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ABSTRACT: Urban areas are major contributors to greenhouse gas emissions,
necessitating effective monitoring systems to evaluate mitigation strategies. A
dense sensor network, such as the Berkeley Environmental Air-quality & CO2
Observation Network (BEACO2N), offers a unique opportunity to monitor urban
emissions at high spatial resolution. Here, we describe a simple approach to
quantifying urban emissions with sufficient precision to constrain seasonal and
annual trends. Measurements from 12 BEACO2N sites in Los Angeles (called the
USC Carbon Census) are analyzed within a box model framework. By combining
CO2 and CO observations, we partition total CO2 emissions into fossil fuel and
biogenic emissions. We infer temporal changes in biogenic emissions that
correspond to the MODIS enhanced vegetation index (EVI) and show that net
biogenic exchange can consume up to 60% of fossil fuel emissions in the growing
season during daytime hours. While we use the first year of observations to
describe seasonal variation, we demonstrate the feasibility of this approach to constrain annual and longer trends.
KEYWORDS: greenhouse gas, emissions, fluxes, fossil fuel, biosphere, dense sensor network

1. INTRODUCTION
The Paris Agreement of the United Nations (UN) Framework
Convention for Climate Change established an approach that
signatory countries could take to reduce their greenhouse gas
emissions and report the reductions publicly.1 In response,
nations and cities worldwide are adopting mitigation strategies
to reduce the level of CO2 emissions. These efforts are
supported by collaboration through organizations such as the
C40 Cities Climate Leadership Group (https://www.c40.org/)
and the Global Covenant of Mayors for Climate and Energy
(https://www.globalcovenantofmayors.org/), among many
others. To support these urban efforts, the implementation
of monitoring systems is crucial in evaluating and verifying the
effectiveness of specific mitigation strategies in achieving the
emission reduction targets specified by governments.
The current understanding of urban CO2 emissions relies

most heavily on inventory-based methodologies. These
“bottom-up” approaches include methods that estimate
aggregate emissions in a domain using economic indicators,
such as total fuel sales,2 and methods that provide more
specific location and process information that rely on mapping
the source-specific emission factors and measurements of
activities,3−5 e.g., traffic patterns or average home heating use.
In contrast, “top-down” approaches estimate emissions based
on measurements of atmospheric CO2. Atmospheric transport
modeling is necessary to interpret concentration measurements
and solve the inverse problem. One approach involves using an

inverse/data assimilation technique, optimizing the prior
emission model. Both in situ and remote sensing observations
have been used for top-down estimation.6−12 The majority of
the studies using in situ measurements typically involve 2−15
observing sites within an urban region larger than 10 000 km2

equipped with state-of-the-art instruments that are calibrated
frequently with gas standards.
The Berkeley Environmental Air-quality & CO2 Observation

Network (BEACO2N) is designed to produce maps of urban
air at high spatial resolution (2−4 km sensor spacing) while
minimizing both capital and operating costs. Measurements of
CO2, CO, NO2, NO, O3, and aerosols are provided using low-
cost sensor technologies along with efficient methods for
network scale calibration to keep labor costs low. Currently,
the network consists of approximately 45 nodes in the San
Francisco Bay Area, 12 nodes in Los Angeles, 20 nodes in
Providence, RI, and 20 nodes in Glasgow, Scotland. The
advantages of a dense network such as BEACO2N were
evaluated using a hypothetical observing network and an
inverse modeling system.13 The BEACO2N-like system,
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providing detailed maps of concentration variations within a
city, outperformed conventional monitoring systems in
effectively characterizing a point, line, or area source within
an urban area. Turner et al.9 later used observations from an
operating network combined with the inverse model to
estimate total CO2 emissions and total CO2 reductions in a
region of the San Francisco Bay Area before and during the
COVID-19 shelter in place. They found an 8% reduction in

emissions from stationary sources and a 48% reduction from
traffic. Fitzmaurice et al.14 evaluated the capability of the
inverse model to constrain the effect of vehicle speed and fleet
composition on CO2 emissions. Asimow et al.15 reported a
decrease in CO2 emissions at a rate of 1.8 ± 0.3% per year in
the region based on nearly 5 years of observations.
In addition to these sophisticated and computationally

intensive inverse modeling approaches, it is beneficial to

Figure 1. Map of Los Angeles showing BEACO2N-LA node locations (black circles on the left and color coded on the right) and the two Los
Angeles Megacity Carbon Project sites used for calibration (red circles). The red × marker in the inserted map indicates the geographic center of
the 12 nodes.

Figure 2. Observation of (a) CO2 and (b) CO used in this study from all USC Carbon Census sites. Different colors represent different sites
corresponding to the colors in the inserted map in Figure 1. Network average (c) wind and (d) planetary boundary layer height (PBLH) from the
HRRR model.
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consider simpler methods of analysis. For example, the use of
BEACO2N observations to constrain policy-relevant trends in
highway traffic emissions has been previously demonstrated
using the correlation between the observed CO2 concentration
and traffic flow rate.16,17 In this study, we explore a box model
approach to quantifying total CO2 emissions within an 18 × 10
km section of Los Angeles. Measurements from a set of sites
located along the prevailing wind direction are combined with
meteorology information within a box model framework and
then used to assess emissions in central Los Angeles (LA)
where 12 BEACO2N nodes have been operating since June
2021 (called the USC Carbon Census). Anthropogenic and
biogenic CO2 emissions are partitioned using constraints from
observed carbon monoxide (CO) and assumptions that it is a
proxy for fossil fuel CO2 (CO2ff). This approach assumes a
time variable ratio between CO/CO2, which are co-emitted
during combustion.18−20 While the CO to CO2ff emission ratio
varies with the source allowing for some ambiguity, we use an
additional constraint based on radiocarbon (14C)19,21 applied
to atmospheric measurements in Los Angeles to narrow the
range of plausible emission estimates. We treat the difference
in CO2ff from net CO2 emissions as a measure of biogenic
effects on CO2; the biosphere is both a source and a sink for
urban CO2.

2. METHODS
2.1. Measurements. We use CO2 and CO measurements

from a high-density observing system, the USC Carbon Census
network, located in central LA (also known as BEACO2N-LA).
A total of 12 nodes have been deployed on ∼4 km spacing (see
Figure 1) beginning in June 2021. Observations from the USC
Carbon Census network are supplemented by observations
located on the University of Southern California (USC)
campus, including measurements from a Picarro G2131i cavity
ring-down spectroscopy (CRDS) instrument measuring 12CO2,
13CO2, and CH4 and the Los Angeles Megacity Carbon
(LAMC) Project measurements at USC and Compton
(COM) site, including Picarro G2301 (measuring CO2 and
CH4) and Picarro G2401 (measuring CO2, CH4, and CO),
respectively,22,23 for in situ field calibration. In situ field
calibration involves comparing the background signal of each
measurement to reference measurements with a precision of
0.1 ppm for CO2 and 5 ppb for CO. This process includes
correcting sensitivity, bias, and drift and applying adjustments
for temperature and humidity dependence. A detailed

description of the design, deployment, and calibration of
BEACO2N instruments can be found elsewhere.24−27 The
precision of the hourly CO2 mole fractions is estimated to be
±0.5 ppm, and the accuracy is 1−2 ppm. The processed CO
concentrations are estimated to have a precision of ∼100 ppb
at an hourly resolution. We use the hourly averaged
concentration of CO2 and CO between July 2021 and
December 2022 (see Figure 2), which show large diurnal
variation as well as seasonal variation. These fluctuations are
associated with variations in emissions as well as meteoro-
logical conditions.

2.2. Box Model Approach for CO2 Emission Estima-
tion. We use a box model approach based on the mass
conservation as in the work of Strong et al.28 and Balashov et
al.29
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The left-hand side of the equation represents the change in
concentration C (μmol m−3) with time at sites within the
compartment volume. The terms on the right-hand side of the
equation represent emission (or uptake), advection, and
entrainment, respectively. All terms in this model are given
in flux units (μmol m−2 s−1). We assume the uniform emission
inside the box at a rate of Q (μmol m−2 s−1) is well-mixed
within a mixing layer with height h (m) and ventilated by
winds blowing along the x axis with wind speed u (m s−1).
When the mixing height is increased, the air above the mixed
layer with concentration C0 (μmol m−3) is entrained into the
box, which is represented with the Heaviside step function H
that is H = 1 when dh/dt > 0 and H = 0 otherwise.
To estimate emissions, Q, we rearrange eq 1 and apply it to

hourly observations.
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Each term on the right-hand side of the equation is first
calculated for each site and then averaged across the network.
The change in concentration, ΔC, and the change in mixing
height, Δh, is calculated for each time step Δt = 3600 s. The
term dC/dx is calculated by leveraging the detailed mapping of
the dense sensor network. Figure 3 shows an example of how
dC/dx is calculated by combining all USC Carbon Census
sites. For each time step, the x axis rotates along the wind
direction, while the origin is fixed to the geographic center of

Figure 3. Example of a linear regression for calculating the term dC/dx at two different PBLH. CO2 is shown on the left axis, and CO is shown on
the right axis.
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the sites (red marker in Figure 1). When more than eight sites
are available, observations from all available sites are projected
onto the x axis (by drawing a perpendicular line to the wind
axis). All concentrations measured from the network are
compared, removing outliers that fall beyond ±2 standard
deviations from the network median for each time step, and
then dC/dx is calculated. The criteria of eight sites was chosen
to include a significant portion (2/3) of the total domain of
interest. This expands the time available for analysis to include
the period before completion of the full sensor deployment.
Entrainment is significant during morning when the mixing
height is increasing, and the residual layer is mixed into the
planetary boundary layer. The concentration, C0, of the
residual layer is defined as the concentration from the previous
day at 2 PM when the mixing height is generally at a maximum
and before nocturnal boundary layer starts to form. Estimates
of h and u are taken from the National Oceanic and
Atmospheric Administration (NOAA) High Resolution
Rapid Refresh (HRRR) for each site.

2.3. Partitioning Fossil and Biogenic CO2 Emissions.
Carbon monoxide (CO) is a widely used tracer to estimate
fossil fuel emissions as CO is often co-emitted with fossil fuel
CO2 (CO2ff) during incomplete combustion.

10,20,30−32 If the
COxs/CO2ff ratio (Rff, where COxs is the CO enhancement
above the background) is well-constrained, continuous CO
measurements combined with Rff can provide an estimate of
continuous CO2ff. CO also has some contribution from
oxidation of methane and volatile organic compounds
(VOCs), and its oxidation can serve as a sink. However, the
transport time across the study domain is short enough (less
than 2 h) that removal of CO and methane oxidation can be
ignored.33 A previous study also showed that VOC oxidation
provides less than 1% of observed CO in a heavily polluted
region, such as the LA region.34

We first calculate net CO and CO2 emissions, QCOd2
and

QCO, using the procedure described in section 2.2. The net
CO2 emissions are the sum of fossil and biogenic terms. To
isolate the fossil fuel term, QCOd2ff is estimated by assuming
fossil CO2 is proportional to the CO emissions with a
proportionality constant of 1/Rff.

Q
Q

RCO ff
CO

ff
2

=
(3)

We then estimate biogenic CO2 emissions (QCOd2bio) as the
difference between the total CO2 emissions (QCOd2

) and fossil
fuel CO2.

Q Q QCO bio CO CO ff2 2 2
= (4)

Time steps with QCOd2ff < 0 are physically unreal and were
excluded as they indicate either a large error in meteorology
data or meteorological conditions deviating from the condition
assumed for a box model approach to be valid. Outliers of
emissions beyond ±3 standard deviations from the mean
within a 3 month moving window, which accounts for ∼2% of
the hourly emission estimates, were also excluded.
We estimate Rff from bottom-up inventories. The 2021

values were not available at the time of the writing of this
manuscript. First, we use 2019 annual CO2 emissions and CO
emissions in Los Angeles County for each source sector from
Vulcan 3.0 and the California Air Resources Board (CARB)
California Emissions Projection Analysis Model (CEPAM).
The 2015 CO2 emissions in Vulcan 3.0 are scaled by the
emissions in the CARB greenhouse gas emission inventory
data to estimate 2019 emissions. We opt to use the 2019
estimate due to the exceptional circumstances of reduced
emissions during the pandemic in 2020. The ratio of CO2

Figure 4. Monthly bottom-up inventory-based estimates of the CO to CO2ff emission ratio (Rff) adjusted by a scaling factor of 0.5. These values
are used in eq 3 to calculate CO2ff emissions from CO.
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emissions and CO emissions is calculated for each source
sector (Rx; see Table S1 of the Supporting Information), which
we assume constant over our study period. We combine
constant Rx estimated from bottom-up inventories and sector
partitioning information (relative contribution of each source
sector, f x) that varies in time collected from Hestia-LA at
hourly resolution to estimate Rff following Kim et al., which has
been evaluated against 14C data collected over a year long
period in 2015.

R R fx xff = (5)

For 2 km circles around each BEACO2N sensor, we average
Hestia-LA sectoral emissions provided at 1 km spatial
resolution.
We adjust the estimated Rff value based on measurements

made with flask air collected daily at 2 PM (LT) during the
month long Southwest Urban NO2 and VOC Experiment in
LA (also known as the SUNVEx-LA campaign, August 2021,
https://csl.noaa.gov/projects/sunvex/), a NOAA-led experi-
ment measuring various air pollutants. This campaign found Rff
of 4.2 ± 0.9 ppb ppm−1 (mean and standard deviation)
determined from 14C and CO measurements of flask air
samples (see the Supporting Information). Measurements
made after August 21st, 2021, were excluded due to the impact
of wildfires on observations. We again combine R and the
relative contribution of each source sector following the
approach presented in eq 5. Hestia-LA is weighted and
averaged by the footprints (ppm per μmol m−2 s−1) of each
grid (see section 2.4 for additional details on footprints). Our
bottom-up inventory-based estimate of Rff for August 2021 is
8.5 ± 2.5 ppb ppm−1 (mean and standard deviation), which is
larger than the value from the flask measurements. It is likely
that the overestimation of Rff from the bottom-up inventory is
driven by the error in f x due to the possibility of a change in
sector partitioning from 2015. We multiply a scaling factor of
0.5 ± 0.2 to the bottom-up inventory-based Rff estimates for
our study domain. We use monthly averaged corrected Rff
(Figure 4) and eq 3 to produce estimates of fossil fuel CO2
flux. Note that emissions from biofuel and human respiration
are included in the biogenic sources in this study that would
lead to an underestimation of fossil fuel emissions. Miller et
al.35 estimates biofuel emissions to be 10% of fossil fuel
emissions in Los Angeles basin. Lower Rff in winter is driven by
increased emission in residential and commercial sectors,
which have low R values.

2.4. Synthetic Data Experiment. We used a synthetic
data experiment to evaluate the box model approach. Synthetic
observations of the USC Carbon Census network are
generated from July 2021 to July 2022 using the Stochastic
Time-Inverted Lagrangian Transport (STILT)36,37 model
combined with the meteorological fields from HRRR. The
STILT model is an atmospheric transport model frequently
used in inverse modeling approaches that computes footprints
indicating the receptor’s sensitivity to surface emissions. The
convolution of footprints (ppm per μmol m−2 s−1) and fluxes
(μmol m−2 s−1) yields the synthetic enhancement (ppm)
above the background. We add the background, estimated
from Los Angeles Megacity Carbon (LAMC) Project as
described by Verhulst et al.,22 to yield synthetic observations
(ppm). We use a high-resolution fossil fuel emission product,
Hestia-LA,4 for CO2 fluxes and Hestia-LA multiplied by a
bottom-up inventory-based estimate of Rff at hourly resolution

(see section 2.3) for CO fluxes. A comparison between the
observed CO2 (CO) and simulated CO2 (CO) is shown in
Figure S2 of the Supporting Information. Lastly, we apply the
box model approach to the generated synthetic observations
quantifying the flux estimates and evaluate it against the model
reference flux. The modeled reference flux is defined as the
Hestia-LA emission rate averaged over 2 km circles around
each sensor, which should incorporate a significant portion of
the regions located between the sites.

3. RESULTS AND DISCUSSION
3.1. Synthetic Data Experiment To Determine the

Effective Mixing Height. While the box model approach
assumes that the emitted gases mix throughout the entire
planetary boundary layer (PBL), previous studies have shown
that this is not realistic in urban environments where strong
sources exist in the near field of measurement sites.8,38 To
address this issue, we determined the effective mixing height
from the synthetic data experiment. We use an effective mixing
height for h in eq 2 varying between 0.1hHRRR and 1.0hHRRR,
where hHRRR is PBL height estimates from HRRR, and evaluate
the estimated flux compared to the modeled reference flux
from Hestia-LA inputs.
Figure 5 shows the diurnal pattern of estimated fluxes

calculated using various effective mixing heights. We find that

estimated daytime fluxes show reasonable agreement at h = 0.3
− 0.4hHRRR, but nighttime fluxes are always underestimated by
our model. During the day, using a low effective mixing height
results in underestimation of the flux and using a high effective
mixing height results in overestimation of the flux. We estimate
the effective mixing height in the location of the USC Carbon
Census network to be 0.4hHRRR and then use this value to
estimate the flux for the daytime hours (from 1100 to 1700
LT) in the following sections 3.2 and 3.3. This process of
determining effective mixing height is also feasible with
publicly available coarser emission inventories or a simply
constructed emission inventory in the absence of a high-
resolution fossil fuel emission product. For example, we
derived the same effective mixing height of 0.4hHRRR using a
uniform emission rate across the LA basin (details provided in

Figure 5. Diurnal pattern of fossil fuel CO2 fluxes estimated from
synthetic observation between July 2021 and July 2022 using the
effective mixing height varying between 0.1hHRRR and 1.0hHRRR, where
hHRRR is PBL height estimates from HRRR. The red line represents
the reference flux from Hestia-LA.
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section S2 of the Supporting Information). We focus on the
daytime hours when the atmosphere is closest to well-mixed
and the bias in the meteorological model boundary layer
height, which would propagate to the effective mixing height, is
lowest. This is consistent with previous studies that use an
inverse/data assimilation technique combined with meteoro-
logical models.

3.2. Synthetic Data Experiment for Uncertainty
Assessment. We use this synthetic data experiment to
evaluate the uncertainty caused by the various assumptions
made in the box model approach. We also propagate the
uncertainty in sensor observations (C), concentration above
the mixed layer (C0), mixing height (h), and wind speed (u),
wind direction by adding randomly generated noise in the
Gaussian distribution for each hourly timestamp. The wind
direction affects the analysis, as we rotate the x axis along the
wind direction and calculate dC/dx. The uncertainty in the
CO2 measurements is ±0.5 ppm, and the uncertainty in the
CO sensor is ±100 ppb (see section 2.1). The uncertainty in
C0 is estimated as the standard deviation of the difference
between the background estimated from LAMC and the
background estimated from the synthetic concentration from
the previous day at 2 PM, as described in section 2.2: ±18 ppm
for CO2 and ±105 ppb for CO. Uncertainty in meteorological
data is from Verreyken et al.:39 ±250 m for mixing height, ±2.1
m s−1 for wind speed, and ±63° for wind direction. To
estimate the uncertainty in CO2ff fluxes from CO, the
uncertainty in monthly averaged Rff of ±2.5 (standard
deviation of bottom-up inventory-based hourly Rff) and the
uncertainty in the scaling factor of ±0.2 (see section 2.3) is
propagated.
Table 1 shows the uncertainty in annual daytime fluxes for

total CO2 and CO2ff. Uncertainty in estimated flux is

calculated as the standard deviation of the difference between
the estimated flux and Hestia-LA reference flux from 5000
bootstrap samples. First, daily daytime average flux is
calculated and then averaged over randomly sampled 365
data points with replacement for each bootstrap sample. Not
surprisingly, we find that uncertainty caused by the various
assumptions made in the box model approach are a major
factor in the total uncertainty, followed by the uncertainty in
the wind data. For CO2ff fluxes, the uncertainty in the CO
observation has a significant impact on the total uncertainty as
well as the uncertainty in monthly averaged corrected Rff as

indicated by the difference between the uncertainty in the
CO2ff fluxes and the uncertainty in the CO2 fluxes when the
box model approach is the only uncertainty term. The total
uncertainty in annual hourly fluxes is ±1.9 μmol m−2 s−1 for
total CO2 and ±4.4 μmol m−2 s−1 for CO2ff. For annual
daytime fluxes, the total uncertainty is ±1.2 μmol m−2 s−1 for
CO2 and ±2.4 μmol m−2 s−1 for CO2ff. Then, the uncertainty
in CO2bio fluxes is estimated to be ±4.8 and ±2.7 μmol m−2

s−1 for annual hourly fluxes and annual daytime fluxes. Hourly
fluxes and daytime fluxes averaged for various time scales are
shown in Figure 6. We find the total uncertainty in estimated

CO2ff fluxes decreasing with a greater number of days
averaged: ±8.2 μmol m−2 s−1 (21%) for monthly daytime
average, ±4.8 μmol m−2 s−1 (12%) for seasonal daytime
average, and ±2.4 μmol m−2 s−1 (6%) for annual daytime
average. Recent studies have observed CO2 emissions
decreasing at a rate of 2%/year.15,40 If a similar trend of
decrease was occurring in Los Angeles, it could be observed
within 3 years using this box model approach.

3.3. Analysis of USC Carbon Census Network Data To
Constrain Anthropogenic and Biogenic CO2 Emissions
in Los Angeles. Figure 7 shows the diurnal cycle of the
estimated total CO2 fluxes and partitioned fossil fuel and
biogenic fluxes averaged over an entire year at each time of
day. Fossil fuel CO2 fluxes show a relatively smooth rise and
fall over the course of the day, while pronounced biogenic
uptake during daylight hours results in a total (net) CO2 flux
that peaks early and late in the day. When the average is taken
throughout the entire day, net biogenic CO2 uptake is
considerable in this part of Los Angeles; biogenic uptake
accounts for net sequestration of 4.5 ± 1.4 μmol m−2 s−1,
equivalent to ∼30 ± 10% of the estimated fossil fuel emission
flux of 14.1 ± 1.1 μmol m−2 s−1. Note that the errors reported
in this section and shown in Figures 7 and 8 represent the 68%
confidence interval of the averaged values, distinct from the
hourly uncertainty estimated in section 3.2.
Figure 8 shows the seasonal variation in the derived daytime

CO2 emissions for July to September (JAS) 2021, October to
December (OND) 2021, January to March (JFM) 2022, and
April to June (AMJ) 2022, respectively. Seasonal fluxes are
calculated using the data when the wind is blowing from the
southwest (dominant wind direction; see Figure 2) for a

Table 1. Uncertainty in Annual Daytime Flux Estimates for
Various Included Uncertainty Termsa

flux uncertainty (μmol m−2 s−1)

included uncertainty terms CO2 CO2ff

box model 0.7 1.5
box model + sensor 0.7 2.1
box model + background 0.7 1.5
box model + PBLH 0.7 1.5
box model + wind speed 1.0 1.7
box model + wind direction 0.9 1.5
box model + all 1.2 2.4

aFlux uncertainty is calculated using bootstrap sampling, comparing
the estimated flux to the true flux. First, daily daytime average flux is
calculated and then averaged over 365 samples with replacement for
each iteration. Note that the uncertainty in CO2ff also includes the
uncertainty in monthly averaged corrected Rff.

Figure 6. Uncertainty in flux estimates as a function of the number of
days averaged using the bootstrap sampling method. The solid line
indicates uncertainty in the hourly resolution data set, and the dashed
line indicates uncertainty in the daily resolution data set averaged for
each day using daytime hours (from 1100 to 1700 LT).
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constant footprint, which represents the region for which our
derived emission rate from the USC Carbon Census network is
applicable. We observe higher fossil fuel emissions during
January to June compared to July to December. This pattern
can be associated with larger usage of natural gas for heating in
winter.41−43 However, it can also be associated with the
misrepresentation of meteorology in the model information.
For example, Yadav et al.44 also observed a decreasing trend in
emissions during summer months. In their study, this trend
was attributed to large errors in wind speed that are generally
lower in winter and often overestimated in the models.
Estimated biogenic fluxes (Figure 8) are consistent with the

seasonality observed in the enhanced vegetation index (EVI),
which serves as a measure of canopy greenness and is used as a
proxy in biogenic models to estimate carbon uptake. EVI is
averaged over 2 km circles around each sensor from a
Moderate Resolution Imaging Spectroradiometer (MODIS)
MCD43A4 Version 6 Nadir Bidirectional Reflectance Dis-
tribution Function-Adjusted Reflectance (NBAR) data set at
500 m resolution, at daily resolution representing 16 day
moving averages.45 The low spatial resolution of the MODIS
EVI likely diminishes its sensitivity to urban vegetation, and

the fact that observations can only be made under clear sky
conditions restricts its use for short-time scale analysis.
However, we observe the expected seasonal variation in the
raw data set, and we use the seasonal average to calculate the
correlation coefficient. We observe maximum biogenic uptake
of −6.7 ± 0.7 μmol m−2 s−1 in AMJ 2022 and maximum
emission of 0.2 ± 1.0 μmol m−2 s−1 in OND 2021/2022, which
corresponds to the inverse pattern in EVI (r2 = 0.7). EVI in
Figure 8, which corresponds to the right axis, is shown in
reverse. Note that AS 2021 only includes data from mid-
August to September by the criteria to include more than eight
sites; this could account for the difference between 2021 and
2022. We find that, during the daytime, the biosphere can
consume up to 60 ± 6% of fossil fuel emissions of 11.3 ± 0.5
μmol m−2 s−1 during the maximal growing season (in AMJ
2022).
This box model approach yields flux estimates that are

similar to those in previous studies. The derived annual
daytime average fossil fuel CO2 flux of 19.7 ± 0.9 μmol m−2 s−1
is consistent with the adjusted Hestia-LA emissions of 23.2
μmol m−2 s−1 (see red dashed line in Figure 7) within the 2σ
uncertainty bounds of 4.8 μmol m−2 s−1 on the box model
inference (see section 3.2). Hestia-LA emissions for 2015 are
modified to 2022 using the CARB greenhouse gas emission
inventory estimated for California. While seasonal daytime
fossil fuel CO2 flux varies between 22.3 and 23.9 μmol m−2 s−1
in adjusted Hestia-LA emissions, we observe variation between
8.0 and 20.9 μmol m−2 s−1. Asimow et al.15 also observed large
seasonality in fossil fuel CO2 emissions in the San Francisco
Bay Area and attributed the variation to a seasonal cycle in
natural gas use. The maximum negative daytime biogenic flux
that we observed is −6.7 ± 0.7 μmol m−2 s−1 in AMJ 2022.
Note that the 1σ uncertainty in seasonal daytime biogenic flux
derived in section 3.2 is 5.4 μmol m−2 s−1 (see the green
dashed line in Figure 6). Recently developed biogenic models,
estimating biogenic fluxes from vegetation remote sensing data,
also reported negative fluxes of a similar magnitude from 0 to
−15 μmol m−2 s−1 during the growing season for various cities
in the United States, including LA.46,47

We combine observations from a dense sensor network with
a box model for quantifying CO2 and CO emissions. The
approach is simpler compared to computationally intense
inverse methods and could be easily applied to other gases,
such as NOx, O3, and aerosols. However, uncertainties caused
by various assumptions made in the box model approach as
well as uncertainties in each variable needed to quantify
emissions propagate to the overall uncertainty. Furthermore,
this method strongly depends upon the value for the effective
mixing height that could result in a systematic bias in the flux
estimates. We suggest using synthetic data experiments to
derive an appropriate effective mixing height to minimize the
systematic error. We have derived a constant scaling factor to
estimate the effective mixing height for the daytime; however,
this could be improved using various scaling factors for
different times of day or different atmospheric conditions.
We apply this approach to CO and CO2 observations

independently and then combine information from the two
species with the ratio of COxs and CO2ff obtained from flask
measurements of 14CO2 and CO collected in LA. This enables
us to partition total CO2 emissions into fossil fuel and biogenic
emissions that show good agreement with their known patterns
and bottom-up emission estimates. We find the diurnal
patterns in fossil fuel and biogenic flux as expected, showing

Figure 7. Diurnal variation of total, fossil fuel (FF), and biogenic
(bio) CO2 fluxes averaged between July 2021 and July 2022. The
error bars represent the confidence interval of each averaged values.
The dashed red line shows diurnal variation in Hestia-LA 2015
emissions adjusted scaling to the CARB greenhouse gas emission
inventory data to estimate 2022 emissions.

Figure 8. Seasonal variation of fossil fuel and biogenic CO2 fluxes
during the daytime (from 1100−1700 LT). The error bars represent
the standard errors of seasonal daytime fluxes. MODIS enhanced
vegetation index (EVI) is shown reversed on the right axis to highlight
its relationship with the biogenic flux uptake from the atmosphere
(negative flux is maximum uptake).
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larger fossil fuel emissions and larger biogenic update during
the daytime. The seasonal variation in biogenic emissions as
determined in our model corresponds to EVI observations, and
the seasonal variation in fossil fuel emissions agrees well with
previous studies. Lastly, derived annual daytime flux estimates
match the fluxes from bottom-up fossil fuel emission inventory
and biogenic models, providing additional support for this
approach. We show that the biosphere can consume up to 60%
of fossil fuel emissions in the growing season during the
daytime. Nighttime flux estimates can be improved by finding
effective mixing heights and a ratio of COxs and CO2ff suitable
for early morning and nighttime.
We used this first year of observations to describe seasonal

variation. We look forward to assessing long-term emission
trends of CO2 and other pollutants not only here in LA but
also in other cities, such as Providence, RI, and Glasgow,
Scotland, where BEACO2N sensors have recently been
installed. Additionally, we aim to extend our analysis to
encompass a broader network, exploring regional differences
by grouping sites according to their locations.
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