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A phylogenetic epidemiology approach to
predicting the establishment ofmulti-host
plant pests
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Shannon Colleen Lynch 1,2 , Edeli Reyes-Gonzalez2, Emily L. Bossard2, Karen S. Alarcon2,
Natalie L. R. Love3,4, Allan D. Hollander5, Beatriz E. Nobua-Behrmann6 & Gregory S. Gilbert 1

Forecasting emergent pest spread is paramount to mitigating their impacts. For host-specialized
pests, epidemiological models of spread through a single host population are well developed.
However, most pests attack multiple host species; the challenge is predicting which communities are
most vulnerable to infestation. Here, we develop a phylogenetically-informed approach to predict
establishment of emergent multi-host pests across heterogeneous landscapes. We model a beetle-
pathogen symbiotic complex on trees, introduced from Southeast Asia to California. The phyloEpi
model for likelihood of establishment was predicted from the phylogenetic composition of woody
species in the invaded community and the influence of temperature on beetle reproduction. Plant
communities dominated by close relatives of known epidemiologically critical hosts were four times
more likely to become infested than communities with more distantly related species. Where
microclimate favored beetle reproduction, pest establishment was greater than expected based only
on species composition. We applied this phyloEpimodel to predict infestation risk in California using
weather data and complete tree inventories from 9262 1-km2 grids in 170 cities. Regions in the state
predicted with low likelihood of infestation were confirmed by independent monitoring. Analysts can
adapt these phylogenetic ecology tools to predict spread of any multi-host pest in novel habitats.

Most pathogen and insect pests attack multiple host species1–3, but the
epidemiological models traditionally used to predict the spread of emergent
pests generally assumedensity- or frequency-dependent dynamics expected
for host specialists4,5. Predicting which communities are most vulnerable to
emergent multi-host (or polyphagous) pests is an urgent management
priority because they can cause large-scale transformations of naïve
ecosystems6 and incur significant costs7–10. An epidemic develops when a
virulent pathogen (and any needed vectors) encounters a population of
susceptible hosts where environmental conditions are favorable. For multi-
host pests, the susceptible host community can include numerous species
that vary in abundance and in their competence to support pest
reproduction11–14. Rather than the density of a single host species, it is the
collective abundance of such alternative host species in a local community
and their ability to support pest reproduction that determine the probability
of infestation and local spread15. Decision-makers faced with emerging
infectious diseases caused by multi-host pests require robust risk models

that apply knowledge of host range, reproductive potential, and environ-
mental requirements to plant communities of concern. Unfortunately, the
very novelty of emergent pests usually means that they are not at equili-
brium with their environment, and therefore, empirical data on the sus-
ceptibility and competence of local host species are usually incomplete.

Evolutionary tradeoffs in traits that confer host susceptibility or in the
abilityof enemies toattackhostsproduceaphylogenetic signal forhost range,
where closely related plant species are more likely to share pests16. Such a
phylogenetic signal has been well documented for plant–pathogen and
plant–insect interactions, including for insect-pathogen pest complexes9,12,17.
In addition, there is a predictive phylogenetic signal of the relative impacts of
pests on their hosts. For example, phylogenetic relatedness has proved
capable of predictingmortality caused bymulti-host animal parasites18; host
impacts for a variety of herbivores and pathogens19; severity of native and
non-native pests on North American tree species20; and the amount of
herbivory-induced leaf damage on oak species (Quercus spp.)21–23. Because
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spread from introduced sites is an intrinsically spatial process, standard
models of spread of invasive pests focus on spatial processes such as dispersal
constraints as predictors of invasion24. In addition to dispersal abilities,
realized dispersal of pests depends on the spatial availability of communities
that include susceptible and competent hosts in the landscape.Given that the
establishment of multi-host pests is more complex than those limited to a
single host species, spatial evaluation of risk should first focus on identifying
those communities that are most likely to be vulnerable based on the com-
bination of biotic composition and abiotic conditions. Previous work has
shown that phylogenetic signal in host range can be used to predict the
likelihood that resident pathogens from a local plant community will spil-
lover onto a novel host, based on previous knowledge of competent hosts15.
Therefore, before introducing spatial processes intocomplexepidemiological
models, we ask the reciprocal question here: can we use phylogenetic
dimensions of pest host ranges to predict the likelihood that a novel multi-
host pest will infest particular plant communities (Fig. 1)? We further ask
how community phylogenetic structure compares in predictive importance
to other factors such as environmental conditions. Once suitable habitat is
identified, models of spatial spread, combined with surveillance, can be
effective in describing pest spread across the landscape.

In this study, we develop and test a phylogenetically-informed
approach to modeling the risk of pest establishment in wild and managed

plant communities (Fig. 1). We use monitoring data from an emergent
epiphytotic of Fusarium dieback–invasive shothole borers (FD–ISHB),
caused by an ambrosia beetle–fungal pathogen complex thatwas apparently
introduced to Southern California in the early 2000s from Southeast Asia25.
The complex is a symbiotic relationship in which the ISHB beetles
(Euwallacea fornicatus and E. kuroshio) depend on the Fusarium fungus (F.
euwallacea and F. kuroshium) as a source of food, and the fungal pathogen
depends on the beetles for transmission to a newhost26. FD–ISHBhas killed
hundreds of thousands of apparently healthy trees in urban and wildland
forests27,28, costing the state over $20million29. NewFD–ISHB introductions
have emerged in South Africa30, where it has expanded from urban to
wildland forests in eight of its nine provinces. Phylogenetic dispersion
analysis on a comprehensive set of host range data31 shows that the strength
of the phylogenetic signal is progressively more pronounced for more
severely affected host species13; SupplementaryTable 1). That is, the range of
18 host species killed by the pest-pathogen complex (i.e., killed-competent
hosts) is phylogenetically narrower than the 59 additional species on which
it can reproduce (i.e., competent hosts). Most recently, FD–ISHB has
emerged in Western Australia32, where species-level empirical data on
susceptibility and competence are not yet available. Phylogenetic models
couldbeused in such situations topredict complexnovelpest occurrences in
different local ecosystems, serving as a critical risk assessment tool that
facilitates rapid responses and forestalls damaging invasions.

We used our evolutionary understanding of the FD–ISHB host range13

and data from 15,000 trees in 207 0.25-ha monitoring plots to build an
explanatory phylogenetic epidemiology (phyloEpi) model of the likelihood
of pest establishment based on the phylogenetic structure of FD–ISHB host
range and tree species composition in the plots (wpS; Fig. 1). Because
generation time for the beetle vector is a function of temperature33,34, we
further examined how infestation risk based on tree community composi-
tion was modified by local microclimate. To test whether these explanatory
models could be used as predictive tools to prioritize actions in response to
emergent diseases, we applied the model to predict infestation risk in 170
cities across California using complete urban street tree inventories35. We
then tested the effectiveness of themodel to predict FD–ISHBestablishment
across those cities using observational data that were not included inmodel
development.

Results
The probability that the emergent disease complex Fusarium
dieback–invasive shothole borers (FD–ISHB) establishes in a plot is a
function of the phylogenetic composition of a local plant community. Plant
communities with abundant close relatives of killed-competent host species
are up to four times more likely to be infested than those with distantly
related hosts (Fig. 2). Logistic regression revealed that neither local tree
abundance nor species richness alone were predictive of beetle establish-
ment (i.e., for total tree density P = 0.373; for basal area in a plot P = 0.838;
P = 0.079 for species richness). Instead, the estimated probability that a site
was infested increased significantly with density-based wpS (P < 0.001;
Hosmer–Lemeshow Goodness-of-Fit Chi-squared = 1.78, P = 0.672; Fig. 2)
and basal area-based wpS (P < 0.001; Hosmer–Lemeshow Goodness-of-Fit
Chi-squared = 1.78, P = 0.672).

The abundance-weighted probability of FD–ISHB establishment for
the 99 observed infested plots (median wpS = 0.80) was left skewed
(skewness =−0.77; Fig. 3a and S3a), while wpS values for the 108 non-
infested plots (median = 0.50) were right-skewed (skewness = 0.82; Fig. 3b
and Supplementary Fig. 3b). Of the total number of plots, 75.8% of infested
and only 42.6% of non-infested plots had wpS values greater than 0.60.
Predictive discriminant analysis on density-basedwpS estimates was able to
correctly classify 74.5% of the 47 infested plots (95% CI 70.2–80.9%), and
61.5% (95% CI 61.5–69.2%) of the 39 non-infested plots. For basal area-
based wpS estimates, infested plots were correctly classified 76.6%
(72.3–87.2%) and non-infested plots were correctly classified 64.1%
(64.1–66.7%). As expected, analysis of distance-based autocorrelation in
infestation patterns suggests fine-scale patterns of spatial autocorrelation

Fig. 1 | Procedure used to estimate probability that a plot would become infested
by a multi-host pest. Scheme depicting the procedure used to estimate probability
that a plot (k) would become infested by a multi-host pest, based on the interaction
between phylogenetic structure and abundance (host density or basal area) of woody
species in a plot. Orange tips on the phylogeny represent species that are killed-
competent hosts. Here, the probability that a tree species i is a host (p(H)i) is a
function of the phylogenetic distance of species i to each of 18 known killed-
competent hosts j. The probability that tree species i shares the pathogen with killed-
competent host j (p(S)ij = antilogit (3.4–3.7 × log10[PDij+ 1]) is based on the pair-
wise phylogenetic distance PDij. The overall probability that tree species i is a host
(p(H)i = 1- ∏[1-p(S)ij]) is then the complement of the product of probabilities that
tree species i is not susceptible to each of the 18 killed-competent host species j. This
p(H)i is weighted by their relative abundances (density or basal area) for each species
i within each plot k (wp(H)i). The overall estimate of plot susceptibility (wp(S)k) is
the sum of the weighted host probabilities within each plot k.

https://doi.org/10.1038/s42003-025-07540-y Article

Communications Biology |           (2025) 8:117 2

www.nature.com/commsbio


expected in invasion processes (Fig S7). Analysis of DHARMa residuals of
the model showed no significant pattern that deviates from a uniform
distribution, suggesting the models fit the data well (Fig S8a).

Further analysis indicates that the effect of temperature on infestation
of plots depends on the community context: warmer places that can support
more generations of beetles allow infestation of sites that are otherwise
unfavorable. Logistic regression analysis detected a significant negative
interaction between the effects of density-based wpS and the number of
beetle generations on FD–ISHB establishment (P < 0.001; Nagelkerke
R2 = 0.15; Hosmer–Lemeshow Goodness of Fit Chi-squared = 5.76,
P = 0.98). In other words, plots expected to be non-susceptible based on
species composition (density-based wpS) had a greater chance of FD–ISHB
establishment where local microclimate could support more beetle gen-
erations (Supplementary Table 2). Analysis of DHARMa residuals of the
model showed no significant pattern that deviates from a uniform dis-
tribution, suggesting the models fit the data well (Supplementary Fig 8b).
However, the relative importance of this interactionwasminor compared to
the effect of phylogenetic community composition alone (Supplementary
Table 2). This pattern emerged largely because microclimates are highly
similar throughout the current infested range (ANOVA, P = 0.698), so that
model development was necessarily based on locations that favor more
beetle generations (Fig. 4). In addition, the interaction was not statistically
significant in analyses based on basal area-based wpS estimates (P = 0.22).
Taken together, we see that infestation was only possible where tempera-
tures favored anadequatenumberof beetle generations; evenwheredensity-
based wpS indicated a likely infestation, areas with fewer than five beetle

generations remained non-infested. Defining the precise shape of the
density-based wpS × beetle generations interaction will require validation
across a broader range of host composition and microclimate conditions.
Hence, our final phyloEpi model treats the effects of phylogenetic com-
munity composition (p(S)k =−2.15+ 3.26 × wpS) and microclimate on
beetle reproduction (generations = Cumulative degree days/KISHB) as
separate, but complementary factors, in a conceptual evaluation of site
susceptibility to FD–ISHB establishment in California’s forests (Fig. 2).

To test howwell ourmodel couldpredict susceptibility of a forest site to
infestation, we used phyloEpi to predict the likely susceptibility of 832 urban
forest grids from across California; these grids had independent FD–ISHB
monitoring data and were outside our study area, so they were not used in
model development (monitored grid points on Fig. 4). Most of the grids
(87%) hadwpS values < 0.3 and fewer than five expected beetle generations,
suggesting a lowprobability of infestation (Fig. 4 and Supplementary Fig. 5).
The phyloEpi model predicted observed infestation in the grids (Fig. 5;
P = 0.019). Grids in which disease was observed generally had a greater
abundance of close relatives to killed-competent hosts (Fig. 5), suggesting
that phylogenetic community composition of a local plant community
strongly drives pest establishment. PhyloEpi estimates of wpS > 0.3 were
associated with 699 (24%) of the 2956 grids located outside the observed
infested range, suggesting the potential for FD–ISHB establishment over a
large geographic extent (e.g., Fig. 2d–f). For 32 of the 36 confirmed non-
infested statewide monitored grids that were outside the zone of infestation
(regions of the state outside of those areas in which monitoring and sur-
veillance had previously detected FD-ISHB), our models forecasted a low

Fig. 2 | Risk map estimating plot or grid susceptibility to Fusarium dieback –

invasive shothole borers (FD–ISHB). Risk map (1-km resolution) estimating plot
or grid susceptibility to Fusarium dieback – invasive shothole borers (FD–ISHB)
based onhost species composition (yellow to red) andmicroclimate impact on beetle
generations (light green to dark blue). The susceptibility model was developed using
observational data from 207 monitoring plots (red and cyan dots) in Ventura (A),
Orange (B), and San Diego (C) Counties (left panel) and applied to urban forests
across the state (e.g., Sacramento County (D), Bay Area (E), and Palm Springs (F) in
the right panel). Plot establishment was most strongly predicted by density-based
phylogenetically weighted host abundance (wpS) of the local forest community

(p(S)k =−2.15+ 3.26 × wpS; P < 0.001; AIC = 231; Nagelkerke R2 = 0.15;
Hosmer–Lemeshow Goodness-of-Fit P = 0.672). Grid clusters exhibit host
composition-based susceptibility estimates (wpS) for urban forests with complete
street tree inventories ranging from the least susceptible in yellow to the most
susceptible in red. A degree-day model estimated the annual number of beetle
generations that could occur within each grid; light green grids support fewer beetle
generations than grids in dark blue. The current geographic infested range was
determined based on regions of the state in which monitoring and surveillance had
previously detected FD-ISHB.
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probability of infestation, confirming the model’s predictive power across a
broader rangeof conditions. Strikingly, themajority ofmonitoring locations
located outside the known infested range—grids that were not included in
model development—arewithin the ranges ofwpSandgeneration estimates
expected for non-infested sites (black squares in Fig. 4 and Supplementary
Fig. 5). These patterns of model classification suggests that the relative
impact of phylogenetic community composition and microclimate are
important drivers for FD–ISHB establishment.

Discussion
Decision-makers require predictive analytical tools that are robust and
broadly applicable to effectively manage emergent pathogens and insect
pests that attackmultiple host species. Current approaches that are based on
the underlying assumption that pests have narrow host ranges do not
adequately address the epidemiological complexity of multi-host pests
across heterogeneous plant communities. As a necessary first step to
developing advanced spatialmodels to predict pest spread in novel habitats,
we address that challenge by using the phylogenetic composition and
microclimate conditionsof local plant communities topredict the likelihood
of multi-host pests invading those communities. The phyloEpimodel at the
core of our phylogenetic approach provides a powerful predictive tool that
accounts for alternative host species driving the spread of multi-host pests
across heterogeneous landscapes. As expected, plant communities with
abundant species that are close relatives of known highly susceptible hosts
were up to four timesmore likely to be infested thancommunities composed
of distantly related hosts. The model did a better job predicting which plots
would be infested (correctly classifying 72%) versus which would be non-

infested (61.5% correct), most likely because currently non-infested plots
could eventually become infested as the epidemic proceeds. In addition,
plots deemed unfavorable for infestation based on phylogenetically-
weighted species abundance were more likely to suffer FD–ISHB estab-
lishment where local microclimate could support more beetle generations;
this suggests that microclimate mediates the importance of community
structure on disease establishment.

We applied the phyloEpi model to predict infestation risk in Cali-
fornia’s urban forests using complete street tree inventories from 9262
1-km2 grids in 170 cities statewide, and monitoring and weather data sets
independent from data used for model development. Our model indicated
that nearly one quarter of the 2956 1-km2 grid cells thatwere located outside
the FD–ISHB infested range were likely to be highly susceptible to invasion.
That therewere no observed infestations inmost of the lowprobability grids
(32of the36monitoredsites) confirmed themodel’spredictivepoweracross
a broader range of conditions using data sources independent of those used
to parameterize the phyloEpimodel. Together, our results demonstrate that
independent of landscape and spatial factors, the establishment of novel or
emergent multi-host pests through complex landscapes can be predicted
throughhost evolutionary relationships and their abundance in a local plant
community, evenwhen extensive empirical data about susceptibility of local
plant species is not yet available.

In addition to improved predictions of multi-host establishment, our
approach allows us to model expected impacts. Most pest risk analyses
report the relative likelihood of a species’ entry or establishment in an area,
without addressing potential impacts (refs. 24,36; but see ref. 37). Themodel
in this study predicts the probability of FD–ISHB establishment, but also
incorporates two important indicators of potential damage (e.g., mortality,
dieback): (1) phylogenetic signal in FD–ISHB host range, which is strongest
on more severely impacted host species13; and (2) microclimate effects on
beetle generations, which amplify impacts on hosts. Locations with high
susceptibility estimates (high wpS) are therefore more likely to experience
greater tree mortality. Accounting for pest impacts through a phylogenetic
epidemiology approach thus fulfills the need to improve risk maps beyond
potential pest distribution to also identify areas where they will likely cause
the most harm24.

Our phyloEpi model could be applied to existing spatio-temporal
models of pests spread (e.g., dispersal-kernel, PoPs, process-based, net-
work) and improve their utility by integrating pest impacts38–42. Spread of
invasive pests is inherently a spatial process, and dispersal kernels can be
used to the model potential range of spread from data on the current
distribution of an invasive pest38. The susceptible habitats identified by
the phylogenetic model could be overlaid with such spatial models to
identify those areas most immediately threatened with infestation. Such
an extension requires data from established monitoring programs on
currently infested areas.

Climate conditions provide outer envelopes around potential geo-
graphic distributions of pests, given their strong influence on pest phenol-
ogy, reproduction, dispersion, and overwintering survival43. In this study,
temperature constraints on ISHB development pointed to those regions
where beetles could thrive, including locations where tree-level data are
unavailable (Fig. 2). Our analysis detected that warmer places that can
supportmore annual beetle generations couldpermit infestationof sites that
would have been considered unfavorable based only on tree species com-
position. However, this predicted interaction between phylogenetic com-
munity composition and microclimate requires further validation across a
broader range of host composition andmicroclimate conditions thanwhere
empirical data are currently available. We therefore treat these predicted
patterns as tentative, but potentially useful, complementary guidance for
decision makers as they evaluate where to monitor or apply appropriate
preventative control measures in the immediate term. For example, some
grid cells in the Central Valley and in the Bay Area have similar high
probabilities of infestation risk basedonhost composition.Decision-makers
might prioritize preventative actions in the Central Valley because those
grids have more favorable temperatures for beetle development, which

Fig. 3 | Number of observed infested and non-infested plots across abundance-
weighted estimates of Fusarium dieback – invasive shothole borers (FD-ISHB)
establishment in California. Number of observed (A) infested (n = 99) and (B)
non-infested (n = 108) plots across abundance-weighted (host density) estimates of
Fusariumdieback – invasive shothole borers (FD-ISHB) establishment inCalifornia.
The predicted susceptibility of each plot is based on the local composition of woody
species and their phylogenetic distance to known killed-competent host species.
Whereas observed infested plots have a high predicted probability of being infested
(left-skew; −0.77)), non-infested plots are expected to have a low infestation
probability (right-skew; 0.82).

https://doi.org/10.1038/s42003-025-07540-y Article

Communications Biology |           (2025) 8:117 4

www.nature.com/commsbio


amplifies local susceptibility (Fig. 2d, e). Similarly, monitoring or pre-
ventative actions could also be prioritized in Palm Springs where micro-
climate is highly favorable for beetle establishment even though host
composition suggests a lower likelihood of infestation (Fig. 2f). This
approach mirrors the DAMA protocol (document, assess, monitor, act)

under the Stockholm Paradigm44 and lays the groundwork to predicting
FD–ISHB establishment under future climate change scenarios.

While climate-based risk mapping systems for pest risk analysis (e.g.,
CLIMEX, BIOCLIM, GARP, and NAPPFAST) provide an important first
pass to setting climate-envelope bounds on future spread, they do not give

Fig. 4 |Density-basedwpS estimates (phylogenetic
likelihood of infestation) of plot or grid suscept-
ibility to Fusarium dieback – invasive shothole
borers (FD–ISHB) establishment in California as
a function of estimated number of temperature-
dependent ISHB beetle generations supported in
those locations. Data from 99 infested (pink filled
circles) and 108 non-infested (yellow filled circles)
plots were used to parameterize the model. The
model was then applied to predict infestation risk in
9262 1-km2 grids (gray dots) in 170 cities across
California using complete urban forest inventories.
A subset of 832 grids were independentlymonitored
for FD–ISHB across its known infested (red or blue
triangles) and non-infested (black squares) geo-
graphic range from 2012–2021 and used to test
the model.
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landmanagers the resolution needed tomake timely and costly site-specific
decisions for host generalists43,45–48. Our finding that the phylogenetic
composition of local communities is a better indicator of the likelihood of
FD–ISHB establishment than either microclimate or host abundance
alone points to the need for more high-quality tree inventory data.
Sample-based forest health monitoring initiatives have produced robust
and statistically reliable national forest inventory data in many countries
(www.afritron.org;49–52, including the hundreds of thousands of periodically
resampled 672-m2 plots in the USA Forest Inventory Analysis program49.
However, a sample density of one plot per 24.3 km2 is inadequate to map
tree species distributions for regional pest risk modeling, although species
distribution imputation approaches (e.g., LEMMA), can be useful in filling
in spatial gaps. In addition, urban forest inventories are underrepresented.
The urban forest dataset used in this study includes data from publicly
available municipal inventories and inventories from private arborist
companies;while it represents the largest inventory of individual urban trees
in the United States now publicly available35, the data cover only a small
fraction of potential areas for FD–ISHB establishment. Given that global
estimates of biological invasions represent a sizable economic burden7–10,
anticipating where any current and future pest (e.g., spotted lantern fly) will
establish and cause the most damage requires an investment in developing
accessible and dependable ground-truthed host distribution datasets.

Importantly, the recent introduction of the pest means that it has not
yet spread throughout the entire suitable range. Therefore, areas not cur-
rently infested include both those that are not suitable for the pest (i.e.,
Fig. 3b, wpS <0.55) and suitable areas that have not yet been reached (i.e.,
Fig. 3b, wpS > 0.55). This means that our model predictions are both
conservative and tentative, but the alternative would be towait until the pest
has reached a global equilibriumacross the state (whichmayneverhappen).
Our purpose here is to show how areas of high susceptibility to amulti-host
pest can be identified early in the process, allowing targeted surveillance and
strategic management actions. For this reason, such tentative predictions
hold value now.

The phylogenetic model here is applicable across systems and can be
used as a robust tool to quickly determine the spread of novel pests, even as a
first approximation with limited information. At a minimum, it requires a
list of known hosts for a pest, to which evolutionary distances to local plant
species can be calculated (i.e., p(H), Fig. 1). Because most emergent pests
have been introduced from elsewhere, the local host range may not yet be
known when decisions on monitoring or actions must be made. In such
cases, knownhosts from the geographic range of origin canbe used for those
calculations, with the known-host list augmented and refined as further
information on locally susceptible hosts becomes available.

We developed this phylogenetic epidemiology approach to predicting
multi-host pest spread out of an urgent management need for accessible
decision-making tools that capture the biological realism of pests that are
not host specialists53,54. Both range shifts driven by climate change and
accidental introductions of these pests into areas outside their place of origin
have resulted in novel species interactions that cause irreversible ecosystem
changes with consequent ecological, social, and economic harm55–57. Such
predictive tools are crucial for developing effective response policies because
multi-host pests are more prevalent than host specialists2,3,6 and they are
responsible for a large proportion of the most threatening emerging infec-
tious diseases to plants, humans, and wildlife1,53,58. Phylogenetic signal in
host range is pervasive across different groups of microbial and insect pests
and can be used to predict generalist pest host ranges15. Here, we demon-
strate that by extension, the phylogenetic composition of communities is a
key predictor for the establishment of a multi-host pest. The phylogenetic
ecology tools used in this study can be readily adapted to predict the
establishment of any emergent multi-host pest in novel habitats. To cal-
culate phylogenetic community composition and implement this straight
forward approach, analysts can generate informative risk estimates if they
have a list of known host species, plant species distribution and abundance
data (i.e., density or basal area), and a host phylogeny generated using
readily available tools59–62. Environmental data that arewidely available (e.g.,

PRISM, CHELSA,WORLDCLIM) can then be incorporated to account for
key temperature or moisture constraints on pest performance, if known. A
critical next step is to integrate landscape composition and configuration
factors into these phylogenetically-informed predictive models and to
identify the relative importance of local and landscape features driving
multi-host pest spread.

Methods
Site selection and plot monitoring
Weestablished a network of 207monitoring plots (99 infested and 108non-
infested) to measure the effect of the phylogenetic structure of tree com-
munities and environmental conditions on the likelihood that FD–ISHB
will establish in a plot, and to capture variation in pest-pathogen spread over
time and space. Plots were considered infested when at least one tree within
a ≥ 0.25 ha area was infested by the pest-pathogen complex. Plots were
established between July–November 2017 in riparian habitats and oak
woodlands in the coastal regions of Southern California, from Ventura
County in the north (34.457666,−119.292731) to San Diego County in the
south (32.555394, −117.088553) (Fig. 2 and Supplementary Data 1). Plot
locations cover the range of environmental conditions in which the beetle
species have been observed through extensive surveys by trained experts
representing the University of California (UC) Riverside, Santa Cruz, and
Davis; UC Cooperative Extension; Orange, San Diego, Los Angeles and
Ventura County Agriculture; USDA Forest Service, Forest Health Protec-
tion; California Department of Forestry and Fire Protection; Disney; the
Huntington Library Art Collections and Botanical Gardens; and the Los
Angeles County Arboretum and Botanic Gardens (https://ucanr.edu/sites/
pshb/pest-overview/ishb-fd-distribution-in-california/). Study sites were
locatedwithin distinct stream courses or canyons andwere chosen based on
the presence of suitable tree hosts.

We established one to three monitoring plots within each site, with a
minimum of 200m between plots; vegetation composition often changed
noticeably within a few hundred meters. The locations of the monitoring
plots within a study site were chosen based on vegetation composition and
without regard to presence or absence of the pest (Supplementary Data 1).
Plot sizes were variable (0.25–2.75 ha; median = 0.27 ha) to account for
variation in tree density among plant communities; plots were a minimum
50 × 50m but were extended in low-density stands to ensure each plot
included at least 50 geo-referenced trees (13, Supplementary Table 1). Plots
varied in species composition and phylogenetic distances from the 77
known competent host tree species.

In each plot, we recorded attributes on every tree ≥ 5 cm diameter at
standard height (d.s.h., measured at 1.37m), and included the species and
infestation status based on the presence of beetle entry holes. All trees were
censused first in 2017 and then a second time in 2018.Wemeasured hourly
temperature (°C) and relative humidity (%) using iButtonHygrochron data
loggers (Maxim Integrated, San Jose, CA, USA).

All together, the monitoring plots covered 7.6 ha in Ventura County,
50 ha in Orange County, and 22 ha in San Diego County (Supplementary
Data 1), with 15,000 trees examined (Supplementary Table 1). Specifically,
we established plots in the Oxnard Plain and Santa Clara River Valley, the
Western Transverse Ranges, and the western Santa Monica Mountains in
Ventura County; the Santa Ana Mountains of the Central Region and the
San Joaquin hills, upper Newport Bay, and the Santa Ana River wetlands of
the Coastal Region of Orange County (Aerial Information Systems 2015);
and the San Luis Rey, Carlsbad, SanMarcos, San Dieguito, Penaquitos, San
Diego, Sweetwater,Otay, andTijuanawatersheds of thePeninsularRange in
San Diego County. The network includes regions with multiple, indepen-
dent pest introductions, beginningwith SanDiego (2014) andmost recently
Ventura County (2016).

Riparian habitats included both ephemerally and perennially flooded
stream courses. The stream courses varied in structure, with sandy or
gravelly alluvium deposited in canyons that ranged from narrow to fairly
broad63. In addition to canyons, riparian habitat in Ventura County
occurred in large valley floors of the Oxnard Plain and Santa Clara River
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Valley. Riparian forest physiognomy varied from woodland stands with
moderately large canopy gaps in the upper tree stratum to forest stands
where tree canopies overlapped between individuals so that canopy cover
exceeded 100%64. Study sites in non-riparian coast live oak woodlands
occurred along coastal foothills on north-facing slopes and shaded ravines64.

Stands consisted of a diversity of evergreen and winter-deciduous tree
species belonging to the California broadleaf forest and woodland and
southwestern North American riparian woodland, forest, and wash scrub
vegetation groups (Supplementary Figs. 1 and 2)65–67. Combined across all
sites, there were a total of 50 tree species from 25 families; 27 species were
native to California (Supplementary Table 1). Common species found
across most sites included western sycamore (Platanus racemosa), arroyo
willow (Salix lasiolepis), red willow (S. laevigata), black willow (S. good-
dingii), cottonwood (Populus fremontii), white alder (Alnus rhombifolia),
and coast live oak (Quercus agrifolia) (Supplementary Table 1). Tree species
composition varied from north to south due to the presence or absence of
less dominant tree species (SupplementaryTable 1). Importance values (IV)
were highest for coast live oak (range 27–81%), followed by western syca-
more (27–78%) and arroyo willow (25–72%) (Supplementary Table 1).
Relative density of coast live oak ranged from 5 to 23%, 19–41% for arroyo
willow, and 3–11% for western sycamore (Supplementary Table 1). All
stands had a dense to sparse understory of shrubs including elderberry
(Sambucus nigra) and poison oak (Toxicodendron diversilobum); the
understory of riparian forests and woodlands also included coyote bush
(Baccharis pilularis) and mule fat (B. salicina) while non-riparian oak
woodlands also had toyon (Heteromeles arbutifolia) and California sage-
brush (Artemisia californica).

PhyloEpimodel development
We tested how well the observed patterns of plot infestation could be pre-
dicted by the phylogenetic composition of the local tree community (Fig. 1).
Adapting the PhyloSusceptibility model from Parker et al.15, we first calcu-
lated susceptibility (S) to the FD–ISHB pest-pathogen complex for tree
species i as a function of its phylogenetic distance PD from a killed-
competent host j as logit(S)ij = 3.38–3.68 × log10(PDij+ 1). The logistic
regression coefficients in this equation (β0 = 3.38, β1 =−3.68) were gener-
ated using a resampling approach for the FD–ISHBpest-pathogen complex.
Specifically, we randomly selected one killed-competent host species
(source) and then used thePD from source to each plant species (target) in a
logistic regression, where the response variable was 1 (susceptible) or 0 (not
susceptible) andPD is twice the time to themost recent commonancestor in
Myr. Pairwise phylogenetic distances among all tree and shrub species in
California were calculated using a dated ultrametric phylogenetic tree
developed by Lynch et al.13 and the cophenetic function in the R package
Picante v. 1.2–066. Logistic regression was repeated for 1000 total runs, with
newrandomselectionsof sourcehost species for each run.Wecalculated the
median intercept and slope coefficients and the 95% confidence interval
across all 1000 runs. If the 95% confidence interval of a coefficient did not
include zero, it was considered significant.

Here, the probability that tree species i is susceptible (p(S)i) based on its
phylogenetic distance from host j is p(S) = exp[logit(S)ij]/1+ exp[logit(S)ij].
The overall probability that tree species i is a host (p(H)i) is the
complement of the product of probabilities that tree species i does not
share FD–ISHB with each of the 18 killed-competent host species j:

pðHÞi ¼ 1�Q18
j¼1 1� pðSÞij

h i
. This p(H)i was weighted by their relative

abundances (density or basal area; Supplementary Fig. 4) for each species i
within each plot k as wp(H)i = p(H)i * RAi. The overall estimate of plot
susceptibility wp(S)k is the sum of the weighted host probabilities within
each plot k: wpðSÞk ¼

Pn
i¼1wpðHÞi.

Estimates of plot susceptibility (wp(S)k) were compared to observed
FD–ISHB establishment in plots to evaluate predictable effects of alternative
hosts on pest-pathogen establishment using logistic regression and pre-
dictive quadratic discriminant analysis (QDA)onour dataset inOrange and
San Diego Counties, where the beetle has been established the longest. For

each analysis, those plot infestation data were randomly partitioned equally
into “training” and “testing” plot data sets.We used the training data to find
parameters for the discriminant model using the qda function in theMASS
R package (v. 7.3–51.6), and then applied that model to the test data to
predict the status of each plot (infested or not infested) based on dis-
criminant scores. To account for classification variability on randomly
partitioned data, this process was repeated 100 times for each analysis on
different random sets of training and testing samples. Models at the 0.025,
0.5, and 0.975 quantile classification rates are reported as representative
results.

Annual ISHB generation estimates
Sites with microclimatic conditions more often within the optimal tem-
perature range for ISHB development are expected to support more gen-
erations of beetles. We used a degree-day model to estimate the annual
number of beetle generations that could occur within each plot as an
indicator for potential propagule pressure. Observed dailyminimum (Tmin)
and maximum (Tmax) air temperatures in each plot were used to calculate
the cumulative number of degree-days (CDD) for each day. CDD were
calculated using the sine wave model67 with ISHB threshold temperatures
for beetle emergence (Tmin = 13 °C; Tmax = 32 °C) determined from pre-
vious experimental work under laboratory conditions33,34. To estimate the
annual number of ISHB generations, the CDD accumulated in 2017 and
2018 was divided by the experimentally derived thermal constant K for
ISHB (i.e., the number of degree-days required for complete ISHB
development)33,34. For subsequent logistical analysis of the likelihood of FD-
ISHB establishment (p(FD-ISHB)), we included the density-based wpS
term, the number of expected beetle generations (Gens), and an interaction
term: p(FD-ISHB) = 8.76 × wpS+ 0.5 ×Gens–0.8 × (wpS ×Gens)–8.06.

PhyloEpimodel applications
We applied the phyloEpi host composition-based susceptibility model
(density-based wpS), which was developed and validated with our robust
plot monitoring dataset, to predict urban forest susceptibility in California
outside the geographic range used to train the models. We estimated sus-
ceptibility (density-based wpS) for 170 cities in California, which have
complete street tree inventories in the California Urban Forest Inventory
(CUFI)35 and are distributed across broad geographic regions where the
pest-pathogen is currently found (i.e., Southern California) and where it is
not (e.g., Palm Springs and Northern California’s Central Valley and San
Francisco bay area) (Fig. 2). Individual tree data from the inventory were
aggregated to1-km2 grids across the extent ofCalifornia.A total of 9262 grid
cells containing 5,280,301 individual trees in 1037 species were constructed
across the spatial extent of the CUFI data (Supplementary Data 2 and 3). Of
the total, 2956 grids (32%) were outside the current geographic infested
range. The likelihood of FD–ISHB establishment was then estimated using
the total number of trees representing each species for each 1-km2 grid.

We tested howwell phyloEpipredicted FD–ISHB establishmentwithin
those grids where monitoring efforts outside of our study occurred. Mon-
itoring activities were conducted at least once from 2012–2021 in 832 (9%)
of the 9262 urban forest grids used to predict density-based wpS across
California (Fig. 2). The majority of data were collected during visual tree
assessments within artificial boundaries where researchers had permission
to survey (e.g., county parks, riparian corridors, university campuses)68. As
such, the dataset is likely affected by some degree of spatial bias due to
uneven sampling effort—a common obstacle in species distribution
modeling69,70. Yet, with 19,161 FD–ISHB presence (9202) and absence
(9959) records, it represents the most spatially and temporally compre-
hensive dataset currently available.We compiled FD–ISHBoccurrence data
from trees surveyed by trained experts representing the University of
California (UC) Riverside, Davis, and Santa Cruz; UC Agriculture and
Natural Resources Cooperative Extension and Integrated Pest Manage-
ment; and USDA Forest Service, Forest Health Protection. Point locations
for individual trees were collected using hand-held GPS devices. Grids
containing confirmed infested treeswere assigned “infested”, and thosewith
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only confirmed negative trees or traps outside the infested range were
designated “non-infested”. A location was considered “outside the infested
range” when it was not within an FD–ISHB infested county.

In addition to community-based estimates of FD–ISHB susceptibility
statewide, we ran the aforementioned degree-day model to estimate the
mean annual number of beetle generations across 20 years (2001–2020)
within 1-km2 grids across California. To estimate the annual number of
ISHB generations, we ran the model over a data stack giving continuous
gridded estimates of daily minimum (Tmin) and maximum (Tmax) air
temperature as a statewide raster for each calendar year. For this data stack,
we used Daymet data in NetCDF format (https://daac.ornl.gov/DAYMET/
guides/Daymet_Daily_V4.html)71–73. To improve computational perfor-
mance given the large size of this data stack (46 GB, 365 days × 20 years ×
552,000 pixels statewide), we exported the original R script to the Julia
language74. Annual estimates were averaged across 20 years for each grid to
produce a single bioclimatic map of beetle generation estimates (Fig. 2).
Thus, rather than extrapolating to areas with different environmental
conditions, we worked within the envelope of environmental conditions
used to calibrate the model.

Ultimately, we made wpS estimates (p(S)k =−2.15+ 3.26 × wpS)
across the state only within grids that had complete tree inventory data, and
removed the interactionwith the effect of temperature on beetle generations
(Fig. 2, wpS). We overlaid those estimates onto a separate layer of estimates
of the number of beetle generations that could occur within a grid (gen-
erations = Cumulative degree days/KISHB) using Daymet climate data that
were available for each grid (Fig. 2, ISHB Generations). As such, we took a
conservative approach in our final phyloEpimodel statewide predictions by
separating the effects of phylogenetic community composition and
microclimate on beetle reproduction and treating them as separate but
complementary factors in a conceptual evaluation of site susceptibility to
FD–ISHB establishment in California’s forests.

Statistics and reproducibility
The details about study design and statistics performed in this study are
given in the results andmethods sections.All analyseswere performedusing
R statistical framework, with functions from the Picante v. 1.2–0, Vegan v.
1.17–8, Hmisc v. 4.3.0, phytools v. 0.6, phangorn v. 2.5.5, Geiger v. 2.0.6.2,
caper v. 1.0.1 and Stats v. 2.12.2 packages (http://cran.r-project.org/).

Data availability
All source data underlying the analyses and graphs presented in the main
figures are available for download as Supplementary Data1–9 in this manu-
script. Data and accompanying code used in this study can also be down-
loaded from the Zenodo repository (https://doi.org/10.5281/zenodo.
14600099)75. The 20 year-long raster stack of daily temperature minimum
and maximum data to compute ISHB generation estimates within grids
across California were obtained from Daymet (https://daac.ornl.gov/
DAYMET/guides/Daymet_Annual_V4R1.html).

Code availability
TheR (v.4.2.2) and Julia (v.1.5.0) codes used in this study are available at the
Zenodo repository (https://doi.org/10.5281/zenodo.14600099)75.
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