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ABSTRACT 

 

Maintenance of miter gates in navigation locks is crucial to facilitate water 

navigation of cargo ships. Scheduled and unscheduled maintenance are the two types 

of actions performed to keep miter gates continuously operational.  In practice, visual 

inspections and rating systems are used to monitor the current state of miter gate 

components in order to prioritize maintenance. This paper shows an example of how 

to find the optimal time to plan for maintenance using deterioration curves obtained 

from real visual inspection assessments of components in miter gates. Predictive 

deterioration curves are derived using a Markov Chain approach. In addition, the 

advantages of implementing Structural Health Monitoring (SHM) are discussed. 

 

 

INTRODUCTION 

 

The U.S. Army Corps of Engineers (USACE) owns and operates 236 locks at 191 

sites in the United States [1]. According to Foltz [2], more than half of these assets 

have surpassed their economic design life, 50 years, and need frequent inspections to 

ensure their safe and reliable operation. Miter gates are the most common type in the 

United States among other designs including sector, tainter, and vertical lift [3]. 

Damage to critical components in miter gates may lead to closures of the lock 

chamber, which produce substantial economic losses on the marine cargo industry 

and their commercial clients.  
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Lock closures for maintenance and/or repair are broadly classified as “scheduled” 

and “unscheduled.” Scheduled maintenance allows commercial shippers to adjust 

their activities to optimize their benefit or minimize their losses by using alternative 

transportation options. However, essential (or emergency) maintenance (EM) needs 

can result from unscheduled closures, which can severely negatively impact marine 

transportation activities [4]. Generally, the downtime for unscheduled repairs is 

longer than for scheduled repairs. Therefore, there is a need to identify the optimal 

time to schedule maintenance activities to minimize the repair costs and the costs 

associated with the downtime in the lock gates.  

Different engineers and lock operators from USACE [2] have mentioned that one 

of the primary concerns for inspection, maintenance, and repair are the condition of 

the quoin blocks. The condition of quoin blocks can be correlated with the bearing 

“gap”; these gaps are generated due to the loss of bearing contact between the quoin 

attached to the gate and the lock wall, which arise from fatigue, corrosion, or wear 

deterioration. A gap in the quoin block cause load redistribution leading to higher 

stresses on some places in the lock gate (e.g., the pintle), which further can lead to 

operational and/or structural failure. Therefore, monitoring the condition of quoin 

blocks can be used to suggest repairs and maintenance in a timely manner. Other 

concerns related to miter gates are fatigue deterioration and corrosion [5]. 

The paper first explains how to produce a deterioration curve using a Markov 

chain approach. Markov models are widely used to predict deterioration of bridges 

[6] and other structures [7]. With this deterioration curve, predictions of future states 

can be established based on the initial state of a component. A probability threshold 

is defined using the future state predictions to define when to plan for preventive 

maintenance (PM), which affects the amount of times that EM may be required. The 

cost function used in this paper gives certain weight to the PM and EM events, which 

allows to easily identify the optimal time between PM events for a specific 

component (ex. quoin blocks) in a miter gate. Additionally, the paper introduces the 

mapping from component level to system level and the benefits of integrating SHM 

into the life cycle of structural components. 

 

 

MITER GATES 

 

Miter Gates were invented by Leonardo Da Vinci, sometime around the late 15th 

century. Modern gates are made of steel and are used to facilitate navigation from 

different water levels in a river system. In the USA, many of gate’s components (e.g. 

quoin blocks) are periodically inspected to ensure proper operation. Figure 1 shows 

a closed miter gated (miter position) and its function in helping ships to go from 

different water levels. 

The USACE Asset Management team oversees the implementation and 

development of the OCA to assess structural component deficiencies by giving a 

category rating by an inspector, who base the evaluation on engineering knowledge 

and information of preexisting inspections. The ratings are classified as  

A (Excellent), B (Good), C (Fair), D (Poor), F (Failing) and CF (Completely Failed). 

More detailed definitions can be found in [2].  

 



 

 

 
Figure 1. Navigation Lock Gates 
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Figure 2. 1-step (1 year) Transition Matrix for quoin block components  

 

 

TRANSITION PROBABILITY DERIVATION 

 

Transition matrices, known also as stochastic matrices, have been widely used in 

different fields such as probability theory, economy and weather predictions [8]–[10]. 

These matrices are defined as a square matrix with nonnegative values. Each value 

in the transition matrix represents a probability and the sum of each row sums to 1. 

Based on an OCA database, the amount of times that a component transitioned from 

one rating category to another in a given year was determined. Only the upper triangle 

components were considered to simulate component deterioration. A transition 

matrix was found by normalizing the counts in each row as shown in Figure 2.  

 

 

MARKOV CHAIN DEGRADATION MODEL 

 

The Markov Chain degradation model is a discrete in time Markov process with 

finite state space. Equation 1 is used to build the Markov Chain degradation 

predictions where the vector (0)v  represent the initial state vector. For instance, the 

state can be expressed as (0) [1 0 0 0 0 0]v   when the component is 

considered brand new. 

 

  ( ) (0)n nv v P , (1) 

 

The matrix 
nP  represents the n-step transition matrix, which can be obtained by 

raising the 1-step transition matrix, shown in Figure 2a, by the n-th power. The vector 
( )nv  represent the state vector prediction at step n. This vector can also be expressed 

in the following manner: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[P( ) P( ) P( ) P( ) P( ) P( )]n n n n n n nv A B C D F CF  . (2) 



 

 

 
Figure 3. Expected degradation curve 

 

A 300-yr prediction using the state vectors with different values of n was 

accomplished. To be able to calculate the expected value at each of these calculated 

state vectors, a proportional model mapping assigns values to each state. For 

example, the value of 0 is mapped to A, 0.2 is mapped to B, and so on. 

 

Figure 3 shows the expected state value of the condition of the structural 

component. As shown in this figure as the time approaches to 300 years, the expected 

value of the state vector approaches the state ‘CF’. Note that the figure above is 

shown for representation only. It is important to consider all the state probabilities 

(i.e., the state vector) at every step to take decision such as replacement or repair of 

a component. All these considerations are taken into account to build an improvement 

model, which is used to keep track of the effects of degradation in and repairs of a 

component. 

 

 

IMPROVEMENT MODEL 

 

An improvement model is a model that can capture the degradation of a 

component even after repair work has taken place. For this model, the degradation 

after repair work is assumed to deteriorate with the same rate as when it was good as 

new, in other word at the initial state. Recall that ( )nv  represents the state vector 

prediction at step n. To trigger an action such as repair, a probability threshold value 

is compared against the probabilities obtained at each n-step as follows:  

 

 ( ) ( ) ( )( ) ( ) ( ) [0,1]n n nP D P F P CF Threshold      (3) 
   

The implementation shown in Figure 4b uses the transition matrix and initial state 

vector to do predictions for a structural component. Additionally, every time that the 

probability of being at a state equal or worse than state ‘D’, the state vector takes a 

value of [0 1 0 0 0 0] , which represent the state right after a repair. In other 

words, it assumes that a repair always results in a perfect condition ‘B’. 



 

 

Again, for representation only, Figure 4a shows the expected state value of the 

condition of the structural component. But this time, considering the effect of 3 

different threshold values. From this figure, if the threshold is low then the amount 

of PM actions increases to maintain low the chances of being at state ‘D’ or worst. 

On the other hand, if the threshold is high, this means that you take a higher risk of 

being at state ‘D’ or worse, consequently the amount of PM actions decreases. Also, 

from Figure 4a, the time interval between PM actions can be observed and the number 

of PM event in a specific range of time can be extracted. Table I shows the probability 

threshold, the PM time interval and the number of scheduled events in the first 150 

years of the life of a component.  

So far, only one type of maintenance actions has been discussed (PM). However, the 

EM actions are another type of maintenance which is required to keep a component 

operational and safe. Accounting for both types of actions (PM and EM) will extend, 

if done properly, the life of the component or system.  

The discrete cumulative probability distribution (CDF) of the state ‘CF’, obtained 

by the Markov process described earlier was used to account for EM actions. Figure 

5a shows the CDF after calculating the probability of being at ‘CF’ from 1 to 300 

years, including the effect of the PM actions based on different thresholds. Figure 5b 

shows the expected number of EM actions as a function of time, i.e., the expected 

occurrence of being in State 'CF' from year 1 to 300. 

 

 
Figure 4. a) Expected value of state vector at time n using improvement model and  

b) implementation of improvement model 

 

Table I. PM EVENTS BASED ON THRESHOLD 

Probability 

Threshold 

Time 

Interval 

# PM  

events 

0.8 111 1 

0.5 52 2 

0.2 21 7 

0.05 8 18 

 

 

 



 

 

 
Figure 5. a) Probability of being at State 'CF' from step 1 to step 300 and  

b) Expected occurrence of being at State 'CF' from steps 1 to 300 

 

 

COST FUNCTION 

 

Using a cost function, the cumulative cost value can be calculated using a 

probability threshold (or time interval between PM actions) at a particular point in 

time. The long-term cost may be calculated by using Equation 4 where PMN is the 

number of preventive events and EMN  is the number of essential maintenance events. 

 

 Cost( , ) 1* ( , ) * ( , )PM EMt threshold N t threshold W N t threshold  ,  (4) 

 

The variable W represents the ratio between the cost of an unplanned event (EM) and 

the cost of a planned event (PM). As shown in Table I, the probability threshold can 

be mapped to the time interval between PM actions.  

Figure 6a shows the nonlinear relation between the time interval between PM 

actions and the probability threshold. Figure 6b shows the cumulative cost after 150 

years with different ratios of W . As shown in this figure, the optimal time interval 

between PM actions can be obtained from different values of W .  

 

 
Figure 6. a) Mapping between probability threshold and PM interval and  

b) 150-yr cumulative cost for different PM intervals 

 

 

 



 

 

 
Figure 7. Optimal PM interval 

 

 

OPTIMUM TIME INTERVAL BETWEEN PM ACTIONS 

 

Figure 7 shows the optimal time interval to take planned maintenance actions for 

different values of W and for different cumulative time intervals. From this figure, it 

may be observed that the value of W has a strong effect on the optimal time interval 

between PM actions. For example, if the value of W is between 3 and 5. The 

recommended time interval between PM actions would be roughly between 10 to 15 

years.  

 

 

IMPLEMENTING SHM 

 

Up to now, the long-term cost minimization has depended solely on the data from 

historical inspection. SHM can be a way to reduce the uncertainty of non-continuous 

monitoring such as visual inspections and to help to take more informed decision. 

Figure 8 shows SHM implementation flowchart to the miter gates. 

 

 
Figure 8. SHM implementation flowchart 

 



 

 

Recently researchers such as Faber [11] and Thons [12] have studied theoretical 

and applied approaches to quantify the value of deploying a structural health 

monitoring. Studying the value of implementing SHM in miter gates may reduce the 

amount EM actions, which may lead to long-term cost savings.  For SHM, the 

damage detection is an “inverse problem”. Therefore, a Bayesian approach using the 

available sensor data or synthetic data from a finite element model (or a surrogate 

model) is generally used to infer the inverse problem.  

 

 

CONCLUSION 

 

A Markov process using transition matrices built from inspection data can be used 

to obtain the optimal time interval between PM. A simple loss or cost function was 

used to come up with the optimal value and assumptions about the condition after 

PM were made. Different component in mater gates may have different transition 

matrices values. This methodology can be extended from component to system level. 
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