that a model with more

layers tends to stablise slower, but it is potentially capable of exploring more diverse solutions

before the training reaches the end.

One can consider a multi-class classification task as a set of one-vs-all binary classification

tasks, and analysing the progress of each task during training the multi-class task provides

insights on the difficulty of each binary classification task. Fig. 2.6 shows, during the training on

CIFAR100, the change of SCKA and F1 score of each binary task from CIFAR10, STL10 and

SVHN. Consistently, on CIFAR10, and STL10, cars and trucks are easier to classify compared to

21



0 1 2 3 4 5
Epochs

0.3

0.4

0.5

0.6

Sk
et

ch
ed

 C
KA

ImageNet -> CIFAR10

Sketched CKA
Accuracy

0 1 2 3 4 5
Epochs

CIFAR100 -> CIFAR10

1 2 3 4 5
Epochs

ImageNet -> STL10

1 2 3 4 5
Epochs

CIFAR100 -> STL10

40

60

80

Ac
cu

ra
cy

Figure 2.7: SCKA of the top layer features vs. Accuracy during fine-tuning. The network
pretrained on ImageNet or CIFAR100 is fine-tuned on either CIFAR10 and STL10 for five
epochs as the performance becomes stabilised. It is observable that SCKA tracks Accuracy
during fine-tuning, which supports the argument that SCKA is indeed a decent and reliable
predictor of the Accuracy.

other classes as the binary tasks have higher F1 scores, which our proposed SCKA is insync with.

It helps us understand which classes the neural network chooses to learn from first, and which

classes are intrincially different.

2.4.2 Fine-tuning from Pretrained Models

Pretrained models from either ImageNet or CIFAR100 are fine-tuned on CIFAR10 and

STL10 for five epochs. During the fine-tuning, both SCKA of the top layer features and targets,

ρS(AAALAAA>L ,YYYYYY>), and the accuracy of each task are recorded. Fig. 2.7 presents the curves. It is

clear that our proposed SCKA keeps track of the trend of accuracy closely. We also measured

SCKA along with F1 scores of binary classification tasks with labels selected in the previous

section. FIg. 2.8 shows that our SCKA is still capable of distinguishing easy tasks from hard

ones.

2.4.3 Sketched CKA as Transferability

Previous experiments show that our proposed SCKA is insync with the accuracy of a

given task during training or fine-tuning of a model. To further illustrate that the SCKA can serve

as a measure for transferability of the top layer features of a neural network on a larger scale,

we conduct a similar experiment as proposed in [NHSA20]. We sample a subset of classes from
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Figure 2.8: Same labels as the ones in Fig. 2.6 are selected, and the changes of SCKA and F1
of binary classification tasks using the top layer features during fine-tuning a pretrained model
are presented. When the downstream task is CIFAR10, our SCKA on both models pretrained
on ImageNet and CIFAR100 are capable of differentiating easier tasks from the harder ones.
On STL10, as it is a subset of downsampled ImageNet images, the ImageNet pretrained model
performs overall better than the CIFAR100 pretrained one. Our SCKA indicates that individual
classes are categorised equally well on ImageNet, but the difference appears when the training
data is CIFAR100.

one of the three tasks used in our experiments, including CIFAR10, CIFAR100 and STL10, to

compose a new task, and then use one of the publicly available ResNet models pretrained on

ImageNet in PyTorch [PGM+19], including ResNet-18, -34, -50 and -101, to extract features for

the sampled task.

Fig. 2.9 shows the linear relationship between the logρS(AAALAAA>L ,YYYYYY>) and the accuracy

of using the top layer features for making predictions using a simple linear model. It implies

that CKA can be regarded as a reliable predictor of transferability, and our proposed SCKA is a

computationally efficient substitute.

Our proposed SCKA achieves similar functionality as LEEP [NHSA20]. However, the

LEEP score fails when the target dataset is only a shift of the source dataset when all samples are

on the one side of the decision boundary, whilst ours doesn’t [TN20].
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Figure 2.9: SCKA vs. Accuracy of randomly subsampled tasks. A task is composed of
randomly subsampled classes from one the three tasks, including CIFAR10, CIFAR100, and
STL10, and the accuracy and the logarithm of SCKA value of the top layer features and the
targets using a pretrained ImageNet model is visualised as a dot in the plots. It shows the
linear relationship between the log of SCKA and the accuracy using a pretrained ImageNet
model on a downstream task. As the pretrained model goes deeper with the number of layers
(from ResNet18-34-50-101), the cluster of dots gradually move upwards w.r.t. the same log-
SCKA value. It matches our expectation that deeper models generalises better with the ResNet
architecture.

Table 2.1: Results of Transfer Learning. Two ImageNet models, 150 models with random
subsets of data from CIFAR10, CIFAR100, and SVHN are used as feature extractors, none of
which have seen the full training sets. SCKA leverages the property of the algorithm [CMR12]
for selecting models, and when irrelevant feauture extractors are presented, the algorithm is
capable of pruning them for making predictions. Sketching helps create a fixed-size data
summary for each dataset given each model which is independent from the number of data
samples in each task, and it helps boost the speed of the algorithm for learning kernels.

Pretraining Tasks / Transfer Tasks STL10 CIFAR10 CIFAR100 SVHN FashionMNIST

ImageNet 96.06 86.48 67.31 47.97 85.68
subsets of CIFAR10 82.17 95.02 49.22 56.70 84.81
subsets of CIFAR100 75.91 79.80 79.08 57.65 86.77

subsets of SVHN 53.00 58.49 28.82 97.00 86.16

All models 96.14 94.90 79.12 97.02 86.86

2.4.4 Transfer Learning

Given a large number of pretrained models, we now demonstrate that our Sketched CKA

can be combined with the learning kernel algorithm in [CMR12] to leverage all pretrained models

efficiently. The learning kernel algorithm aims to find an optimal set of nonnegative weights on

individual kernel matrices so that the weighted sum of kernel matrices gives the maximum CKA
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score with the target, and it can be formally written as

µµµ? = argmax
{||µµµ||=1∧µµµ≥0}

〈KKK,YYYYYY>〉F/||KKK||F , (2.5)

where KKK = ∑
p
k=1 µkKKKk. Given Proposition 9 in [CMR12], the aforementioned optimisation

problem is equivalent to the following one with normalisation.

vvv? = argminvvv≥0vvv>MMMvvv−2vvv>aaa, (2.6)

where MMMk,l = 〈KKKk,KKKl〉F , aaak = 〈KKKk,YYYYYY>〉F and p is the number of kernel matrices. The memory

complexity of this algorithm is O(Nd), where d = ∑
p
k=1 dk and dk is the dimension of feature vec-

tors produced from the k-th pretrained model, and the time complexity for a forward computation

is at least O(pN2).

When a large number of pretrained models are presented, one can regard each one of them

as a function that gives a fixed dimensional vector for a given sample. Combined with our proposed

SCKA, M̃MMk,l = 〈SSSKKKkSSS>,SSSKKKlSSS>〉F = ||XXX>k SSS>SSSXXX l||2F and ãaak = 〈KKKk,YYYYYY>〉F = ||XXX>k SSS>SSSYYY ||2F . As

proposed in the previous section, if SSS is implemented as a stack of q CountSketch methods with

M sketches, the time complexity becomes O(qNd + pM2). The memory complexity becomes

O(Md). When N� dk, sketching helps to reduce both the computational and memory complexity.

In our experiments, the model zoo contains 152 pretrained model, among which two are

released ResNet-18 and ResNet-34 models pretrained on ImageNet, and 50 models are pretrained

on subsets of one the three datasets, CIFAR10, CIFAR100, and SVHN. Beside these three datasets,

STL10 and FashionMNIST are included for evaluating our transfer learning approach. To avoid

any trivial solution, we make sure that none of the pretrained models have seen the full training

set of any dataset in our study, so that during transfer, each model has to handle unseen data

samples.

The results are presented in Table 2.1. SCKA combined with the learning kernel alignment
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algorithm can select feature vectors from useful ones as the performance of using all models

is similar to that of using only models pretrained with data subsampled from the same dataset.

The contribution of SCKA is the drastic reduction on the memory cost of storing features from

models, and the computation of M̃MM and ãaa.

2.5 Details of Concepts

2.5.1 Properties of sketches

Definition CountSketch [Woo14]: Initialise SSS = 0 ∈ Rm×n. For every column i of SSS

choose a row h(i) uniformly at random. Set SSSh(i),i to either +1 or−1 with equal probability. Then

SSS = BBBDDD with BBB ∈ Rm×n is a matrix selecting the hash buckets assigned to a row of the input and

D is a diagonal matrix of Rademacher random variables.

We also require the following definitions:

Definition Johnson-Lindenstrauss Transform (JLT): A matrix SSS ∈ Rk×n is a JLT with

parameters ε, δ, f , written JLT (ε,δ, f ) if, with probability at least 1−δ, for any V ⊂ Rn of size

f :

∀vvv,vvv′ ∈V : |〈vvv,vvv′〉−〈SSSvvv,SSSvvv′〉| ≤ ε‖vvv‖‖vvv′‖ (2.7)

Our bound applies for any sketch which is a JLT (ε,δ, f ). However, in practice, we instead

implement the CWT as it is extremely fast to apply. Technically, the CWT does not ensure a

JLT (ε,δ, f ) in the worst case. This is because it preserves the norm of f = 2Ω(d) points lying in

a d-dimensional subspace rather than an arbitrary set of f points. Further details can be found

on pages 16-17 of [Woo14]. One sparse transform which achieves our bound is the Sparse

Johnson-Lindentrauss Transform of [NN13] which can be thought of as s stacked CWT matrices

of height m/s for a projection dimension m. Our implementation explored several settings for s,
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however, s = 1 performed well-enough and was extremely fast to apply. This is the reason we use

the CWT in practice but prove our bounds for general JLT matrices.

In spite of this, there remain some strong theoretical reasons why we expect the CWT to

perform favourably. This is because it still preserves all directions which make up the column

space of the input matrix, as formalised below.

Definition Subspace Embedding: A matrix SSS which ensures:

(1− ε)‖AAAxxx‖2
2 ≤ ‖SSSAAAxxx‖2

2 ≤ (1+ ε)‖AAAxxx‖2
2 (2.8)

is called a (1± ε) subspace embedding for the column space of A. In addition, this requirement

gives a pointwise guarantee on approximate singular values.

The main result we need is from [Woo14]:

Theorem. Let AAA ∈ Rn×d be a matrix of full rank. Then for any δ ∈ [0,1], SSS ∈ Rm×n

is a (1± ε)-subspace embedding for the column space of AAA with probability 1− δ provided

m = O(d2/δε2). Furthermore, SSSAAA can be computed in time O(nnz(AAA)).

Note that the CountSketch has weak failure probability dependence on δ but we find in

our applications this is not problematic. Also, despite the input matrices being dense, it is still

quicker to stream through the input and hash the rows rather than invoking other sketches which

are applied through more expensive methods such as explicit matrix product or Fast Fourier

Transforms.

2.5.2 Training details of models

We followed the publicly available training procedure of Residual Network, and the details

include that (1) the initial learning rate is 0.1, and it decays by a factor of 10 every 80 epochs; (2)

each model is trained for 200 epochs; (3) the optimizer is stochastic gradient descent with batch
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size 128 and weight decay coefficient 10−4 for training each model2.

Model training is done on V100 GPUs, and the main results in our paper including model

comparisons and the study on the norm of kernel mean embedding are done on a single Titan

1080 GPU.

2.5.3 Hyperparameters in sketching

There are two main hyperparameters in sketching, the batch size bs and the sketching size

M, which is named as the number of buckets in our main paper. The batch size doesn’t have an

impact on the results of sketching so we set it to be the largest possible to fit in a single Titan

1080.

For visualisation purposes, we found that M = {512,2048} presents similar trend. For

transfer learning purposes, the performance increases as MMM becomes larger, but in our experiments,

we set M = 2048.

2.5.4 Proof of the bound in Lemma 1

We slightly alter the notations to match the convention used in [Woo14]. Here, we set

XXX ∈ RN×d1 , YYY ∈ RN×d2 and SSS ∈ RM×N . Let SSS be a JLT (ε,δ, f ).

Given in [Woo14] that

Pr
[∣∣〈SSS(XXX)·i,SSS(YYY )· j〉−〈(XXX)·i,(YYY )· j〉

∣∣≤ ε||(XXX)·i||2||(YYY )· j||2
]
≥ 1−δ (2.9)

2https://github.com/kuangliu/pytorch-cifar
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The above error bound can be written as:

〈SSS(XXX)·i,SSS(YYY )· j〉=〈(XXX)·i,(YYY )· j〉± ε||(XXX)·i||2||(YYY )· j||2 (2.10)

〈SSS(XXX)·i,SSS(YYY )· j〉2 =
(
〈(XXX)·i,(YYY )· j〉± ε||(XXX)·i||2||(YYY )· j||2

)2 (2.11)

=〈(XXX)·i,(YYY )· j〉2 + ε
2||(XXX)·i||22||(YYY )· j||22

±2ε〈(XXX)·i,(YYY )· j〉||(XXX)·i||2||(YYY )· j||2 (2.12)

According to the Cauchy-Schwartz inequality, we have 〈(XXX)·i,(YYY )· j〉 ≤ ||(XXX)·i||2||(YYY )· j||2.

Then the upper bound can be simplified as

〈SSS(XXX)·i,SSS(YYY )· j〉2 ≤〈(XXX)·i,(YYY )· j〉2 + ε
2||(XXX)·i||22||(YYY )· j||22

+2ε〈(XXX)·i,(YYY )· j〉||(XXX)·i||2||(YYY )· j||2 (2.13)

≤〈(XXX)·i,(YYY )· j〉2 + ε
2||(XXX)·i||22||(YYY )· j||22 +2ε||(XXX)·i||22||(YYY )· j||22 (2.14)

≤〈(XXX)·i,(YYY )· j〉2 +(ε2 +2ε)||(XXX)·i||22||(YYY )· j||22 (2.15)

Similarly, the lower bound can be simplified as:

〈SSS(XXX)·i,SSS(YYY )· j〉2 ≥〈(XXX)·i,(YYY )· j〉2 + ε
2||(XXX)·i||22||(YYY )· j||22

−2ε〈(XXX)·i,(YYY )· j〉||(XXX)·i||2||(YYY )· j||2 (2.16)

≥〈(XXX)·i,(YYY )· j〉2 + ε
2||(XXX)·i||22||(YYY )· j||22−2ε||(XXX)·i||22||(YYY )· j||22 (2.17)

≥〈(XXX)·i,(YYY )· j〉2 +(ε2−2ε)||(XXX)·i||22||(YYY )· j||22 (2.18)

Now we have:

〈SSS(XXX)·i,SSS(YYY )· j〉2 = 〈(XXX)·i,(YYY )· j〉2 +(ε2±2ε)||(XXX)·i||22||(YYY )· j||22 (2.19)
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We sum over d1 columns in XXX and d2 columns in YYY

d1

∑
i=1

d2

∑
j=1
〈SSS(XXX)·i,SSS(YYY )· j〉2 =

d1

∑
i=1

d2

∑
j=1
〈(XXX)·i,(YYY )· j〉2 +

d1

∑
i=1

d2

∑
j=1

(ε2±2ε)||(XXX)·i||22||(YYY )· j||22 (2.20)

||XXX>SSS>SSSYYY ||2F =||XXX>YYY ||2F +(ε2±2ε)||XXX ||2F ||YYY ||2F (2.21)

Since ||XXX ||2F ||YYY ||2F ≥ ||XXX>YYY ||2F , the bound can be tightened by

||XXX>SSS>SSSYYY ||2F = (1± ε)2||XXX>YYY ||2F (2.22)

Therefore,

Pr
[∣∣∣||XXX>SSS>SSSYYY ||F −||XXX>YYY ||F

∣∣∣≤ ε||XXX>YYY ||F
]
≥ 1−δ (2.23)

2.5.5 Proof of the bound in Lemma 2

By setting XXX = YYY = Ψ we can easily derive

Pr
[∣∣∣||Ψ>SSS>SSSΨ||F −||Ψ>Ψ||F

∣∣∣≤ ε||Ψ>Ψ||F
]
≥ 1−δ (2.24)

Then we have:

||XXX>SSS>SSSXXX ||F ||YYY>SSS>SSSYYY ||F = (1± ε)2||XXX>XXX ||F ||YYY>YYY ||F (2.25)
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Therefore,

(
1− ε

1+ ε

)2

ρ≤ ρS ≤
(

1+ ε

1− ε

)2

ρ (2.26)

where ρS =
||XXX>SSS>SSSYYY ||2F

||XXX>SSS>SSSXXX ||F ||YYY>SSS>SSSYYY ||F

and ρ =
||XXX>YYY ||2F

||XXX>XXX ||F ||YYY>YYY ||F

Then the absolute difference between the Sketched CKA and the original CKA is bounded

as shown below:

|ρS−ρ| ≤max{ 4ε

(1+ ε)2 ,
4ε

(1− ε)2}ρ =
4ε

(1− ε)2 ρ (2.27)

Formally,

Pr
[
|ρS−ρ| ≤ 4ε

(1− ε)2 ρ

]
≥ 1−δ (2.28)
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Chapter 3

Deep Transfer Learning with Ridge

Regression

3.1 Introduction

Besides scoring high on tasks they are trained on, neural networks have also excelled

on tasks where datasets are collected from similar domains. Prior work [YCBL14] showed that

filters/parameters learnt in DNNs pretrained on ImageNet generalise better with slight fine-tuning

than those learnt from random initialisations. Since then, applications in Computer Vision have

had major breakthroughs by initialising DNNs with pretrained parameters and fine-tuning them

to adapt to new tasks. Similarly, Natural Language Processing (NLP) welcomed its “ImageNet

Era” with large and deep pretrained language models including Bert [DCLT19], and performance

on downstream NLP tasks has achieved state-of-the-art on a daily basis by employing more data

and deeper models during pretraining, and using smarter methods for fine-tuning.

These advances in transfer learning using pretrained DNNs and fine-tuning, however,

come with a large computational cost. An essential step to boost the performance on a given

new task is to fine-tune the pretrained DNN until it converges, which is computationally intense
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since these models tend to have hundreds of millions of parameters. An alternative approach is to

freeze the parameters and treat the pretrained DNN model as a feature extractor that produces

abstracted vector representations which can be used to train a simple classifier that benefits from

the pretraining knowledge. But as the parameters are not adapted to the new task, the latter

approach provides inferior performance to fine-tuning.

We here propose a new way of augmenting the latter approach without fine-tuning the

DNN. Our approach is to take an accumulation of feature vectors produced at different individual

layers which encode different aspects of the data. Since feature vectors are highly correlated with

each other, as they are generated from a single DNN, only a few are needed to make predictions.

We adopt the alignment maximisation algorithm for combining kernels [CMR12], in which we

first find a convex combination of linear kernels constructed from individual layers that gives

maximal alignment with the target kernel constructed from one-hot encoding of the labels. Then,

we take the ensemble of feature vectors of layers selected by non-zero elements in the sparse

combination, and make predictions using kernel ridge regression (KRR) with approximation.

3.2 Related Work

Transfer learning with classical machine learning methods has been studied for a couple

of decades [PY10], including boosting [DYXY07], support vector machines [MBS13], ridge

regression [CM11], etc. These methods benefit from the transparency of classical machine learn-

ing models, and from their capacity as universal function approximators with strong theoretical

guarantees However, it is not easy to incorporate structural priors, such as human knowledge,

into regularising the learning process. This information is crucial in advancing machine learning

systems.

Neural networks are also universal function approximators [HSW89], and learnt vectorised

representations are generalisable across tasks, with recent advances in architecture designs
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specifically for individual types of inputs, including convolutional layers for image recognition

[LBBH98], recurrent layers [Elm90, HS97] and transformer modules [VSP+17], etc. Recent

research has demonstrated that deep models pretrained on large amounts of data generalise well

on unseen data sampled from relevant domains [YCBL14] by fine-tuning. With growing depth

of networks, the cost for fine-tuning becomes non-negligible. Efforts in knowledge distillation

from deep models to shallow ones [BC14, HVD15], [FH17] showed that neural networks can be

simplified after learning, although the learnt transferable features can be potentially detrimented

during distillation.

Our approach takes the best of both worlds by using feature vectors produced from

multiple layers of a pretrained neural network without explicit fine-tuning, and makes predictions

with KRRs for a new task. With help from low-rank approximations, our approach only requires

passing the training data once through a neural network without backpropagation.

3.3 Method

The key concept is to apply KRR with a few layers of feature vectors produced from

a pretrained neural network to make predictions, classification in our case, on a downstream

task. Our notation includes: XXX ∈ RN×d is the data matrix with N samples with each sample in

d-dimensional space, YYY ∈ RN×c is the corresponding labels with one-hot encoding, XXX l ∈ RN×dl

contains flattened feature vectors as rows produced at the l-th layer of a neural network, SSS∈RM×N

is a random projection matrix that meets the requirement of subspace embedding with M� N,

IIIp ∈Rp×p is an identity matrix, L is the number of layers in a pretrained neural network, and α is

the regularisation term in ridge regression. Other notation will be introduced as needed.
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3.3.1 Low-rank Approximation at Layers

Flattened feature vectors generated from neural networks are generally high-dimensional

and redundant, 1 Theoretical work [UT19] showed that big data matrices are generally low rank,

and they can be approximated with a few directions without much information loss. Therefore,

we use random projections to obtain low-rank approximations of feature vectors with many fewer

dimensions. Given that the Nyström method is well-studied in approximating large-scale kernel

matrices [GM16], we follow the formula to approximate a linear kernel XXX lXXX>l as

XXX l (SSSXXX l)
> (SSSXXX lXXX>l SSS>)† (SSSXXX l)XXX>l (3.1)

where † is the pseudo-inverse of a square matrix. If M� d, which is mostly the case

for feature vectors generated from neural networks, and the eigendecomposition is written as

(SSSXXX lXXX>l SSS>)† = QQQlΛlQQQ>l , then the low-rank approximation of X̃XX l can be obtained by

X̃XX l = XXX l (SSSXXX l)
>QQQlΛ

−0.5
l (3.2)

with each sample in at most M-dimensional space. As we aim to conduct layer-wise low-

rank approximations, it is preferable to apply sparse random projections instead of dense ones.

Therefore, we consider a stack of s independent CountSketch [CW13] which is equivalent to

the sparse Johnson-Lindenstrauss Transformation [Woo14]. Compared to a safe dense random

projection matrix filled with samples from a Gaussian random variable which requires a matrix

multiplication for reducing the dimension, the time complexity of CountSketch is independent

from the projection dimension M, and this desired property a significant amount of computation

on top of the forward pass of a neural network.

In CountSketch, the random projection matrix SSS is considered as a hash table that uni-

1Fig. 3.8 shows the output dimensions of individual residual blocks in four ResNet models.
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formly hashes N samples into M buckets with a binary value randomly sampled from {+1,−1}

so there is no need to materialise SSS. Successful applications of CountSketch including poly-

nomial kernel approximation [PP13] and large-scale regressions are due to its scalability with

theoretical guarantees when few hash tables are used [Woo14]. Generally, larger s leads to better

approximations, yet the performance improvement becomes marginal. Prior work [Jag19] showed

empirically that s = 4 works well on real-world datasets; thus, we set s = 4 which drastically re-

duces the cost for low-rank approximations at individual layers. The time complexity of Nyström

is O((sN +M2 +NM)dl +(M+N)M2).

With limited GPU memory, producing feature vectors for a downstream task given a

pretrained neural network is often done in batches of samples. CountSketch is also well-suited in

this situation as, technically, the approximation can be done in only one forward pass. At the end

of this stage, one can obtain a set of low-rank approximations of feature vectors at individual layers

{X̃XX l}L
l=1, the memory complexity is at most O(LNM). We now use the alignment maximisation

algorithm to determine a smaller set of layers to use for the task.

3.3.2 Convex Combination of Layers

As feature vectors at individual layers arise from consecutive transformations from

previous layers, the same input data will have many redundant features across layers. Thus we

aim to select only a few layers that give the maximum alignment with the target. Specifically, a

vector µµµ = [µ1,µ2, ...,µL]
> is optimised to maximise the following alignment [CMR12]:

µµµ? = argmax
{||µµµ||=1∧µµµ≥0}

〈KKK,YYYYYY>〉F/||KKK||F (3.3)

where KKK = ∑
L
l=1 µlX̃XX lX̃XX

>
l

Proposition 9 in [CMR12] showed that it is equivalent to the quadratic programming problem:

vvv? = argminvvv≥0vvv>MMMvvv−2vvv>aaa, where aaal = ||X̃XX
>
l YYY ||2F and MMMk,l = ||X̃XX

>
k X̃XX l||2F , then µµµ? = vvv?/||vvv?||.
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Intuitively, aaal measures the linear alignment between the low-rank feature vectors X̃XX l and the

targets YYY , and MMMk,l indicates the linear alignment between two sets of feature vectors produced at

the k-th and l-th layer.

Non-zero entries in µµµ? provide a weighted sparse combination of feature vectors from

a few layers that gives the highest linear alignment with targets. Note that there is no specific

regularisation to control the sparsity of µµµ?, but due to the associations across layers, the resulting

vector is extremely sparse as illustrated in our experiments. The time complexity is dominated by

materialising MMM ∈ RL×L, which is O(L2M2N) at worst.

The kernel KKK induces an embedding space which is a concatenation of feature vectors

weighted by µ1/2
l , then the optimisation problem in Eq. 3.4 can be written in a weight-space

perspective:

µµµ? = argmax
{||µµµ||=1,µµµ≥0}

||XXX>φ YYY ||2F/||XXX>φ XXXφ||F (3.4)

where XXXφ = [µ
1
2
1 X̃XX1,µ

1
2
2 X̃XX2, ...,µ

1
2
L X̃XXL]

It is worth noting that the objective is not the “goodness-of-fit” measure for linear regression, R2

statistics ||XXX>φ QQQY ||2F/||XXXφ||2F , where QQQY contains eigenvectors of YYYYYY>. Optimising µµµ to maximise

R2 will lead to drastic overfitting by accumulating all layers, and subsequently meaningless µµµ.

One can equate maximising R2 as setting the off-diagonal terms in MMM to 0, and optimising the

same objective. Therefore, it considers individual layers to be independent from each other, and it

encourages the algorithm to select all layers to maximise R2, which leads to overfitting.

The objective in Eq. 3.4 finds a convex combination of features that maximises the

alignment between the subspace spanned by the concatenated features and that by the one-hot

encoded label space, so it prevents XXXφ from accumulating more feature vectors once an optimal

subset is obtained. Therefore, the alignment-based objective prevents overfitting to a certain

degree.
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3.3.3 Kernel Ridge Regression

Since we aim to use the closed-form solution in ridge regression for transfer learning,

to increase the capacity of our model, an RBF kernel function is applied on top of the selected

features from the neural network.

We denote Ls � L as the number of layers with positive µl . Since, in the end, the

predictions are made by kernel ridge regression, if N is of a manageable order, then there is

no need to conduct kernel approximation through Nyström. However, low-rank approximation

can potentially help reduce the noise in data, which leads to a better generalisation compared to

computing the exact kernel function.

condition prediction yyy

N�Ms x̃xxψ(X̃XX
>
ψ X̃XXψ +αIIIMs)

−1X̃XX>ψYYY

N�Ms x̃xxψX̃XX>ψ(X̃XXψX̃XX>ψ +αIIIN)
−1YYY

We consider approximating an RBF kernel function k(xxxi,xxx j) = exp(−||xxxi− xxx j||2/2σ2)

with the Nyström method using the same subsampling in Sec. 3.3.1, CountSketch, to further

promote fast computation on accumulated feature vectors XXXφ. We denote the number of buckets in

m hash functions as Ms, then the time complexity of this step is O((m+Ms)NM+2M2
s M+M3

s ).

Since N�M and N�Ms, the dominating term in the complexity is MsNM. The hyperparameter

σ2 is heuristically set to max{||xxxi||2/2 : i = 1,2, ...,N}. One could cross-validate σ2 as well,

however, for the sake of reducing the complexity of transfer learning, we stick to the heuristic

value. The approximated low-rank feature map of an RBF function is denoted as X̃XXψ ∈ RN×Ms .

Table 3.1: Dataset details. Individual cell indicates (# Training Samples / # Test Samples / [#
Classes]).

Training In-domain Transfer Out-of-domain Transfer
ImageNet CIFAR10 CIFAR100 STL10 SVHN CUB200 Kuzushiji49

1.2m / - [1000] 50k / 10k [10] 50k / 10k [100] 5k / 8k [10] 73k / 26k [10] 6k / 6k [200] 116k / 38k [49]
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Table 3.2: Results of supervised transfer learning. Median accuracy of five trials is reported
in each cell, and each cell has two accuracy terms of transferring from [ResNet-18 / ResNet-34].
Except for CUB200, our method outperforms LogReg significantly since the variance of five
trials is very small as presented in figures.

CIFAR10 [In] CIFAR100 [In] STL10 [In] CUB200 [Out] SVHN [Out] Kuzushiji49 [Out]

LogReg 87.45 / 89.94 69.08 / 72.76 95.08 / 96.55 60.80 / 61.60 64.36 / 59.47 74.56 / 71.08

Ours 90.77 / 92.31 71.31 / 74.63 96.30 / 97.31 58.78 / 61.70 88.76 / 88.53 88.12 / 88.00

Given a new data sample x̃xxψ, the prediction is given the closed-form solution of ridge regression

in the table above.

Then the label of a test sample is the index of the maximum value in predicted yyy. The

time complexity of ridge regression is determined by the inverse of a square matrix and the matrix

multiplication that gives the square matrix, and it is min(N3 +MsN2,M3
s +NM2

s ).

In summary, our proposed method has three steps including 1) CountSketch to obtain

low-rank feature vectors at individual layers to a manageable size, 2) convex combination to

take weighted accumulation of feature vectors, and 3) KRR with Nyström approximation to

make predictions. Compared to multiple forward and backward passes required in fine-tuning or

training classifiers, our method drastically reduces the computational cost.

39



3.4 Experiments

We demonstrate the effectiveness of our method through experiments on transfering

ResNet-based models [HZRS15, HZRS16] pretrained on the ImageNet dataset [DDS+09, RDS+15]

to downstream tasks, including three in-domain datasets, CIFAR-10, CIFAR-100 [Kri09], STL10

[CNL11], and three out-of-domain ones, Street View House Number (SVHN) [NWC+11],

Caltech-UCSD-200 (CUB200) [WBW+10], Kuzushiji49 [CBIK+18]2. Basic statistics of each

dataset are presented in Table 3.1, and their descriptions are included in Sec. 3.7.1. Experiments

are done in PyTorch [PGC+17].

Table 3.3: Performance of three methods using the same time budget. “Time / seconds”
row reports the running time of our method including hyperparameter tuning and test runtime
on 4 large datasets with 2 pretrained models. Three bottom rows report the accuracy of each
method using the same time budget. It needs to be noted that only half of the running time
of our method is on GPU (Titan1080), and the rest is on CPU (i9-7900X @ 3.30GHz). In
comparison, we allow all three other fine-tuning methods to use the full time period. The value
in the parentheses is the test runtime.

CIFAR10 (In-domain) CIFAR100 (In) SVHN (Out) Kuzushiji49 (Out-of-domain)

ResNet-layer 18 34 18 34 18 34 18 34
Running Time / seconds 456.5 487.8 485.3 517.8 522.5 573.2 1474.83 1911.32

Accuracy (Ours) 90.77 (15.4) 92.31 (16.6) 71.31 74.63 88.76 88.53 88.12 (52.55) 88.00 (61.11)

Acc (top 1 layer) 85.50 87.15 64.75 69.36 53.95 50.10 55.98 51.24
Acc (top 3 layers) 91.70 90.09 73.18 70.26 79.92 67.70 80.75 69.43

Acc (all layers) 85.38(12.66) 85.12(16.12) 58.13 45.52 85.94 83.71 86.24(47.94) 81.86(60.32)

Hyperparameter Settings: We report results with M = {512,1024,2048}, and Ms =

2M. ResNet-18 and ResNet-34 pretrained on ImageNet are selected as base models to transfer

from. We only hash feature vectors from every residual block in a model. The regularisation

strength α is cross-validated on the training set of the downstream task with values ranging from

{1e−1,1e−2,1e−3,1e−4}.

Comparison Partner: Fine-tuning the top layer on each downstream task with soft-
2The full Kuzushiji49 dataset has 232k training images, whick takes too long to cross-validate hyperparameters

for LogReg. Thus, the same half of the dataset is used.
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max regression. Models are fine-tuned for 30 epochs with Adam optimiser, and the learning rate

decays by a factor of 2 every 10 epochs. Cross validation is conducted to optimise the following

hyperparameters and their associated values: data augmentation={with, without}, weight decay

rate={1e−3,1e−4,1e−5}, initial learning rate={1e−3, 2.5e−4}. Note that fine-tuning with

data augmentation tremendously increases the training time as the neural network needs to be

kept during fine-tuning, while for other methods where data augmentation is disabled, one can

store feature vectors from the last layer prior to fine-tuning. Results are marked with LogReg in

the following tables and figures.

Trials: Since our method involves random projections and comparison partners require

initialisation, for fair comparison, we run each method five times with different random seeds,

and each marker in each plot presents the mean of five trials along with a vertical bar indicating

the standard deviation. It is noticeable that vertical bars are often invisible as hyperparameters of

each method are cross-validated on the training set. The main results are presented in Tab. 3.2.

3.4.1 Time-Constrained Comparison

Since measuring the time complexity of fine-tuning a pretrained deep learning model on a

downstream task is non-trivial, we empirically compare the performance of our method against

fine-tuning different numbers of layers using the same time budget, and it is the total clock time

on a single computing machine used by our method. It is worth noting that only the first half of

our method is required on a GPU, and the rest is done on a CPU. However, for the simplicity

of comparisons, we allow the fine-tuning methods to take the full time on a GPU. The results

are presented in 3.3. It is interesting that, under the same time budget, our method outperforms

fine-tuning on four out of six cases, which shows that our method is capable of reducing the cost

of transfer learning by reducing the GPU runtime.

It is indeed that fine-tuning is the most straightforward and simple method for transfer

learning, but the caveat is that fine-tuning also involves many hyparameters, including learning
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rate, batch size, regularisation, etc. Meanwhile, our method only has two hyparameters, projection

dimension M and regularisation in ridge regression α. We do not claim that our proposed method

is absolutely superior to fine-tuning as we aim to provide an alternative approach to spark new

directions for transfer learning, even without fine-tuning.

3.4.2 Supervised Transfer Learning

Since individual downstream tasks have ample samples in the training set, it encourages

us to study our method and comparison methods when varying the portion of training samples.

Specifically, the kept portion of training samples varies from 2% to 100%, and the interval is

determined linearly in the log-space. The results are presented in Fig. 3.1.

Our method for M = {1024,2048} outperforms fine-tuning the top layer on five out of

six transfer tasks with different portions of training samples, and only performs relatively similar

to fine-tuning on CUB200, which is a finegrained bird species recognition task.

Fig. 3.2 presents results of our method on two variants of ResNet models, including

ResNeXt [XGD+17] and Wide-ResNet [ZK16]. Our method can leverage the generalisation

ability of a pretrained neural network and scale well as the number of layers increases.

Our method adopted the Nyström method for low-rank approximation of feature vectors

at individual layers, which involves hashing N data samples into M buckets first, then solving a

linear system, and the hash functions can be applied across all layers. A more direct approach

is to hash individual features in each feature vector into M buckets as in XXX lSSSl ∈ RN×M. This

approach eliminates the step of solving a linear system, which reduces the time complexity to

O(sMdl) for each layer. The comparison between Nyström and random projection is presented in

Fig. 3.3.

Overall, Nyström provides better accuracy across all six tasks than random projection.

However, it is noticeable that the difference between the two is smaller on in-domain transfer

tasks. The observation also serves as a piece of supporting evidence that our method is relatively
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Figure 3.1: Supervised transfer with varying portions of training samples from the trans-
fer task. Except for CUB200, our method with all three M’s generalises better than LogReg
does (purple lines in plots) when the portion of training samples varies from 2% to 100%, and
the observation is consistent across two different depths of ImageNet models.

consistent when different low-rank approximation schemes are applied.
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Figure 3.2: Our method on three variants of ResNet models with various numbers of layers.
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Figure 3.3: Nyström vs. Random Projection in the first step of our method. The perfor-
mance improvement of Nyström over random projection is relatively larger on out-of-domain
transfer tasks that it is on in-domain ones, and the observation is consistent across varying
portions of training data.
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Figure 3.4: Expected Calibration Error (lower the better) with varying portions of train-
ing data. LogReg provides better calibrated models than ours does. However, a posthoc
adjustment by Temperature Scaling helps our method to match the calibration performance with
LogReg.

Although our method provides both speed up and accuracy improvement in transfer

learning, we are also interested in how well-calibrated our learnt classifier is compared to fine-

tuning the top layer. It is expected that KRR, SVM and tree-based boosted classifiers are not

well-calibrated as the objective is not probabilistic [NMC05].Expected Calibration Error (ECE)

[GPSW17] is computed for our method, and baseline models - fine-tuning the top layer with

logistic regression. The formula of ECE is given as ECE = ∑
C
c=1

Bc
N |acc(Bc)− conf(Bc)|, where

N is the number of samples, and C is the number of bins in the estimation.
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The results shown in Fig. 3.4 validate our expectation that our method gives worse

calibration on test set compared to logistic regression. A simple cure is Temperature Scaling

[GPSW17], which optimises a parameter t to rescale the output from the classifer to reduce the

ECE on training data, and doesn’t change the predicted labels. In our case, t can be simply

cross-validated efficiently.

3.4.3 Semi-supervised Transfer Learning

There are many ways of incorporating unlabelled data into kernel ridge regression, in-

cluding manifold regularisation [BNS06] and transductive learning [CM06]. Since manifold

regularisation requires exact computation or an approximation of the Laplacian matrix on labelled

and unlabelled samples, which leads to increased learning time, we adopted the transductive

learning method for regression problems to leverage unlabelled data when extremely limited

labelled training samples {X̃XXψ,YYY} and a large amount of unlabelled samples {X̃XX ′ψ} are provided.

The solution of transductive ridge regression [CM06] is WWW = (AAA+ IIIMs)
−1BBB, where

AAA = β
′X̃XX ′>ψ X̃XX ′ψ +βX̃XX>ψ X̃XXψ,BBB = β

′X̃XX ′>ψ YYY ′+βX̃XX>ψYYY

β′ and β are hyparameters that control the contribution from unlabelled data and labelled data,

which can be cross-validated on the labelled data. YYY ′ comes from the ridge regression model

learnt only on labelled data, and is given as YYY ′ = g(X̃XX ′ψ(X̃XX
>
ψ X̃XXψ +αIIIMs)

−1X̃XX>ψYYY ), where α is a

hyperparameter, and g(·) sets the maximum value of the vector prediction of a data sample to 1

and the rest to 0. For fine-tuning the top layer, we use the supervised classifier trained on labelled

samples to annotate unlabelled data samples, and incorporate these samples into the training set

and retrain the classifier with cross-validation.

We simulate a semi-supervised learning environment by keeping 2, 5, 10, 20, 50, or

100 labelled training samples per class, and leave the rest as unlabelled samples. Accuracy of
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semi-supervised transfer learning on the testset is reported in lineplots in Fig. 3.5, and the relative

improvement against supervised transfer learning is reported in barplots in the same figure.
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Figure 3.5: Accuracy of semi-supervised learning with varying number of labelled sam-
ples per class. The number of labelled examples changes from 1 to 100 per class and the rest
are left unlabelled for semi-supervised learning. Left y-axis for line plots refers to the accuracy
of semi-supervised learning, and right y-axis for bar plots refers to the relative improvement
brought by unlabelled data. (I) Our method gives better performance than LogReg overall expect
for CUB200. (II) Our method is also better at leveraging unlabelled samples for learning as
indicated by taller bars for ours than LogReg expect for STL10 and CUB200.

Our method outperforms fine-tuning the last layer on five out of six transfer tasks indicated

by the lineplots. Our method also gives significant relative improvement when unlabelled samples

are incorporated through transductive regression on these five tasks as well, while unlabelled
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samples don’t improve the performance for the top layer fine-tuning method. Negative results are

concentrated on CUB200, where unlabelled samples become detrimental to our method while

helpful for fine-tuning.

3.5 Insights provided by µl

The solution to Eq. 3.4 indicates the number of accumulated layers and their weights.

We plot a heatmap with y-axis indicating the index of layers, x-axis indicating the portion of

training samples, and gradient colour scheme presenting the value of µl in Fig. 3.6. As shown
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Figure 3.6: Convex combination µµµ of layers vs. Varying portions of training samples. In-
domain transfer tasks assign higher values to top few layers, and out-of-domain ones prefer
slightly lower layers.

in [HZRS16], the penultimate layer (index 11 for resnet18 and 19 for resnet34) of a ResNet

removes all spatial information by averaging outputs. As illustrated in Fig. 3.6, layers before the

penultimate layer have been assigned non-zero µl’s across six tasks confirming that preserving

spatial information helps in transfer learning.

For in-domain transfer tasks, it turns out that the top few layers are the most useful, and

the improvement of our method is brought by the ability of identifying and accumulating these

layers. STL10 contains images from the ImageNet dataset but with lower resolution, so the

penultimate layer provides adequately abstract information of the images, which explains the

observation that our method assigns a very dominant µ towards the penultimate layer.
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For SVHN and Kuzushiji49, clearly, the selected layers don’t include the feature vectors

generated from the penultimate layer, and lower layers give higher µ, which results in better

performance than fine-tuning the top linear layer. However, our method doesn’t provide better

performance compared to fine-tuning the last layer on CUB200. A potential explanation comes

from the fact that kernel ridge regression learns one-vs-all classifiers, and it is suitable when many

classes are presented. This is a limitation of our method, but also a research direction for future

study.

3.5.1 Accumulated vs Individual Layers

As XXXφ in our method is a weighted concatenation of feature vectors from layers with

non-zero µl , it is important to conduct a sanity check on the effectiveness of accumulating layers

compared to using these layers alone. Therefore, we gradually accumulate layers sorted by their

µl , and plot the performance curve versus the number of accumulated layers. Then these layers

are applied individually to make predictions as a comparison. We use the full training dataset in

this subsection. The results are shown in Fig. 3.7.

For in-domain transfer tasks, we see that the performance improves as our method

accumulates layers, while the trend is not obvious/significant for out-of-domain transfer tasks.

Overall, accumulating a few layers provides better performance than making predictions based

on individual layers.

3.5.2 Accumulating All Layers

One can technically accumulate features from all layers without running the alignment

maximisation algorithm described in Sec. 3.3.2 to select layers. However, the computational cost

increases drastically as the total number of layers in a neural network is much larger than the

number of selected layers with non-zero µl .
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Figure 3.7: Accuracy of accumulating Residual Blocks vs. that of individual Ones. Line
plots indicate accuracy of accumulating blocks until the exhaustion of non-zero µl , and bar plots
indicates the performance of these blocks separately. (I) In-domain transfer tasks demonstrate
increasing accuracy when blocks are accumulated gradually, so does Kuzushiji49, which val-
idates that accumulating layers helps. (II) Note that values {µl}L

l=1 don’t directly imply the
importance of layers, and that explains why the bar plots don’t have a monotonic trend. When
two layers are highly correlated with each other, the algorithm in Sec. 3.3.2 will only select
the one with a smaller norm value. Even though both are important to making predictions, the
algorithm learns to prune highly correlated layers.

The comparison between accumulating all layers and accumulating only selected layers is

presented in Tab. 3.4. As discussed in the previous sections that the redundancy of information

not only exists within individual layers, it also appears cross various layers. Therefore, using all

layers provides similar performance as using a few selected layers, but requires longer running

time.

Table 3.4: Performance of KRR with low-rank features produced from all layers. The
value in each parenthesis indicates the ratio between the running time of using all layers and that
of using only selected layers. As shown, the performance is similar to that of accumulating a
few layers selected by the alginment maximisation algorithm, but accumulating all layers takes
much longer to run.

Tasks CIFAR10 CIFAR100 STL10

resnet18 90.5 (x3.8) 71.2 (x3.7) 95.5 (x1.4)
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3.6 Conclusion

We provided a promising Ridge Regression based transfer learning scheme for deep

learning models. It doesn’t require fine-tuning, which simplifies the transfer learning problem to

simple regressions, and it is capable of identifying a few layers to accumulate for making better

predictions.

We evaluated our method on supervised transfer with varying portions of training data,

and handle semi-supervised transfer learning problems via transductive regression. Both show

significant improvement compared to fine-tuning only the last layer. Discussions addressed the

issue of calibration by Temperature Scaling, and demonstrate the superiority of Nyström over

plain random projections.

Through the lense provided by {µl}L
l=1, we can see that target-related information has

large overlap across layers so that accumulating selected layers is able to performance as well as

using all layers, and ours provides higher computational efficiency.
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3.7 Details of Experimental Design

3.7.1 Dataset Descriptions

CIFAR10 [Kri09] consists of 60k images, each of size 32× 32. The train/test split is

made available, and the training set contains 50k images and the test set contains the rest. Each

image has an object at the center, and the total 10 object categories are similar to ones in ImageNet

dataset.

CIFAR100 [Kri09] has 60k images as well, each of size 32×32. The ratio of training

images and test ones is the same as in CIFAR10. Each image has an object at the center, and in

total, there are 100 object categories, which makes the task harder than CIFAR10.

STL10 [CNL11] has 500 images for training and 800 images for testing per class, each

of size 96×96 and in total, there are 10 classes. Since images of this dataset come from labelled

samples from ImageNet but with lower resolution, models pretrained on ImageNet are expected

to generalise well.

SVHN [NWC+11] consists of real-world images obtained from house numbers in Google

Street View images, therefore, there are 10 categories. The training set contains 73,257 images,

and the test set contains 26,032. The resolution of images is 32×32. The dataset also provides a

set of 531,131 unlabelled images, and we didn’t make use of it in our study.

CUB200 [WBW+10] is an image dataset with photos of 200 bird species (mostly North

American). The total number of training images is 6,033, therefore, each class has around 30

training examples. The task itself is considered to difficult as it requires the model to pay attention

to details of the bird presented in each image, which makes it a fine-grained classification problem.

Kuzushiji49 [CBIK+18] is a Japanese character recognition task, which contains 48

Hiragana characters and one Hiragana iteration mark. The dataset itself is much larger than

aforementioned ones, and contains only gray-scale images. The training set contains 232,365

images, and in our study, we only used half of the whole set. The test set contains 38,547 images,
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which is used to evaluate the effectiveness of our method and other methods. The size of images

is 28×28.

3.7.2 Results: RBF Baselines

RBF kernels as universal kernels are widely used in many research domains. Since we

used features produced by neural network models learnt on the ImageNet dataset as inputs to an

RBF kernel, it is reasonable to compare to the method that takes an ensemble of RBF kernels with

various bandwidths and directly takes the vectorised images as inputs. Nyström approximation is

applied to reduce the memory complexity.

Individual RBF kernels are selected as follows, and learning kernel alignment [CMR12]

is also applied to find the optimal combination of RBF kernels with different bandwidths.

ki j,p = exp(−||xxxi− xxx j||2/(2p
γ)), (3.5)

where γ = mediani, j∈{1,2,...,N}||xxxi− xxx j||2

and p ∈ {−2,−1, ...,10}

The results are presented in Tab. 3.5. Since RBF kernels are directly operating on pixels of images

without neural networks, the performance is worse than our method or fine-tuning the top layer

(LogReg). It serves as supporting evidence that inductive biases (prior knowledge) introduced by

convolutional layers are important in image recognition tasks.

Table 3.5: Results of LogReg, our method and RBF kernels.

Methods CIFAR10 [In] CIFAR100 [In] STL10 [In]

LogReg 87.45 / 89.94 69.08 / 72.76 95.08 / 96.55
RBF 51.40 21.76 43.58

Ours 90.77 / 92.31 71.31 / 74.63 96.30 / 97.31
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3.7.3 Results: Transferring within In-domain tasks

We have three in-domain transfer tasks, and train a model for each task then evaluate its

performance on other tasks using our method. The results are presented in Tab. 3.6. Overall,

our method provides reasonable performance across tasks, and it doesn’t involve fine-tuning

the models. Specifically, for STL10, as the dataset itself has very few images in the training

set, models trained on CIFAR10 and CIFAR100 give better generalisation on STL10 than those

trained on STL10 itself.

Table 3.6: Transferring within In-domain tasks.

Tasks for Pretraining
Transfer Tasks

CIFAR10 CIFAR100 STL10

CIFAR10 94.61 57.16 82.81
CIFAR100 87.85 76.21 80.63

STL10 73.72 43.65 67.85

3.7.4 Dimensionality

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Index of ResBlock

103

104

105

106

Di
m

en
sio

n

Layer Sizes

resnet18
resnet34
resnet50
resnet101

Figure 3.8: Dimensionality of each layer in ResNet models. Note that y-axis is on the log scale.
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Chapter 4

Ensemble Pruning with Linear Kernel

Alignment

4.1 Introduction

Ensemble learning algorithms have enjoyed a great success prior to the era of deep learning,

including bagging with bootstrapping [Bre96], boosting [FS97, Fri01] and random forests [Bre01].

Although many ensemble learning algorithms with traditional machine learning models as base

learners have been surpassed by neural networks in certain application domains, they are still

widely applied in analysing tabular data and in predictive modelling. In addition, the idea of taking

an ensemble of a bag of deep learning predictors [SEZ+14, SZ15, HZRS15, XGD+17] is used

extensively in previous champion and runner-up models for the ImageNet challenge [DDS+09].

Given the popularity of ensemble learning in modelling tabular data and its application in

improving performance using multiple predictors, it is worth analysing their performance with

respect to the number of predictors required.

We mainly discuss two ensemble learning techniques, which are bagging and boosting.

Bagging makes predictions for a new sample by averaging predictions from multiple learners,
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and they are either trained from various sources that are relevant to the target or learnt with

bootstrapped subsets of the same dataset so that individual learners’ profiles are diversified.

Specifically, in the second case, learners that are low-bias and high-variance are preferred. The

effect of bagging on variance reduction makes it promising in achieving low regression error.

Boosting iteratively fits weak learners — high-bias, but with higher-than-chance performance

— to the dataset, and readjusts each learnt predictor’s contribution at the end of each iteraction.

The bias term in the Mean Squared Error is reduced by greedy fitting on the dataset, and the

variance is also reduced by ensemble of all learnt predictors. In practice, both Gradient Boosting

and AdaBoost have demonstrated strong performance.

Technically bagging and boosting take linear combinations of the learnt predictors to

make final predictions on the test set, which naturally leads to an investigation on the number

of predictors required to maintain the original performance. Reducing the number of predictors

after learning accelerates the inference speed, and also leads to a reduction on the storage cost as

pruned predictors are no longer needed and there is no need to compute and store their predictions.

A simple way of pruning learnt predictors is to directly learn a set of non-negative weights

on individual predictors so that the regression error is minimised, and this method strongly

corresponds to Stacked Generalisation [Wol92] and Ensemble of Kernel Predictors [CMR11].

We propose that, in between learning the predictors and the non-negative weights on top

of them, a kernel learning step is conducted. We consider each predictor as a function and use the

predictions to construct a linear kernel. The optimisation step tries to find a convex combination

of linear kernels so that the combined kernel has the maximum alignment with the target kernel.

The idea originates from the algrithm for learning kernel alignment [CMR12] with non-negative

constraints on the coefficients of kernels. In our experiments with bagging and boosting, we

show that our proposed two step method achieves higher sparsity than the single-step does whilst

improving the performance on top of the ensemble methods in most cases.
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4.2 Method

Consider predictors { fi}p
i=1, each as a function that maps a sample xxx in the input space X

to the target space Y , are already learnt on the provided dataset D = {xxxn,yn}N
n=1, we consider the

algorithm for learning kernels with Centered Kernel Alignment (CKA) [CM06] for pruning the

predictors in order to obtain acceleration at inference time.

4.2.1 Centered Kernel Alignment

Given multiple kernel functions {ki}p
i=1, with each inducing a mapping φi in the RKHS,

and ki(xxxn,xxxm) = 〈φi(xxxn),φi(xxxm)〉Hi
, one can evaluate the empirical kernel matrix KKKi ∈ RN×N on

the same dataset D. The algorithm [CMR12] finds a set of weights {µi}p
i=1 so that the combined

kernel matrix KKK = ∑
p
i=1 µiKKKi has the maximum CKA value with the target kernel KKKY = yyyyyy>.

Specifically, CKA is defined as follows:

ρ =
〈HHHKKKHHH,KKKY 〉F
||HHHKKKHHH||F ||KKKY ||F

(4.1)

where HHH is the centering matrix. For simplicity, we assume that kernel matrices are centered,

therefore, the objective function is defined as :

µµµ? = argmax
µµµ≥0

〈KKK,KKKY 〉F
||KKK||F

= argmax
µµµ≥0

∑
p
i=1 µi〈KKKi,KKKY 〉F
||∑p

i=1 µiKKKi||F
(4.2)

4.2.2 Linear Kernels and Pruning

To apply the algorithm for learning kernels on the problem of pruning ensemble models,

one can directly set φi = fi, ∀i ∈ {1,2, ..., p}, with linear kernels, therefore, KKKi = ŷyyiŷyy
>
i , where

ŷyyi ∈ RN contains predictions for training samples provided by the predictor fi. The objective can
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be rewritten as :

µµµ? = argmax
µµµ≥0

||ΠŶYY
>

yyy||22
||Π>ŶYY

>
ŶYY Π||F

= argmax
µµµ≥0

∑
p
i=1 µi(ŷyy>i yyy)2(

∑
p
i=1 ∑

p
j=1 µiµ j(ŷyy>i ŷyy j)

2
) 1

2
(4.3)

where ŶYY = [ŷyy1, ŷyy2, ..., ŷyyp] ∈ RN×p is a concatenation of predictions from all predictors, and Π is a

diagonal matrix with entries µ
1
2
i . After optimisation, only predictors with non-zero weights are

selected for making predictions, and predictors with zero weights are discarded.

4.2.3 Additional Pruning

Technically, once the set of {µi}p
i=1 is determined, one can directly use the combined

kernel KKK for making predictions using kernel ridge regression with its dual form

yyy? = ŷyy?ΠΠ
>ŶYY
>
(ŶYY ΠΠ

>ŶYY
>
+λIII)−1yyy, (4.4)

where ŷyy? contain predictions from predictors with non-zero µs. By applying the Woodbury Matrix

Identity , one can obtain the primal view of the kernel ridge regression solution,

β
? = (Π>ŶYY

>
ŶYY Π+λIII)−1

Π
>ŶYY
>

yyy, (4.5)

which is effectively optimising the following objective with the remaining predictors:

βββ
? = argmin

βββ

||ŶYY Πβββ− yyy||22 +λ||ŶYY Πβββ||22 (4.6)

where the diagonal terms of Π are the solutions {µ?i }
p
i=1 to the optimisation problem defined in

Eq. 4.3, which indicates which predictors to use in this step. To achieve further acceleration in the

inference time, one can enforce βs to be non-negative, which results in the following optimisation
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problem:

βββ
? = argmax

βββ≥0

βββ
>

Π>ŶYY
>

yyy
||ŶYY Πβββ||22

(4.7)

The resulting number of predictors is equal to the number of non-zero entries in βββ
?, which

is upper bounded by the number of non-zero entries in µµµ?. One can consider the first step —

optimising µµµ — as selecting predictors, and the second step — optimising βββ — as adjusting the

contribution of each selected predictor with the potential of further reducing the overall number

of selected predictors.

4.3 Analysis

The option of directly applying the aforementioned second step for selecting predictors

comes naturally, and it corresponds to previous proposed ideas, including Stacked Generalisa-

tion [Wol92] and Ensemble of Kernel Predictors [CMR11]. The objective function is simply:

µµµ? = argmax
µµµ≥0

µµµ>ŶYY
>

yyy
||ŶYY µµµ||22

= argmax
µµµ≥0

∑
p
i=1 µiŷyy>i yyy

∑
p
i=1 ∑

p
j=1 µiµ jŷyy>i ŷyy j

(4.8)

For better understanding, Tab 4.1 presents three objective functions w.r.t. the inner-product

values {ŷyy>i ŷyy j}
p
i, j=1 and {ŷyy>i yyy}p

i=1. By substituting the inner-product values with their squared

terms in the objective of Stacked Generalisation, one can recover the objective in the Linear

Kernel Alignment. The two objective functions in Eq. 4.3 and Eq. 4.8 differ when predictors are

producing similar predictions for the same set of data, which is a result of applying low-variance

machine learning models as base learners. In this case, the squared inner-product values in Eq. 4.3

signify the individual differences, which results in a smaller number of predictors after learning

than that produced by Stacked Generalisation. In the other case, when the selected base learner

for ensemble learning is high-variance, as the individual differences are large enough, the selected
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predictors by both optimisation functions are similar.

Table 4.1: Optimisation Objectives.

Linear Kernel Alignment Stacked Generalisation R2 Maximisation

∑
p
i=1 µi(ŷyy>i yyy)2(

∑
p
i=1 ∑

p
j=1 µiµ j(ŷyy>i ŷyy j)

2
) 1

2

∑
p
i=1 µiŷyy>i yyy

∑
p
i=1 ∑

p
j=1 µiµ jŷyy>i ŷyy j

∑
p
i=1 µi(ŷyy>i yyy)2

∑
p
i=1 µiŷyy>i ŷyyi

Another option is to optimise the R2-statistics, which is usually considered as the

“goodness-of-fit” measure for linear regression models. The objective function is defined as:

µµµ? = argmax
µµµ≥0

||Π>ŶYY
>

yyy||22
||ŶYY Π||2F ||yyy||22

= argmax
µµµ≥0

||Π>ŶYY
>

yyy||22
||ŶYY Π||2F

= argmax
µµµ≥0

∑
p
i=1 µi(ŷyy>i yyy)2

∑
p
i=1 µiŷyy>i ŷyyi

(4.9)

By comparing Eq. 4.9 and Eq. 4.3, it is clear that the numerators of both objectives are

the same, however, the difference in the denominators plays an important role on the sparsity of µµµ.

According to the Cauchy-Schwartz inequality, we have

p

∑
i=1

µiyyy>i yyyi = ||ŶYY ||2F ≤ ||ŶYY
>

ŶYY ||F =

(
p

∑
i=1

p

∑
j=1

µiµ j(yyy>i yyy j)
2

) 1
2

, (4.10)

which means that the objective function in Eq. 4.3 penalises µµµ stronger than that in Eq. 4.9.

Given the other non-negativity constraint we emposed on µµµ, with the numerators in both objective

functions having the same value, Eq. 4.3 selects fewer predictors than Eq. 4.9 does. Furthermore,

directly maximising the R2 score could lead to overfitting when the number of predictors presented

is more than that of the data samples, especially when the combined predictions ŶYY is full row-rank.

Suppose that not all µµµ are zeros, the equality of the aforementioned inequality holds in

two cases. The first case is when ŷyyi = ŷyy, ∀i ∈ {1,2, ..., p}, and the denominators of both Eq.

4.3 and 4.9 reduce to c||µµµ||1, where c = ||ŷyy||22. In this case, all predictors are making the exact

same predictions for training samples. Then both would select one predictor to make predictions.
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The second case is when ŷyy>i ŷyy j = 0, ∀i 6= j and i, j ∈ {1,2, ..., p}. In this case, the optimisation

problem is equivalent to projecting the target yyy into the space spanned by basis vectors { yyyi
||yyyi||
}p

i=1.

However, the second case can only exist when the number of data samples presented is more

than the number of predictors. In addition, the second case means that all learnt predictors are

making pair-wise linearly independent predictions for the same dataset, which happens rarely. To

summarise, as long as the predictors are not making the exact same predictions or completely

uncorrelated predictions, our method gives a sparser solution which keeps fewer predictions after

learning.

Through analysing the optimisation functions of comparison partners presented in Tab.

4.1, one can conclude that our proposed method has the potential of reaching a solution with

higher sparsity, which reduces the number of remaining predictors and accelerates the inference.

We mainly compare our method Eq. 4.3 and Stacked Generalisation in Eq. 4.8.

To illustate the effectiveness of applying the aforementioned algorithm for pruning en-

semble models, we consider two main ensemble learning algorithms, including bagging and

boosting.

4.4 Bagging

Bagging [Bre96] works when the base learner is an estimator with low bias and high

variance. By averaging predictions produced by individual predictors trained with different

subsets of the same dataset, the overall variance is reduced, which results in a reduction of the

Mean Squared Error.

There are two main contributing factors to the success of bagging, including choosing a

proper low-bias high-variance estimator as the base learner, and the bootstrap step that creates

subsets of the same dataset. In practice, the unpruned decision tree [BFOS83] is usually consid-

ered as a good base learner, as well as the k-nearest neighbours (kNNs) algorithm [Alt92] with a
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very small k.

Bagging fails to improve over individual predictors when the variance of the chosen

learner changes slowly or the bias changes drastically as the provided training samples vary

[BY02]. Classic examples include pruned trees and kNNs with a large k.

Our proposed method is guaranteed to improve over the individual learners at least on the

training set as it first selects only a few predictors, and corrects predictions by a linear regression

model. Therefore, on the training set, it, at worst, performs as well as the best-performing

predictor. In our case, even if the chosen learner doesn’t meet the requirement of having low bias

and high variance, our method can still improve over the best-performing predictor. In addition,

since only a few predictors are selected, our method reduces the inference time.

4.4.1 Datasets

It is difficult to analyse the generalisation bound as the bound often tells us the worst

performance of a learnt model on the unseen test set. Therefore, we conducted experiments with

varying number of predictors p ∈ {23,24, ...,210} and varying bootstrap ratio α ∈ {0.1,0.2,0.5}.

Experiments are run 10 times with different random seeds, and results are mainly presented in

scatterplots.

We simulated a single-target regression task and a three-way classification task as the

benchmark datasets to compare our proposed method with others. The regression task is based on

the function provided in [Fri91]. Each data sample has 10 features, and the corresponding target

is generated as following:

y = 10sin(πx1x2)+20(x3−0.5)+10x4 +5x5 + ε (4.11)

where ε∼ N(0,1), and xi ∼U(0,1), ∀i ∈ {1,2, ...,10}. Only the first five features are used for

generating the target, and the rest are independent from the target.
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For the classification task, we followed the recipe in [HRZZ09] and generated a dataset

for classification. Each data sample has 10 features, and the class label is determined by the

length of the data sample.

c =


0 ∑

10
i=1 x2

i ≤ X 2
10,1/3

1 X 2
10,1/3 < ∑

10
i=1 x2

i ≤ X 2
10,2/3

2 ∑
10
i=1 x2

i ≤ X 2
10,3/3

(4.12)

where xi ∼ N(0,1), i ∈ ∀{1,2, ...,10}, and X 2
10,k/3 is the (k/3)100% quantile of the X 2

10 distribu-

tion.

For both tasks, 3000 data samples are generated for training, and 1000 for testing. We

mainly compare our method with bagging and stacked generalisation. We first bootstrap the

dataset with replacement to generate multiple subsets. Then base learners are trained on individual

subsets. For bagging, the predictions on the test set produced by individual predictors are directly

averaged to make final predictions. For ours and stacked generalisation, predictions on the training

set are collected from predictors, and optimisation problems described in Eq. 4.3 and Eq. 4.8 are

solved respectively to produce weights on individual learners, and the predictions on the test set

are computed accordingly with the weights.

4.4.2 Base Learner

Decision Tree: We consider three types, including unpruned decision trees, three-layer

trees and single-layer tree stumps. The bias of decision tree models decreases and the variance

increases as the more layers are added to the tree.

K-Nearest Neighbors: Four different numbers of neighbours are experimented respec-

tively, includng 1, 5, 10, and 25. The bias of the kNN algorithm increases and the variance

decreases as more neighbours are included in making the final decision.
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Neural Network: This is a family of powerful learners, and they are capable of producing

abstracted vector representations of the input data, with which the problem simplifies to one that

can be solved with linear models. We design two neural networks as base learners, in which one

has two hidden layers with 5 and 2 hidden units respectively, and the other has three hidden layers

with 100 hidden units each. For the classification task, the activation function is Rectified Linear

Unit [FM82], and the Hyperbolic Tangent Function [AS64] is applied for the regression task.

4.4.3 Results

We present results in two different fashions, and each reflects a unique aspect of the

learning algorithm. Firstly, we do hope that the two-stage optimisation scheme that we proposed

doesn’t lead to a significant increase for the training time. The results of our proposed method,

namely Linear Kernel Alignment, Stacked Generalisation, and Bagging, on the regression task

are presented in Fig. 4.1, 4.3 and 4.5 with the base learner as decision trees, k-nearest neighbors

algorithm, and neural networks, respectively. Classification results are presented in Fig. 4.2, 4.4

and 4.6

Error vs. Training Time: As both LKA and Stacked Generalisation learn additional

weights on individual predictors, it is reasonable to expect that, in most cases, both algorithms

should outperform Bagging, and the advantage gradually becomes significant as the bias of the

base learner increases. Among different base learners, large neural networks achieve the lowest

error rate on both classification and regression task without cross-validation.

An interesting observation is that, the issue of overfitting occurs for both Stacked General-

isation and LKA when the large neural networks are used as base learners, shown in Fig. 4.5 for

regression and Fig. 4.6 for classification, and each network has sufficient number of bootstrapped

samples to learn from. In that case, directly averaging predictions from models already reaches

the lower bound of the MSE on the test set, which is the irreducible error, therefore, learning

additional weights causes overfitting. However, since both Stacked Generalisation and LKA
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impose strong sparsity on the weights, the issue of overfitting isn’t severe.
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Figure 4.1: Mean Squared Error on Test Set vs. Training Time of Bagging with Decision
Trees. Both Stacked Generalisation and Linear Kernel Alignment improve the performance
by readjusting weights on individual predictors, and the observation is consistent across three
different tree types, three bootstrap ratios {10%,20%,50%}, and three numbers of initial
learners. However, since an additional optimisation step is involved in both, the training time is
increased.
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Figure 4.2: Classification Error on Test Set vs. Training Time of Bagging with Decision
Trees. The observation on the classification task is relatively similar to that on the regression
task. Both algorithms boost the performance whilst LKA has a modest increase of the training
time.
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Figure 4.3: Mean Squared Error on Test Set vs. Training Time of Bagging with K-Nearest
Neighbours. It is clear that both Stacked Generalisation and LKA reach smaller error rates than
Bagging does in all cases. The increased training time comes from the additional optimisation
step in both Stacked Generalisation and Linear Kernel Alignment, and there is no significant
difference between two methods in terms of the training time.
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Figure 4.4: Classification Error on Test Set vs. Training Time of Bagging with K-Nearest
Neighbors. CLassification errors are further reduced by readjusting weights on individual
predictors through LKA or Stacked Generalisation with a fixed bootstrap ratio. Interestingly,
the optimal performance of both LKA and Stacked Generalisation is achieved with the smallest
bootstrap ratio 10% in our experiments, but Bagging performs better when the bootstrap ratio is
larger.
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Figure 4.5: MSE on Test Set vs. Training Time of Bagging with Neural Networks. Both
algorithms improve the performance over bagging overall. However, the performance slightly
deteriorates for the regression task when the bootstrap ratio is 50% and large neural networks are
used as base learners, which might be a result of overfitting as both algorithms learn additional
weights on top of individual predictors.
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Figure 4.6: MSE on Test Set vs. Training Time of Bagging with Neural Networks. With
a fixed bootstrap ratio, LKA and Stacked Generalisation perform better than Bagging does in
most cases, and LKA takes slightly less time during training than Stacked Generalisation does.
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Comparison on the number of remaining predictors: Given that the performance is

improved, we are interested in the number of remaining predictors in Stacked Generalisation

and LKA. Fig. 4.7, 4.9, and 4.11 present the comparison between the number of remaining

predictors produced by Stacked Generalisation and that resulting from LKA in each condition on

the regression task. For the same comparison on the classification task, Fig. 4.8, 4.10, and 4.12

present results.

Given our analysis above, when predictors are producing similar predictions with each

other, and the similarity is measured by the pair-wise inner-product values {ŷyy>i ŷyy j}
p
i, j=1, LKA

produces sparser solutions than Stacked Generalisation does. For the same type of base learners,

keeping the same boostrap ratio while reducing the variance of the base learner helps our proposed

method to outperform Stacked Generalisation. Therefore, we can expect that, when reducing the

depth of a decision tree or increasing the number of nearest neighbours in k-NN algorithm, the

bias increases while the variance decreases, and the predictions made by individual predictors

gradually become similar to each other, then LKA should have fewer remaining predictors than

Stacked Generalisation does. The empirical evidence shown in Fig. 4.7 and 4.9 supports our

analysis. Whilst for neural networks, as they exhibit the behaviour of a low-bias and low-variance

learner, LKA keeps a smaller number of predictors than Stacked Generalisation does. The

observation presented in 4.11 matches our analysis as well.

The important aspect of our LKA-based method is that it improves the performance

on top of bagging and it prunes predictors to reduce the computational cost and runtime for

the inference after learning. Compared with Stacked Generalisation, our proposed LKA-based

method performs similarly whilst keeping fewer predictors.
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Figure 4.7: The Number of Remaining Predictors by Stacked Generalisation vs. LKA for Re-
gression. Decision Trees are the base learners. By reducing the depth of a decision tree (moving
from the leftmost column to the rightmost one), the bias increases and the variance decreases,
and, based on our analysis, LKA produces sparser solution than Stacked Generalisation does.
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Figure 4.8: The Number of Remaining Predictors by Stacked Generalisation vs. LKA for
Classification. Decision Trees are the base learners. The phenomenon we described on the
regression task is more salient on the classification task. LKA prunes more predictors than
Stacked Generalisation does when the base learner is high-bias and low-variance.

75



24 26 28
24

25

26

27

28

St
ac

ke
d 

Ge
ne

ra
lis

at
io

n Ratio = 10 | neighbors = 1

24 26 28

24

25

26

27

Ratio = 10 | neighbors = 5

24 26 28

24

25

26

27 Ratio = 10 | neighbors = 10

24 26 28

23

24

25

26

27

28
Ratio = 10 | neighbors = 25

24 26 28
24

25

26

27

28

St
ac

ke
d 

Ge
ne

ra
lis

at
io

n Ratio = 20 | neighbors = 1

24 26 28

24

25

26

27

Ratio = 20 | neighbors = 5

24 26 28

24

25

26

27 Ratio = 20 | neighbors = 10

24 26 28

23

24

25

26

27

28
Ratio = 20 | neighbors = 25

24 26 28

Linear Kernel Alignment

24

25

26

27

28

St
ac

ke
d 

Ge
ne

ra
lis

at
io

n Ratio = 50 | neighbors = 1

24 26 28

Linear Kernel Alignment

24

25

26

27

Ratio = 50 | neighbors = 5

24 26 28

Linear Kernel Alignment

24

25

26

27 Ratio = 50 | neighbors = 10

24 26 28

Linear Kernel Alignment

23

24

25

26

27

28
Ratio = 50 | neighbors = 25

LKA < Stacked
LKA = Stacked
LKA > Stacked

Figure 4.9: The Number of Remaining Predictors by Stacked Generalisation vs. LKA for
Regression. K-nearest Neighbors are the base learners. With increasing number of neighbours in
consideration, LKA produces sparser solution than Stacked Generalisation does, which results
in a smaller set of predictors for inference after learning.
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Figure 4.10: The Number of Remaining Predictors by Stacked Generalisation vs. LKA for
Classification. K-nearest Neighbors are the base learners. The advantage of LKA over Stacked
Generalisation in terms of keeping a small number of predictors isn’t prominent, but LKA either
keeps a smaller set of predictors than Stacked Generalisation does or they keep the same number
of predictors after learning.
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Figure 4.11: The Number of Remaining Predictors by Stacked Generalisation vs. LKA for
Regression. Neural networks with two different sizes are base learners respectively. Overall,
LKA prunes more predictors than Stacked Generalisation does, which accelerates the inference
after learning.
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Figure 4.12: The Number of Remaining Predictors by Stacked Generalisation vs. LKA for
Classification. Neural networks with two different sizes are base learners respectively. The
observation is similar here as we have for the regression task. LKA keeps fewer predictors than
Stacked Generalisation does.
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Pruning by Ranking: As each predictor learns on a subset of the training data, one

can rank all predictors by their predictive errors on the whole training set and accumulate them

sequentially according to the sorted predictive errors. In Fig. 4.13, 4.14, and 4.15, we visualised

the accumulation progress with 256 predictors in total as line plots, and errors and number of

remaining predictors produced by Stacked Generalisation and LKA are plotted as dots.

One can simply stop the sequential accumulation by early stopping, and it helps bagging

with k-NN algorithms to perform much better, and has a smaller positive effect on bagging with

small neural networks. In the rest of the cases, accumulating all is optimal. In terms of ensemble

pruning, both LKA and Stacked Generalisation prune a significant number of predictors, and

boost the performance in most situations.
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Figure 4.13: Bagging with 256 decision trees. Predictors are sorted based on their predictive
errors on the entire training set, and accumulated sequentially into making final predictions
on the test set. On top of the predictors, LKA and Stacked Generalisation are both applied
respectively, and the error and the number of remaining predictors of each method is plotted
as dots. We can see that both methods are able to achieve similar test errors with many fewer
predictors.
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Figure 4.14: Bagging with 256 k-nearest neighbors regressors. Predictors are sorted and
accumulated according to the ascending order of their predictive errors on the training set. In
many cases, LKA keeps fewer predictors than Stacked Generalisation does, and outperforms
bagging.
One can stop the accumulation when the training error stops decreasing. However, even with
early stopping, expect for the only case in the bottom left, bagging performs worse than LKA
and Stacked Generalisation.
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Figure 4.15: Bagging with 256 neural networks. Overall, LKA keeps fewer predictors than
Stacked Generalisation does, and outperforms bagging expect for the case in the bottom right.
The same early stopping helps bagging with small neural networks more than it does for bagging
with large neural networks.
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4.5 Boosting

Boosting algorithms advance bagging by iteratively fitting weak learners so that the

weighted sum of the predictions from these weak learners gradually approximates the target. The

choice of a proper weak learner is important in determining the success of boosting. Convention-

ally, for a binary classification task, a suitable weak learner only needs be able to perform better

than chance level, and then by chaining weak learners, the training error reduces exponentially

w.r.t. the number of learners applied in boosting. Boosting fails when the learner’s complexity is

very high, as it causes following learners to learn from spurious gradient signals or errors.

For boosting, it is not a trival task to select a weak learner for a given task. A useful

rule-of-thumb is to pick a tree stump, which has only one layer with three parameters, or a

decision tree with very few layers. Based on our discussion, our proposed method is able to

improve over the best learner due to the linear regression step, and reduce the inference time by

selecting only a small subset of the learnt predictors for making predictions.

In our experiments, we first train a gradient boosting algorithm on the given dataset,

and then our proposed method is applied on top of the predictors produced by boosting. We

experimented with p ∈ {21,22, ...,210} and α ∈ {0.1,0.2,0.5}.

4.5.1 Datasets

Here, we mainly experimented with the regression task, and the dataset is the same one as

we generated for the bagging experiments.

4.5.2 Base Learners

Two boosting algorithms are used to provide predictors, which are AdaBoost [FS97,

Dru97], and Gradient Boosting [Fri01]. In both algorithms, three decision trees with different

depths — 1, 3, and 10 — are applied as base learners.
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The procedure of experiments on boosting is the same as the one on bagging. A boost-

ing algorithm with a base learner is trained on the dataset, and then our method and stacked

generalisation are applied to prune the predictors using the training data.

4.5.3 Results

Fig. 4.16 and 4.17 present results with Gradient Boosting as the algorithm for learning

predictors. Stacked Generalisation is only able to reach a similar error rate with boosting when

the base learner is low-bias and high-variance, however, with that base learner, boosting doesn’t

perform as well as it does with a weak learner, which is high-bias and low-variance. In the

situation where 3-layer Trees or Tree Stumps are used as the base learners, Stacked Generalisation

performs worse than boosting. Meanwhile, our proposed LKA gives better performance than

boosting itself when the bootstrap ratio is small, and keeps similar performance with boosting in

other situations. In terms of the pruned predictors, the difference on the numbers of remaining

predictors becomes significant when more initial predictors are used in boosting. Overall, LKA

achieves faster inference speed with better performance than Stacked Generalisation on predictors

learnt with Gradient Boosting.

Fig. 4.18 and 4.19 use AdaBoost algorithm. Both LKA and Stacked Generalisation reach

lower test error than AdaBoost does, whilst LKA provides a strong ability in pruning predictors

when a large number of predictors are learnt through AdaBoost.
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Figure 4.16: Gradient Boosting with Decision Trees. Stacked Generalisation gives worse
performance than boosting itself when 3-layer trees or tree stumps are applied in learning with a
bootstrap ratio 50%. Our proposed LKA is able to perform as well as boosting, and improves
the performance of boosting when the bootstrap ratio is small.
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Figure 4.17: Number of Remaining Predictors. Gradient Boosting is the initial algorithm
that provides predictors. The difference between LKA and Stacked Generalisation is salient
when more than 64 initial predictors are used in boosting, and LKA prunes more predictors than
Stacked Generalisation does.
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Figure 4.18: AdaBoost with Decision Trees. Both methods provide better performance than
AdaBoost does on the test set. There is no significant difference on the runtime and the error
rate between LKA and Stacked Generalisation.
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Figure 4.19: Number of Remaining Predictors. AdaBoost algorithm is the initial algorithm
that provides predictors. A similar trend can be observed as the one we described for Gradient
Boosting. When more initial predictors are applied, LKA demonstrates a stronger pruning
functionality than Stacked Generalisation does.
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4.5.4 Iterative Pruning in Boosting

Boosting iteratively fits a base learner to the residual, and at the end of each iteraction, a

weight is searched and assigned to the fitted learner which becomes a predictor to achieve the

maximum error reduction. Therefore, the training error decays as more predictors are learnt. A

naı̈ve approach on pruning the predictors is based on the decay of the regression error on the

whole training set. Fig. 4.20 presents early stopping on Gradient Boosting, and Fig. 4.21 on

AdaBoost.

In both cases, LKA prunes around half of the predictors whilst keeping the regression

error at the same level as boosting or reducing it to a lower level. In comparison to LKA, Stacked

Generalisation only does pruning on AdaBoost and keeps all predictors on Gradient Boosting.

4.6 Conclusion

We proposed a two-step ensemble pruning algorithm that is based on linear kernel

alignment. Experiments are conducted on both bagging and boosting with various base learners.

Pruning predictors with our method doesn’t hurt the performance, and, in most cases, it improves

on top of the initial performance provided by the selected ensemble learning algorithm. Compared

with the one-step regression-based pruning method, ours keeps fewer predictors, which boosts

the inference speed after learning.
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Figure 4.20: Gradient Boosting with Early Stopping. Since each base learner learns from a
random subset of the training set, which has been shown to be effective in avoiding overfitting
in practice, one can use the performance improvement on the whole training set as a indicator
on when to stop accumulating predictors.
With bootstrapping in each iteration, the error rate keeps decreasing as predictors are being accu-
mulated. Therefore, early stopping on the whole training set isn’t informative enough. However,
LKA is able to prune around half of the predictors whilst keeping the performance on the test set
the same as the final performance of Gradient Boosting or providing better performance when
high-bias low-variance learners are used. In comparison, Stacked Generalisation always keeps
the entirety of the predictors for the inference time, which is unnecessary.
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Figure 4.21: AdaBoost with Early Stopping. The same early stopping can be applied on the
AdaBoost algorithm to determine when to stop accumulating predictors. Overall, we can see
that with early stopping, AdaBoost doesn’t perform as well as LKA or Stacked Generalisation
on the test set. Both LKA and Stacked Generalisation prune more than half of the predictors,
which leads to fast inference speed. The difference between the two algorithms is not significant
enough in terms of either the performance or the number of remaining predictors.
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Chapter 5

Summary

In the thesis, we build connections between kernel machines and domain generalisation

with neural networks through the algorithm for learning kernels with only linear kernels.

Chapter 2 accelerates the computation of linear kernel alignment with sketching techniques

that give decent theoretical guarantees, and demonstrates that the alignment score is not only a

suitable similarity measure, but also a score that is predictive of transferability of a pretrained

neural network on a downstream task. Future work includes using the alignment score to

determine when the pretrained model needs to be finetuned as data samples come in.

Chapter 3 pushes the limit of transfer learning without finetuning by accumulating multiple

layers, and the layer selection is done through learning kernels. Our proposed method performs as

well as accumulating all layers, and better than using only the top layer. Further speedup comes

from using the Nyström method for obtaining low-rank approximations at individual layers. With

the same time budget, our method also outperforms directly finetuning the pretrained neural

network.

Chapter 4 considers the algorithm for learning kernels for ensemble pruning. Our proposed

method improves performance on top of bagging and boosting with many fewer remaining

predictors, and prunes more predictors than other related work.
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Through these three chapters of discussion, we empirically examine the practicality of

linear kernel alignment and the algorithm of learning kernels in the field of domain generalisation,

and with the help of the theory behind the algorithm for learning kernels, we are able to interpret

and analyse experimental results with confidence.
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