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TECHNICAL FEATURE
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Understanding Climate 
Change Impacts on 
Building Energy Use
BY ARFA N. AIJAZI, STUDENT MEMBER ASHRAE; GAIL S. BRAGER, PH.D., FELLOW ASHRAE

The built environment is central to an effective global strategy to both mitigate and 
adapt to climate change. For design practitioners, the mitigation component is clear 
and well established. On the other hand, adaptation, which describes a building’s 
resilience to respond to climate change related hazards, is generally not part of the 
design process, but is equally important. 

The objectives of this article are to 1) raise aware-

ness of the importance of climate change adaptation, 

particularly for the building design community, 2) 

increase understanding of the need for, and underly-

ing sources and assumptions of future weather data, 

and 3) provide examples of climate change impacts on 

building energy use. This article serves as a supple-

ment for “A Conversation on Adaptation in the Built 

Environment,” an industry roundtable moderated by 

the authors of this technical feature and in this issue of 

the ASHRAE Journal. 

Mitigation and Adaptation
The United States’ withdrawal as a signatory of the 

Paris Agreement on climate change spurred many 

building industry groups, including the American 

Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE), the American Institute of 

Architects (AIA), and the U.S. Green Building Council 

(USGBC), to reaffirm their commitment to climate 

change mitigation.1–3 This comes from an industry-

wide recognition that buildings emit roughly 40% of 

greenhouse gas (GHG) emissions.4 Since the industrial 

revolution, GHG emissions have increased exponen-

tially and the related increase in GHG concentrations in 

the atmosphere is very likely associated with climate-

related changes.5 

As defined by the Intergovernmental Panel on Climate 

Change (IPCC) Working Group III, mitigation is a 

“human intervention to reduce the sources or enhance 

the sinks of greenhouse gases.”6 For the building indus-

try, mitigation strategies include: 1) reducing the overall 

energy consumption of buildings through improved 

component and system efficiencies, thus reducing the 

GHG emissions associated with source energy genera-

tion; 2) using renewable energy sources; 3) selection of 

lower global warming potential (GWP) refrigerants for 

air-conditioning systems; 4) selection of construction 

materials with lower embodied energy; and 5) selection 

of construction materials with the potential for carbon 
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The graphs demonstrate considerable overlap between 

the lower and upper bound emissions scenarios through 

2050. Additionally, even under the lower bound emis-

sions scenario, all three parameters change relative to 

the present through 2050.5 This means mitigation and 

adaptation are complementary because 1) mitigation 

strategies implemented today will not have an observ-

able change for at least 30 years and 2) even if the most 

aggressive policies to mitigate GHG are successful, there 

will still be climate-related changes over the next 30 

years. 

The service life of a typical building is approxi-

mately 30 to 50 years before major capital renewals, 

adaptations, and upgrades.8 Therefore, the buildings 

we design and construct today will experience climate-

related changes over the course of their service life, 

which will expose new vulnerabilities and alter pre-

dicted performance. 

When used as a predictive tool, building performance 

simulations can quantitatively compare multiple design 

options in order to select energy-efficient strategies. 

Weather is an important simulation model input, but 

the current practice of averaging historical weather 

records does not take into account anticipated climate-

related changes. Our ability to more accurately predict 

the long-term performance of a building depends on a 

capture and sequestration.7 This article 

focuses on the first item, building energy 

use, since in most cases this has the greatest 

impact on GHG emissions over the life of the 

building .

On the other hand, adaptation is “the 

process of adjustment to actual or expected 

climate and its effects. In human systems, 

adaptation seeks to moderate or avoid 

harm or exploit beneficial opportunities.”6 

Some examples of relevant climate-related 

changes include: 1) increased average and 

extreme summer temperatures; 2) sea-

level rise; 3) changes in seasonal precipita-

tion; 4) extreme storms; and 5) increased 

sunshine hours.7 For buildings, adaptation 

strategies reduce vulnerability to climate-

related changes, such as flooding, wind 

damage, and overheating that adversely 

affect building performance. Adaptation to 

rising temperatures may require increased 

energy use for air-conditioning, which 

is counterproductive to climate change 

mitigation. 

Figure 1 shows historical values and cli-

mate model predictions through 2100 for 

global average surface temperature changes, 

Northern Hemisphere sea ice extent, and 

global ocean surface pH for multiple GHG 

emissions scenarios (RCP 2.6, 4.5, 6.0, and 

8.5 represent increasing predicted levels of 

GHG emissions, which we explain in greater 

detail in the next section on Modeling 

Climate Change). 

FIGURE 1  Historical values and climate model predictions through 2100 for global average surface 
temperature changes, Northern Hemisphere sea ice extent, and global ocean surface pH for multiple 
GHG emissions scenarios.5 ©IPCC 2014: WG I-AR5

Global Average Surface 
Temperature Change

Northern Hemisphere September Sea Ice Extent

Global Ocean Surface pH
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better approximation for local weather conditions dur-

ing its lifespan. 

Modeling Climate Change
This section describes methods climate scientists use 

to model climate change and predict future weather 

parameters (such as those shown in Figure 1). Models of 

climate change must account for two layers of uncer-

tainty concerning climate change: 1) future GHG emis-

sions and 2) the atmospheric response to changes in 

GHG concentrations. 

Our approach to modeling climate change comes 

from the Intergovernmental Panel on Climate Change 

(IPCC), the world’s leading authority on climate change. 

With the support of United Nations organizations and 

the endorsement of United Nations General Assembly 

member nations, the IPCC does not conduct original 

research, but synthesizes the most recent climate sci-

ence findings into an assessment report to policymakers 

every five to seven years. The most recent IPCC report 

is the Fifth Assessment Report (AR5) released in 2014. 

However, tools based on the previous report, the Fourth 

Assessment Report (AR4) released in 2007, are still 

prevalent. 

In AR5, the IPCC defines a set of four emissions sce-

narios, called Representative Concentration Pathways 

(RCP): RCP 2.5, RCP 4.5, RCP 6.0, and RCP 8.5. 

Emissions scenarios capture the first layer of uncertainty 

by exploring the range of possible human impact on 

future GHG emissions given factors such as population 

growth, economic development, technological innova-

tion, and policy interventions. The RCP numbers refer 

to radiative forcing values, i.e. the difference between 

incoming insolation absorbed by the Earth and energy 

radiated back to space, in 2100 relative to pre-industrial 

levels, in W/m2. Lower levels of radiative forcing corre-

spond to lower GHG emissions and concentrations. The 

four RCP pathways span the range of radiative forcing 

levels found in the literature.9 

Figure 2 shows annual global fossil-fuel emissions 

throughout history and as projected for each emission 

scenario. The policy interventions modeled by the IPCC 

come from the United Nations Framework Convention 

on Climate Change (UNFCCC) Secretariat, established 

in 1992 when member countries signed the UNFCCC as 

the first nonbinding treaty to stabilize GHG concentra-

tions. Since then, UNFCCC member countries signed 

the Kyoto Protocol in 1997, which required 37 industri-

ally developed countries to monitor and reduce GHG 

emissions by an average of 5% relative to 1990 levels by 

2012, and the Paris Agreement in 2016, which aims to 

limit the global average temperature increase to within 

2°C (3.6°F) of pre-industrial levels. 

The emissions scenarios serve as an input for the 

second layer of modeling uncertainty, predicting the 

atmospheric responses and resulting future weather. 

Climate scientists use numerical models to simu-

late interactions between atmospheric and oceanic 

processes at a global scale, called general circulation 

models (GCM). There can be lot of variation across cli-

mate models because they involve stochastic processes 

and are highly dependent on initial conditions. As an 

analogy, think about the variability in weather fore-

casts for the next day, week, or month from different 

sources. Projecting forward a decade or several decades 

only magnifies differences between multiple climate 

models. 

To counter this uncertainty, the World Climate 

Research Programme’s (WCRP) Coupled Model 

Intercomparison Project (CMIP) involves 20 climate-

modeling groups from around the world who perform 

a set of coordinated climate model experiments. Using 

the same boundary conditions on multiple GCMs gives a 

better understanding of the range of climatic response. 

CMIP5 is the fifth set of coordinated experiments and 

uses the RCP emissions scenarios defined in AR5 as 

boundary conditions.11 Revisiting Figure 1, each of the 

colors in the graph represents a different emissions 

FIGURE 2  Historical values and climate model predictions through 2100 for global 
fossil-fuel emissions in petagrams (1015 grams) of carbon per year. The inset 
graph shows historical and projected atmospheric concentrations of CO2, a signifi-
cant GHG.10 ©IPCC 2014: WG I-AR5

Fossil-Fuel Emissions
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scenario from AR5 and the shaded region represents the 

uncertainty across CMIP5 climate models.

Creating Future Weather Files
Of greater relevance for analyzing climate change 

impacts on the built environment is how to access and 

use the results from climate models. Designers are 

already accustomed to using weather-related data in the 

building design process, be it heating or cooling degree-

days, ASHRAE design conditions for sizing equipment, 

or hourly weather files for energy simulation. 

Linking future weather parameters reported by GCM 

into building performance simulations for a specific 

location requires an extra step because of differences 

in spatial and temporal scales. GCMs divide the Earth’s 

surface into 100 to 300 km (62 to 186 mile) grid cells as 

part of the numerical simulation. The time step for GCM 

calculations may be a few hours to an entire month.12 

In comparison, weather files for building simulations 

expect local hourly weather data.

Downscaling is the process to take information known 

at a large scale and make predictions at a smaller scale, 

such as the resolution for building energy simulation. 

There are several ways to do this. In climate science, 

dynamical downscaling uses the lower resolution cli-

mate models, GCM, as boundary conditions to rerun 

numerical simulations at high resolution and over a lim-

ited geographic area of interest. The result is a regional 

climate model (RCM) that better resolves small-scale 

climate processes, but is computationally expensive. 

A second method is using a stochastic weather genera-

tor, which is computationally cheap but may not give 

meteorologically consistent results. A third option is 

statistical downscaling, where mathematical equations 

approximate the relationship between large scale and 

small-scale climate variables. This has been the method 

of choice to develop future weather files for building 

performance simulations.13,14 

The sidebar, Climate Change Related Sources, lists some 

sources for climate change related weather data, visual-

izations, and future weather files. 

Predicting Future Energy Use
The case study presented here demonstrates the use 

of future weather files in building simulation to explore 

the impact of climate change on building energy per-

formance for two selected building types and three 

locations.15 This study assumes constant building design 

parameters throughout the period of analysis, and does 

not take into account improvements to system efficien-

cies, which are likely to occur. Therefore, our results 

provide an upper bound on future energy use. 

Methodology
We compared the simulation results from a present 

day weather file (third generation typical meteorologi-

cal year, TMY3) and three future periods, ending in 

2045, 2075, and 2099, which we obtained from Weather 

Shift.16 We bounded uncertainty in climate change by 

using multiple emissions scenarios and an ensemble of 

GCM. Weather Shift ranks GCM results by the projected 

mean daily temperature increase in order to ascribe a 

warming percentile to each GCM. This describes the 

probability of a particular mean daily temperature 

increase. For example, the 50th percentile (P50) GCM 

means half of the GCMs in the ensemble predicted a 

lower temperature increase. The combination of RCP 4.5 

Climate Change Related Sources
Data

Visualization

Future Weather Files

Global
Climate Time Machine	 climate.nasa.gov/interactives/climate-time-machine
Panoply	 www.giss.nasa.gov/tools/panoply/download
Climate Inspector	 gisclimatechange.ucar.edu/inspector
Climate Reanalyzer	 cci-reanalyzer.org/about

United States
Climate Mapper	 https://climatetoolbox.org/tool/climate-mapper
Climate Explorer	 https://crt-climate-explorer.nemac.org

California/Nevada
Cal-Adapt	 cal-adapt.org/data/loca

New York
Climate Data Grapher	 www.nyclimatescience.org

Global
Data Distribution Centre	 www.ipcc-data.org

Global
CCWorldWeatherGenerator	 www.energy.soton.ac.uk/ccworldweathergen
Weather Shift	 weathershift.com

United Kingdom
Data Distribution Centre	 www.ipcc-data.org
CCWeatherGen	 www.energy.soton.ac.uk/ccweathergen
CIBSE Weather Data Sets	 www.cibse.org/weatherdata
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ASHRAE 99.6% and 0.4% design days for each location. 

We compared the annual building energy consumption, 

which we calculated in EnergyPlus v. 8.6.0.

Results and Discussion
Figure 3 shows the change in mean monthly tempera-

ture relative to the present for each time period. In 

Miami, the average monthly temperature change is 

nearly uniform throughout the year, while in Baltimore 

and Boston temperature change is greatest in the sum-

mer. Climate models take into account energy and 

transport processes in the atmosphere and oceans. 

These processes could have seasonal and geographic 

dependencies. Some examples could include incom-

ing solar radiation, land surface properties, and atmo-

spheric circulation. Uncertainty in mean monthly tem-

perature increases with future time-period.

Figure 4a compares the percent change in total energy 

consumption relative to the present by building type 

and location, and then Figure 4b is similar but breaks 

it down further by end use. The bands represent the 

range of emission scenarios and warming percentiles, 

as described earlier. As expected, climate change most 

significantly affects heating and cooling end use con-

sumption, along with a slight change in fan energy use. 

The changes in end use energy consumption (Figure 4b) 

help explain the trends in total energy consumption 

(Figure 4a), elaborated on below. Figure 3 also shows that 

for the midrise apartment in Baltimore and the medium 

office in Boston, there is an inflection point where the 

upper and lower bound climate change scenarios cross, 

which can be better understood by comparing the per-

cent change in end use energy consumption shown in 

Figure 4b.

In Miami, where cooling energy dominates, total 

energy consumption increases for both building types, 

though the range of uncertainty is higher for the midrise 

apartment. Differences between the two building types 

likely relates to the interaction between hourly weather 

changes and the building’s internal gains schedule. For 

example, greater variation in evening temperatures 

would have a larger effect on the midrise apartment 

than a medium office. 

Miami will continue to be a cooling dominated climate 

under both the lower and upper bound climate change 

scenarios. 

(°
C)

Month

FIGURE 3  Change in mean monthly temperature relative to the present varies seasonally and by 
location.

Climate Change Scenario:	  RCP 4.5, P10 GCM	  RCP 8.5, P95 GCM

and 10th percentile (P10) warming forms the 

lower bound and RCP 8.5 and the 95th per-

centile (P95) form the upper bound. These 

were the ranges available from Weather Shift 

for study locations. We considered three 

locations: Miami, Baltimore, and Boston, 

located in ASHRAE Climate Zones 1A, 4A, 

and 5A respectively.

We used the U.S. Department of Energy 

(DOE)’s commercial reference building 

energy models for this analysis, and con-

sidered two of their building typologies: 

midrise apartment and medium office. The 

envelope and equipment parameters in both 

models come from ASHRAE Standard 90.1-

2004, Energy Standard for Buildings Except Low-

Rise Residential Buildings and Standard 62.1-

2004, Ventilation for Acceptable Indoor Air Quality, 

which were contemporary standards at 

the times the DOE models were developed. 

Therefore, we can consider our results most 

applicable to existing buildings of this vin-

tage. The energy model sizes the heating and 

cooling systems based on the present-day 
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Baltimore is a mixed climate and the predictions are 

more complicated, showing that changes in internal 

gains due to building type have a more significant 

impact on the relative changes in total energy con-

sumption. In the midrise apartment in Baltimore, 

the decrease in heating energy consumption associ-

ated with a warming climate offsets the increase in 

cooling energy consumption. As a result, total energy 

consumption initially decreases relative to the present 

(i.e., reduction in heating is greater than increase in 

cooling). However, around approximately 2080, the 

net effect of increased cooling with warming tempera-

tures results in total energy consumption now increas-

ing in the upper bound climate change scenario. For 

the medium office in Baltimore, with its higher inter-

nal loads and cooling loads, total energy consump-

tion increases more significantly and earlier, starting 

approximately in 2050. An important takeaway from 

this analysis is that mechanical systems sized in the 

present may not be sufficient to meet future demand 

(cooling equipment) or may operate at partial load effi-

ciencies (heating equipment). 

Boston is a heating dominated climate, so the net 

impact is a decrease in total energy consumption for 

both building types, but particularly for the apartment 

compared to the office building. The difference between 

FIGURE 4  Change in (a) total energy consumption and (b) end use energy consumption varies by building location and type.

B

 Cooling   Fans   Water Systems   Heating

Climate Change Scenario:	  RCP 4.5, P10 GCM	  RCP 8.5, P95 GCM

A
 Miami   Baltimore   Boston

the two building types due to differences in internal 

loads is also visible. For the medium office, in the upper 

bound climate change scenario, total energy consump-

tion begins to increase around 2070, though it remains 

below that of the present through 2100. For the midrise 

apartment, this inflection occurs later, beyond 2100.

 Summary and Conclusions
Building design professionals are accustomed to 

their role in climate change mitigation. However, 

scientific literature shows that even if the most 

aggressive mitigation measures are successful, we 

can expect climate-related changes, such as increas-

ing temperatures, over the next 30 years. These 

changes can adversely affect building performance. 

Furthermore, increasing energy use to adapt to cli-

mate change negates mitigation efforts. Building 

design professionals can use models and methods 

from climate scientists to predict future weather con-

ditions and handle uncertainty in emissions and the 

atmospheric response. The case study demonstrates 

that climate change impacts will vary by building type 

and location. Future weather files are already avail-

able and offer designers a way to assess the impact of 

climate change on their building designs.
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