
UCSF
UC San Francisco Previously Published Works

Title
Transgenic Expression of Entire Hepatitis B Virus in Mice Induces Hepatocarcinogenesis 
Independent of Chronic Liver Injury

Permalink
https://escholarship.org/uc/item/0pd36496

Journal
PLOS ONE, 6(10)

ISSN
1932-6203

Authors
Na, Bing
Huang, Zhiming
Wang, Qian
et al.

Publication Date
2011

DOI
10.1371/journal.pone.0026240

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0pd36496
https://escholarship.org/uc/item/0pd36496#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/
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Induces Hepatocarcinogenesis Independent of Chronic
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Abstract

Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic
hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing
chronic liver injury by inciting the host immune response, remains unclear. We have established two independent
transgenic mouse lines expressing the complete genome of a mutant HBV (‘‘preS2 mutant’’) that is found at much higher
frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic
reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury,
but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also
found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the
entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged—2-year-old—mice of the wildtype HBV line.
The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the
mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic
lines—expressing either mutant or wildtype HBV—therefore argues strongly that in absence of chronic necroinflammation,
HBV can contribute directly to the development of HCC.
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Introduction

Chronic hepatitis B virus (HBV) infection affects around 400

million people worldwide and greatly increases risk of hepatocel-

lular carcinoma (HCC) [1]. The molecular mechanism through

which chronic HBV infection contributes to hepatocarcinogenesis

remains incompletely understood. Transgenic mice expressing

HBV large surface protein that suffer from chronic hepatitis due to

different mechanisms eventually develop HCC, suggesting that

HBV may be carcinogenic merely by virtue of being an inciter of

immune-mediated inflammation and hepatocyte damage [2,3].

Chronic liver necroinflammation is common in mouse models

of spontaneous HCC from targeted deletion of various genes

[4,5,6], which may or may not closely associated with genetic

aberration in human HCC. Besides chronic liver inflammation,

HCC is also known to occur in HBV-infected people in the

absence of prolonged severe liver injury or cirrhosis [7]; among all

people with chronic hepatitis, those with HBV infection had a 7-

fold greater risk for HCC than those without HBV infection [8].

Thus although severe hepatitis, of whatever cause, can cause

HCC, in natural infections, HBV may play a more direct role in

hepatocarcinogenesis. Transgenic mice overexpressing X protein

from an HBV subgenomic fragment have been showed to develop

HCC [9], but a number of transgenic lines expressing X protein

from several constructs do not develop HCC [10,11]. Importantly,

transgenic mice expressing the entire HBV genome have not been

shown to increase the incidence of HCC [12,13,14], unless the

mice are treated with carcinogens [15]. Thus it is unclear if HBV

is directly carcinogenic by itself.

The surface proteins constitute the envelope proteins of HBV.

Three forms, differing in the initiating codons, are synthesized

from a single open-reading frame, with the large form comprising
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the preS1+preS2+S regions, the middle comprising the preS2+S

regions, and the small form having only the S region (Figure 1A).

The preS1 promoter-driven transcripts code for the large surface

protein, while the S promoter-driven transcripts code for the

middle and small surface proteins. The large and small forms are

essential for viral morphogenesis and infectivity, but the middle

form is dispensable [16,17]. PreS2 mutants contain in-frame

deletions in the N-terminus of the preS2 region as well as a

frequent missense mutation of the preS2 start codon. These two

mutations result in loss of expression of the middle surface protein

and the synthesis of an internally deleted large surface protein and

are likely selected because of immune pressure [18]. PreS2

mutants also produce a moderately decreased amount of the small

surface protein because the deletion removes a small downstream

region of the S promoter [19] (Figure 1A). Recent clinical data

have shown that preS2 mutants are found at much higher

frequencies in people with HCC than those without [18,20,21],

and that these mutants are present in apparently clonal nodules of

hepatocytes in infected livers [19]. To test if these mutants play a

causal role in the genesis of HCC, we generated transgenic mice

containing such a mutant HBV genome.

Materials and Methods

Transgenic Mice
The BstEII-HpaI fragment of HBV DNA in pSAgD2 [19] was used

to replace the corresponding HBV fragment in pHBV1.3adw2[14]

to generate pHBV1.3adw2Mutant1. The HBV DNA containing

1.3 times of the HBV genome was isolated from the latter plasmid

following digestion with PvuII and injected into blastocysts (C57BL/6

X DBA/2 F1) to generate Mutant 1 transgenic mice at the UCSF

Comprehensive Cancer Center core facility. The transgenic mice

were crossed with B6D2F1/J mice (The Jackson Laboratory, Bar

Harbor, ME) and the offspring HBV mice and their litter mates were

used in the present study. The wildtype HBV transgenic line Tg05,

which had the C57BL/6 genetic background [15], was crossed also

with B6D2F1/J mice in the present study. The experimental protocol

was approved (AN086079) by the Institutional Animal Care and Use

Committee of UCSF.

Northern and Southern Blotting
The methods were based on Xu et al [14]. Total RNA and

genomic DNA was isolated from mouse livers and probed

respectively in Northern and Southern blotting with the 32P-

labled 3.2 kb HBV DNA as described previously [14].

Primer Extension
Primer extension was conducted with 10 mg of total RNA from

mouse liver as described previously [14]. The primer for preS1

transcript was 59-GGCTCCGAATGCAGGGTCCAACTGAT-

GATCGGG [22], and the primer for S transcript was 59-

AGAGGCAATATTCGGAGCAGGGTTTAC [23].

Immunoblot and Immunohistochemistry
HBV surface proteins were detected with a goat antibody

(DAKO B0560, lot #111) at 1:3,000 dilution in immunoblot and at

1:3,500 dilution in immunohistochemistry. Cyclin D1 was detected

using a cyclin D1 rabbit antibody (Lab Vision, RM9104) at 1:1000

dilution in immunoblot and at 1:100 dilution in immunohisto-

chemistry. An anti-b-catenin antibody (Cell Signaling Technology)

was used at 1:2000 in immunoblot. In all immunoblot, the

Amersham ECLPlus kit was used. Immunohistochemical staining

was performed on paraffin sections pre-treated by heating in 10 mM

sodium citrate at pH 6.0.

Quantitative PCR (qPCR)
Mouse serum was digested with proteinase K in lysis buffer (20

mM Tris-HCl, 20 mM EDTA, 50 mM NaCl, and 0.5%SDS) at

65uC overnight. HBV viral DNA was then purified by phenol/

chloroform extraction and analyzed in real-time quantitative PCR

with forward primer (1552-CCGTCTGTGCCTTCTCATCTG-

1572), reverse primer (1667-AGTCCTCTTATGTAAGACCTT-

Figure 1. Expression and replication of Mutant 1 HBV in
transgenic mice. (A) Map of the HBV surface gene, with the 3
initiation codons for the 3 forms of surface protein indicated by
asterisks. Also shown are PreS1, S, and X RNA transcripts from HBV.
Mutant 1 contains a missense mutation of the preS2 start codon and a
54-bp deletion (marked as D2) corresponding to codons 4 through 21
in the preS2 region. (B) Primer extension analysis [28] of the preS1 and S
transcripts in the liver of Mutant 1 mice, compared to Tg05 wildtype
HBV mice. Note that the S transcript products are smaller in the Mutant
1 mice, because of the deletion between the primer and the mRNA start
sites [28], and the pattern of start sites is also different from that in
wildtype HBV mice, since the deletion extends slightly into the initiation
region of the S transcripts[19]. (C) Western blotting of the large and
small surface proteins in the liver of Mutant 1 and wildtype HBV mice.
LS and SS, large and small surface protein respectively. Each protein has
2 forms, differing in the glycosylation. Note that the large surface
protein is smaller in the Mutant 1 mice, because of the deletion in the
preS2 region. In the top part, the samples were separated on a 10%
polyacrylamide gel, while in the bottom part, the samples were
separated on a 12% gel. (D) PCR detection of circulating HBV [13] in the
serum of Mutant 1 mice (lanes 1 and 4), compared to wildtype HBV
mice (lanes 3 and 5). For lanes 1-3, the primers (59ATATTGCCTCTCA-
CATCTCGTCAATCTC and 59AGCGGTATAAAGGGACTCACGATGCTGT)
bracketed nucleotides 101 to 800 in the surface gene, downstream of
the deletion. For lanes 4–5, the primers bracketed the deletion in the
preS2 region [21]. (E) HBV titers in Mutant 1 and wildtype HBV
transgenic mice. The amount of HBV genomic DNA in serum of mice at
2-3 months of age is determined by qPCR. The viral titer in wildtype
HBV transgenic mice (Tg05) is significantly higher than that in both
Mutant 1 Line 4 and Line 7 mice (P,0.02).
doi:10.1371/journal.pone.0026240.g001

Induction of HCC by HBV
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1646), and a TaqMan probe derived from nucleotides 1578–1603

(59-CCGTGTGCACTTCGCTTCACCTCTGC) of the HBV ge-

nome. After initial incubation for 2 min at 50uC and 10 min at 95uC,

40 cycles—each consisting of 20 s at 95uC and 1 min at 60uC—of

PCR were carried out in an AB-Applied Biosystems machine.

A standard curve of HBV DNA was generated for each qPCR

experiment, and HBV titers are reported as number of copies per ml

of serum.

Histopathology
Liver samples were fixed with 4% paraformaldehyde in phosphate-

buffered saline and embedded in paraffin. Tissue sections were stained

with hematoxylin and eosin, and examined blindly by a board

certified veterinary pathologist (M. Hanes) and a liver pathologist

(T. Yen or S. Kakar).

Identification of HBV integration loci
Chromosomal integration sites of HBV were identified by a primer

extension-dependent PCR [24] using genomic DNA isolated from

HBV transgenic mice. A HBV integration site was further confirmed

by amplification of a genomic DNA fragment containing one end

of the HBV transgene and its flanking mouse sequence through

PCR. The following primers are used in amplification by PCR: HBV-

I (59-AGCAAAACAAGCGGCTAGGAGT) and Chromosome 11-I

(59-CTGCTGGGTGACCTGGCTGC) for Mutant 1-Line 7 mice,

HBV-II (59-CAACTGGTGGTTATCATGTATAAAAATGAC) and

a primer specific to a LINE1 retrotransposon (59-ACATAATTGAC-

TACTAGATCCCTGGATG) for Mutant 1-Line 4 mice, and HBV-II

and Chromosome 11-II (59-GGACACATTCATGGAGATTCAGT-

TTTTC) for Tg05 wildtype HBV mice.

Metaphase chromosome preparation, karyotyping, and
FISH

Lymphocytes were isolated from mouse spleens, cultured in PB-

MAX culture medium (Invitrogen) for 72 hours at 37uC, and then

incubated overnight with 10 ng/mL Colcemid (Invitrogen).

Metaphase cells were harvested and G-banded following a standard

mouse cytogenetics protocol [25]. The mouse BAC clone RP23-

355K3 corresponding to band E1 of chromosome 11 (11E1; the

UCSC genome browser http://genome.ucsc.edu) was obtained

from the Children’s Hospital Oakland Research Institute. RP23-

355K3 and the full-length HBV transgene were labeled with biotin

and digoxigenin (DIG) using BioNick DNA Labeling System

(Invitrogen) and DIG Nick translation kit (Roche), respectively.

These FISH probes were mixed with sheared salmon sperm DNA

(Eppendorff) and mouse Cot-1 DNA (Invitrogen), denatured, and

then hybridized to the mouse metaphase cells at 37uC overnight.

The FISH signals were detected by Avidin-fluorescein (for biotin

labeling) or anti-DIG-Rhodamine, and the metaphase chromo-

somes were counterstained with DAPI II (Abbott Molecular).

Metaphase chromosomes and FISH signals were analyzed and

documented based on the standard karyotype and nomenclature of

mouse [26] using the CytoVision imaging system (Applied Imaging).

Results and Discussion

Generation and Characterization of Mutant 1 HBV
transgenic mice

To study the effect of a preS2 mutant in transgenic mice, we

introduced a 54 base pair deletion (codons 4 through 21) in the

preS2 region and a missense mutation of the preS2 start codon into

a 1.3X overlength HBV genome that is highly expressed in the liver

and produces progeny virions when introduced as a transgene into

mice[14]. This mutant (Mutant 1) was found in a patient with

HCC[19] and contains the deletion ends most commonly found in a

large study[20]. The entire Mutant 1 genome was used for the

generation of transgenic mice and two independent lines (lines 4 and

7) were established (Figure 1). Mutant 1 transgenic mice expressed

both major classes of HBV transcripts (Figure S1A). Primer

extension [27] confirmed that both preS1 and S transcripts were

present in the livers of these mice (Figure 1B). Furthermore, although

there are background bands in the S primer extension because of

strong stops and/or minor start sites, it is clear that, compared to the

wildtype HBV transgenic line Tg05, Mutant 1 mice showed a

decrease in the relative amounts of S vs. preS1 transcripts, as

expected from results in transfected cells[19]. Western blotting

confirmed the synthesis of a smaller large surface protein than

wildtype but a normal-sized small surface protein (Figure 1C). The X

protein was expressed in Mutant 1 mice in an amount similar to that

in wildtype HBV transgenic mice (Figure S1B). Southern blotting of

total undigested liver DNA from Mutant 1 mice showed replicative

intermediates of HBV DNA (Figure S1C), albeit at lower levels than

wildtype HBV mice, likely because of a decreased activity of the viral

polymerase, which is synthesized from an overlapping open-reading

frame and hence has a deletion in its non-essential spacer region [1].

The export of viral particles into the serum was confirmed by PCR

amplification (Figure 1D, lane 1), while the presence of the preS2

deletion in the genome of these particles was confirmed by using

primers bracketing the preS2 region[21], with the serum from

Mutant 1 mice giving rise to a band that migrates slightly faster than

the band amplified from serum of wild type HBV mice (Figure 1D,

lanes 4 and 5, respectively). In addition, we determined HBV titers

in the serum of Mutant 1 mice by quantitative PCR (qPCR)

(Figure 1E), which are comparable to that in patients with chronic

HBV infection [1]. Thus, Mutant 1 mice show appropriate expres-

sion and replication of the HBV genome in the liver.

The HBV surface proteins are synthesized as transmembrane

endoplasmic reticulum (ER) proteins and spontaneously bud into

the ER lumen as subviral (genome-free) particles [1]. Small surface

protein particles are efficiently secreted, but large surface protein

particles cannot be secreted and accumulate in the lumen of the

distal ER [28]. Particles composed of mixtures of small and large

surface proteins behave in an intermediate manner, with a positive

relationship between the percentage of large surface protein and

the extent of retention [28]. Because of the relative under-

expression of small surface protein by Mutant 1, transfection of

this genome into hepatoma cells in culture results in a ,2-fold

decrease in secretion of subviral particles, and patient hepatocytes

that harbor mutant HBV show a modest accumulation of surface

proteins in hepatocytes[19]. Immunohistochemistry confirmed

that surface proteins are expressed at an increased level in a zonal

pattern in the liver (Figure 2A) and accumulated in the cytoplasm

of hepatocytes (Figure 2B) in Mutant 1 transgenic mice compared

to wildtype HBV mice (Figure 2C). There is no staining of HBV

surface proteins in non-transgenic mice, indicating the specificity

of the assay (Figure 2D). Electron microscopy showed the presence

of filaments in the ER, with morphology similar to that from

surface protein particles [29] (Figure 2E). High-level expression

and retention of HBV large surface protein can lead to cell injury

and death[2,29,30]. However, possibly because the extent of

surface protein accumulation is relatively low in Mutant 1 mice,

both histological analysis (Figure 2F) and measurement of serum

aspartate aminotransferase (sAST) levels (Figure 2G) showed no

evidence of significant hepatocellular injury within the first 17

months of life in Mutant 1 mice. In addition, the livers of Mutant 1

mice had little inflammatory infiltration (Figure 2F). Thus the mice

were apparently free from cronic hepatic necroinflammation.

Induction of HCC by HBV
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Hepatocarcinogenesis in HBV transgenic mice
Liver tumors were not detected in the Mutant 1 transgenic mice

prior to approximately 23 months of age. When the Mutant 1

mice approached 2 years of age, some of them showed abdominal

distension. Necropsy revealed that these mice harbored grossly

visible liver tumors with increased vascularity (Figure 3A).

Microscopic examination confirmed that these tumors represented

hepatocellular neoplasms, i.e., hepatocellular adenomas and HCC

(Figure 3B and 3C, respectively). While the incidence of

hepatocellular tumors in the non-transgenic mice is comparable

to previously reported incidence in wildtype non-transgenic mice

at 2 years of age [31,32], the incidence in HCC and all

hepatocellular tumors is significantly increased in both lines of

Mutant 1 transgenic mice (Figure 4). Similar to the situation in

people with chronic HBV infection, HCC development in Mutant

1 mice displays a strong male preponderance (Figure S2). Thus,

our Mutant 1 mouse lines represent a transgenic model of HBV

carcinogenesis without the use of subgenomic fragments, heterol-

ogous promoters, or carcinogens.

Prompted by our findings that HCC occurs only in aged

Mutant 1 transgenic mice, we investigated the possibility that

HCC may result also from wildtype HBV when the transgenic

mice are aged (Figure 4 and 5). Although HBV titer in Tg05 mice

is higher than that in Mutant 1 mice (Figure 1E), Tg05 mice,

similar to other wildtype HBV transgenic mice, do not appear to

suffer chronic necroinflammation (Figure 5B) [13,33]. As we

reported previously [15], we did not find any hepatocellular

tumors in the wildtype HBV transgenic line Tg05 up to 1 year of

age (unpublished observation). This is consistent with the findings

by Chisari and colleagues that in mouse lines—on C57BL/6 or

B10.D2 genetic background—expressing a 1.3X overlength wild-

type HBV transgene similar to the one used in Tg05, liver tumor

was not detected in animals up to about 1 year of age [13]. Liver

tumor or pathological changes were not detected in another

wildtype HBV transgenic line of C57BL/6 mice up to 2 years of

age [12], but the mouse line expresses a 1.2X overlength HBV

transgene which is known to cause a very low level of HBV

replication [13]. In contrast to the previous reports, in Tg05 male

mice at 2 years of age, both hepatocellular adenomas and HCC

were detected (Figure 5). The incidence in HCC and all

hepatocellular tumors was significantly higher in the Tg05 mice

than in non-transgenic control (Figure 4). It thus appears that age

is critical to HCC development in Tg05 mice. The other reasons

of the discrepant result of the current study from the previous

studies may include HBV expression level and genetic background

of the transgenic lines. Importantly, our results strongly suggest

Figure 2. Characterization of younger Mutant 1 mice. (A) Low-
power view of liver from 6-month old Mutant 1 mouse stained for HBV
surface protein, showing positive cells in a zonal pattern in the liver. (B)
High-power view of Mutant 1 liver stained for HBV surface protein,
showing strong staining at the periphery of the hepatocyte cytoplasm,
identical to the staining pattern of human hepatocytes infected with
preS2 mutants [19]. (C) Liver of 6-month old Tg05 wildtype HBV mice
stained for HBV surface protein. (D) Liver of non-transgenic mice as a
negative control in immunohistochemistry of HBV surface protein. (E)
Electron micrograph of a Mutant 1 hepatocyte, showing the presence of
long surface protein filaments within the ER (arrow, longitudinal
sections; chevron, cross sections). (F) Hematoxylin and eosin stained
section of 4-month old Mutant 1 liver, showing the lack of
inflammation. (G) Serum AST levels (mean 6 SEM) in Mutant 1 mice
(12-23 mice for each time point) and non-transgenic littermates (6–11
mice for each time point), showing no significant difference during the
first 17 months of age.
doi:10.1371/journal.pone.0026240.g002

Figure 3. Hepatocellular neoplasms in Mutant 1 mice. (A) In situ
view of a Mutant 1 liver with tumor nodules (arrows). Note the
increased vascularity. (B) Hematoxylin and eosin stained section of a
liver tumor, showing a hepatocellular adenoma (arrows) with mild
atypia and compression of surrounding liver parenchyma. (C)
Hematoxylin and eosin stained section of a liver tumor, showing a
HCC with trabecular pattern. (D) Immunohistochemical staining for
surface protein of a hepatocellular adenoma (arrows) in the liver of a 24-
month old Mutant 1 mouse, showing persistent accumulation of
surface proteins in the neoplastic cells.
doi:10.1371/journal.pone.0026240.g003

Induction of HCC by HBV
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that transgenic expression of the full-length wildtype HBV genome

in mice can cause HCC.

Although the HBV titer in Mutant 1 mice was lower than that

in wildtype HBV mice (Figure 1E), HCC developed with similar

penetrance in the Mutant 1 and wildtype HBV mice (Figure 4).

The data suggest that compared to wildtype HBV, Mutant 1

might be more oncogenic. This would be consistent with the

clinical findings that preS2 HBV variants are significantly

associated with HCC [18,20,21]. HCC developed in the HBV

transgenic mice following long latency. Importantly, the long

latency and incomplete penetrance of HCC in our mice mirror the

situation in human HBV patients, in whom a minority develops

HCC after several decades of chronic infection [34]. Thus our

HBV transgenic mice represent appropriate models of human

HCC from HBV infection.
Mechanistic study of hepatocarcinogenesis in HBV

transgenic mice. We determined the chromosomal integration

sites of HBV in the transgenic mice to see if insertion of the HBV

transgenes may affect any oncogene or tumor suppressor gene at the

integration sites. By employing a PCR-based method with

subsequent DNA sequencing, we found that the HBV transgene

was integrated between the Ddx5 (DEAD box polypeptide 5) and

Ccdc45 (coiled-coil domain containing 45) genes in chromosome

11qE1 region in Mutant 1 Line-7 mice (Figure 6A and S4).

Cytogenetic analyses by fluorescent in situ hybridization (FISH) and

Giemsa banding showed that the transgene was integrated into a

single position at 11qE1 in Mutant 1 Line-7 mice (Figure 6B and

6C). In Mutant 1 Line-4 mice, the HBV transgene was inserted into

the sequence of a LINE1 retrotransposon—one of the most

common retrotransposons in the mouse genome—at chromosome

1qF region (Figure 6D-6F and S5). In Tg05 wildtype HBV

transgenic mice, the transgene was inserted into a hypothetical open

reading frame, LOC66274, at chromosome 11qB5 region

(Figure 6G-6I and S6). Thus, the integration sites of HBV are

distinct in the three lines of mice and none of the sites is in or next to

an oncogene or tumor suppressor gene. The karyotype in all the

three transgenic lines appears normal (Figure 6 and data not

shown). Therefore HCC in the transgenic mice was unlikely due to

chromosomal alterations from HBV DNA integration but rather

resulted directly from HBV expression.

Figure 4. Increase in incidence of hepatocellular tumors in the
Mutant 1 and wildtype HBV transgenic mice. Incidence of all
hepatocellular tumors (All) and HCC, shown as a percentage of mice
with tumor, is from 33 non-transgenic, 19 Mutant 1-Line 4, 30 Mutant 1-
Line 7, and 20 Tg05 wildtype HBV male mice. The non-transgenic mice
are the littermates of Mutant 1-Line 4, Line 7, or Tg05 mice and because
they have comparable tumor incidence, they are grouped together
here. Significant differences between the transgenic and non-transgen-
ic mice are indicated by one (P,0.05) or two (P,0.01) asterisks.
doi:10.1371/journal.pone.0026240.g004

Figure 5. Hepatocellular neoplasms in Tg05 wildtype HBV transgenic mice. (A) In situ view of a Tg05 liver with tumor nodules (arrows). (B)
Hematoxylin and eosin stained section of a normal liver in 24-month old Tg05 mouse, showing the lack of inflammation. (C) Hematoxylin and eosin
stained section of a liver tumor, showing a hepatocellular adenoma (arrows) with mild atypia and compression of surrounding liver parenchyma. (D)
Hematoxylin and eosin stained section of a liver tumor, showing a HCC with trabecular pattern.
doi:10.1371/journal.pone.0026240.g005

Induction of HCC by HBV
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Previous transgenic mouse models of HBV-induced HCC,

produced by Chisari and colleagues, develop HCC as a result of

chronic liver injury and hepatocyte turnover [2,3]. In contrast, our

Mutant 1 and wildtype HBV transgenic mice showed no evidence of

chronic liver injury prior to hepatic carcinogenesis (Figure 2F and 2G),

and even 2-year old mice did not show significantly increased sAST

(Figure S3) or histopathological signs of hepatic necroinflammation

(Figure 5B) unless advanced hepatic neoplasms were present,

suggesting that liver injury was a consequence of the neoplasm rather

than vice versa. Furthermore, tumors in Mutant 1 mice showed strong,

uniform accumulation of surface proteins (Figure 3D). This finding

does not support the notion that accumulation of large surface protein

leads to dysfunction or death of these hepatocytes, with compensatory

proliferation and subsequent transformation of surrounding healthy

hepatocytes that do not express the transgene. Instead, Mutant 1 and

wildtype HBV appear to function as cell-autonomous carcinogenic

factors and directly promote HCC.

Some [9,35], but not all [10,11], lines of transgenic mice containing

an HBV DNA fragment with only the X gene spontaneously develop

hepatocellular neoplasms, with the overexpression of X protein being

the factor determining carcinogenesis. Our Mutant 1 transgenic mice

express X protein at a level comparable to that of the wildtype HBV

transgenic mice (Figure S1B), which in turn has been reported to be

lower than an X-transgenic mouse line that does not spontaneously

develop hepatocellular neoplasms[10,14]. Hepatocarcinogenesis in

our transgenic mice thus seems unlikely to result from overexpression

of the X protein.

Accumulation of large surface protein in the ER may activate

the unfolded protein response (UPR) [36], which occurs in ER

stress and is implicated in tumorigenesis [33,37,38,39,40]. We

found that expression and splicing of the mRNA of the UPR-

induced transcription factor XBP1 is increased in livers of 4-

month-old Mutant 1 mice compared to non-transgenic and

wildtype HBV transgenic mice (Figure 7A). The splicing of XBP1

mRNA, which leads to synthesis of the spliced form of XBP1(S),

is a specific marker of the UPR [41]. Thus our results indicate

Figure 6. Distinct integration sites of HBV in the mutant 1 and
wildtype HBV transgenic mice. The HBV integration sites are
identified for Mutant 1-Line 7 (A–C), Mutant 1-Line 4 (D–F), and
wildtype Tg05 (G-I) mice. (A, D, and G) Detection of an end of the HBV
transgene and its flanking mouse sequence by PCR. Lane 1, 1 kb Plus
DNA size ladder (Fermentas); lane 2, PCR product. (B, E, and H) Analysis
of the integration sites by fluorescent in situ hybridization (FISH). The
metaphase cell was stained with an HBV probe (red arrow) and with
DAPI (blue). The cell in (B) was also stained with a probe (green arrow)
derived from the mouse BAC clone RP23-355K3 that corresponds to
band E1 of chromosome 11 (11E1). (C, F, and I) Cytogenetic localization
of the HBV transgenes. Shown from left to right are the mouse
chromosome ideograms, the corresponding G-banded chromosomes,
and the DAPI-banded chromosomes with HBV signal from the FISH
figures. RP23-355K3 was hybridized to 11qE1 and cross-hybridized to
chromosome 6 at band B1. The integrated HBV gene (red arrow) was
localized to chromosome 11E1 in Mutant 1-Line 7, to chromosome 1F in
Mutant 1-Line 4, and to chromosome 11B5 in wildtype Tg05 mice.
doi:10.1371/journal.pone.0026240.g006

Figure 7. Increase in unfolded protein response (UPR) and
cyclin D1 expression in Mutant 1 mice. (A) RT-PCR detection of
XBP1 mRNA in liver of male Mutant 1, non-transgenic, and wildtype
HBV transgenic mice at 4 months of age, using primers that bracket the
intron spliced out following UPR activation [47]. The first lane is a
positive control from a non-transgenic mouse at 24 hours after injection
with 1 mg/kg of tunicamycin. (B) Activation of cyclin D1 promoter by
XBP1(S) in human hepatoma C3A cells. Reporter constructs with firefly
luciferase under the control of either wildtype cyclin D1 (CD1) promoter
or a mutant cyclin D1 (mCD1) promoter were cotransfected into C3A
cells with the XBP1(S)-expressing pXBP1(S) plasmid [48] or the pCDNA3
vector [49]. The firefly luciferase activity was normalized to Renilla
luciferase activity from a cytomegalovirus promoter-Renilla luciferase
plasmid cotransfected into the cells. The data (mean 6 SE) are from a
representative experiment with triplicates. (C–E) Immunohistochemical
staining for cyclin D1 in liver of half-year-old Mutant 1 (C), non-
transgenic (D), and wildtype HBV transgenic (E) mice.
doi:10.1371/journal.pone.0026240.g007
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activation of UPR by Mutant 1 HBV long before neoplastic

transformation. Signaling pathways unrelated to XBP1 have been

described in UPR activation [42] and they remain to be explored

in Mutant 1 and wildtype HBV transgenic mice. In addition we

found that transfection of XBP1(S) in human hepatoma cells

activated the cyclin D1 promoter in a reporter assay (Figure 7B).

The livers of Mutant 1 mice showed a higher fraction of

hepatocytes expressing cyclin D1 than non-transgenic and wild-

type HBV transgenic mice (Figure 7C–7E). The increase of Cyclin

D1 in Mutant 1 mice unlikely results from hepatocyte death and

compensatory regeneration, because hepatocyte proliferation, as

indicated by Ki67 staining, is not increased in Mutant 1 mice

(Figure S7). Cyclin D1 is important for cell cycle regulation and

Cyclin D1 overexpression in hepatocytes of transgenic mice can

cause hepatocellular neoplasia [43]. Thus expression of Mutant 1

HBV may promote hepatocellular tumorigenesis in part through

activation of UPR and cyclin D1.

b-catenin mutation occurs in both human and mouse HCC and

can contribute to tumorigenesis [44,45]. b-catenin is regulated by

casein kinase Ia and glycogen synthase kinase 3b (GSK3b)

through phosphorylation of serine and threonine residues in the

amino-terminal region encoded by exon 3. Deletion of this region

or mutation of the phosphorylation sites results in stabilizing b-

catenin in the cytosol while maintaining its signal transduction

function in the nucleus [45]. We found, in addition to the 92-kDa

full-length b-catenin, a truncated form of b-catenin in one of the

fifteen HCC samples examined (Figure 8A). Analysis of the HCC

sample by RT-PCR and subsequent DNA sequencing established

that the b-catenin mutant missed exactly the entire exon 3

(Figure 8B), which encodes amino acids 5–80 including the

phosphorylation sites. We also examined possible point mutations

in the phosphorylation sites of b-catenin and found in one HCC

sample mutation of Thr-41 (Figure 8C), which would prevent

phosphorylation at the site and inactivation of b-catenin by

GSK3b [45]. Thus in Mutant 1 HCC, we detected activating

mutation of b-catenin at a frequency of 13%, which is close to the

incidence of b-catenin mutation in human HCC [46]. In contrast,

we did not find any DNA mutation in exons 5–8 of p53 in 17 HCC

samples analyzed, suggesting that p53 mutation may not be

involved in the carcinogenesis in Mutant 1 mice.

In summary, we have shown that HBV expression causes no

chronic necroinflammation in liver but significantly increases the

frequencies of hepatic tumors in three independent transgenic

mouse lines. Our findings thus suggest that in addition to causing

HCC indirectly by inducing chronic hepatitis and liver injury

[2,3], HBV also has the potential to be directly carcinogenic. The

similar latency and penetrance of HCC found in both the Mutant

1 and wildtype HBV mice suggest that Mutant 1 and wildtype

HBV may share a common carcinogenic mechanism. Alterna-

tively, Mutant 1 may cause HCC by inducing cyclin D1 expression

via UPR whereas other types of stress induced by high level of

HBV DNA replication may promote HCC in the wildtype HBV

mice. Our transgenic mice provide a clinically relevant model

useful for understanding the detailed mechanism of HBV viral

carcinogenesis, as well as for exploring whether inflammation,

ethanol, and other dietary carcinogens can synergize with HBV in

causing HCC.

Supporting Information

Figure S1 HBV expression in transgenic mice. (A)

Northern blotting of the major HBV transcripts in the liver of

Mutant 1 mice and wildtype HBV Tg05mice [1]. The C band

corresponds to the precore/core transcripts, while the S band

corresponds to the preS1/S transcripts [1]. (B) Detection of X

protein by Western blotting following immunoprecipitation [2] in

the liver of Mutant 1 and wildtype HBV mice. The band marked

with an asterisk is non-specific, as shown by its presence in the

non-transgenic littermate. (C) Southern blotting of HBV replica-

tive intermediates [1] in the liver of Mutant 1 mice and wildtype

HBV mice.

(PDF)

Figure S2 Male preponderance of HCC in Mutant 1
mice. Shown is the incidence of HCC in Mutant 1 mice (49 male

and 15 female) and non-transgenic littermates (33 male and 13

female) at 2 years of age. Significant difference between the male

and female Mutant 1 mice is indicated by an asterisk (P,0.05).

(PDF)

Figure S3 Serum AST levels (mean ± SE) in Mutant 1
mice (n = 24) or non-transgenic littermates (n = 18) at 23–
25 months of age, classified by liver histology. The data in

Mutant 1 mice were from 13 mice in the group with no neoplasm,

3 mice in the adenoma group, and 8 mice in the HCC group.

P = 0.09, Mutant 1 mice vs. non-transgenic littermates in the non-

tumor group.

(PDF)

Figure S4 Sequences at the junction of HBV (red) and
mouse genomic (green) DNA in Mutant 1 Line-7 mice.
The data is derived from sequencing the PCR product shown

in Figure 6A. The DNA sequence in green is identical to

Figure 8. Oncogenic mutation of b-catenin in HCC of Mutant 1
transgenic mice. (A) Immunoblot analysis of b-catenin in HCC and
associated non-tumor (NT) liver tissues from 3 Mutant 1 trangsgenic
mice. One truncated b-catenin was detected in HCC of mouse 2. (B)
Detection by RT-PCR of the deletion site in the truncated b-catenin
shown in (A). The truncated DNA fragments are indicated by asterisks.
F1 to F5, forward primers 1 to 5; R1 to R5, reverse primers 1 to 5 [44]. (C)
Detection by DNA sequencing of T41I, a point mutation in one of the
four GSK-3b phosphorylation sites, in HCC from another Mutant 1
transgenic mouse.
doi:10.1371/journal.pone.0026240.g008
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106,650,370-106,650,471 of mouse chromosome 11, which is

located in 11qE1 region (UCSC Genome Browser).

(PDF)

Figure S5 Sequences at the junction of HBV (red) and
mouse genomic (green) DNA in Mutant 1 Line-4 mice.
The vector sequence is in black. The data is derived from

sequencing the PCR product shown in Figure 6D. The DNA

sequence in green shares 99.4% identity with 145980892-

145980732 of mouse chromosome 1, part of a LINE1 retro-

transposon in the 1qF region (UCSC Genome Browser).

(PDF)

Figure S6 Sequences at the junction of HBV (red) and
mouse genomic (green) DNA in Tg05 wildtype HBV
transgenic mice. The vector sequence is in black. The data is

derived from sequencing the PCR product shown in Figure 6G.

The DNA sequence in green is identical to 78,654,987-78,654,805

of mouse chromosome 11 and is in 11qB5 region (UCSC Genome

Browser).

(PDF)

Figure S7 Immunohistochemical staining for Ki67 in
liver of half-year-old non-transgenic (A), Mutant 1 (B),
and wildtype HBV transgenic (C) mice.

(PDF)
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