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Abstract

Differences in brain metabolism as measured by FDG-PET in prodromal and early Alzheimer's
disease (AD) have been consistently observed, with a characteristic parietotemporal
hypometabolic pattern. However, exploration of brain metabolic correlates of more nuanced
measures of cognitive function has been rare, particularly in larger samples. We analyzed the
relationship between resting brain metabolism and memory and executive functioning within
diagnostic group on a voxel-wise basis in 86 people with AD, 185 people with mild cognitive
impairment (MCI), and 86 healthy controls (HC) from the Alzheimer's Disease Neuroimaging
Initiative (ADNI). We found positive associations within AD and MCI but not in HC. For MCI
and AD, impaired executive functioning was associated with reduced parietotemporal metabolism,
suggesting a pattern consistent with known AD-related hypometabolism. These associations
suggest that decreased metabolic activity in the parietal and temporal lobes may underlie the
executive function deficits in AD and MCI. For memory, hypometabolism in similar regions of
the parietal and temporal lobes were significantly associated with reduced performance in the MCI
group. However, for the AD group, memory performance was significantly associated with
metabolism in frontal and orbitofrontal areas, suggesting the possibility of compensatory
metabolic activity in these areas. Overall, the associations between brain metabolism and
cognition in this study suggest the importance of parietal and temporal lobar regions in memory
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and executive function in the early stages of disease and an increased importance of frontal
regions for memory with increasing impairment.

Keywords

mild cognitive impairment (MCI); Alzheimer's disease (AD); FDG PET; memory; executive
function

Introduction

Metabolic brain deficits as a consequence of early Alzheimer's disease measured using
[18F]fluorodeoxyglucose positron emission tomography (FDG PET) have been well
established in the last two decades, with parietotemporal hypoactivity in AD patients the
most consistent finding (Del Sole et al., 2008; Edison et al., 2007; Messa et al., 1994;
Mielke et al., 1994; Piert, Koeppe, Giordani, Berent, & Kuhl, 1996). In addition, patients
diagnosed with mild cognitive impairment (MCI), which is considered to be a prodromal
stage of AD (Albert et al., 2011; Petersen, 2000; Petersen et al., 1999), also show consistent
brain metabolic reductions relative to healthy older adults (HC), particularly in regions of
the parietal and temporal lobes (Del Sole et al., 2008; Li et al., 2008; Lowe et al., 2009;
Mosconi et al., 2005). In addition to evaluating brain metabolism in MCI and AD for the
purpose of understanding the impact of disease on resting-brain metabolism, FDG PET
measures have also been assessed for sensitivity in early diagnosis, alone or in conjunction
with other imaging modalities (e.g., magnetic resonance imaging (MRI)) and cerebrospinal
fluid (CSF) protein levels (Chetelat, Desgranges, de la Sayette, Viader, Eustache, et al.,
2003; de Leon et al., 2007; Drzezga et al., 2005; Habeck et al., 2008; Herholz et al., 2002;
Kim et al., 2010; Lucignani & Nobili, 2010; Minoshima, Frey, Koeppe, Foster, & Kuhl,
1995; Mosconi, 2005; Mosconi et al., 2010; Mosconi et al., 2004; Mosconi et al., 2007;
Nobili et al., 2008; Pontecorvo & Mintun, 2011; Rimajova et al., 2008; Silverman et al.,
2001; von Borczyskowski et al., 2006). In addition, FDG PET scans have shown utility as
part of a clinical diagnostic evaluation protocol and potentially in therapeutic intervention
trials (Alexander, Chen, Pietrini, Rapoport, & Reiman, 2002; Bohnen, Djang, Herholz,
Anzai, & Minoshima, 2012; Chow et al., 2011; Herholz, 1995; W. Jagust, Reed, Mungas,
Ellis, & Decarli, 2007; Kono et al., 2007; Morinaga et al., 2010; Mosconi, 2005; Noble &
Scarmeas, 2009; Poljansky et al., 2011; Reiman, 2011). Overall, FDG PET measures have
shown sensitivity to detecting brain metabolic decreases associated with AD, even in
prodromal stages, as well as utility for differential clinical diagnosis of AD (Herholz, 2003).

The neuropsychological profile of Alzheimer's disease has been well-established with
episodic memory and executive function deficits appearing early in the disease (Baudic et
al., 2006; Stopford, Thompson, Neary, Richardson, & Snowden, 2010). Brain metabolic
correlates of episodic memory in AD and MCI patients have been sought in a number of
studies (Chetelat, Desgranges, de la Sayette, Viader, Berkouk, et al., 2003; Desgranges et
al., 1998; Desgranges et al., 2002; Edison et al., 2007; Eustache, Desgranges, Giffard, de la
Sayette, & Baron, 2001; Nishi et al., 2010; Perani et al., 1993; Schonknecht et al., 2011;
Schonknecht et al., 2009; Slansky et al., 1995; Teipel et al., 2006). People with MCI and AD
show significant associations between memory performance and FDG uptake in bilateral
medial and lateral temporal, medial and lateral parietal, and frontal lobe regions. Executive
function has been less investigated in relation to FDG PET measures in AD. A few studies
have demonstrated significant associations between executive function and metabolism in
the bilateral frontal, parietal, cingulate, and temporal cortices in patients with MCI and AD
(Bracco et al., 2007; Collette, Salmon, Van der Linden, Degueldre, & Franck, 1997;
Collette, Van der Linden, Delrue, & Salmon, 2002; Kalpouzos et al., 2005; Kessler, Mielke,
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Grond, Herholz, & Heiss, 2000; Lee et al., 2008; Nestor, Parasuraman, Haxby, & Grady,
1991; Nishi et al., 2010; Yun et al., 2011).

The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a collaborative research effort
that follows a cohort of more than 800 AD, MCI and HC participants longitudinally, with an
extensive protocol of structural and molecular imaging, neuropsychological, and blood-and
CSF-based evaluations (Mueller et al., 2005a; Mueller et al., 2005b; Weiner et al., 2010).
This sample, which features repeated resting FDG PET scans and concurrent
neuropsychological data in a sub-sample of participants, offers us an exciting opportunity to
investigate the metabolic correlates of memory and executive function. To date, a number of
studies have assessed the sensitivity of FDG PET scans as biomarkers for AD in the ADNI
cohort. The majority of these studies have focused on differences in resting brain
metabolism between diagnostic groups and the utility of FDG PET measures in predicting
future clinical decline. In the ADNI cohort, patients with MCI and AD at baseline show
reduced metabolism in the bilateral medial and lateral parietal lobe, medial and lateral
temporal lobe, and frontal lobe (Haense, Herholz, Jagust, & Heiss, 2009; W. J. Jagust et al.,
2010; W. J. Jagust et al., 2009; Karow et al., 2010; Landau et al., 2010; Langbaum et al.,
2009). Patients with MCI and AD also show faster rates of longitudinal metabolic decline in
frontal, parietal, and temporal lobes than HC participants (Chen et al., 2010; Lo et al., 2011).
Measures of brain metabolism at baseline also predict future clinical conversion from MCI
to probable AD in this sample, both alone and in combination with other biomarkers (i.e.,
MRI, CSF, cognition) (Chen et al., 2011; Herholz, Westwood, Haense, & Dunn, 2011; W. J.
Jagust et al., 2010; Landau et al., 2010; Walhovd, Fjell, Brewer, et al., 2010). Baseline and
longitudinal change in FDG PET measures of brain metabolism are also associated with
baseline and clinical dementia severity and baseline and longitudinal change in general
cognition measured using the Mini-Mental State Exam (MMSE) and/or the Alzheimer's
Disease Assessment Schedule — Cognition subscale (ADAS-Cog) (Haense et al., 2009;
Herholz et al., 2011; W. J. Jagust et al., 2010; W. J. Jagust et al., 2009; Landau et al., 2011;
Landau et al., 2010; Langbaum et al., 2009; Lo et al., 2011; Walhovd, Fjell, Brewer, et al.,
2010). Baseline measures of medial temporal lobe metabolism were associated with memory
across the full sample, and separately among groups consisting of people with MCI and
people with AD (Walhovd, Fjell, Dale, et al., 2010). In addition, a measure of the extent to
which a participant expresses an AD-like pattern of hypometabolism, the hypometabolic
convergence index (HCI), was shown to be associated with memory, executive function,
fluency and naming, as well as other cognitive performance across the full sample (Chen et
al., 2011).

To date, no studies have evaluated the relationship between FDG PET measures of brain
metabolism and cognition on a voxel-wise basis and within only AD and MCI participants.
Therefore, the goal of the present study was to assess the brain metabolic correlates of
executive function and memory in patients with AD and MCI. We chose to assess the
relationship between brain metabolism and cognition on a whole brain voxel-wise basis with
no a priori assumptions about the anatomical regions included in the analysis. Further,
psychometrically optimized composite scores of memory and executive function (as
described in companion articles in this Special Issue) have been used as the independent
variables for our analyses, affording us additional confidence about the robustness of our
findings. Finally, brain-cognition correlations were pursued within each diagnostic group
(HC, MCI, and AD) separately to exclude potential confounding effects of disease severity.
We hypothesized that brain metabolism in the bilateral parietal and frontal lobes would be
associated with executive function, while metabolism in the bilateral parietal and temporal
lobes would be associated with memory in patients with MCI and AD.

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.
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Alzheimer's Disease Neuroimaging Initiative (ADNI)

All individuals whose data were used in the preparation of this article were participants of
the ADNI project (http://adni.loni.ucla.edu/). ADNI was launched in 2003 to evaluate
biomarkers of AD-related neuropathology in patients with mild cognitive impairment (MCI)
and early AD. This multi-site longitudinal study is supported by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations. The ADNI participants were recruited from 59 sites across the U.S. and
Canada and include approximately 200 cognitively normal older individuals (healthy
controls (HC)), 400 patients diagnosed with MCI, and 200 patients diagnosed with early
probable AD aged 55-90 years. Written informed consent was obtained from all participants
and the study was conducted with prior Institutional Review Board approval at each
participating institution. Inclusion and exclusion criteria, clinical and neuroimaging
protocols, and other information about ADNI has been published previously and can be
found at www.adni-info.org. All demographic information, neuropsychological test scores,
and diagnostic information were downloaded from the ADNI clinical data repository (http://
www.loni.ucla.edu/ADNI/). Three hundred and fifty seven participants (86 AD, 185 MCI
and 86 HC at baseline) in the ADNI cohort with initial PET scans were included in the
present analyses (Table 1). The ADNI data contain a detailed neuropsychological
assessment including measures of memory and executive function. Composite scores for
memory and executive function were calculated by applying modern psychometric theory to
item-level data from the ADNI neuropsychological battery (see explanation below, and the
companion papers in this issue for details (Crane et al., 2011 submitted; Gibbons et al., 2011
submitted)).

Neural data and sample characteristics

We evaluated data for 357 participants, of whom 86 had a diagnosis of AD, 185 had a
diagnosis of MCI, and 86 were healthy controls (HC) at baseline. Demographic
characteristics, including age, sex and years of education, were compared between
diagnostic groups using a one-way analysis of variance (ANOVA) model and the results are
summarized in Table 1.

Years of education differed significantly across groups; however, the main brain-cognition
analyses presented in this report were conducted within each diagnostic group, obviating
concerns of across-group comparisons. Further, age, sex, and years of education were used
as nuisance covariates even for these within-group analyses.

Composite scores for memory and executive function

Detailed methods for the development of psychometrically sophisticated scores for memory
(Crane et al., 2011 submitted) and executive functioning (Gibbons et al., 2011 submitted) for
the ADNI data set (“ADNI-Mem” and “ADNI-Exec”, respectively) are reported elsewhere
in this issue. Briefly, item-level data from the ADNI neuropsychological battery were
evaluated using confirmatory factor analysis approaches. A bi-factor model was used to
generate executive functioning scores, while a single factor model was used for memory
scores. Validation studies suggested excellent performance of these composite scores in a
variety of analyses, as detailed in the other publications in this special issue. We used
ADNI-Exec and ADNI-Mem in all analyses reported here.

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.
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Spatial normalization and reference scaling of FDG PET images

We downloaded FDG-PET data from the ADNI-LONI (http://adni.loni.ucla.edu/ADNI) in
their most processed form (i.e., with the string

“Coreg,_Avg,_Std_Img_and_Vox_Siz, Uniform_Resolution' in their filenames), as
previously described (W. J. Jagust et al., 2010). Briefly, these scans were converted from
their raw format to a single 30—-60min mean image, normalized to standard AC-PC space,
intensity normalized using a subject-specific mask so that the global mean of all voxels in
the mask is 1, and smoothed to generate a final image with 8mm FWHM. The group-level
analysis required further spatial and intensity normalization. First, all downloaded scans
were spatially normalized by coregistration to a MNI space-aligned template using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). We then scaled each image on a subject-
by-subject basis using the mean intensity value extracted from a cerebellar reference region
using a 3 x 3 x 3 voxel cube centered on MNI= [0, —55, —32] within the cerebellar vermis.

Evaluation of the effects of diagnosis on brain metabolism

For validation purposes, we ran an overall diagnostic comparison in which we combined all
357 FDG-PET scans into a single regression model with diagnostic group (coded as 1/2/3
for HC/MCI/AD) as the independent variable. We evaluated the following regression model
of a linear association with disease stage:

y=[DXNUM, AGE, YEDU, SEX, 1]*B+¢

where y denotes the FDG-PET signal at each voxel across all participants, DXNUM
represents diagnostic group, AGE, YEDU, and SEX denote age, years of education, and
sex, 1 represents the intercept term, p isa 5 x 1 vector of regression weights, and e is the
residual unexplained by the model. Of the regression weights in p we are only interested in
the first component, since age, years of education, and sex are nuisance covariates that
appear in the model as silent regressors (i.e., they account for unwanted variance in the
signal which is otherwise of no interest). Results were masked using a whole brain mask to
exclude non-brain regions from the analysis and thresholded at p<0.001 (FWE correction for
multiple comparisons) and a minimum cluster size (cs) of 50 voxels.

Brain-behavior association analyses

We performed all analyses in parallel in SPM8 using a multiple linear regression model
within each of the three baseline diagnostic groups (HC, MCI, AD). The regression models
can be written as:

Y=[INDEP, AGE, YEDU, SEX, CDR-SB, 1]"8+¢

where y denotes the FDG-PET signal at each voxel across all participants, AGE, YEDU,
and SEX denote age, years of education, and sex, 1 represents the intercept term, pisa6 x 1
vector of regression weights, and e is the residual unexplained by the model. Additionally,
we also included a covariate of disease severity within diagnostic category: the Clinical
Dementia Rating scale “Sum of Boxes” score (CDR-SB). This score displays significant
colinearity of an expected negative sign with ADNI-Mem in people with AD (R=-0.25,
p=0.02) and MCI (R=-0.14, p=0.05), and with ADNI-Exec in people with MCI (R=-0.22,
p=0.002) and healthy controls (R=-0.21, p=0.05). Thus, in order to establish the metabolic
substrates of cognitive phenotypes above and beyond dementia severity even within
diagnostic category, we included CDR-SB as an additional nuisance covariate in all 6 voxel-
wise analyses. Of course, despite this attempt, we must concede that disease severity

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.
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probably is multidimensional entity, and there might still be differences in it that are not
captured by CDR-SB; thus we cannot fully conclude that our findings have been
disentangled from disease severity.

All results were again masked using a whole brain mask. For the analysis of ADNI-Exec in
AD participants only and ADNI-Mem in both AD and MCI participants, results were
displayed at a significance threshold of p<0.001 (uncorrected for multiple comparisons) and
minimum cluster size (cs) of 50 contiguous voxels. If the results are displayed in SPM5, all
analyses meet the p<0.05 (FDR correction for multiple comparisons) statistical threshold.
However this option is not available in SPM8, therefore, we chose to use the p<0.001
(uncorrected) threshold. For the ADNI-Exec analysis in MCI participants, the p<0.001
(uncorrected) threshold resulted in significant voxels across nearly the entire brain. Since we
were interested in regional topography of brain-behavior associations, we chose to display
this analysis (ADNI-Exec in MCI participants only) at a more stringent threshold of p<0.05
(FWE correction for multiple comparisons) and a cs of 50 voxels. All voxel-wise and
cluster-wise statistical results are indicated in Tables 2—6.

Finally, we used the client version of Talairach Daemon (http://www.talairach.org/
index.html) (Lancaster et al., 1997) for anatomical localization of super-threshold maxima
from all analyses. Specifically, we list nearest gray-matter locations within a maximum of
1cm for the identified local maxima in Tables 2-6.

Permutation test of group differences for voxel-wise association between metabolism and
composite scores

Results

We anticipate stronger brain-cognition relationships with increasing disease severity, and
wanted to perform a rigorous statistical comparison of AD and MCI groups in terms of
brain-cognition associations with ADNI-Mem and ADNI-Exec. Such a comparison would
require a complex general linear model for diagnostic status and its interaction with the
composite scores. To avoid such a model, we decided to perform a simpler permutation test
instead. The permutation test starts with the general linear models for both AD and MCI
groups, but now arbitrarily swaps people from the AD group into the MCI group, and vice
versa, keeping the overall group strengths intact. We performed 1,000 such permutations;
each time running voxel-wise regressions and retaining voxel beta weights for the
correlation between brain signal and outcome measure. For each permutation we thus obtain
a difference in beta weights at each voxel

AB (voxel) =B, , (voxel) — B, (voxel)

The empirically generated null-distribution of AP for each voxel is then used to determine
the p-value for the observed point estimate of AB, i.e. the value obtained with the intact
group assignment. The test proceeded in a two-tailed manner and identified significant AD/
MCI differences in the brain-cognition correlations in both directions.

Sample demographic and psychometric characteristics

Significant differences were observed between diagnostic groups in years of education
(Table 1; Fy 354=3.55, p=0.03), and between baseline ADNI-Mem and ADNI-Exec scores
(Figure 1), as would be expected.

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.
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Effects of diagnostic group on brain metabolism

Diagnostic group was significantly associated with brain metabolism, controlling for the
confounding influences of age, sex and education. Specifically, the present analysis
reproduced the typical bilateral parietotemporal pattern of AD-related hypometabolism, with
progressive reduction in brain metabolism associated with increasing disease severity (Table
2). No regions with AD-related hypermetabolism (i.e., increased metabolism associated with
increasing disease severity) were observed.

Brain correlates of executive functioning and memory in AD, MCI, and HC

Topographic results for areas showing a significant positive association between brain
metabolism and executive function in AD and MCI are shown in Figure 2. In addition, a
detailed listing of the anatomical location of supra-threshold clusters can be found in Tables
3-4. The most notable observed feature of these findings is that the ADNI-Exec was
positively associated with brain metabolism in a mainly bilateral network consisting of
occipital, temporal and parietal regions, but not frontal regions in AD and MCI participants.
The most significant associations are in the left parietal lobe in AD and in bilateral parietal
lobes in MCI. In addition, substantial overlap of associations in the AD and the MCI groups
is demonstrated in the left lateral and medial parietal lobe (magenta color, Figure 2). No
significant associations between brain metabolism and executive functioning were observed
in HC.

For the relationship between FDG PET and memory performance, AD and MCI groups
showed markedly different topographic profiles of significant associations. In AD
participants, increased metabolism in orbitofrontal and frontal lobar regions was
significantly associated with better memory performance (higher ADNI-Mem; Figure 3 and
Table 5). However, MCI participants show very little frontal involvement (apart from pre
SMA in BA 6; Figure 3 and Table 6). Instead, significant positive associations between
brain metabolism and memory performance were primarily observed in posterior areas,
including in the parietal and temporal lobes with the largest cluster in the precuneus and
posterior cingulate gyrus. Similar to ADNI-Exec, no significant associations between brain
metabolism and memory factor were observed in the HC group.

Overall, no negative associations between brain metabolism and either cognitive measure
(ADNI-Exec or ADNI-Mem) were found at the p<0.001 (uncorrected) statistical threshold
in any of the diagnostic groups.

Slope differences between MCI and AD as ascertained by the permutation test

Results of the permutation tests showed slope differences in the brain-cognition
relationships, albeit at a reduced level of significance. We found that few voxels reached
p(unc)<0.001, so we dropped the threshold to p<0.01. Despite the marginal significance, one
can visually appreciate the similarities and consistencies with the results from Figure 2 and
3: for ADNI-Exec —people with MCI show a larger slope in the brain-cognition relationships
in posterior areas, while people with AD show a large slope in mid-frontal areas. For ADNI-
Mem people with AD show a larger brain behavioral slope in ventral frontal areas.

However, we stress that the results did not reach a level of significance of p<0.001, let alone
a level that survives a family-wise error correction. The results thus only hint at possible
differences that could be recovered if subject numbers were boosted substantially.

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.
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Discussion

In the present report, we identified a subset of regions in the AD-related parietotemporal
hypometabolic pattern that are associated with impairment in executive function in MCI and
AD patients, as well as memory in MCI patients. Interestingly, the metabolic correlates of
memory among AD patients was quite different and involved primarily frontal and
orbitofrontal areas, possibly suggesting at a shift from the disease-affected parietotemporal
areas to more frontal areas. No significant associations were observed in HC participants
between brain metabolism and cognition.

Brain-cognition associations in MCl and AD patients

The observed associations between executive function and brain metabolism in the medial
and lateral parietal and temporal lobes in patients with MCI and AD is similar to results
found in previous studies in smaller samples (Bracco et al., 2007; Collette et al., 1997;
Kalpouzos et al., 2005; Lee et al., 2008; Nishi et al., 2010; Yun et al., 2011). Furthermore,
the observed associations of memory with frontal brain metabolism in patients with AD and
parietal and temporal metabolism in MCI are also similar to previous reports (Chetelat,
Desgranges, de la Sayette, Viader, Berkouk, et al., 2003; Desgranges et al., 1998;
Desgranges et al., 2002; Edison et al., 2007; Eustache et al., 2001; Nishi et al., 2010; Perani
et al., 1993; Schonknecht et al., 2011; Schonknecht et al., 2009; Slansky et al., 1995; Teipel
et al., 2006). These associations suggest a functional network of frontal, temporal and
parietal regions that are involved in memory and executive function. Extensive atrophy and
reductions in neuronal function in MCI and AD in these regions may be responsible for the
declines in memory and executive function observed in these patients.

Frontal metabolic activity associated with better memory performance among people with
AD: re-allocation or selective disruption?

The metabolic association profiles of executive function in both MCI and AD, as well as the
profile of memory in MCI, are located within widespread parieto-temporal cluster that has
been demonstrated to show disease-related hypometabolism in numerous previous reports.
On the other hand, the association profile of memory in AD patients is dramatically different
and exclusively involves frontal and orbitofrontal regions. This observation may suggest a
neuronal re-allocation of memory-related metabolic activity from the posterior cortex to the
frontal cortex in AD in response to increasing disease severity. Since we did not consider
repeated evaluations of the same individuals in the present analysis, disease severity was
only an across-subjects factor and the potential observed re-allocation is only a cross-
sectional phenomenon. To establish a true re-allocation independent confirmation in
longitudinal data are obviously needed.

Compensatory re-allocation implies a shift of memory processing from posterior to anterior
areas within subject, for a memory decrease from time 1 to time 2 this dictates a positive
correlation with the metabolic signal in the area that is the origin point of the shift and a
negative correlation with the metabolic signal in the destination point of the shift. An
alternative model would be a selective disruption of memory-processing neural circuits with
worsening disease severity: in a disease-free stage the implementation of memory
processing might be redundant and involve a multitude of circuits that are employed in a
subject-specific manner. As observed in our results, across people this heterogeneity in the
profile of circuit utilization might preclude the emergence of focal areas of significance
when testing the brain-cognition relationship. After the onset of symptoms with MCI,
selected circuits might gradually be more disrupted and affected, uncovering brain-cognition
relationships that were hidden because of super-imposed variability before.

Brain Imaging Behav. Author manuscript; available in PMC 2013 December 01.
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These two conceptual models, re-allocation vs. selective disruption, cannot be disentangled
in a relative sense: every re-allocation is a selective disruption if the absolute magnitude of
metabolic signals cannot be discerned. Absolute quantification of metabolic signals will thus
be necessary to distinguish between the two scenarios: in contrast to selective disruption,
compensatory re-allocation would imply an absolute increase in the metabolic signal in the
areas to which the re-allocation occurs. A consequence that both models have in common is
a change in the rank order of cognitive performance for an ideal cohort of disease patients
who start from similar disease stages and undergo disease changes at a similar pace. Patients
who started with worse performance might end up in a better position relative to their peers,
if the latter are affected with more disruption or less ability for successful re-allocation.

Longitudinal follow-up and data from the study arms ADNI GO and ADNI2 present an
exciting test bed for these ideas in the near future.

Lack of findings in healthy controls

No significant associations between resting brain metabolism and cognition were observed
in HC in the present study. As can be discerned from Figure 1, within-group variability of
both ADNI-Mem and ADNI-Exec is comparable across the three diagnostic groups, so the
lack of a brain-cognition correlation cannot be attributed to a restricted range of the
behavioral scores in the healthy controls.

We can thus ask further whether the controls fail to exhibit sufficient neural variability to
manifest a correlation and whether adding more observations would likely increase the
statistical power, based on the sub-threshold observed for the healthy controls. We
performed 2 supplementary analyses to address these questions.

(1)  We took the voxel location that showed the most reliable correlation between
metabolism and ADNI-Mem (p(unc)= 0.0019, MNI=[24,-92,-10], Fusiform
gyrus, BA 18). We generated Gaussian-distributed values of all independent
variables and residuals based on observed sample means and variances, and took
the regression weights from the point estimate for this particular voxel location
for 1,000 iterations, varying the numbers of people (from 10 to 500 in
increments of 10). For the data that were constructed in these simulations, we
then generated a power curve and plotted the fraction of iterations that gave a
significant correlation with ADNI-Mem as a function of sample size (graph not
shown). A power of 0.8 was obtained for 270 people. (Adding additional
observations from the new diagnostic category “Early MCI” from study
extensions ADNI GO and ADNI 2 might present an opportunity to substantiate
this extrapolation).

(2)  We checked all 89 voxel locations reported in Tables 2 to 6, and computed the
ratio of metabolic sample variances of the healthy control participants versus the
combined pool of MCI and AD participants. We performed a permutation
version of an F-test for the equality of variance with 10,000 iterations for each
location. None of the 89 locations yielded significant differences between
healthy controls and the MCI/AD participants, confirming the impression from
visual inspection that variability is well matched across diagnostic groups.

The results of these additional analyses argue against notable brain-cognition correlations
that are obscured because of a lack of variability. However, substantially boosting sample
sizes by a factor 3 or more might achieve sufficient power to detect brain-cognition
correlations in the healthy controls. (In this light, the significant brain-cognition
relationships in the AD group, which had equal numeric strength as the HC group, are even
more impressive.)
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Unique contributions and limitations

This study provides a unique contribution to the current literature by assessing the
relationship between brain metabolism and cognition in the largest sample of AD, MCI, and
HC participants evaluated to date. Further, we used psychometrically sophisticated
composite measures of memory and executive function that combine the results from
multiple assessments, which may provide a better estimate of actual cognitive status than the
results from a single test. Finally, the use of voxel-wise analysis techniques allow analysis of
brain metabolism across the entire brain without any a priori assumptions, which may allow
for identification of potentially novel regions associated with memory and executive
function. The fact that parieto-temporal regions were identified in this analysis provides
further evidence regarding the importance of metabolic reductions in these regions as
mediators of AD-related cognitive dysfunction. Furthermore, the relatively novel
identification of the association of hypometabolism in frontal regions with memory
dysfunction in AD may not have been identified with region of interest or whole brain
metabolic pattern techniques.

Despite the significant contributions of the present study, a few limitations are notable. First,
this analysis used only cross-sectional FDG PET and psychometric data. Therefore, the
assessment of brain-behavior relationships was limited to between-subject comparisons.
Any conclusions drawn about changes in metabolism in relation to increasing disease
severity and cognitive decline were preliminary, as other factors could explain between-
subject differences in metabolism and/or cognition. Future studies utilizing longitudinal
FDG PET and neuropsychological test data will help to elucidate relationships between
changes in brain metabolism and progressive decline in memory and executive function
within subjects. The present study also limited the disease-related differences in metabolism
to a simple multiple regression model that does not address the possible unique contributions
of each disease stage. Further, quadratic or u-shaped associations with disease severity could
not be assessed. For our discovery of brain-cognition relationships we performed linear
regression within each diagnostic group separately. This is a compromise that offers
analytical tractability, while allowing for disease-stage specific changes in the associations
between cognition and brain metabolism. Future studies could evaluate more sophisticated
and complex models that incorporate metabolic changes in a longitudinal framework.
Ideally this would be performed in larger samples with sufficient power for estimation of
non-linear and higher dimensional models. Finally, a number of other variables of interest,
which may modulate the relationship of brain metabolism and cognition, were not included
in the presented analyses. For example, genetic variation may be an important factor
mediating brain-cognition relationships. In fact, a previous study demonstrated a significant
effect of apolipoprotein E (APOE) genotype on brain metabolism in the ADNI cohort
(Langbaum et al., 2009). Therefore, future studies could evaluate the role of APOE and
other genetic variants in modulating relationships between brain metabolism and memory
and executive function. Future studies could also exploit the multimodal nature of ADNI
and use information about brain structure as an additional covariate (Kanda et al., 2008;
Samuraki et al., 2007). The goal of such a study would be to identify metabolic correlates of
disease severity, memory and executive function above and beyondthe effects explained by
atrophy and cortical thinning, which can be expected to occur in the course of the disease.
Such “metabolic density' profiles or, in other words, topographic patterns of metabolic
activity per conserved unit of gray matter, might yield valuable knowledge about AD-related
neural changes and/or provide additional diagnostic and predictive information for disease
identification and monitoring. Other variables have also been shown to affect brain
metabolism and/or cognition, including the presence of amyloid deposition (Li et al., 2008;
Mormino et al., 2009) and cerebrovascular changes (Brickman et al., 2011; Carmichael et
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al., 2010). Future studies could evaluate the role of other independent variables in mediating
the relationship between brain metabolism and cognition.

Summary and conclusions

In conclusion, we observed significant positive associations between brain metabolism
measured using FDG PET and executive function and memory in patients with MCI and
AD, but not in HC. Impairments in executive function were associated with parietotemporal
hypometabolism in both MCI and AD. On the other hand, impaired memory was associated
with reduced metabolism in parietotemporal regions in MCI patients and frontal regions in
AD patients. Overall, the results of the present study underscore the importance of changes
in brain metabolism in the cognitive impairment seen in the prodromal and early stages of
AD.
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Figure 1. Memory and Executive Function Composite Scor es by Diagnostic Group
Scatter plots of memory and executive function composite scores across diagnostic groups.
The ADNI-Exec score is plotted in red, the ADNI-Mem score is plotted in green. Both show

strong associations with diagnosis (AD, MCI, HC).
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Executive factor

Figure 2. Relationship between brain metabolism and executive function in patients with MClI
and AD

Visualization of super-threshold local maxima in rendered surface images and selected axial
slices for the topography of associations between FDG PET measures of brain metabolism
and executive function (ADNI-Exec), displayed for both AD (green; p<0.001, uncorrected
for multiple comparisons, minimum cluster size (cs)=50 voxels) and MCI (red; p<0.05,
FWE correction for multiple comparisons, cs=50 voxels). Significant associations in both
groups were primarily observed in bilateral parietal and temporal lobes. In addition, notable
overlap of regions with significant associations are observed (yellow).
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Memory factor

Figure 3. Relationship between brain metabolism and memory in MCl and AD

Visualization of super-threshold local maxima in rendered surface images and selected axial
slices for the topography of associations between brain metabolism and memory (ADNI-
Mem) are displayed for both AD (green; p<0.001 (unc), cs=50 voxels) and MCI (red;
p<0.001 (unc), cs=50 voxels). Significant associations were observed in the frontal lobes in
the AD participants and the bilateral parietal and temporal lobes in the MCI participants. In
contrast to the ADNI-Exec-score, there is minimal overlap of anatomical distribution in the
AD and MCI associations and a noticeable anterior-posterior difference. These results
suggest that the metabolic correlates of memory change the course of disease, shifting from
a posterior parietotemporal pattern to a more frontal distribution.
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Comparison between MCl and AD

Executive factor

Memory factor

Figure 4. Relationship between brain metabolism and memory in MCl and AD

Visualization of super-threshold local maxima in selected coronal, sagittal and axial slices
for the areas that show significant difference between people with AD and MCI in the slope
of the association between metabolism and cognitive outcome measures (executive function:
top row, memory: bottom row). Areas where MCIs display a larger slope than ADs are
marked in red, areas where ADs display a larger slope than MCls are marked in blue. The p-
level was obtained from a permutation test with 1,000 iterations and thresholded at
p(unc)<0.01.
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Table 1
Sample demographic information
AD (n=86) | MCI (n=185) | HC (n=86)
Age (mean =+ std) 758+74 754+71 76.0+4.8
Sex 53M,33F | 128M,58F | 53M,33F
Years Education (mean + std) * 148+3.0 15.8+29 158+2.9
CDR Sum of Boxes (mean + std) * | 4.51+1.59 1.55+0.80 0.04+0.14
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