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ABSTRACT OF THE THESIS

Evaluation of Composite Pulse Techniques to Generate

Robust Single-Qubit Gates

by
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Master of Science in Chemistry
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Professor Louis-Serge Bouchard, Chair

Superconducting transmon qubits are a promising architecture for large-scale fault-tolerant

computation: transmons possess favorable properties for scalability, and mature microwave

control electronics are readily available. Recent advances in coherent control of these devices

have produced optimally calibrated microwave control pulses with fidelities approaching

fault-tolerance thresholds. However, miscalibrations and drift in the amplitude or frequency

of the microwave drive may result in suboptimal gate performance. Compensation schemes

employing open-loop optimal control to increase robustness toward these types of frequency

detuning and field amplitude errors have been under development in the NMR community

since the 1970s. Composite and adiabatic pulses are two such robust pulse design techniques

that may benefit coherent control of superconducting architectures.

In this thesis, we demonstrate applications of composite and adiabatic pulses for the

implementation of robust inversion gates on a transmon qubit. We characterized the ro-

bustness, fidelities, seepage and leakage rates of the inversion pulses using simulated and

experimental transition probabilities and randomized benchmarking methods. Both adia-

batic and composite pulses were able to compensate for a broader range of systematic drive

amplitude and off-resonance errors compared to standard gates. Several composite pulse

schemes also improved on-resonance fidelity.
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CHAPTER 1

Introduction

Quantum information processing is a promising technology to solve certain classically in-

tractable problems. Quantum algorithms such as Shor’s algorithm for prime-number factor-

ization offer nearly exponential speedups over their classical counterparts [2], and simulations

of entangled many-particle systems that would be impossible classically are theoretically

feasible with quantum computers [3, 4]. Current quantum processors operate in the noisy

intermediate scale quantum (NISQ) regime and are not of sufficient size or accuracy to real-

ize the quantum supremacy promised by such canonical applications. Even so, a variety of

algorithms demonstrating quantum advantage have already been implemented on NISQ ar-

chitectures. Entire economic sectors such as quantum finance have emerged due to quadratic

speedups with quantum implementations of Monte Carlo algorithms [5]. Transcending the

NISQ regime ultimately requires improvements both in the scalability of quantum infor-

mation processors and in the fidelity of quantum control operations in order to satisfy the

requirements of error-correction schemes.

NISQ superconducting architectures possess several attributes that make these systems

a promising platform on which to develop next-generation quantum information proces-

sors. Superconducting qubits offer favorable scalability, well-characterized tunable coupling

schemes, long coherence times, and mature electronics for qubit-specific measurement and

for crafting custom microwave control fields [6]. NISQ-era improvements in the scalability

and intrinsic coherence times of superconducting qubits are largely attributable to the devel-

opment of transmission line shunted plasma oscillation (transmon) qubits. Transmons are

quantized superconducting LC-circuits with an anharmonic potential shaped by the relative

strength of the nonlinear inductance of the superconducting Josephson junction (LJ) and the
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capacitance of a shunt capacitor (Cs). NISQ transmon qubits operate in the regime where

the Josephson junction energy greatly exceeds that of the shunt capacitor. This reduces

the sensitivity of transmons to charge noise and allows for improved coherence times over

pre-NISQ superconducting qubits, which had higher shunt capacitor energies. Microwave

control has also progressed in the NISQ era. Sophisticated control pulse design techniques

have been developed that attain gate fidelities approaching fault-tolerance thresholds [7, 8];

however, these nominal fidelities may be reduced in the presence of amplitude or frequency

errors in the microwave control field.

Compensation schemes are required to reduce the sensitivity of control pulses to fre-

quency detuning and field amplitude errors, which can arise from a multitude of sources,

including drift in the instrument calibration over time, random jitter, or programming er-

rors. Well-established techniques to compensate for miscalibration of the control field have

been used for decades in the NMR community, where control field inhomogeneities have his-

torically been a dominant source of error [9]. Robust control of other quantum information

processing architectures has previously benefited from the implementation of pulsed NMR

techniques [10, 11, 12, 13]. However, these techniques have never been applied to NISQ

transmon qubit architectures. Although the transmon qubit is encoded in a subspace of

the anharmonic potential such that leakage to higher energy states must be considered to

fully evaluate control pulse performance, the idealized single-qubit gate problem from trans-

mons is still well modeled by a two-level system completely analogous to the NMR control

problem. Robust NMR techniques are therefore readily applicable to coherent control of

transmon qubits and may offer benefits similar to those previously demonstrated on other

architectures.

In this thesis, we present an application of two microwave control field design techniques

— composite pulses (CPs) and adiabatic pulses (APs) — to generate robust single-qubit

gates on a transmon qubit. We implemented industry-standard methods to characterize the

robustness, fidelity, and leakage of the control pulses based on simulated and experimental

inversion profiles, interleaved randomized benchmarking, and leakage randomized bench-
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marking. We demonstrate that composite and adiabatic pulses generally improve robustness

towards frequency and amplitude errors and can additionally increase on-resonance fidelity.

We also consider examples of distinct classes of composite and adiabatic pulses designed to

either perform transformations between well-defined initial and final states (’point-to-point’

transformations) or general (universal) rotations. The latter class of general rotation pulses is

a particularly promising foundation for constructing universal gatesets endowed with greater

tolerance towards miscalibrations of the control field.

The main experimental results of this work are presented in chapter 4, which contains the

findings of the robustness, fidelity, and leakage measures for composite and adiabatic pulses.

Details of the experimental implementation of microwave control field shaping techniques

and performance characterization methods are also discussed in that section. Chapter 3

presents a more detailed theoretical background on randomized benchmarking, and chapter

2 summarizes the necessary quantum mechanical formalism. Chapters 2 and 3 are derivative,

and no originality is claimed for the content of these sections.
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CHAPTER 2

Mathematical Preliminaries

This chapter is intended to give an overview of the quantum mechanical formalism used in

the remainder of this thesis. A more comprehensive discussion of the principles of quantum

computing introduced herein can be found in [14], and additional resources on the applica-

tions of unitary t-designs in quantum channel characterization are available [15, 16, 17].

2.1 Quantum Systems and Hilbert Spaces

Quantum mechanical systems are represented with respect to Hilbert spaces, which are

most generally defined as a vector space that is complete and endowed with a norm. A d-

dimensional isolated quantum system is completely described by a (d×1) column vector |ψ⟩

in an associated state space Hd, which is a complex Hilbert space of dimension d. The inner

product structure that defines the norm on this space is the vector inner product ⟨ϕ|ψ⟩ where

⟨ϕ| is a member of the adjoint space H∗
d. There is a one-to-one correspondence between the

vectors |ψ⟩ in the state space Hd and the unique functionals fϕ[ ] = ⟨ϕ| in the adjoint space

H∗
d, whose action fϕ[ψ] = ⟨ϕ|ψ⟩ is to take an input vector and return a complex (c) number,

with the aid of the inner product.

In this thesis, we will deal with finite-dimensional Hilbert spaces that can be equipped

with an orthonormal basis {ϕi} such that any state vector can be written as a linear combi-

nation of orthonormal basis elements

|ψ⟩ =
∑
i

ci |ϕi⟩ .
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In this representation, elements of H∗
d are formed as the complex conjugate transpose of

the elements of Hd, in accordance with the typical definition of the Hermitian conjugate

ψ† = (ψ∗)T , i.e.

⟨ψ| ≡ |ψ⟩† .

Realistic quantum systems often include system-environment interactions that cannot be

easily represented in the state-vector formalism. Density operators were proposed by von

Neumann in order to describe pure and mixed states. Such operators are positive and have

unity trace (ρ ∈ Od),

ρ =
∑
j

pj |ψj⟩ ⟨ψj| .

Pure states are characterized by Tr[ρ2]=1 whereas mixed states have 0 ≤ Tr[ρ2] < 1. Here,

|ψj⟩ ⟨ψj| is the outer product, and Od is the space of linear operators (represented by d× d

matrices) acting on Hd. Od is itself also a Hilbert space with an inner product structure

given by the Hilbert-Schmidt or trace inner product,

⟨σ|τ⟩ = Tr
(
σ†τ
)

for σ, τ ∈ Od. The strength of the density operator formalism is that it can be used to

represent systems in an unknown state, which is described by an ensemble of probabilities

and state vectors {pi, |ψi⟩}. Pure states are idempotent ρ2 = ρ and can be written as a

rank-1 projector |ψ⟩ ⟨ψ|.

2.1.1 Composite Systems

The state space of a composite system HAB formed from separable Hilbert spaces HA, with

basis {|ψn⟩} , and HB, with basis {|ϕm⟩}, is normally constructed from the tensor product

of HA and HB:

HAB = HA ⊗HB.
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The composite state space HAB is of dimension dim(HA) × dim(HB) and is spanned by

the tensor product basis {|ψ1⟩ ⊗ |ϕ1⟩ , . . . |ψ1⟩ ⊗ |ϕm⟩ , . . . , |ψn⟩ ⊗ |ϕ1⟩ , . . . |ψn⟩ ⊗ |ϕm⟩}. The

multipartite composition of separable Hilbert spaces is formed by simple extension such that

the composite state space is the tensor product of the state spaces describing each party.

Given operators A ∈ OdA(HA) and B ∈ OdB(HB) the operator on the composite Hilbert

space is defined as the tensor product of the operators and acts on states of the composite

system |ψ⟩ ⊗ |ϕ⟩ as shown.

(A⊗B) (|ψ⟩ ⊗ |ϕ⟩) = A |ψ⟩ ⊗B |ϕ⟩

The shorthand notation |ψ⟩ |ϕ⟩ or |ψϕ⟩ may also be used to represent tensor product states

|ψ⟩ ⊗ |ϕ⟩.

2.1.2 Purification of Density Matrices

Composite systems are of central importance to the field of quantum computing, not only for

their use in describing the composition of physical systems of interest in multi-qubit compu-

tations but also for their utility in modeling system-environment interactions. Purification

of density matrices is a powerful tool that treats such system-environment interactions from

a purely mathematical perspective in order to simplify calculations involving mixed states

[14].

Definition 2.1.1. Purification: Given a mixed state ρA of a system with a state space

HA, we may introduce a fictitious reference system R on the same state space such that the

composite system is in a pure state |AR⟩ ⟨AR|.

The state of the principle system ρA is recovered from the composite system by performing

a partial trace over the degrees of freedom of the system R.

Definition 2.1.2. Partial Trace: The partial trace TrB operation for a composite system

HA⊗HB is defined for an operator on the composite space A⊗B, where A ∈ HA and B ∈ HB,
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as

TrB(A⊗B) = Tr(B)A

The purification procedure can be validated by considering decompositions of the states

ρA and |AR⟩. The density matrix ρA is a positive operator, and as such has an orthonormal

decomposition ρ =
∑

i pi |iA⟩ ⟨iA| by the spectral theorem for normal operators. Here {|iA⟩}

is an orthonormal basis of HA. For the pure state |AR⟩, a particular form of decomposition

known as the Schmidt decomposition [14] may be applied.

Defintion 2.1.3. Schmidt Decomposition: For any pure state |ψ⟩ of a composite system

AR there exists an orthonormal set of states {|iA⟩} for the system A and a set of orthonormal

states for the system R {|iR⟩} such that |ψ⟩ can be decomposed over the tensor product

states |iA⟩ |iR⟩ with non-negative, real expansion coefficients λi. The λi are called Schmidt

coefficients and satisfy
∑

i λ
2
i = 1

|ψ⟩ =
∑
i

λi |iA⟩ |iR⟩ .

Defining the Schmidt decomposition for the pure state of the composite system as

|AR⟩ ≡
∑
i

√
pi |iA⟩ |iR⟩

where the pi are the eigenvalues of ρA, the reduced density matrix ρA is then obtained from

the partial trace TrR in the given basis.

TrR(|AR⟩ ⟨AR|) =
∑
k

⟨kR|
∑
i,j

√
pipj |iA⟩ |iR⟩ ⟨jA| ⟨jR| |kR⟩ =

∑
i,j,k

√
pipj |iA⟩ ⟨jA| δikδjk =

∑
i

pi |iA⟩ ⟨iA| = ρA.
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2.2 Evolution

Several interconnected formalisms for describing the evolution of quantum systems have been

developed. These methods negotiate a balance between generality in the type of quantum

evolution they can represent and the specificity of the knowledge they provide regarding the

time evolution of the system under consideration. The unitary propagator formalism is well

suited to descriptions of ideal, isolated quantum dynamics and, as such, provides a useful

tool with which to optimize ideal qubit dynamics under the influence of a control field (see

appendix B). However, realistic quantum systems are typically not isolated (open), and it is

important to understand the influence of interactions with the environment on the evolution

of the principal system. The quantum operations formalism and master equation formalism

both allow such non-unitary dynamics to be characterized. Quantum operations are the

most general representation of quantum evolution as they are time-independent descriptions

of discrete state changes. In this thesis, we represent open quantum dynamics using the

quantum operations formalism and use the unitary propagator formalism to describe ideal

qubit control.

2.2.1 Unitary Evolution of State Vectors

The continuous-time dynamics of state vector evolution in closed systems are governed by

the Schrödinger equation,
d |ψ⟩
dt

= −iH |ψ⟩

to which the solution in the case of a time-dependent Hamiltonian may be written using the

time-ordering operator T . Terms in the expansion of the exponential are organized by the

action T such that operators corresponding to earlier times appear to the right of those for

later times. Note, we use Hartree atomic units (ℏ = 1) throughout this thesis.

|ψ(t)⟩ = T exp

[
−i
∫ t

0

H(t′)dt′
]
|ψ0⟩

8



The general form of the solution to this equation suggests an alternative description of the

system evolution in terms of a unitary propagator U(t) that depends only on the initial and

final times and transforms the state |ψ0⟩ into |ψ(t)⟩.

U(t) = T exp

[
−i
∫ t

0

H(t′)dt′
]

Isolated quantum systems evolve according to unitary dynamics governed by this propagator,

which satisfies the definition of a unitary operator on Hd (UU
† = U †U = Id).

2.2.2 Density Matrix Evolution and Master Equations

Continuous-time evolution of density matrices in closed systems can be described by a re-

formulation of the Schrödinger equation known as the Liouville master equation, in which

[A,B] = AB −BA is the commutator and L is the Liouville superoperator.

d

dt
ρ(t) = −i [H(t), ρ(t)] = L ˆ̂ρ(t)

Definition 2.2.1. Superoperator : A superoperator S belonging to the Hilbert space of

superoperators Sd is a linear operator on the elements ρ ∈ Od(Hd) of the Hilbert space of

linear operators on the state-space of the system. Elements of Sd can be represented as

(d2 × d2) matrices that act on the vectorized density matrix ˆ̂ρ, which may be represented as

a (d2 × 1) column vector.

Definition 2.2.2. Vectorization: Vectorization is a transformation that converts matri-

ces ρ ∈ Od(Hd) into (d2 × 1) column vectors ˆ̂ρ. The vector space of (d2 × 1) column vectors

is referred to as Liouville space. Here, we follow the row-stacking convention

ˆ̂ρ = vec(ρ) =


ρ00

ρ01

ρ10

ρ11

 where ρ =

ρ00 ρ01

ρ10 ρ11


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The solution to the Liouville equation is obtained by direct integration of the vectorized

equation
d

dt
ˆ̂ρ(t) = −

(
H(t)⊗ ITd − Id ⊗H(t)T

)
ˆ̂ρ(t) = L(t)ˆ̂ρ(t)

as

ˆ̂ρ(t) = T exp

[
−i
∫ t

0

L(t′)dt′
]
ˆ̂ρ(0) = T exp

[
−i
∫ t

0

(
H(t′)⊗ ITd − Id ⊗H(t′)T

)
dt′
]
ˆ̂ρ(0)

Here, we have used the vector triple product identity vec(ABC) = A ⊗ CTvec(B) to write

the matrix representation of the superoperator L. Since, H(t′)⊗ITd and Id⊗H(t′)T commute

for all times t′ and f(A⊗ Id) = f(A)⊗ Id for any analytic function f, we obtain a simplified

expression for the propagation superoperator U(t)

ˆ̂ρ(t) =
(
T e−i

∫ t
0 H(t′)dt′ ⊗ Id

)(
Id ⊗ T ei

∫ t
0 H(t′)T dt′

)
ˆ̂ρ(0)

=
(
T e−i

∫ t
0 H(t′)dt′ ⊗ T ei

∫ t
0 H(t′)T dt′

)
︸ ︷︷ ︸

U(t)

ˆ̂ρ(0)

Reversing the vectorization yields an expression for the evolution of the density matrix in

terms of the the same general form of the unitary propagator U(t) obtained by solving the

Schrödinger equation. The discrete-time unitary evolution of the initial state ρ(0) is thus

ρ(t) = U(t)ˆ̂ρ(0) = U(t)ρ(0)U †(t)

The density matrix formalism is, however, a much more general tool for describing the

evolution of quantum systems than the state-vector formalism derived from the Schrödinger

equation as it can also be used to represent non-unitary dynamics. Differential equations

governing the evolution of an open subsystem (HS) can be derived from the Liouville equation

by defining a closed composite system consisting of the system and its environment (HT =

HS ⊗HE) that is subject to unitary dynamics. By decomposing the Hamiltonian operator

on the composite state-space HT = H ⊗ IE + IS ⊗ HE + αHI into Hamiltonians for the
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system H ∈ O(HS), environment HE ∈ O(HE), and interaction HI ∈ O(HT ), it is possible

to formulate the evolution of the total density matrix in terms of the interaction Hamiltonian

and interaction strength parameter α. Integration and iterative substitution of the integral

solution to the resulting differential equation produce a tractable form of the equation of

motion that can be truncated to a given order in the small interaction strength parameter

α. Performing a partial trace over the environment variables finally yields a master equation

for the evolution of the subsystem density matrix alone, which is commonly written in the

Lindblad form

d

dt
ρ(t) = − i

ℏ
[H(t), ρ(t)]−

∑
i

(
Liρ(t)L

†
i −

1

2

{
L†
iLi, ρ(t)

})
= (L(t) +D(t)) ˆ̂ρ(t),

where {A,B} = AB + BA is the anti-commutator. A complete derivation can be found in

[18]. The Lindblad (or jump) operators Lj describe the coupling of the principal system to

its environment and give rise to the non-unitary D portion of the propagation superoperator

S(t), which takes the form

S(t) = T exp

[∫ t

0

(L(t′) +D(t′))dt′
]
.

The Lindblad propagation superoperator provides a good description of the dynamics of open

quantum systems provided that the system and environment are initially uncorrelated, and

correlations with the environment decay rapidly relative to the system dynamics (Markovian

approximation) [19].

Propagators are an effective tool for describing discrete changes between quantum states

at different times; however, the propagators themselves are still time-dependent. Often in

quantum computing, it is desirable to present state changes in a time-agnostic manner using

the quantum operations formalism, in which state changes are described by linear maps on

Od. Quantum operations therefore provide a more general (not necessarily Markovian) and

often simplified language in which to represent the same discrete state changes described by

the propagator solutions to master equations.
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2.2.3 Quantum Operations Formalism

The quantum operations formalism is a powerful tool for describing discrete state changes

in quantum systems, including evolution and measurement. In this formalism, quantum

operations, or quantum channels, are represented by linear maps E : Od → Od. Quantum

channels (operations) represented by completely positive trace-preserving (CPTP) maps pro-

vide the most general language with which to describe evolution; they can be used to model

the same non-unitary dynamics of open quantum systems as the master equation formalism

and do not depend on time.

Definition 2.2.3. Positivity : A positive map E : Od → Od is positive if for any positive

operator ρ ∈ Od, E(ρ) is positive.

Definition 2.2.4. Complete Positivity : Consider the extension E ′ of a map

E : OdA(HA) → OdA(HA) to the operator space of a composite system HA ⊗HB, where HB

is the state space of an ancillary system of arbitrary dimension dB. The map E is completely

positive if the extension E ′(ρ′) = (E ⊗ IdB)(ρ′) given by the tensor product of E with the

identity operator IdB on HB is positive for all positive ρ′ ∈ OdAdB(HA ⊗HB).

Definition 2.2.5. Trace-Preserving : A map is a trace-preserving map if Tr(E(ρ)) =

Tr(ρ) for all ρ.

2.2.3.1 Kraus Operator Representation of Quantum Operations

The non-unitary evolution of open quantum systems can be ascribed to interactions between

the principal system and the environment. If the system of interest is redefined as the

closed composite system-environment space that contains all these interactions, it is thus

possible to represent the evolution of the composite quantum state by unitary dynamics

(U ∈ O(HS ⊗ HE)). Assuming that the initial state of the system and environment are

uncorrelated (ie. the composite system is in an initial state ρ⊗ ρE), the quantum operation

12



E(ρ) on the system alone is defined using the partial trace over the environment s

E(ρ) = TrE
[
U(ρ⊗ ρE)U

†]
The CPTP map E(ρ) also has a convenient representation in terms of operators Ak ∈

O(HS) that act on the state space of the principal system alone.

E(ρ) =
∑
k

⟨ek|U(ρ⊗ |e0⟩ ⟨e0|)U † |ek⟩

=
∑
k

AkρA
†
k

Here, |ek⟩ is a complete basis for the environment, and the initial state of the environment

ρE = |e0⟩ ⟨e0| is chosen to be a pure state without loss of generality since any mixed state

of the environment can be purified without effect on the dynamics of the principal system.

The operators Ak = ⟨ek|U |e0⟩ are Kraus operators, and the representation of E(ρ) is known

as the Kraus operator or operator-sum representation. The Kraus operators satisfy the

completeness constraint ∑
k

A†
kAk = I

which ensures that the map E is trace-preserving. The Choi-Kraus representation theorem

proves that any completely positive trace-preserving map has a Kraus operator representa-

tion, and conversely, any map that can be decomposed into an operator sum representation

is completely positive and trace-preserving [14].

Clearly, the unitary propagation superoperator U(ρ) previously presented satisfies these

requirements

U(ρ) = U(t)ρ(0)U(t)† and U(t)†U(t) = I

Such a map is, in fact, also unital (i.e. it preserves the identity element Id ∈ Od of the vector

space U(Id) = Id) because it satisfies the additional requirement that
∑

k AkA
†
k = I.

The Lindblad propagation superoperator S(ρ) can also be given an operator sum repre-
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sentation [18, 19], for which the time dynamics of the Kraus operators are known.

(L+D)(ρ) =
∑
k

Ak(t)ρ(0)Ak(t)
†

The more complete knowledge of the time dynamics provided by this picture comes at the

cost of an additional assumption of Markovianity for system-environment interactions.

2.3 Measurement

Quantum measurements are described by a set of measurement operators {Mm} acting on

the state space of the system being measured, where m indexes the possible outcomes of the

measurement. The probability of obtaining a given outcome for a prepared state ρ is

p(m) = Tr[M †
mMmρ]

where the operators satisfy a completeness relation

∑
m

M †
mMm = I such that

∑
m

p(m) = 1.

The post-measurement state of the system is

ρm =
MmρM

†
m

p(m)

General measurements in quantum mechanics are described by positive operator-valued mea-

sures (POVMs) that consist of a set of positive operators {Em}, whose elements are defined

in terms of the measurement operators Mm as

Em ≡M †
mMm
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The POVM {Em} is sufficient to describe the probability of all possible measurement out-

comes p(m) = Tr[Emρ] and also satisfies the completeness relation necessary for {p(m)} to

be a properly normalized probability distribution.

The POVM formalism simplifies in the case that a measurement is described by a com-

plete set of orthonormal projectors Pm = |ψm⟩ ⟨ψm| onto the state space of the system. Such

sets {Mm} = {Pm} describe observables (M), which are Hermitian operators on the state

space of the system and thus admit a spectral decomposition.

M =
∑
m

mPm.

The eigenvalues of the operator correspond to the observable outcomes of the measurement

described by {Pm}. By the orthonormality of the projectors PiPj = δijPi, the set of POVM

elements {Em} = P †
mPm = Pm are the same the set measurement operators themselves. This

type of measurement is known as projective measurement.

2.4 Distance Measures for Quantum Information

Characterizing the accuracy with which quantum states are prepared or information is trans-

mitted through quantum channels requires the introduction of distance measures for the

distinguishability of quantum states. Distance measures fall into two broad classes: static

measures, which quantify the similarity between two quantum states, and dynamic measures,

which quantify the preservation of information under some quantum operation.

Describing distinguishability measures as distances implies that these functions are met-

rics or closely related to metrics on Od.

Definition 2.4.1. Metric: a metric on a set X is a function on that set d : X ×X → R

for which the following axioms hold

(i) non-negativity: d(x, y) ≥ 0, ∀ x, y ∈ X,

(ii) identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y
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(iii) symmetry: d(x, y) = d(y, x), ∀ x, y ∈ X

(iv) triangle inequality: d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X

2.4.1 Static Distance Measures

Two of the most commonly used static distance measures for quantum information are the

trace distance and the fidelity. The trace distance is itself a metric on Od, and although

the fidelity is not, it readily gives rise to a valid metric and possesses other useful properties

that motivate its use [14]. Both of these measures have classical analogues that are distance

measures on classical probability distributions, and indeed, as the quantum measures can be

related to classical measures on the eigenvalue spectrum of the operators, it is instructive to

introduce both.

Definition 2.4.2. Classical Trace Distance: The classical trace distance DC between

two probability distributions {px} and {qx} over the same set of indices {x} is defined as

half the l1 distance between the distributions.

DC({px}, {qx}) =
1

2

∑
x

|px − qx|

From this expression, the relationship DC({px}, {qx}) ≥ 1
2
(
∑

x px −
∑

x qx), suggests an

equivalent definition for the classical trace fidelity.

DC({px}, {qx}) = max
S⊆{x}

(
∑
x∈S

px −
∑
x∈S

qx)

This offers the intuitive interpretation of the trace distance as the maximized difference

between the probability that an event S occurs according to the probability distribution

{px} as opposed to the same event occurring according to the probability distribution {qx}.

Definition 2.4.3. Quantum Trace Distance: The trace distance D for quantum me-

chanical states ρ and σ is defined as half the trace norm of the difference of the density

16



matrices

D(ρ, σ) =
1

2
Tr |ρ− σ|

where the absolute value for A ∈ Od is defined per usual as |A| =
√
A†A. D satisfies all the

properties of a metric and additionally is invariant under unitary transformations

D(ρ, σ) = D(UρU †, UσU †).

In analogy with the classical trace distance, the quantum mechanical trace distance can be

defined as the maximization over all positive operators or projectors P ≤ I

D(ρ, σ) = max
P

Tr(P (ρ− σ)).

The quantum trace distance is, therefore, the maximum difference in probability that a

measurement outcome corresponding to a POVM element P occurs for state σ as opposed

to state ρ. From this, it is apparent that the probability distribution of observing the

eigenvalues of P for the states ρ and σ should also be maximally separated, which allows

the quantum mechanical and classical trace distances to be related as follows.

D(ρ, σ) = max
{Em}

DC(pm, qm)

Here, the maximization is performed over the set of POVM elements {Em} corresponding

to probability distributions of measurement outcomes pm = Tr(ρEm) and qm = Tr(σEm).

Definition 2.4.4. Classical Fidelity : The classical fidelity FC of two probability distri-

butions {px} and {qx} over the same set of indices {x} is

FC({px}, {qx}) =
∑
x

√
pxqx

The fidelity is nonzero, and is in fact maximized, in the case {px} = {qx}. It is therefore not

a valid metric by condition (ii) of the definition of a metric, though it satisfies the remaining
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requirements.

Definition 2.4.5 Quantum Mechanical Fidelity : The fidelity of two quantum states ρ

and σ is

F(ρ, σ) = Tr
√
ρ1/2σρ1/2

The quantum fidelity also satisfies all properties of a metric except condition (ii) and is

invariant under unitary transformations.

F(UρU †, UσU †) = F (ρ, σ) = Tr

√√
UρU †(UσU †)

√
UρU † =

Tr
√
U
√
ρU †UσU †U

√
ρU † = Tr

(
U †U

√√
ρσ

√
ρ

)
= Tr

√
ρ1/2σρ1/2.

Here we have made repeated use of the positive operator identity
√
UAU † = U

√
AU † and

the cyclic property of the trace.

If one of the quantum states is a pure state ρ = |ψ⟩ ⟨ψ|, the fidelity formula may be

further simplified to the square root of the overlap of σ and |ψ⟩.

F(|ψ⟩ ⟨ψ| , σ) = Tr
√
⟨ψ|σ |ψ⟩ |ψ⟩ ⟨ψ| =

√
⟨ψ|σ |ψ⟩.

As in the case of the trace-distance, it is possible to relate the classical and quantum fidelity

by considering the probability distributions induced by a measurement:

F(ρ, σ) ≤ min
{Em}

FC(pm, qm),

where {Em} is again a complete set of POVM elements and pm = Tr(ρEm) and qm = Tr(σEm)

are the probability distributions corresponding to measurement with {Em}.

2.4.2 Dynamic Distance Measures

Dynamic distance measures describe how well a quantum operation preserves information.

Commonly, these measures are framed in terms of the fidelity of quantum channels rather
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than the trace distance. One way of characterizing the channel fidelity is to use the static

fidelity to determine the distance between the state prepared by the quantum channel

EU(ρ) = E ◦ U , where E is the noise operator associated with the channel and the state

that would be prepared by the ideal implementation of the channel U(ρ). However, the

channel fidelity should ideally describe the performance of an operation independent of any

particular initial state. This can be accomplished by defining an ensemble-average fidelity

over a set of initial states {ρj}, prepared with probability pj.

Definition 2.4.6 State-Averaged Channel Fidelity : The channel fidelity is a dynamic

fidelity measure that describes the ensemble-average performance of a quantum operation

EU relative to the ideal unitary superoperator U . Note that the ensemble {pj, ρj} should be

selected to appropriately sample the state space of possible initial states

FEU ,U =
∑
j

pj [F(U(ρj), E(ρj))]2 =
∑
j

pj

(
Tr

√√
EU(ρ)U(ρ)

√
EU(ρ)

)2

.

By the invariance of the fidelity under unitary transformations, this is equivalent to the

channel fidelity of the noise operator E to the identity I

FE,I =
∑
j

pj

(
Tr

√√
E(ρ)I(ρ)

√
E(ρ)

)2

.

The role of the squared fidelity in the definition of the channel fidelity is not immediately

obvious but can be understood by considering the second commonly used measurement of

dynamic fidelity – entanglement fidelity. The entanglement fidelity is premised on the idea

that a quantum operation that preserves information well also preserves entanglement. If

instead of defining the fidelity by comparing the action of a quantum channel’s noise operator

E on an initial state ρ to the action of the identity I on that same state, we instead consider

that E and I act replicas of the initial state ρ and ρ̃, it becomes evident that E is close to I

if it preserves the initial entanglement of ρ and ρ̃. More generally, E has high entanglement

fidelity if it preserves entanglement with any ancillary system.
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The expression for the entanglement fidelity is therefore determined by first purifying

the initial state ρ of system A by introducing a fictitious system R such that the composite

system AR is in a pure state.

Definition 2.4.7 Entanglement Fidelity The entanglement fidelity is a dynamic fidelity

measure that depends on the extent to which a system of interest A in an initial state ρ and

a reference system R remain entangled after A is acted upon by the noise channel E and R

by the identity I.

FE(E , I) = ⟨AR|
[
(E ⊗ I) |AR⟩ ⟨AR|

]
|AR⟩

The right hand side is equal to the square of the static fidelity

F(|AR⟩ ⟨AR| , (E ⊗ I)(|AR⟩ ⟨AR|) =
√

⟨AR|(E ⊗ I)(|AR⟩ ⟨AR|)|AR⟩

between the initial state of the composite system |AR⟩ ⟨AR| and the final

state (E ⊗ I)(|AR⟩ ⟨AR|).

The entanglement fidelity therefore provides a useful interpretation of the “information

source” that is preserved under high fidelity quantum operations as the entanglement between

a system and its environment. In the remainder of this thesis, however, we exclusively

employ the channel fidelity since that is the more commonly used dynamic fidelity measure

in randomized benchmarking protocols.

2.4.3 Uniform Sampling and the Haar Measure

In order to obtain the ensemble average channel fidelity introduced in the previous section,

it is necessary to define a measure µFS to uniformly sample the complex projective space

CPd−1 of pure states |ψ⟩ ⟨ψ|. This measure is the Fubini-Study measure µFS, which is the

unique unitarily invariant measure on pure states [20].

The state-averaged channel fidelity between an ideal gate described by the unitary su-

peroperator U and the noisy implementation described by a quantum channel formed by the
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composition EU = E ◦ U can then be written as an integral over µFS [15].

FEU ,U =

∫
CPd−1

Tr

√√
EU(|ψ⟩ ⟨ψ|) U(|ψ⟩ ⟨ψ|)

√
EU(|ψ⟩ ⟨ψ|) dµFS.

From the unitary invariance of the fidelity, this is equal to the average fidelity of the noise

channel E to the identity I

FE,I =

∫
CPd−1

Tr (|ψ⟩ ⟨ψ| E(|ψ⟩ ⟨ψ|)) dµFS.

Uniform sampling of the state space can also be achieved by applying random unitaries

U selected from the Haar measure µH on a fixed pure state |ϕ⟩ ⟨ϕ| such that |ψ⟩ ⟨ψ| =

U(|ϕ⟩ ⟨ϕ|)U †. This leads to an equivalent form for the average channel fidelity integrated

over the Haar measure on the unitary group of (d× d) matrices Ud.

FE,I =

∫
U(d)

Tr
(
U |ϕ⟩ ⟨ϕ|U †E(U |ϕ⟩ ⟨ϕ|U †)

)
dµH

2.4.4 Unitary t-Designs

In practice, generating a Haar random unitary is inefficient because the number of gates re-

quired grows exponentially with the number of qubits [15]. However, it is possible to exploit

the properties of groups of operations known as unitary t-designs to circumvent the genera-

tion of Haar random unitaries, resulting in more efficient quantum channel characterization

protocols [15, 16].

Definition 2.4.8 Group: A group G is a set of group operations {gj} together with a

combinatorial operation · (group multiplication) such that four axioms are satisfied [21]:

(i) closure: ∀gi, gj ∈ G, gi · gj ∈ G

(ii) associativity : ∀gi, gj, gk ∈ G,(gi · gj) · gk = gi · (gj · gk)

(iii) identity : there is a group operation I ∈ G with the property that gi · I = I · gi = gi
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(iv) inverse: ∀gi ∈ G there exists an inverse operation g−1
i ∈ G such that gi·g−1

i = g−1
i ·gi = I

A group of operation elements is a unitary t-design if it satisfies the following definitiion.

Definition 2.4.9 Unitary t-Design: A unitary t-design is a finite set of unitary operators

{Uk} ⊂ U(d) on the d-dimensional field of complex numbers Cd such that for every polyno-

mial P(t,t)(U) of degree at most t in the matrix elements of U and their complex conjugates

1

K

K∑
k=1

P(t,t)(Uk) =

∫
U(D)

dµHP(t,t)(U)

where dµH denotes the Haar measure on the unitary group U(d).

2.4.4.1 Unitary 2-Design Twirl

Definition 2.4.10 Twirl : The twirl of a quantum channel E is the average superoperator E

under conjugation by randomly chosen unitary superoperators U sampled according to the

probability measure µ (typically chosen to be µH)

E(ρ) =
∫
U(d)

U † ◦ E ◦ U(ρ) dµ

Here, U † ◦E ◦U denotes the composition ◦ of operations such that U is applied first, followed

by E , and then by U †. Using this ordering and the Kraus operator representation of the

unitary superoperator U(ρ) = UρU †, the definition of the twirl takes a form suggestive of its

relationship to the average channel fidelity [15, 16]

E(ρ) =
∫
U(d)

U †E
(
UρU †)Udµ.

The probability measure over which twirling is performed is typically chosen to be the Haar

measure since it can be proven that the channel has a simple representation as a depolarizing
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channel in this case [22]

E(ρ) =
∫
U(D)

U † ◦ E ◦ U(ρ) dµH = pρ+ (1− p)
Id
d
.

Here p is the depolarizing parameter that governs the probability with which the quantum

channel replaces the input state ρ with the maximally mixed state Id. The depolarizing

channel fidelity is also a simple function of the depolarizing parameter and dimension of the

system

FE,I = p+
1− p

d
.

The equivalence between the twirl of superoperators over the Haar measure and depolarizing

channels is the foundation of all randomized benchmarking (RB) methods. The relationship

between the average gate fidelity obtained by RB and the depolarizing channel fidelity is

discussed in greater detail in chapter 3.

One more twirling identity is, however, required. The above definition of the twirl still

relies on unitaries sampled from the Haar measure, which is exponentially inefficient. For

unitary 2-designs, the discrete twirl over a uniformly sampled, finite set of unitaries {Uk} is

equal to the twirl over the full Haar measure on the unitary group U(d) [15].

1

K

K∑
k

U †
k ◦ E ◦ Uk(ρ) =

∫
U(d)

U † ◦ E ◦ U(ρ) dµH .

Random circuits of elements selected from a unitary 2-design thus provide an efficient twirling

protocol with which to implement RB.

2.4.5 The Clifford Group

The Clifford hierarchy consists of groups of operations important to the theory of quantum

error-correcting codes and fault-tolerant computation [23]. In this thesis, the first two levels

of this hierarchy, the Pauli and Clifford groups, are of significance.

Definition 2.4.11 Pauli Group: The n-qubit Pauli group Pn is a unitary 1-design with
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a set of group operators Pn = {X, Y, Z, I}⊗n × {±1,±i} consisting of the n-fold tensor

product of elements of the single-qubit Pauli group P1 along with multiplicative phases.

The elements of P1 = {X, Y, Z, I} × {±1,±i} have representations as 2× 2 matrices where

X = σx =

0 1

1 0

 Y = σy =

0 −i

i 0

 Z = σz =

1 0

0 −1

 I2 =

1 0

0 1

 .

Definition 2.4.12 Clifford Group: The n-qubit Clifford group Cn is a unitary 2-design

consisting of the normalizers of the Pauli group: an operator C of dimension d = 2n is an

element of the Cn if and only if CPC† ∈ Pn for all P ∈ Pn.

A group can be described in terms of its generating set, which is a subset of group

operations such that any operation in the group can be constructed by group multiplication

of elements in the subset. For the single-qubit Clifford group C1, the minimal generating set

consists of the Hadamard H and phase gate S. For higher dimensions n ≥ 2, an additional

CNOT gate is required, and elements of Cn are formed as n-fold tensor products of the

generating gates {H,S,CNOT}.

H =
1√
2

1 1

1 −1

 S =

1 0

0 ei
π
2

 CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The Clifford group is possessed of several properties that make it a suitable set of oper-

ations with which to implement randomized benchmarking methods. First and foremost, it

is a unitary 2-design, so the discrete twirl over elements of Cn is equal to the full twirl over

the Haar measure. Sampling from the discrete group eliminates the inefficiency associated

with Haar-random unitary generation. The evolution of quantum states under the action

of the Clifford group can also be efficiently simulated on a classical computer, as proven in

the Gottesman-Knill theorem [23]. Simulated results of Clifford-based randomized bench-

marking under particular noise models provide a valuable reference for analyzing the types
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of error processes present in quantum information processors [8]. Moreover, though the Clif-

ford group is not itself a basis for universal quantum computation, arbitrary unitaries can

be generated by the addition of a single gate (ex. π/8 or Toffoli gates) outside the gateset.

Typical fault-tolerant architectures based on stabilizer codes are dominated by Clifford gates

and are most sensitive to errors in the elementary elements of Cn. Characterizing the average

error associated with Clifford gates, therefore, provides a good estimate of the performance

of the universal gateset as a whole.

2.4.6 DiVincenzo Criteria

The centrality of the Clifford group to universal quantum computation and error correction

schemes is a defining feature of this group. More generally, any quantum information pro-

cessing architecture and control scheme may be evaluated according to several criteria that

must be satisfied to implement universal quantum computation.

DiVincenzo’s criteria explicitly enumerate the requirements of universal quantum compu-

tation and provide a concrete rubric with which to identify developmental targets for NISQ

architectures [24]. The five Divincenzo criteria for universal computation are as follows.

First, a QIP must be a scalable physical system with qubits (quantum two-level systems)

whose physical parameters are well-characterized. Physical parameters are considered to be

well characterized if the single-qubit Hamiltonian and coupling Hamiltonians for interactions

with other qubits or external fields are accurately known. Second, it must be possible to

initialize the system in a well-defined fiducial state such that the qubits are in a known state

at the start of the computation. Third, decoherence, which arises due to system-environment

interactions in the open quantum system, should occur on a much longer timescale than the

gate operation time. Fourth, it must be possible to implement a set of universal quantum

gates, which are control operations capable of implementing sequences of arbitrary unitary

transformations that each act on a small number of qubits. Error correction schemes re-

quire these control operations to be implementable in parallel such that gate operations

involving a finite fraction of the qubits may be performed simultaneously. Additionally, the
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combined systematic and random error rate per gate operation must be constrained below

a threshold value in the vicinity of 10−4 - 10−5, depending on the noise model. Finally,

qubit-specific measurement must be possible so that the state of individual qubits can be

accurately determined.

In this thesis, we focus primarily on the fourth criterion and attempt to reduce error

rates associated with quantum operations. However, it should be noted that superconduct-

ing architectures already rank highly with respect to many of the DiVincenzo criteria due

to their scalability, well-characterized tunable coupling schemes, long coherence times, and

mature microwave electronics for qubit-specific measurement and control. Incremental im-

provements in the fidelity of quantum operation therefore represent substantive progress

towards universal quantum computation.
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CHAPTER 3

Randomized Benchmarking

Accurate characterization of noise in quantum operations is an essential step towards fault-

tolerant computation. Threshold theorems for a variety of noise models [25, 26] promise that

arbitrarily large quantum computations may be performed efficiently provided that the error

associated with individual gates is below a given rate. Quantum process tomography (QPT)

is one traditional method of noise characterization that strives to completely reconstruct the

cumulative noise operator associated with a process [27, 28]. This is achieved by tomographic

measurement of the output of that process acting on a set of (d2) input states that span the

operator space Od on Hd, and the number of experiments therefore scales exponentially (d2n)

with the number of qubits (n), preventing the application of QPT to the characterization of

larger systems [22]. Additionally, the process matrix in QPT absorbs state preparation and

measurement (SPAM) errors such that the infidelity associated with the target transforma-

tion can not be separately determined. Randomized benchmarking (RB) methods present

an alternative approach to partial noise characterization that is scalable and insensitive to

SPAM errors [29].

RB methods exploit properties of unitary t-designs to efficiently obtain information about

the average superoperator of a noise channel. Provided the noise is Markovian and the vari-

ance between the noise associated with individual elements in the unitary t-design is within

certain bounds, which are explored in detail in [30, 29], these methods well characterize the

performance of a gateset. Extensions of randomized benchmarking methods have also been

developed: leakage randomized benchmarking (LRB) allows leakage out of the computa-

tional subspace to be estimated, and interleaved randomized benchmarking (IRB) allows the

fidelity of individual gates within the gateset to be determined.
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3.0.1 Randomized Benchmarking Protocol

Standard randomized benchmarking provides information about the average fidelity of a

quantum channel under the action of a set of unitaries. The Haar average fidelity may be

obtained efficiently by taking advantage of the twirling identity introduced in section 2.4.4.1

for a set of gates whose members are elements of a unitary 2-design G. Frequently, G is

designated to be the Clifford group Cn since this group is a unitary 2-design, which can be

made into a basis for universal quantum computation through the addition of a single gate

outside the group [29]. The noisy implementation of the Clifford elements can be written as

a composition S = E ◦ C of the ideal Clifford element C with a noise channel E . The RB

protocol introduced in [29] and outlined here then allows the characterization of the average

noise channel as follows.

1. Choose an array of sequence lengths m ∈ N over which to repeat the procedure.

2. Construct a sequence im = {Ci1 , Ci2 ...Cim , Cim+1} with m elements randomly selected

from G and an (m+1)-th element that is the inverse Cm+1 = C†
1◦. . .◦C†

m of the sequence

{Ci1 , Ci2 ...Cim}. In the absence of noise, im is thus the identity operation. The noisy

sequence for a noise channel Eij ,j, which may be time (j) and gate (Cij) dependent, is

then

Sim = ⃝m+1
j=1

(
Eij ,j ◦ Cij

)
3. Compute the survival probability Tr [EψSim(ρψ)] for im, where Eψ is the POVM ele-

ment corresponding to the projector onto the initial state in the presence of measure-

ment errors, and ρψ is the density matrix for the initial pure state (typically |0⟩ ⟨0|) in

the presence of state-preparation errors.

4. Repeat steps 2 & 3 for k independent random sequences {im} to determine the average

survival probability over the set of sequences

F seq(m,ψ) = Tr [EψSm(ρψ)]
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where Sm is the sequence operation Sim averaged over k realizations of the sequence.

Sm =
1

|{im}|

|{im}|∑
im

Sim

5. Fit the average sequence fidelity to either the zeroth or first order model in the gate-

dependence of the noise channel.

F
(0)

seq(m,ψ) = A0p
m +B0

F
(1)

seq(m,ψ) = A1p
m + C1(m− 1)(q − p2)pm−2 +B1

The coefficients A0, B0, A1, B1, and C1 absorb state preparation and measurement er-

rors, and the depolarizing parameter p is related to the strength of the noise. The

average error rate r per gate is one minus the depolarizing channel fidelity

r = 1− p− (1− p)

d
.

3.0.2 Derivation of the Randomized Benchmarking Model

The full derivation of the standard RB protocol is presented in [29], and restrictions on

the validity of the zeroth and first order models are elaborated in [30]. Here, we present a

brief overview of the connection between the average sequence fidelity and the fidelity of a

depolarizing channel.

The relationship between the random sequence Sim and the twirl over G can be derived

by repeated applications of the identity operation Cij ◦ C†
ij
. In the simplified case of gate-

independent noise, the noise at each step Eij ,j is equal to the average noise channel E .

E =
1

|{ij, j}|

|{ij ,j}|∑
ij ,j

Eij ,j
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The sequence Sim is then Sim = ⃝m+1
j=1 E ◦ Cij = E ◦ Cim+1 ◦ E ◦ Cim ◦ . . . E ◦ Ci2 ◦ E ◦ Ci1

= E ◦ Cim+1 ◦ Cim ◦ . . . Ci1 ◦ C
†
i1
. . . Cim ◦ C†

im
◦ E ◦ Cim ◦ Cim−1 ◦ . . . Ci1 ◦ C

†
i1
. . . ◦ C†

im−1
◦ E

. . . . . . . . . ◦ E ◦ Ci2 ◦ Ci1 ◦ C
†
i1
◦ E ◦ Ci1

= E ◦⃝m
j=1D

†
ij
◦ E ◦ Dij

where the conjugation operations D†
ij
◦ E ◦ Dij are defined in terms of new gates Dij =

Cij ◦ Cij−1
◦ . . . Ci1 .

The average sequence operation Sm then takes the form of a twirling operation and can

therefore be written as an m-fold composition of depolarizing channels.

Sm =
1

K

∑
ij

E ◦⃝m
j=1D

†
ij
◦ E ◦ Dij = E ◦

∑
ij

Ẽij
K

= E ◦ E◦m
twirl

Here, the abbreviated notation Ẽij = D†
ij
◦ E ◦ Dij has been introduced for the conjugation

operations, and K has been used to denote the number of elements in the finite set {Dij}.

Replacing Etwirl with its definition as a depolarizing channel Edep = pρ + (1 − p) I
d
and

calculating the average sequence fidelity yields the zeroth order model.

F
(0)

seq(m,ψ) = Tr [Eψ E ◦ E◦m
twirl] = Tr

[
Eψ E

(
pmρψ + (1− pm)

I
d

)]

= Tr

[
Eψ E

(
ρψ − I

d

)]
pm + Tr

[
Eψ E

(
I
d

)]
The coefficients A0 = Tr [Eψ E (ρψ − I/d)] and B0 = Tr [Eψ E (I/d)] absorb the errors as-

sociated with measurement and state preparation such that p provides an estimate of the

fidelity of the depolarizing channel unaffected by these elements.

In the case that the noise operator is gate-dependent, higher order corrections can be

determined by performing a perturbative expansion about the average gate error using

δEij ,j = Eij ,j − E . The derivation follows the same general procedure with the exception
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that different forms of the average sequence operation arise depending on whether the per-

turbation is applied on the first gate, at a point within the sequence, or on the last gate

[29].

3.0.3 Interleaved Randomized Benchmarking

The standard randomized benchmarking protocol only provides information about the av-

erage noise channel associated with transformations in the group and cannot be used to

characterize individual gates. In order to characterize the fidelity associated with a single

gate within the gateset, as we strive to do for our pulse gates, the RB gate sequence can be

modified by alternating random Clifford elements Ci,j ∈ G with a gate of interest C ∈ G to

construct interleaved randomized benchmarking circuits. Note that the recovery operation

in IRB is also modified to invert the interleaved sequence Cim+1 = C†
1 ◦ C† . . . C†

m ◦ C† such

that the ideal operation performed by the interleaved circuit is still the identity.

Interleaved randomized benchmarking also relies on the properties of the twirl over a

unitary 2-design; however, in this case, the twirl is performed over the composition (EC ◦Ei,j)

of the noise channel for the gate of interest EC with that of a random member of the group

Ei,j. The quantum operation for each IRB sequence im is the following,

Vim = Eim+1 ◦ Cim+1 ◦
(
⃝m

j=1

[
C ◦ EC ◦ Eij ◦ Cij

])
which can be rewritten as a composition of conjugation operations and averaged over se-

quences in the same manner as for standard RB to depolarize
(
EC ◦ Eij

)
. Fitting the average

survival probability F seq of the interleaved sequence to the zeroth or first order models yields

the depolarizing parameter pC for the composite channel. This depolarizing parameter pC

is then compared to the depolarizing parameter p obtained from a standard randomized

benchmarking experiment without the interleaved element to generate an estimate for the
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error associated with the interleaved gate.

rC =
(d− 1)(1− pC/p)

d

For sufficiently small variance in the noise operators of the Clifford elements Eij ≈ E , the

estimated error of the interleaved gate can be bounded to lie in the range [rC − E, rC + E]

where

E = min


(d− 1) [|p− pC/p|+ (1− p)]

d
2(d2 − 1)(1− p)

pd2
+

4
√
1− p

√
d2 − 1

p

The full derivation of the interleaved gate error and bounds can be found in [31].

3.0.4 Leakage Randomized Benchmarking

Multiple extensions of randomized benchmarking protocols designed to characterize average

leakage rates for unitary t-designs have been presented [7, 32, 33, 8]. Early experimental

implementations discussed in references [7, 32] require direct measurement of the leakage

subspace and rely on phenomenological decay models for their analysis of leakage rates.

Subsequent rigorous mathematical treatments of leakage rates [33, 8] validate the general

form of the empirical models and yield improved leakage characterization protocols. Of

these, the protocol we have chosen to implement is the LRB model of Wood et al. [8], which

provides a method of separately estimating leakage rates into and out of the computational

subspace, even in the case where the leakage subspace cannot be directly measured. This

method also allows simultaneous estimation of the average gateset fidelity.

The aim of the LRB model is to characterize the average error rate for a quantum channel

E that couples a computational subspace χ1 of dimension d1 and a leakage subspace χ2 of

dimension d2. The cumulative state leakage L(ρ) of a density matrix ρ ∈ χ on the full

direct-sum state space of the system χ = χ1 ⊕ χ2 can be calculated using projectors I1 and
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I2 onto χ1 and χ2 respectively

L(ρ) = Tr [I2ρ] = 1− Tr [I1ρ] .

The noise associated with the quantum channel E can be characterized by considering the

effect of E on the state leakage of elements in the computational and leakage subspaces

{|ψ1⟩ ⟨ψ1|} ∈ Od1(χ1) and {|ψ2⟩ ⟨ψ2|} ∈ Od2(χ2). The average change in state leakage over

elements of χ1 yields an estimate of the leakage out of the subspace (L1),

L1(E) =
∫
L (E (|ψ1⟩ ⟨ψ1|)) dψ1 = L

(
E
(
I1
d1

))

and the average over elements of χ2 yields an estimate of seepage (L2) back into the com-

putational subspace

L2(E) = 1−
∫
L (E (|ψ2⟩ ⟨ψ2|)) dψ2 = 1− L

(
E
(
I2
d2

))
.

In the above, dψ1 and dψ2 indicate uniform selection of states from the Haar measure on

χ1 and χ2 respectively. The average rates L1(E) and L2(E) often provide a good idea of

the channel performance in practice, and it is furthermore possible to bound the worst-case

leakage rates over all input states in terms of the average rates [33]. A full derivation of the

model for the zeroth order approximation Eij = E can be found in [8].

The LRB protocol may be implemented as follows.

1. Choose an array of sequence lengths m ∈ N and construct sequences im of m random

elements of G whose (m+1)-th elements are defined as the recovery operation Cm+1 =

C†
1 ◦ . . . ◦ C†

m.

2. Apply the sequences to an initial pure state ρψ (typically |0⟩ ⟨0|) in the computational

subspace Od1(χ1), and perform measurements over all projectors Ej onto the compu-
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tational subspace (j = 0, 1 . . . d1 − 1) to estimate the survival probabilities.

Pj(im) = Tr [EjSim(ρψ)]

Here Sim is the quantum operation for the sequence, as defined in standard RB.

❋ In the case where high-fidelity measurements are limited to a single two-outcome

POVM {E0, I − E0}, LRB may still be implemented by modifying the recovery

operation Cm+1 such that the population of state |j⟩ is rotated onto the projective

space of E0. Defining a unitary matrix Uj such that Ej = UjE0U
†
j = Uj(E0), we

modify the recovery option C(j)
m+1 = U †

j ◦ Cm+1 to obtain a new sequence im
(j) =

U †
j ◦ im. This yields

Pj(im) = Tr [EjSim(ρψ)] = Tr
[
E0S(j)

im
(ρψ)

]

3. Sum the survival probabilities Pj to estimate the population of χ1

PI1(im) =
∑
j

Pj(im) = Tr [I1Sim(ρψ)]

4. Repeat steps 1,2, & 3 for k independent random sequences im to obtain an estimate

of the average survival probability PI1 of the computational subspace.

PI1(m,ψ) =
1

|{im}|

|{im}|∑
im

PI1(im)

5. Fit the average survival probability to the decay model

PI1(m,ψ) = Cpm +B
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and compute the average leakage and seepage rates for the gateset as

L1(E) = (1−B)(1− p)

L2(E) = B(1− p)

6. LRB may additionally be used to estimate the average gateset fidelity by fitting the

average survival probability for the initial pure state, here taken to be |0⟩ ⟨0|, to the

model P0(m,ψ) = B0+C0p
m
1 +A0p

m
2 . Here, the value of p1 is fixed by the value obtained

in step 3, and the coefficients obey the relationships 0 ≤ B0 ≤ B, 0 ≤ A0 ≤ 1, and

0 ≤ A0 +B0 + C0 ≤ 1. The average gate error is then given by

r = 1− 1

d1
[(d1 − 1)p2 + 1− L1]

For weak leakage, this simplifies to the standard RB decay model P0(m,ψ) = B0 +

A0p
m
2 .
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CHAPTER 4

Quantification of Robustness, Fidelity, and Leakage for

Composite and Adiabatic Gates

4.1 Introduction

In the last two decades, superconducting qubits have emerged as a promising architecture to

achieve large-scale, fault-tolerant quantum computation. Improvements to quantum circuit

design have dramatically increased intrinsic coherence times from nanoseconds to well over

100 µs on modern devices [6]. As coherence times improve, the depth of quantum circuits

can be increased; however, longer sequences of operations lead to the rapid accumulation of

pulse errors. Large cumulative errors may result in erroneous circuit operation. It has there-

fore become increasingly important to minimize control errors such that error rates are kept

below fault-tolerance thresholds. High fidelity operations for optimally calibrated microwave

pulses have already been implemented on superconducting systems, with average single-qubit

gate fidelities as high as ∼ 0.999 [8, 7]. However, variability (drift) and inaccuracies in the

amplitude or frequency of the microwave field may significantly decrease fidelities, leading to

control pulses that must be recalibrated frequently and are only accurate over narrow band-

width and amplitude ranges. That said, a plethora of well-developed compensation schemes

exist to mitigate the effects of miscalibration. Since the 1970s, NMR pulse design techniques

have been optimized to tolerate control field imperfections, which have historically been a

dominant source of error [9]. Robust control of quantum information processors inspired by

pulsed NMR methods has been implemented on a variety of architectures including trapped

ions [10], doped solids [11], NMR ensembles [12, 9] as well as pre-NISQ era superconducting
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qubits [13]. These techniques have so far benefited each type of quantum processor they

were tested on.

Composite pulses (CPs) were originally developed in NMR to achieve uniform inversion in

the presence of rf field inhomogeneity [34]. CPs consist of short sequences of phase-modulated

pulses designed to correct for errors in the rotation angle or axis of rotation. Trains of only

a handful of pulses can compensate for relatively large miscalibrations of the control field

by careful selection of pulse phases and flip angles [34]. General methods of CP design

using propagator expansions can generate longer sequences resulting in gates of arbitrary

precision [9] and robustness with respect to variations in amplitude and frequency [12]. CPs

have been used to generate numerous broadband, narrowband, and passband schemes in

population inversion experiments [35]. A class of composite pulses known as general rotors

(or universal rotations) that produce desired rotations independent of the initial state have

also been developed for quantum computing applications where insensitivity to the initial

state is critical [12]. Such universal rotation pulses are typically designed to perform very

high fidelity rotations in the presence of small errors but may be less robust than “point-to-

point” transformation pulses frequently used in NMR, where specific initial conditions are

often anticipated [12].

Adiabatic pulses (APs) are a class of control pulses possessing inherent robustness; their

potential in quantum computing has already been demonstrated: adiabatic gates have been

realized with high fidelity ≈ 0.997 in neutral atom qubits [36] and have been also been

used to stimulate coherent population transfer between superconducting qubits [37]. APs

are designed with continuous amplitude and frequency modulation functions, defined so that

the frequency modulation as a function of time ∆q(t) gradually alters the rotation axis while

maintaining the qubit in an eigenstate colinear with this axis. For inversion pulses, the

axis is swept from north to south orientations. Several amplitude and frequency modulation

functions have been proposed to perform adiabatic rotations more rapidly, which is essential

because circuit depth is limited by the gate duration relative to the intrinsic coherence time

of the qubit. These adiabatic rapid passage pulses are primarily used to perform excitation,
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adiabatic half-passage (AHP), and population inversion, adiabatic full-passage (AFP) on a

well defined initial state.

Conventional APs are not general rotors; they only produce predictable rotations for the

component of the initial state that is colinear with the effective microwave drive and induce

inhomogeneous phase shifts in the transverse component. However, composite AHPs known

and B1-insensitive rotation (BIR) pulses have been developed in which these inhomogeneous

phase shifts cancel such that BIR sequences can effect rotations on arbitrary initial states by

arbitrary flip angles [38, 11]. Understanding the performance of single adiabatic pulses on

superconducting architectures is integral to the future implementation of composite general

rotation gates. Of the AFP pulses, the hyperbolic secant (HS1) pulse is the most popular

one due to its insensitivity to amplitudes above the threshold value required to satisfy the

adiabaticity condition and its near uniform inversion inside the borders governed by the

frequency sweep [38]. We characterized HS1 pulses with various parametrizations of the

amplitude and frequency modulation functions using the same inversion profile contours and

randomized benchmarking techniques as employed for composite pulses.

In this work, we demonstrate that both composite and adiabatic pulses implemented

on a transmon qubit can be used to improve the robustness of single-qubit NISQ gates

and that certain composite pulse sequences also produce higher on-resonance fidelity. We

tested a selection of general rotors consisting of CORPSE (Compensation for Off-Resonance

with a Pulse SEquence) and BB1 (Broad Band 1) pulses as well as conventional broadband

inversion pulse sequences including 90x180y90x, 180120180240180120, and Knill pulses. We

used industry-standard methods to characterize the robustness, fidelity, and leakage of CPs

based on simulated and experimental inversion profiles, interleaved randomized benchmark-

ing, and leakage randomized benchmarking. We also optimized HS1 pulses that satisfy the

adiabaticity condition on shorter than typical timescales [11, 37]; this provides a foundation

for composite AP universal rotors. Both composite and AP pulse design techniques can be

extended to allow general unitary rotations, which could be used to define entire gatesets

endowed with the increased robustness conferred by these schemes.

38



4.2 Transmon Hamiltonian

The idealized single-qubit gate problem for transmons is a 2-level system (|0⟩, |1⟩) that maps

to the NMR problem for spin-1/2 nuclei (the spin Hamiltonians are similar). NMR techniques

are therefore readily applicable to coherent control of transmon qubits. Although transmon

circuits are anharmonic oscillators and have accessible states outside the computational

subspace that must be considered to evaluate leakage rates, the qubit-drive interaction in the

rotating frame of the qubit resonant frequency is well approximated by the spin Hamiltonian

Ĥd =
σz
2
∆q(t) +R [Ω(t)]

σx
2

+ I [Ω(t)]
σy
2

(4.1)

where ∆q(t) = ω(t) − ω0 is the detuning from the resonant frequency, R [Ω(t)] and I [Ω(t)]

are the real and imaginary parts of the microwave drive, and (σx, σy, σz) are the Pauli spin

matrices [6].

The propagator for this Hamiltonian can be represented in the convenient form of angle-

axis rotations on the Bloch sphere by defining an effective field Ωeff and rotation axis n(t) =

(sin θ cosϕ, sin θ sinϕ, cos θ).

Ωeff =

√
|Ω(t)|2 +∆q(t)2 θ(t) = arctan

(
|Ω(t)|
∆q(t)

)
.

The propagator for each time step is then

Ud(t, t+∆t) = exp

(
−i

Ωeff
2

(n · σ)∆t
)

(4.2)

where the time dependence of Ωeff(t) and n(t) have been suppressed, and σ is the vector of

Pauli matrices σ = (σx, σy, σz). The relationship between the effective rotation axis and the

ideal rotation axis in the transverse plane n0 = (cosϕ, sinϕ, 0) is then determined by error

in the phase ϕ, which rotates the axis in the transverse plane, and the detuning ∆q, which

introduces a z-component to the axis. The flip angle about the effective axis for a given
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Figure 4.1: a) Bloch sphere rotations for composite 90x180y90x square-pulse and single 180x
square-pulse with amplitude offsets. Trajectories correspond to on-resonance ∆q ≃ 0 pulses
with amplitude offsets Ω/Ω0= 0.9 (blue) and 0.8 (red). b) Composite pulse 90x180y90x
and single 180x pulse with detuning from resonant frequency. Trajectories are plotted for
frequency offsets ∆q/Ω0 = 0.09 (blue) and 0.15(red), and the influence of detuning on the x
rotation axis is shown

timestep dβeff can also be related to the nominal flip angle dβϕ.

dβeff =

√
|Ω(t)|2 +∆q(t)2

|Ω(t)|2
dβϕ.

This representation of the effect of systematic errors in the microwave field allows compen-

sation by composite pulses to be understood from a geometric perspective, as shown for the

90x180y90x pulse in Figure 4.1. Here, we employ βϕ notation to indicate the nominal flip

angle β and phase ϕ (or corresponding axis in the transverse plane 0◦ = x, 180◦ = y) for

each single pulse in sequence.

4.3 Experimental Methods

Experimental data used to characterize the performance of the composite and adiabatic

pulses studied in this paper were collected using the IBM Quantum Experience platform and

the open-source software development kit Qiskit. Qubit 2 of the five transmon qubit (falcon

r4T) IBM quantum backend ibmq lima was used for all data collection. This qubit has

an average resonant frequency ω0 of 5.247 GHz, an estimated anharmonicity of 333.6 MHz,
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and T1 and T2 coherence times of 114.35 and 104.89 µs respectively. The average readout

assignment error is 2.02%, and the error associated with ground state preparation is 0.94%

[39].

The quantum processor ibmq lima offers pulse-level control of operations via Qiskit’s

quantum circuit.add calibration method, which allows custom pulse schedules used in

transpiling the circuit to be specified for any gate. Pulse schedules can be constructed

with library functions, including DRAG and Gaussian profiles, or with custom waveforms.

Complex valued waveforms can be constructed as piecewise-constant pulses with a dwell-

time between samples of 0.22 ns, allowing control pulses with nearly-continuous amplitude

and phase modulation to be implemented. Phase evolution provides a method of modulating

the carrier frequency of the waveform, which we have set to be the resonant frequency of the

qubit (ω0).

4.3.1 Calibration Experiments

In order to calibrate the carrier frequency, we performed a frequency sweep in steps of 6 MHz

over 30 MHz range centered on the most recent IBM calibration of the qubit frequency while

probing the readout resonator to observe state-dependent shifts in the kerneled measurement

signal [32].

Additional calibration experiments were performed to determine the optimal parame-

ters for the shaped composite pulses. Single pulses were implemented both as Gaussian

and DRAG (Derivative Reduction by Adiabatic Gate) pulses to facilitate comparison of the

composite pulse leakage rates in the presence and absence of leakage reduction efforts. Gaus-

sian pulses were constructed using the qiskit.pulse.library Gaussian class as truncated

Gaussian profiles

Ω(t) = Ae−(t−T/2)2/2σ2

, t ∈ [0, T ]

with duration T = 35.2 ns and standard deviation σ = 8.8 ns, which are the same as T

and σ for the default X gate on ibmq lima. The nominal π-amplitude of the Gaussian was
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determined by sweeping A over a range of 200 amplitudes between −0.5 and 0.5 a.u. and

fitting the resulting Rabi oscillations to a sinusoid to find the period, half of which gave the

π-amplitude. The conversion factor from a.u. to rad/sec was also determined from the Rabi

frequency using the relationship

Ωconv.

[
rad/sec

a.u

]
=

β∫ T
0
Ωa.u(t)dt

where β is the nominal flip angle. The determined Ωconv. was 964,474,196 rad/sec per a.u.

The nominal π-pulse amplitude Ω0 is the product of the calibrated π-amplitude A in a.u

with Ωconv.

For DRAG pulses, an additional parameter α controlling the derivative component was

also calibrated. The DRAG pulse profile is defined as

Ω(t) = Ae−(t−T/2)2/2σ2

+ iα
d

dt

(
Ae−(t−T/2)2/2σ2

)
, t ∈ [0, T ]

where the duration and standard deviation have again been defined as T = 35.2 ns and

σ = 8.8 ns. The parameter α was calibrated by repetitions of the identity rotation block

Rp(β)Rm(β), where Rp(β) is a rotation by a positive angle β and Rm is a rotation by the

negative angle of the same magnitude. A range of α values was scanned to determine the

value that minimized the undesired z rotations for the sequence, as described in Ref. [7].

Standard DRAG compensation schemes are calibrated to minimize these phase errors, which

are caused by coupling of computational and noncomputational sublevels under the influence

of the microwave drive, since phase errors rather than leakage have been identified as the

dominant source of gate infidelity [40]. Leakage reduction still occurs for phase-optimal α [7]

4.3.2 Pulse Simulation

Pulse simulations were performed in Python using the spin Hamiltonian in the ω0 frame given

by Eq. (4.1), which can be rewritten in terms of the amplitude and phase of the microwave
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drive as

Ĥd =
σz
2
∆q(t) +

|Ω(t)|
2

(σx cos(ϕ(t)) + σy sin(ϕ(t))) .

Transition probabilities were simulated for a range of frequency offsets ∆q and drive ampli-

tudes AΩconv, where the dimensionless scaling factor A (a.u.) was specified to correspond

with the range of experimental drive amplitudes in a.u. and ∆q to the range of experi-

mental detunings. The complex-valued microwave drive waveform was discretized into n

timepoints {ti} separated by time intervals ∆t equal to the dwell-time of the IBMQ backend

(0.22 ns). The amplitude |Ω(t)| and phase ∠Ω(t) were calculated at each timepoint, and the

propagator for each time ti was determined U(ti, ti−1) = exp
(
−iĤd(ti)∆t

)
. The discretized

approximation to the overall action of the pulse U(tn, t0) |0⟩ = Utn . . . Ut0 |0⟩ on the initial

state |0⟩ = (1, 0)† was then projected onto the desired final state |1⟩ = (0, 1)† to determine

the transition probability.

4.3.3 Adiabatic Pulse Design

The HS1 pulse is defined in the ω0 rotating frame by the complex-valued function

Ω(t) = Ωmax

[
sech(β(

2t

T
− 1)

]1+iµ
,

where µ and β are real valued parameters, Ωmax is the maximum amplitude, and T is the

pulse duration. This can be rewritten in terms of the amplitude and phase modulation

functions Ω(t) = |Ω(t)| eiϕ(t)

|Ω(t)| = Ωmax · sech(β(2t
T

− 1))

ϕ(t) = µ ln

[
sech(β(

2t

T
− 1))

]
,

from which the frequency sweep is

∆q(t) =
dϕ

dt
= −2µβ

T
tanh(β(

2t

T
− 1)).
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The rate of the frequency sweep and effective drive strength Ωeff determine whether the

pulse satisfies the adiabaticity condition

Ωeff ≫
∣∣∣∣dθ(t)dt

∣∣∣∣
throughout its duration. The minimum difference (Ωeff − |dθ(t)/dt|) is typically attained

when the drive is resonant with the qubit, at which point Ωeff reaches its minimum value

|Ω(t)|. For this reason, it is necessary to specify the parameters T , β, and µ such that

adiabaticity is preserved at this critical time. These parameters additionally determine the

amplitude of the frequency sweep 2µβ/T , which defines the pulse bandwidth since HS1 pulses

are designed to perform nearly uniform inversion for all isochromats (off-resonance qubits)

within the frequency range of the sweep [38].

In our implementation, we prioritized simultaneously reducing HS1 duration, maximiz-

ing the simulated transition probability, maximizing the minimum distance specified by the

adiabiticity condition, and increasing the range of addressable isochromats over explicit spec-

ification of either the duration of bandwidth. For our parameter search, we used the Python

Genetic Algorithm library PyGad to perform a stochastic optimization of HS1 pulses with a

gene space defined by durations T between 95 and 169 ns and β and µ parameters ranging

from 1 to 30. The cost function was constructed as a sum of positive terms proportional

to the simulated inversion probability and amplitude of the frequency sweep and terms

negative terms proportional to the pulse duration and the reciprocal minimum difference

Ωeff− |dθ(t)/dt| defining the adiabaticity condition. The best solutions produced by the ge-

netic algorithm were ordered by their duration and by their simulated inversion probability,

and the best performing pulses with respect to both metrics were selected.

4.3.4 Randomized Benchmarking

Randomized benchmarking protocols have become an industry standard for noise character-

ization in quantum operations due to their scalability and insensitivity to state preparation
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and measurement (SPAM) errors. In addition to standard randomized benchmarking, which

provides an estimate for the average fidelity of a gateset, extensions have been developed

to characterize leakage and to estimate the fidelity of individual gates. These techniques

are leakage randomized benchmarking (LRB) [8] and interleaved randomized benchmarking

(IRB) [31], which we employed in this study to characterize the performance of our selected

composite and AFP pulses.

4.3.4.1 Interleaved Randomized Benchmarking

Interleaved randomized benchmarking was performed according to the protocol proposed in

[31] with a Clifford generating set {I, X, Y, Z,H, S, S†} and random circuits with sequence

lengths of m = 1, 21, 41 . . . 341 random Clifford elements Cij ∈ Cn for composite pulses and

m = 1, 11, 21 . . . 341 for adiabatic full passage pulses, for which finer graining was necessary

to capture the more rapid survival probability decay. A recovery operation Cim+1 computed

as the inverse of the random sequence was applied for each sequence length and ⟨σz⟩ was

measured to obtain the survival probability of the initial state |0⟩. Average survival prob-

abilities for each m were determined by averaging over 50 independent random sequences

{im}. Reference circuits composed solely of the random Clifford elements and interleaved

circuits, where the gate of interest C is inserted between the Cij , were constructed using a

fixed random seed such that the interleaved and standard circuits were identical with the

exception of the interleaved element C.

In our implementation of the IRB protocol, there were two additional considerations to

account for. First, interleaved randomized benchmarking is designed to estimate fidelities for

individual elements of Cn; however, the majority of the composite pulses and the AFP pulses

to which we applied this protocol are not elements of this group. Second, RB protocols are

typically implemented for gatesets with Clifford elements of the same average duration since

the depolarization of unitary gate errors assumed by these protocols depends on the time

at which the depolarizing projection is performed [8]. The composite and AFP pulses we

benchmarked are longer than the average Clifford gate, as defined by the default transpiler
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instructions associated with these gates on ibmq lima.

To address the first consideration, we have defined our interleaved element as a pseudo-

identity schedule (named ’customI’) consisting of two composite or AFP pulses in sequence

(Fig. 4.2 c). An ideal inversion pulse is its own inverse, so this schedule can be represented

as I ∈ C1 for the purpose of computing the recovery operation. However, unlike applying

the composite pulse and its time-reversed complex conjugate, over or under rotations are

not reversed but rather magnified by applying two pulses in sequence. We therefore report

the gate error obtained by fitting the survival probability decay curves for C defined by two

sequential inversion pulses as well as the expected fidelity of a single inversion pulse, which

we estimate to be half that of the two back-to-back pulses.

qr1

qr2

1
cr

qr0

qr1

qr2

1
cr

X X S H S Y S X H S Z S

S H S X

qr0

qb) r1

qr2

1
cr

qr0

qr1

qr2

X customI X S H S customI Y S cu

Z S customI Y S customI S H S

a)

b)

c)

0 202 403 605 806 1008
System cycle time (dt=0.22 ns)

f= 5247.64 MHz

Gaussian x90 Gaussian y180 Gaussian x90 Gaussian x90 Gaussian y180 Gaussian x90
D2

no freq.

Name: Gaussian 90x180y90x Identity Schedule, Duration: 960.0 dt 

Figure 4.2: Interleaved randomized benchmarking schematic a) Excerpt of 3 random
Clifford elements in standard RB circuit decomposed in the Clifford generating set
{I, X, Y, Z,H, S, S†} b) Excerpt of IRB circuit with gate of interest ’customI’ interleaved
between random clifford elements c) Pulse schedule used to define the ’customI’ operation
for interleaved randomized benchmarking of Gaussian 90x180y90x composite pulse

The second consideration was resolved by redefining the transpiler instructions associated

with the basis gateset such that the average Clifford duration was the same as the duration

of the ’customI’ schedule. To execute the standard RB and IRB circuits on ibmq lima, the

Clifford generating gates {I, X, Y, Z,H, S, S†} were first decomposed into the basis gateset
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{I,CNOT, RZ , X,
√
X}, of which X and

√
X are the only single-qubit gates with non-zero

duration. By counting the number of basis gates of each type into which the 50 random

sequences of length m=341 are decomposed, the average number of basis gates per Clifford

was determined and used to compute the average Cij duration. The duration of the pulses

executing the X and
√
X rotations were then increased based on the average composition

of Cij in terms of these schedules so that the average Clifford duration was equal to that of

the ’customI’ schedule for the particular AFP or custom pulse under consideration. These

longer pulse schedules were defined, like the default schedules, as DRAG pulses with a 4:1

ratio between the duration and the standard deviation. The amplitude and α parameter for

the X and
√
X schedules was calibrated using the methods previously outlined to ensure

that the longer schedules performed the same rotations as the replaced defaults.

The remainder of the protocol was implemented as described in Ref. [31]. Potential

gate-dependence in the per-Clifford error was investigated by fitting the average survival

probability F seq to the zeroth and first order models [29]

F
(0)

seq = A0p
m +B0

F
(1)

seq = A1p
m +B1 + C1(m− 1)(q − p2)pm−2

and comparing the reduced chi-square χ2
ν criteria. All survival probability decay curves were

fit well by the zeroth order model with a lower χ2
ν value than the first-order model. The

depolarizing parameter of the zeroth order fit for the standard and interleaved sequences was

therefore used to obtain the average error rate of the interleaved element

rC =
(d− 1)(1− pC/p)

d
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and the bounds on the error rate [rC − E, rC + E] where

E = min


(d− 1) [|p− pC/p|+ (1− p)]

d
2(d2 − 1)(1− p)

pd2
+

4
√
1− p

√
d2 − 1

p

.

The average gate fidelity of the inversion pulse was then calculated from the error rate of

the two inversion pulse interleaved element as F = (1− rC)/2.

4.3.4.2 Leakage Randomized Benchmarking

Transmon qubits are multi-level systems whereby the lowest two levels (|0⟩, |1⟩) are selec-

tively addressed by tuning the center frequency. However, some amount of leakage to the

upper levels (|2⟩, |3⟩, etc.) may occur depending on the pulse characteristics. This can be

assessed by measuring the leakage rate, another important metric for pulse performance.

Leakage errors pose a distinct obstacle to fault-tolerant computation and require unique,

resource-intensive error correction schemes [26]. Interactions with leaked states can also lead

to logical errors more deleterious to the gate fidelity than leakage itself, such as the phase

errors resulting from the AC Stark shift that the DRAG scheme is designed to mitigate [41].

We therefore seek to characterize the leakage rates for our selected composite and AFP

pulses using the LRB protocol developed in [8]. Although other RB protocols designed to

estimate leakage have been proposed [33], the LRB protocol was selected because it can be

implemented without direct measurement of the leakage subspace via a modification of the

RB circuits and because it estimates both the leakage (L1) rate out of the computational

subspace and rate of return (L2) of the leaked population to the computational subspace [8].

These rates are average rates over a gateset and do not provide direct estimates of the leakage

rates associated with the individual gates we aim to benchmark. Nevertheless, variations in

the average are expected to reflect the performance of the composite or AFP pulse included

in the Clifford generating set.

The LRB protocol was implemented using 50 independent random sequences with lengths
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of m = 1, 11, . . . 551 Clifford elements. LRB requires the measurement of the probabilities

Pj that the final state prepared by the RB circuit is a state |j⟩ belonging to either the

computational χ1 = {|0⟩ , |1⟩} or leakage χ2 = |2⟩ subspaces. The survival probability of the

χ1 subspace is then determined by summing the survival probabilities P0 + P1 = Pχ1 and

fitting the resulting decay in the average survival probability of the computational subspace

to the model Pχ1(m) = Cpm + B. The leakage and seepage rates are determined from this

model using the equations

L1(E) = (1−B)(1− p), L2(E) = B(1− p).

In the event that it is not possible to fully discriminate the |0⟩ , |1⟩ , |2⟩ states, as was the case

for our measurements on ibmq lima, the protocol may still be implemented using the method

described for the special case where only the POVM {E0, I−E0} (where E0 = |0⟩ ⟨0|) can be

measured with high fidelity. To implement the modified protocol, the unitary that rotates

the projector Ej for the state |j⟩ to the projector onto the ground state is first determined

E0 = UjEjU
†
j . The recovery operation Cim+1 is then modified as C(j)

im+1
= U †

j ◦ Cim+1 so that

the population of |j⟩ is rotated to |0⟩ prior to measurement. In our case, |j⟩ = |1⟩, and

the recovery operation should be modified by Uj = σx to allow P1 to be measured by the

projector onto the ground state. We therefore constructed two sets of circuits: one with

the unmodified recovery operation Cim+1 to measure P0 and one with an additional X gate

modifying the recovery operator C(1)
im+1

to measure P1.

As for our implementation of IRB, we define a custom identity pulse schedule from each

composite and AFP pulse. Instead of systematically interleaving this element, we included it

as an identity operation in the Clifford generating set {I, X, Y, Z, S, S†}. To account for the

fact that the randomly interspersed custom identity schedule is not the same length as the

other Clifford gates, we again assigned calibrated pulse schedules to the X and
√
X gates in

the transpiled circuits such that the average Clifford duration was the same as the identity

pulse schedule. After attaching these transpiler instructions to the circuits, P0 and P1 were

measured by performing 1024 measurements of the POVM {E0, I−E0} and recording ⟨E0⟩.
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Figure 4.3: Leakage randomized benchmarking measurements of |0⟩ and |1⟩ and fitted com-
putational subspace population χ1 for HS1 pulse T:148 ns β:5.72 µ:1.85. Survival probabil-
ities of |0⟩ and |1⟩ were determined from 1024 measurements of the POVM {E0, I−E0} for

RB circuits with the standard Cim+1 and modified C(1)
im+1

recovery operations. Since P0 and
P1 were determined from separate experiments Pχ1 = P0 + P1 may exceed 1. Any resulting

baseline in the mean values of Pχ1 , determined by the difference Pχ1(m = 1) − 1, has been
subtracted prior to fitting in order to ensure valid average survival probabilites and leakage
rates. Reciprocal standard deviations of the data at each length were supplied as weights for
least-squares fitting of the model Pχ1 = Cpm+B. Extracted parameters, p = 0.9856±0.0006,
B = 0.787 ± 0.001, yielded leakage and seepage rates of L1 = 3.1 × 10−3 ± 2 × 10−4 and
L2 = 1.13× 10−2 ± 5× 10−4.

The survival probability of the computational subspace Pχ1 = P0 +P1 was then calculated;

however, since P0 and P1 were recorded in separate experiments, values of Pχ1 exceeding 1

were possible. Any such baseline in the mean values Pχ1(m), determined by the difference

Pχ1(m = 1)− 1, was subtracted prior to fitting to ensure valid average survival probabilities

and leakage rates.

4.4 Results

4.4.1 Composite Pulses

The majority of the composite pulses tested are more robust than the Gaussian 180x and

DRAG 180x single pulses with respect to at least one of the dimensionless figures of merit,

namely the amplitude compensation bandwidth Θ(Ω/Ω0) or the frequency compensation

bandwidth Ξ(∆q/Ω0). Conceptually, the robustness of control pulses can be defined in

terms of the derivatives of the transition probability with respect to the drive parameters,
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evaluated at the optimal drive conditions (∆q/Ω0 = 0, Ω/Ω0 = 1). Robust pulses are

characterized by small values of these derivatives so that the inversion probability remains

high over a broader range of amplitudes and detunings. Analysis of these ranges is facilitated

by employing dimensionless quantities reduced by Ω0. Ω0 is the nominal drive amplitude,

defined as the product of the calibrated amplitude of the shaped π-pulse (0.145 a.u for

the experiments in Tables 4.1 and 4.3) and the conversion factor Ωconv. The compensation

bandwidths (Θ, Ξ) reported in Table 4.1 represent the range of amplitudes Ω/Ω0 at zero

detuning or range of frequencies ∆q/Ω0 at nominal amplitude for which the experimental

inversion is greater than or equal to 0.9. Ranges reported in bold type are more robust

than the single pulse of the same shape while those in italics are more restricted. Both the

Gaussian and DRAG 180120180240180120 pulses and the BB1 pulse are more robust towards

amplitude errors than single pulses, while the Gaussian and DRAG 90x180y90x sequences

and Knill pulse are more robust towards both amplitude and frequency errors.

4.4.1.1 Gaussian and DRAG 90x180y90x Pulses

The 90x180y90x inversion pulses constructed using single pulses with Gaussian and DRAG

profiles are more robust to frequency and amplitude errors than the single 180x pulses of the

same respective shapes. The Ω/Ω0 range increased by 60% for the Gaussian and 83% for

the DRAG 90x180y90x pulse. The frequency compensation bandwidth more than doubled in

both cases. Composite 90x180y90x pulses are also more tolerant to combinations of frequency

and amplitude errors, as represented graphically in Fig. 4.4. Both the simulations and

experimental results show an increase in the area of the 0.9 contour level of the first Rabi

peak over that of the single pulse. The difference in the robustness for DRAG and Gaussian

constituent pulses is minimal, with simulated and experimental inversion contours for the

different single pulse shapings being nearly identical. The fidelities obtained by randomized

benchmarking of the on-resonance pulses at nominal amplitude are higher for the 90x180y90x

CPs than those of the single 180x pulses despite the increase in gate duration. DRAG and

Gaussian 90x180y90x sequences again performed comparably with respect to fidelity.
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Figure 4.4: Simulated (left) and exper-
imental (right) contours for composite
pulses. Experimental frequencies ranged
from -40 to 40 MHz in steps of 5 MHz,
for a resolution in dimensionless units of
(∆∆q/Ω0 = 0.2). Amplitudes ranged
from 0 to 0.5 a.u. (or to max π-
pulse power supported by ibmq lima for
BB1 and CORPSE) in steps of 0.05 a.u.
(∆Ω/Ω0 = 0.3). 1024 trials were per-
formed for each amplitude, frequency pair
to obtain the average inversion probabil-
ity.
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Table 4.1: Experimental compensation bandwidths of composite pulses1

Composite Pulse Θ(Ω/Ω0)
2 Ξ(∆q/Ω0)

3

Gaussian Composite Pulses

180x {0.825,1.200} {-0.179,0.220}

90x180y90x {0.650,1.250} {-0.404,0.404}

180120180240180120 {0.500,1.300} {-0.090,0.135}

Knill {0.750,1.175} {-0.449,0.449}

BB1 {0.525,1.375} {0.000,0.310}

CORPSE {0.875,1.200} {-0.090,0.090}

DRAG Composite Pulses

180x {0.800,1.100} {-0.134,0.179}

90x180y90x {0.675, 1.225} {-0.404,0.404}

180120180240180120 {0.525, 1.325} {-0.135,0.090}
1 compensation bandwidths in bold are broader than the single pulse

of the same profile shape; those in italics are narrower

2 amplitude sweep on-resonance performed in steps of ∆Ω/Ω0 = 0.025

3 frequency sweep at nominal amplitude performed in steps

∆∆q of 1 MHz (∆∆q/Ω0=0.045)

4.4.1.2 Knill Pulse

The Knill inversion pulse consists of sequence of five pulses that perform an overall 180◦

rotation with an additional 60◦ phase shift:

180ideal0 (60)z = (180)30(180)0(180)90(180)0(180)30.

This pulse has previously been demonstrated to improve robustness to an expanded range

of frequency and amplitude errors in spin qubit control [11]. Our results also indicate an

increase in the amplitude and frequency compensation bandwiths for this pulse. The Ω/Ω0
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Table 4.2: Randomized benchmarking estimates for gate fidelity and leakage rate of com-
posite pulses

Composite Pulse
Custom Identity

Gate Error4

Bounds on

Gate Error

Inversion Gate

Fidelity

Leakage Rate

(L1)
5

Seepage Rate

(L2)

Gaussian 180x 0.016± 0.002 [0, 0.032] 0.9919 5× 10−5 9× 10−3

DRAG 180x 0.019± 0.002 [0, 0.037] 0.9907 2×10−5 2× 10−3

Gaussian 90x180y90x 0.0069± 0.0004 [0, 0.0138] 0.9966 5×10−5 4× 10−3

DRAG 90x180y90x 0.0061± 0.0003 [0, 0.0122] 0.9970 1.6× 10−4 1.3× 10−3

Gaussian 180120180240180120
6 0.0010± 0.0001 [0, 0.0055] 0.9995 2× 10−5 1.12× 10−3

DRAG 180120180240180120 0.0010± 0.0001 [0, 0.0055] 0.9995 3.1× 10−4 1.7× 10−3

Gaussian Knill 0.0024± 0.0003 [0, 0.0106] 0.9990 3× 10−4 2× 10−2

Gaussian BB1 0.023± 0.004 [0, 0.046] 0.9886 1.4× 10−4 7× 10−3

Gaussian CORPSE 0.0037± 0.0003 [0, 0.0074] 0.9982 1.34× 10−4 9× 10−3

4 Error estimated by nonlinear error propagation of fitted parameter variances

5 uncertainty in L1 and L2 in last reported significant figure

6 variance-covariance matrix could not be used to reliably estimate the error for L1, L2, significant

figures reported are based on the precision of DRAG 180120180240180120

range only increased by a modest 13% relative to the Gaussian 180x pulse, but the range of

frequency offsets tolerated at nominal amplitude is the largest any of the composite pulses

tested. The fidelity was comparable to the single 180x pulse.

4.4.1.3 Gaussian and DRAG 180120180240180120 Pulses

Composite 180120180240180120 pulses are more robust towards amplitude errors, increasing

Θ(Ω/Ω0) relative to the single 180x pulse by 113% and 167% for the Gaussian and DRAG

profiles but only over a restricted range of frequencies at nominal drive amplitude. Interest-

ingly, the 180120180240180120 CPs were able to compensate for a broader range of frequencies

for amplitudes slightly above the nominal value, as shown by the broadening of the sim-

ulated and experimental contours near Ω/Ω0 = 1.2. The fidelity of the 180120180240180120

pulses was the highest of any of the composite or adiabatic pulses tested at F = 0.9995.

54



Figure 4.5: Interleaved randomized benchmarking survival probability decay curves for Gaus-
sian 180x (left), Gaussian 180120180240180120 (center), and Gaussian Knill (right) composite
pulses. Average ground state survival probabilities over 50 random sequences for reference
circuits without the interleaved gate (purple) and interleaved circuits (green) are both plot-
ted against the random Clifford length vector m = 1, 21, . . . 341. Error bars represent the
standard deviation of the data at each length, and the shaded region denotes the range. Clif-
ford gates Cij in the reference and interleaved circuits have average durations equal to that
of the interleaved element: 70.4 ns (left), 211 ns (center), 352 ns (right). All data were well

described by the zeroth order model F
(0)

seq. Depolarizing parameters for the interleaved (pC)

and reference (p) circuits were Gaussian 180x pC,= 0.966 ± 0.004, p = 0.99845 ± 4 × 10−5;
Gaussian 180120180240180120 pC = 0.9925 ± 0.0001, p = 0.9945 ± 0.002; Gaussian Knill
pC = 0.9847± 0.0003, p = 0.9893± 0.0005

The robustness and fidelity were again comparable or identical for the Gaussian and DRAG

180120180240180120 CPs.

4.4.1.4 BB1 Pulse

The BB1 pulse is a broadband pulse designed to tolerate a wide range of amplitudes that

theoretically reduces the sensitivity to rotation angle errors to sixth order in the error [35].

The BB1 sequence is a general rotor and can also perform arbitrary rotations of angle βideal0

by defining the phase of the composite pulses in the sequence as a function to the desired

rotation angle:

βideal0 = (180)ϕ(360)3ϕ(180)ϕ(β)0, ϕ = cos−1(−β/4π).
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In our implementation, βideal0 is 180◦. Experimental results for the BB1 inversion pulse

bear out the expected increase in robustness to amplitude errors with a 127% increase in

Θ(Ω/Ω0) over the single Gaussian 180x pulse, albeit over a narrower range of frequencies than

the single pulse. Although the proportional increase in Θ(Ω/Ω0) for the BB1 pulse is less

than the DRAG 180120180240180120 single pulse over the DRAG 180x, the absolute amplitude

compensation bandwidth of the BB1 pulse is the largest recorded, and the tolerated frequency

range is also less diminished. The on-resonance BB1 fidelity (F = 0.9886) is slightly lower

than the single Gaussian 180x pulse (F = 0.9919).

4.4.1.5 CORPSE Pulse

The compensation for off resonance pulse sequence (CORPSE) is another general rotor ca-

pable of producing arbitrary flip angles βideal0

βideal0 =

(
β

2
− ψ

)
0

(2π − 2ψ)π

(
2π +

β

2
− ψ

)
0

ψ = sin−1 (sin(β/2)/2)

in the presence of detuning from the resonant frequency. Again, βideal0 is 180◦. While the

simulated contour for the CORPSE sequence displays an increased area of the 0.8 contour

level, high fidelity inversion occurs only for a narrower range of amplitudes and frequencies

relative to the single pulse. Experimental CORPSE compensation bandwidths are lower

than those of a single pulse as well. The on-resonance error rate is, however, also lower than

the single 180x pulse .

4.4.2 Adiabatic Pulses

HS1 pulses proved to be incredibly robust towards frequency and amplitude errors. Several

of the parameterizations implemented attain 90% inversion at thresholds below the nomi-
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Table 4.3: Experimental robustness parameters of HS1 pulses

HS1 Pulse Parameters
Threshold Amp.

Ω/Ω0
7

Freq. Sweep

−2µβ/T (MHz)

Bandwidth

∆q (MHz)8

Compensation Range

Ξ(∆q/Ω0)

HS1 T:98.6 ns β:10.92 µ:4.81 3.92 1067 330 {-7.4, 1.79}

HS1 T:120 ns β:5.72 µ:1.85 0.84 177 28 {-0.628,0.628}

HS1 T:130 ns β:10.92 µ:1.20 1.19 201 26 {-0.538,0.628}

HS1 T:148 ns β:5.72 µ:1.85 0.70 143 22 {-0.448,0.538}

HS1 T:165 ns β:12.90 µ:2.49 1.82 389 88 {-1.79,1.97}
7 amplitude sweep on-resonance in steps of ∆Ω/Ω0=0.07, threshold at 0.9 inversion probability

8 frequency sweep at nominal amplitude performed in steps ∆∆q of 2 MHz (∆∆q/Ω0=0.09) for

rows 2 through 5 and 5 MHz (∆∆q/Ω0=0.22) for row 1

nal π-pulse amplitude and maintain complete amplitude insensitivity up to the maximum

microwave power deliverable. The breadth of frequencies addressable by HS1 pulses is also

much larger than that of the composite pulse sequences, ranging from 1.1 to 10.2 times even

the largest composite pulse compensation bandwidth (Knill pulse). Moreover, the duration

of all of the HS1 pulses tested are comparable to the composite pulse durations. Although

AFP pulses have often been discounted as they traditionally have durations an order of mag-

nitude or more longer than single rectangular pulses [11], we found that pulses only 2.8 to 5

times the duration of the default ibmq lima X gate are capable of driving robust inversion.

The inversion fidelities obtained via randomized benchmarking are lower than those obtained

for composite pulses, with the highest fidelity AFP pulse (F = 0.9897) just approaching the

fidelity of a single DRAG pulse (F = 0.9907). Leakage rates are also higher for the AFP

pulses relative to the composite pulses. However, considering that the bandwidth ∆q of these

pulses is larger than that of the composite pulses, higher leakage rates are expected. The

frequency sweep for the two HS1 pulses with the highest leakage rate also crosses the anhar-

monic transition at 333.6 MHz, even though the recorded experimental inversion bandwidths

are narrower than the full range of the frequency sweep and do not reach this detuning.
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Table 4.4: Randomized benchmarking estimates for gate fidelity and leakage rate of HS1
pulses

HS1 Pulse Parameters
Custom Identity

Gate Error9

Bounds on

Gate Error

Inversion Gate

Fidelity

Leakage Rate

(L1)
10

Seepage Rate

(L2)

HS1 T:98.6 ns, β:10.9, µ:4.8 0.09±0.01 [0,0.19] 0.953 1.06×10−2 1.6×10−2

HS1 T:120 ns, β:5.7, µ:1.9 0.062±0.003 [0,0.123] 0.9835 7.7×10−3 2.00×10−2

HS1 T:130 ns, β:10.9, µ:1.2 0.044±0.001 [0,0.089] 0.978 7.6×10−3 2.0×10−2

HS1 T:148 ns, β:5.7, µ:1.9 0.02069±0.0006 [0,0.0414] 0.9897 3.1×10−3 1.13×10−2

HS1 T:165 ns, β:12.90, µ:2.5 0.0357±0.002 [0,0.071] 0.982 9.9×10−3 1.9×10−2

9error estimated by nonlinear error propagation of fitted parameter variances

10uncertainty in L1 and L2 in last reported significant figure

Figure 4.6: Simulated (left) and experi-
mental (right) contours for selected HS1
pulses. Contours used an array of ampli-
tudes ranging from 0 to 1 in steps of 0.05
(∆Ω/Ω0 = 0.3) for all pulses. Frequen-
cies for the 165 and 148 ns pulses ranged
from -90 to 90 MHz with steps of 10 MHz
(∆∆q/Ω0 = 0.45), and those for the 98.6
ns HS1 pulse ranged from -225 to 225 in
steps of 25 MHz (∆∆q/Ω0 = 1.12).1024
trials were performed for each amplitude,
frequency pair to obtain the average in-
version probability.

4.5 Discussion

Overall, composite pulses and AFP pulses both proved effective at increasing the range of

amplitude and frequency errors tolerated by single qubit inversion gates. Several of the
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composite pulses (90x180y90x, 180120180240180120, and CORPSE) also have improved on-

resonance fidelities relative to the single 180x pulses. Given the flexibility of many of the

pulse sequences developed for quantum computing applications not only to act on general

states but to perform arbitrary rotations, it is possible to implement general gates with im-

proved robustness and potentially fidelity using composite pulses. Our results do not indicate

that composite pulses formed of DRAG single pulses improve performance with respect to

robustness, fidelity, or leakage. Within the precision afforded by our implementation of the

LRB protocol, DRAG pulses had comparable to slightly elevated leakage rates, which is

not unexpected for the longer pulses studied in this paper. Although the basis gateset of

ibmq lima uses DRAG pulses with 35.2 ns durations, experimental analyses have demon-

strated that DRAG has no distinguishable effect in pulses longer than 20 ns since leakage

in this regime is the result of incoherent processes [7]. In the incoherent leakage regime,

leakage rates increase as a function of pulse duration. This trend is evident in the composite

pulse data, where composite sequences were generally found to have higher leakage rates

than single pulses. If the duration of the single pulses used in composite sequences were re-

duced below the default gate duration of 35.2 ns, it is possible that DRAG shaping or other

leakage-optimized profiles with even shorter durations (4.16 ns) [42] could be employed to

construct robust composite pulses with reduced leakage rates. AFP pulses proved to be the

most robust pulses tested. Several achieved amplitude insensitive inversion at threshold mi-

crowave power below the nominal amplitude required to drive inversion in composite pulses,

and all possessed frequency compensation bandwidths broader than the most robust of the

composite pulses. Additionally, the successful implementation of AFP pulses only 2.8 to 5

times longer than single pulses makes composite AFP schemes possible, when otherwise such

pulses would consume an untenable proportion of the intrinsic coherence time. The specific

parameterizations of the HS1 pulses tested in this study were affected by higher leakage rates

and lower fidelities than the composite pulses. This is not surprising given their exceedingly

large bandwidth. It may be possible to negotiate a balance between bandwidth robustness

and leakage such that these errors are reduced.
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CHAPTER 5

Conclusion and Future Prospects

5.1 Conclusion

Composite and adiabatic pulses are both robust control methods that can be readily ex-

tended to implement general unitary rotations. The improvements in robustness and, in

certain schemes, fidelity observed in this study illustrate the utility of composite and AFP

pulses in coherent control of transmon qubits. Our optimization of reduced duration adi-

abatic pulses and previously proposed methods of shortening nonadiabatic gate time [42]

make implementing composite pulses with higher concatenation levels feasible for adiabatic

or nonadiabatic single pulses. The improvements in fidelity and robustness observed for

many of the inversion pulses tested suggest that more robust gatesets could be constructed

from composite or AFP universal rotors. In order to simultaneously compensate for leakage,

further investigation of single pulse shaping within composite sequences is needed. Gateset-

average leakage rates determined by implementation of the theoretical extension to the LRB

protocol proposed in [8] proved sufficiently sensitive to reveal explicable trends in the leakage

as a function of pulse duration and bandwidth even without the ability to directly measure

the leakage subspace. However, a protocol to benchmark leakage of individual gates would

undoubtedly benefit future robust gate design efforts because the building blocks for uni-

versal rotations are often point-to-point transformations. Pulsed NMR techniques present a

well-developed template for robust gate design that can be easily applied to NISQ supercon-

ducting qubit architectures, and further development of these techniques has the potential

to benefit control on these processors.

Future prospects for robust adiabatic and composite control pulse design naturally cen-
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ter on the realization of universal gatesets composed of these types of pulses. Given the

improvements in robustness and fidelity observed for many of the composite and adiabatic

inversion pulses studied in this work, it is evident that gatesets constructed entirely of com-

posite or adiabatic general rotors have the potential to achieve fault-tolerant fidelities over a

wider range of control field calibrations. Previous implementation of universal, fault-tolerant

gatesets on other architectures using composite pulses also bears out this potential: single

and two-qubit composite pulse gates on diamond spin qubits have been optimized to achieve

fidelities in excess of F = 0.99 in the presence of control errors [43]. Unlike in the case of

superconducting qubits, fidelities for NV centers in the absence of control errors are typically

below fault-tolerance thresholds, so it may be possible to construct even higher fidelity com-

posite pulse gatesets for superconducting transmon qubits. Characterization methods based

on randomized benchmarking are also better suited to the estimation of gateset-average

properties. While we were able to implement interleaved randomized benchmarking and

leakage randomized benchmarking to characterize the performance of individual inversion

pulses, LRB only yielded gateset-average rates and IRB results may also have been influ-

enced by gate-dependence in the error rates of different Clifford gates. A homogeneous

gateset consisting entirely of composite or adiabatic pulses would be better modeled by

average fidelities and leakage rates. Improved characterization accuracy opens the door to

further optimization and would be particularly useful for closed-loop optimization, which has

been successfully used in conjunction with LRB to design leakage-optimal short single pulses

[42]. The development of an array of similar single-pulse design techniques has produced a

sophisticated system for coherent control of superconducting transmon qubits that routinely

yields gate fidelities approaching fault tolerance thresholds. Composite and adiabatic pulses

are inherently robust and compatible with many of these schemes. Incorporating pulsed

NMR techniques in superconducting qubit control combines decades of experience in both

fields and may ultimately produce gatesets with robustness and fidelity greater than that

realized in either field alone.
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CHAPTER 6

Appendices

6.1 Appendix A: Transmon Quantum Electromagnetic Circuit Hamil-

tonian

Transmission line shunted plasma oscillation (transmon) qubits are superconducting LC-

circuit-based qubits whose properties are determined by the inductive and capacitive energies

of circuit elements. Superconducting quantum electromagnetic circuit qubits belong to a

fascinating class of mesoscopic systems: mesoscopic systems are macroscopic in the sense

that they contain a large number of atoms, but they also possess collective degrees of freedom

that exhibit quantum mechanical behavior, as would be expected for microscopic particles.

In this appendix, we discuss the process of deriving the quantum mechanical Hamiltonian

for macroscopic superconducting circuit-based qubits and connect the quantized transmon

circuit Hamiltonian to the spin Hamiltonian representation used throughout this thesis.

Derivations are adapted from [6].

6.1.1 Quantization of the Circuit Hamiltonian

The relationship between macroscopic inductive and capacitive elements and the quantum

mechanical behavior of these circuits can be derived using the branch-flux method, which is

premised on circuit laws and classical Lagrangian mechanics [44]. In this case, the generalized

coordinate is the flux Φ(t), and the canonically conjugate momentum coordinate is the charge

Q(t)

Φ(t) =

∫ t

−∞
V (t′)dt′ and Q(t) =

∫ t

−∞
I(t′)dt′
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where V (t′) and I(t′) are the voltage and current flowing across the transmon at time t′.

The total instantaneous energy of the transmon circuit

E(t) =

∫ t

−∞
V (t′)I(t′)dt′

can be divided into expressions for the potential UL(t) and kinetic energy τC(t) in terms of

the generalized coordinate using the relationship between the voltage across the capacitor

V = LdI/dt and current through the inductor I = CdV/dt.

UL(t) =

∫ t

−∞
L
dI(t′)

dt′
I(t′)dt′ =

1

2
LI(t)2 =

1

2L
Φ(t)2

τC(t) =

∫ t

−∞
C
dV (t′)

dt′
V (t′)dt′ =

1

2
CV (t)2 =

1

2
CΦ̇ where Φ̇ =

dΦ(t′)

dt′
.

The Lagrangian Lg is constructed as the difference between the kinetic and potential energy

terms

Lg = τC − UL =
1

2
CΦ̇2 − 1

2L
Φ2.

The Hamiltonian of quantized LC-circuit is obtained using a Legendre transformation to

find the momentum conjugate of the flux, which is the charge on the capacitor in this case

∂Lg
∂Φ̇

= CΦ̇ = Q(t).

The classical Hamiltonian is defined in terms of the Lagrangian as

H = QΦ̇(t)− Lg =
Q2

2C
+

Φ2

2L
,

from which the quantum Hamiltonian is constructed by promoting the canonically conjugate

flux and charge coordinates to operators (Q(t) → Q̂, Φ(t) → Φ̂) and making an association

between the classical Poisson bracket {Φ, Q} and the commutator of quantum mechanics

[Φ̂, Q̂].

{Φ, Q} =
δΦ

δΦ

δQ

δQ
− δQ

δΦ

δΦ

δQ
⇐⇒ 1

i
[Φ̂, Q̂] =

1

i

(
Φ̂Q̂− Q̂Φ̂

)
.
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Evaluating the Poisson bracket in terms of the functional derivatives δ
δΦ

and δ
δQ

yields the

commutation relationship for the operators [Φ̂, Q̂] = i . The quantized circuit Hamiltonian

of a general LC-circuit is then

Ĥ =
Q̂2

2C
+

Φ̂2

2L
.

For a transmon LC-circuit, the form of the inductance is nonlinear, resulting in a modification

of the potential energy term. The superconducting Josephson junction in a transmon qubit

is a nonlinear, dissipationless inductor with a small self-capacitance CJ that satisfies special

relations between the current, voltage, and flux across the junction.

I(t) = Ic sin

(
2πΦ(t)

Φ0

)
and V (t) =

ℏ
2e

d

dt

(
2πΦ(t)

Φ0

)
.

Here Ic is the critical current through the superconductor and Φ0 = h/2e is the flux quan-

tum for Cooper pairs of superconducting electrons (Note for this section of the appendix

only, we explicitly write ℏ, e, which are otherwise equal to 1 in Hartree atomic units, to

support intuition regarding the quantized flux of Cooper pairs). Evaluating the expression

for the potential energy using the Josephson relation for the current yields the quantized

Hamiltonian of a transmon qubit

Ĥtr =
Q̂2

2C
− IcΦ0

2π
cos

(
2πΦ̂

Φ0

)

where the total capacitance C = Cs+CJ now includes the Josephson junction self-capacitance

in addition to the shunt capacitor.

This Hamiltonian can also be represented in terms of the reduced charge n̂ = Q̂/2e and

reduced flux ϕ̂ = 2πΦ̂/Φ0

Ĥtr = 4Ecn̂
2 − EJ cos(ϕ̂).

The reduced operators n̂ and ϕ̂ correspond to the number of Cooper pairs and the gauge-

invariant phase across the Josephson junction respectively. The terms EC and EJ represent

the stored capacitive and inductive energies and are defined as EC = e2/2C and EJ =
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IcΦ0/2π.

6.1.2 Second Quantized Transmon Hamiltonian

As an intermediate step in the derivation of the spin Hamiltonian for transmon qubits, it is

necessary to rewrite the quantized circuit Hamiltonian in terms of creation and annihilation

operators (second quantization formalism). The creation and annihilation operators ĉ† and

ĉ for the transmon are defined for the energy levels |j⟩ of the anharmonic potential as

ĉ† =
∑
j

√
j + 1 |j + 1⟩ ⟨j| and ĉ =

∑
j

√
j |j − 1⟩ ⟨j| .

For a transmon, the eigenstates |j⟩ are defined by the difference in the number of Cooper

pairs (excess charge quanta) between the superconducting islands of the Josephson junction.

The raising operator increases this charge difference, and the lowering operator reduces the

charge difference [45]. In terms of these raising and lowering operators, the reduced charge

and phase are

n̂ = inzpf (ĉ
† − ĉ) and ϕ̂ = ϕzpf (ĉ

† + ĉ), where

nzpf =

(
EJ
32Ec

)1/4

and ϕzpf =

(
2Ec
EJ

)1/4

.

Further simplification of Ĥtr is possible by considering that ϕ̂≪ 1 since, by design, transmon

qubits operate in the regime EJ/EC ≫ 1. This allows us to Taylor expand cos ϕ̂ to get

Ĥtr = −4Ecn
2
zpf (ĉ

† − ĉ)2 − EJ

(
1− 1

2
ϕ2
zpf (ĉ

† + ĉ)2 +
1

24
ϕ4
zpf (ĉ

† + ĉ)4 + . . .

)

≈
√

8EcEJ

(
ĉ†ĉ+

1

2

)
− EJ −

Ec
12

(ĉ† + ĉ)4.

Here, the substitutions 8Ecn
2
zpf = EJϕ

2
zpf =

√
2EcEJ have been performed and the rotating

wave approximation has been applied to drop rapidly rotating terms (uneven number of c

and c†), resulting in the approximate Hamiltonian in the second line. Finally, defining the

qubit resonant frequency ω0 =
√
8EcEJ and the anhamonicity δ = −Ec in terms of the
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capacitive and inductive energies, the second quantized transmon Hamiltonian is obtained

Ĥtr = ω0ĉ
†ĉ+

δ

2
((ĉ†ĉ)2 + ĉ†ĉ) =

(
ω0 +

δ

2

)
ĉ†ĉ+

δ

2
(ĉ†ĉ)2.

The frequency of the transmon is given by ω ≡ ω0 + δ such that the spacing between each

pair of energy levels differs according to ωj+1 − ωj = ω + δj. A last simplification of the

transmon Hamiltonian can be made by using ω and replacing the number operator ĉ†ĉ by

its definition ĉ†ĉ =
∑

j j |j⟩ ⟨j|

Ĥtr = ωĉ†ĉ+
δ

2
ĉ†ĉ(ĉ†ĉ− 1) =

∑
j

((
ω − δ

2

)
j +

δ

2
j2
)
|j⟩ ⟨j| =

∑
j

ωj |j⟩ ⟨j| .

From this Hamiltonian, the transmon energy levels as a function of the anharmonicity are

found to be ωj =
(
ω − δ

2

)
j + δ

2
j2.

6.1.3 Fermion to Spin Hamiltonian Mapping

Although the transmon is an anharmonic oscillator with accessible higher energy states

outside of two-level the computational subspace {|0⟩ , |1⟩}, it is reasonable to truncate the

Hamiltonian provided the anharmonicity δ = −Ec is sufficiently large so as to approximately

isolate the first two states. The anharmonicity decreases the spacing between higher energy

levels so that the frequency necessary to drive a transition outside the computational sub-

space (ie. |1⟩ to |2⟩) is reduced relative to the transition from the ground to first excited state.

As a result, the frequency of the control field can be tuned to address a unique transition,

and the second quantized transmon Hamiltonian can be restricted to the first two energy

levels

Ĥtr =
1∑

ωj=0

ωj |j⟩ ⟨j| = 0 |0⟩ ⟨0|+ [(ω − δ

2
) +

δ

2
] |1⟩ ⟨1| = 0 |0⟩ ⟨0|+ ω0 |1⟩ ⟨1| .
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The Hamiltonian can be symmetrized around zero without influencing the dynamics by

subtracting half the qubit frequency ω0.

Ĥtr = −1

2
ω0 |0⟩ ⟨0|+

1

2
ω0 |1⟩ ⟨1| .

Substituting the definition of the Pauli matrix (σz = |0⟩ ⟨0| − |1⟩ ⟨1|) yields the spin Hamil-

tonian of the undriven transmon qubit.

Ĥtr = −1

2
ω0σz.

6.1.4 Spin Hamiltonian of a Driven Transmon

Control operations on transmon qubits are accomplished by driving transitions (ideally)

within the computational subspace with an electric field of the form E⃗(t) = E⃗0(t)e
−iωdt +

E⃗0(t)
∗eiωdt. Continuing to approximate the transmon as a two-level system allows the dipole

operator d⃗ = d⃗0σ+ + d⃗∗0σ− for the transmon to be defined terms of the qubit raising and

lowering operators σ± = (1/2)(σx∓ iσy), which act on states in the computational subspace

as σ+ |0⟩ = |1⟩ and σ− |1⟩ = |0⟩. The Hamiltonian for the qubit-drive interaction in the

stationary frame is

ĤE = −d⃗ · E⃗(t) = −
(
d⃗0 · E⃗0e

−iωdt + d⃗0 · E⃗∗
0e
iωdt
)
σ+ −

(
d⃗∗0 · E⃗0e

−iωdt + d⃗∗0 · E⃗∗
0e
iωdt
)
σ−

≡
(
Ωe−iωdt + Ω̃eiωdt

)
σ+ +

(
Ω̃∗e−iωdt + Ω∗eiωdt

)
σ−

where time dependence of the electric field amplitude E0(t) has been suppressed in the first

line, and the substitutions Ω ≡ −d⃗0 · E⃗0(t) and Ω̃ ≡ −d⃗0 · E⃗0(t)
∗ have been employed in the

second.

The full Hamiltonian of the driven transmon in the stationary frame is the sum of the

qubit and drive Hamiltonians Ĥ = Ĥ0 + ĤE. Transforming the drive Hamiltonian into the

interaction frame (a rotating frame at the qubit resonant frequency ω0) using the propagator
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U = exp(iĤ0t) produces the interaction Hamiltonian ĤE,I = UĤEU
†

ĤE,I = UĤEU
† =

(
Ωe−i(ωd−ω0)t + Ω̃ei(ωd+ω0)t

)
σ+ +

(
Ω̃∗e−i(ωd+ω0)t + Ω∗ei(ωd−ω0)t

)
σ−.

Under the rotating wave approximation, the rapidly oscillating terms with frequencies (ω0+

ωd) are dropped, and only terms with with frequencies ∆q = ωd−ω0 remain in the interaction

Hamiltonian.

ĤRWA
E = Ωe−i∆qtσ+ + Ω∗ei∆qtσ−.

To obtain the drive Hamiltonian in the rotating frame of the microwave drive, it is necessary

to first transform the rotating wave approximated Hamiltonian back to the stationary frame

ĤRWA
E = U †ĤRWA

E,I U = Ωe−iωdtσ+ + Ω∗eiωdtσ−

such that the total qubit and drive Hamiltonian is

ĤRWA = −1

2
ω0σz + Ωe−iωdtσ+ + Ω∗eiωdtσ−.

Then, a final frame change using the propagator UE = exp(−iωdσzt/2) brings the Hamilto-

nian into the frame of the drive

Ĥd = UEĤ
RWAU †

E − UEU̇
†
E = −1

2
ω0σz + Ωσ+ + Ω∗σ− +

1

2
ωdσz.

Algebraic rearrangements then produce the familiar form of the Hamiltonian for the trans-

mon under the influence of a microwave drive used throughout this thesis

Ĥd =
σz
2
∆q +R[Ω(t)]

σx
2

+ I[Ω(t)]
σy
2
.
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6.2 Appendix B: Average Hamiltonian Theory

Average Hamiltonian theory (AHT) is a propagator expansion technique that aims to approx-

imate the evolution of a system under a time dependent Hamiltonian by a series expansion

of a time independent effective Hamiltonian. A systematic method of composite pulse design

employing AHT can be developed by considering the interaction Hamiltonian of the qubit

with the microwave drive.

Ĥd(t) =
σz
2
∆q(t) +

|Ω(t)|
2

(σx cos(ϕ(t)) + σy sin(ϕ(t))) .

Here, ∆q = ωd − ωq is the angular frequency offset from resonance, and the drive field is

described by an amplitude Ω(t) and phase ϕ(t). This form of the Hamiltonian in the rotating

frame (resonant with ωq) suggests the definition of an effective field and rotation axis such

that

Ĥd = Ωeff(t)
(σx
2

sin(θ(t)) cos(ϕ(t)) +
σy
2
sin(θ(t)) sin(ϕ(t)) +

σz
2
cos(θ(t))

)
where

Ωeff =
√
|Ω(t)|2 +∆q(t)2 and θ(t) = arctan

(
|Ω(t)|
∆q(t)

)
.

This allows the discrete propagator over a small timestep to be defined simply in terms of

an angle-axis representation of the rotation

Ud(t+∆t, t) = exp

(
−
iΩeff(t)

2
(n · σ)∆t

)
= exp

(
−iβeff n · σ/2

)
.

Here n(t) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) is the normalized direction vector at time

t (the angles are understood to be a function of time), and σ is the vector of Pauli spin-

matrices (σx, σy, σz). This propagator generates an infinitesimal rotation dβeff = Ωeff∆t

about n during the time step ∆t that is related to the nominal rotation dβ about the on-
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resonance rotation axis n0 = (cos(ϕ), sin(ϕ), 0) as follows

dβeff =

√
|Ω(t)|2 +∆q(t)2

|Ω(t)|2
dβ.

Since the interaction Hamiltonian is time dependent, and will therefore generally have

at least one set of non-commuting time points during the duration of the pulse (ta, tb)

[H(t′), H(t′′)] ̸= 0, an analytical expression is typically not obtainable. An approximate

form of the propagator Ud(ta, tb), is however, derivable using average Hamiltonian theory.

The general form of the propagator for a time dependent Hamiltonian may be written as

follows

U(ta, tb) = T exp

(∫ tb

ta

ϵH(t)dt

)
where ϵ is a small parameter with respect to which U(ta, tb) has a convergent cumulant

expansion.

exp
(
ϵH

(1)
+ ϵ2H

(2)
+ . . .

)
.

Applying the Wilcox formula [46] for the derivative of the matrix valued function,

d

dx
exp (A(x)) =

∫ 1

0

e−λA(x)
d

dx
A(x)e−λA(x)dλ eA(x)

we obtain the Magnus expansion for the time independent effective Hamiltonian H that

effects the same evolution as H(t) over the full interval (ta, tb).

U(ta, tb) = exp
(
−iH(ta − tb)

)
.
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The first three orders of the Magnus expansion (H = H
(1)

+H
(2)

+H
(3)

+ . . .) are

H
(1)

=
1

ta − tb

∫ tb

ta

dtH(t)

H
(2)

=
1

2i(ta − tb)

∫ tb

ta

dt

∫ t

ta

dt′[H(t), H(t′)]

H
(3)

= − 1

6(ta − tb)

∫ tb

ta

dt

∫ t

ta

dt′
∫ t′

ta

dt′′ {[H(t), [H(t′), H(t′′)]] + [[H(t), H(t′)], H(t′′)]} .

The Magnus expansion is only convergent to low order if the magnitude of the Hamil-

tonian is small, or more precisely ||H(t)(ta − tb)|| << 1 for any time ta ≤ t ≤ tb. The

Hamiltonian of the microwave pulse drive itself does not generally satisfy this condition, so

it is necessary to separate the drive into a nominal component and a component containing

the amplitude Ωϵ(t) = Ωeff(t)− Ω0(t) and frequency ∆q errors.

Ĥd = ĤΩ0(t) + ĤΩϵ(t),∆q(t).

Changing to the interaction frame of the nominal drive, we obtain a small error Hamiltonian,

which can be expanded convergently

H̃Ωϵ,∆q(t) = U †
Ω0
(t, ta)ĤΩϵ,∆q(t)UΩ0(t, ta).

Here the propagator for the nominal drive is

UΩ0 = exp

{
−
∫ t

ta

iĤΩ0(t)dt

}
.

The goal of composite pulse design using Average Hamiltonian Theory then becomes to

design a pulse sequence such that the terms of the expansion

H̃Ωϵ,∆q(t) = H̃(1) + H̃(2) + H̃(3) + . . .

are zero up to some desired order. From the perspective of the resonance frame of the qubit
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(ie. reversing the transformation to the frame of the drive), the full propagator is then,

U(tb, ta) = UΩ0(tb, ta)ŨΩϵ,∆q(tb, ta) = UΩ0(tb, ta) exp

{
−i
∫ tb

ta

H̃(1) + H̃(2) + . . .

}

≈ UΩ0(tb, ta) ∗ 1

which is exactly the propagator of the desired nominal rotation component. Specific examples

of the use of this technique in composite pulse design can be found in [47] and [34]. Related

techniques employing similar expansions of the error term have also been proposed for the

design of general rotors to purportedly arbitrary precision [12].

6.3 Appendix C: Pulse Simulation Code

The pulse simulations described in chapter 4 were implemented using the following code.

Each pulse in the composite pulse schedule was initialized as a member of a class corre-

sponding to the appropriate single pulse shaping. The definition of the Gaussian class is

included below.

class GaussianPulse():

'''Gaussian pulse class that generates Qiskit Pulse object (a.u.) used for experimental schedules and pulse

profile (rad/sec) used for simulation purposes↪→

-- for RB experiments, calibrated pi amplitude and desired pi multiple used to specify ideal flip angle

-- for contour plot generation, pi_amp set to 1 and amplitude scaling performed by simulator'''

def __init__(self, pi_amp, pi_mult, phase, duration_samples, sigma, name):

self.type = 'Gaussian'

self.name = name

self.Tp = duration_samples*dt #pulse time s

self.pi_mult = pi_mult #desired rotation angle specified as a multiple of pi

self.phase = phase

gaussian = pulse.Gaussian(duration=duration_samples, sigma = sigma, amp =

pi_amp*pi_mult*(np.cos(phase)+1j*np.sin(phase)), name = f'{name} ideal', limit_amplitude = True)

#Qiskit pulse object

↪→

↪→

self.pulse_obj = gaussian

self.waveform= gaussian.get_waveform()

self.pulse_profile = omega1_conv*self.waveform.samples #multiply by rad/a.u to get amplitude in rad/sec

#complex valued waveform (rad/sec)↪→
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Composite pulses were simulated using an array of single-pulse objects stored in an array,

Pulses. For simulations, pulse profile attribute that stores the complex-valued waveform

in rad/sec was extracted from the pulse objects and concatenated to construct a composite

pulse profile. The nominal drive amplitude in a.u scaling the complex-valued waveform was

swept over an array of amplitudes, and a range of frequency offsets was specified in Hz.

def contour_plot_simulator(Pulses, amp_array, freqoffset_array, center_frequency, title=None, plotBool =

False):↪→

rf= np.array([], dtype = complex)

for p in Pulses:

rf_temp = p.pulse_profile

rf = np.append(rf, rf_temp) #append each pulse in the schedule

f= freqoffset_array #offsets from the resonant frequency (Hz)

a= amp_array #amplitudes to scale pulse profile by in a.u.

t= np.linspace(0, len(rf)*dt,len(rf))

rf_amp_func = np.abs(rf)

rf_phase_func = np.angle(rf)

#Define the Hamiltonian and Simulate the Pulse

E = np.array([[1,0],[0,1]])

Sx = np.array([[0,0.5],[0.5,0]])

Sy = np.array([[0, -0.5*1j],[0.5*1j,0]],dtype =complex)

Sz = np.array([[0.5,0],[0,-0.5]])

prob_down = np.zeros([len(f), len(a)]) # array to store inversion probabilities for each amplitude,

frequency pair↪→

for kf in range(len(f)):

for ka in range(len(a)):

U = E # initiate propagator as identity matrix

for kt in range(len(rf)):

H= Sz*2*np.pi*f[kf]

+(a[ka]*rf_amp_func[kt])*(Sx*np.cos(rf_phase_func[kt])+Sy*np.sin(rf_phase_func[kt]))↪→

Udt = scipy.linalg.expm(-1j*H*dt)

U = np.matmul(Udt,U)

psi = np.matmul(U,[1,0]) #propage initial spin up state

prob_down[kf,ka] = abs(np.matmul([0,1],psi)) #project onto final spin down state and store

probability↪→

if plotBool ==True: #plot the microwave pulse schedule profile

fig, axs= plt.subplots(1,3, constrained_layout=True)
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fig.set_size_inches(12,4)

axs[0].plot(t, np.real(rf), label = 'RF Profile Real')

axs[0].plot(t, np.imag(rf), label = 'RF Profile Imaginary' )

axs[0].set_title('Real and Imaginary Components')

axs[0].set_xlabel('time (s)')

axs[0].set_ylabel('amplitude (rad/sec)')

axs[0].legend()

twiny = axs[1].twinx()

axs[1].plot(t, np.abs(rf), label = 'RF Amplitude (left)')

twiny.plot(t, np.angle(rf), color= 'orange', label = 'RF Phase (right)' )

axs[1].set_title('Amplitude and Phase')

axs[1].set_xlabel('time (s)')

axs[1].set_ylabel('amplitude (rad/sec)')

axs[1].legend()

twiny.legend()

# plot the simulated inversion probability contour

simulated_contour_generator(axs[2],fig, amp_ax = a, freq_offsets = f, prb_down=

prob_down,center_frequency=center_frequency, title =title)↪→

return prob_down

The inversion probability was stored for each amplitude, frequency offset pair and plotted

with respect to the dimensionless parameters Ω/Ω0 and ∆q/Ω0 by the

simulated contour generator.

def simulated_contour_generator(pltax, fig, amp_ax, freq_offsets, title, prb_down, center_frequency):

#Generate Contour Plot

X,Y = np.meshgrid(amp_ax,(freq_offsets+center_frequency)*1e-9) # X of dim(N)=num cols in prob_down,

#Y of dim(M) = num rows in prob_down

cp = pltax.contourf(X,Y, prb_down, levels = np.arange(0,1.1,0.1))

fig.colorbar(cp, ax = pltax, ticks = np.arange(0,1.1,0.1))

pltax.set_title(title)

pltax.set_yticks(np.round((freq_offsets[::4]+center_frequency)*1e-9,3),)

pltax.set_yticklabels(np.round((freq_offsets[::4])*2*np.pi/(omega1_conv*x180_piamp),2)) #dimensionless

parameters normalized by calibrated pi amplitude (x180_piamp) and a.u. to rad/sec conversion factor↪→

pltax.set_xticks(np.arange(0,max(amp_ax/x180_piamp),0.5)*x180_piamp)

pltax.set_xticklabels(np.round(np.arange(0,max(amp_ax/x180_piamp),0.5),1))

ax.set_xlabel(r'$\Omega/\Omega_0$')

ax.set_ylabel(r'$\Delta_q/\Omega_0$')

74



6.4 Appendix D: Genetic Algorithm for Adiabatic Pulse Design

The cost function used to design adiabatic pulses was used to optimize the performance of

solutions of the form [duration (dt), β, µ] based on several criteria including adiabaticity,

inversion probability, pulse duration, and bandwidth. Since each criterion is of a different

order of magnitude–inversion probability ranges from 0 to 1 while bandwidth is on the order

of 108 Hz–terms in the sum were rescaled to contribute more equally to the cost function. The

specific scaling factors used were adjusted based on simulated and experimental performance

of the generated pulses.

An HS1 pulse class was defined to convert solution parameters [duration (dt), β, µ]

into a complex-valued pulse profile used to simulate the inversion probability. Inversion

probabilities were simulated using a modified version of the contour plot simulator (called

inversion simulator) that only performed simulations for a single user-specified amplitude

on resonance (∆q = 0) rather than an array of amplitudes and frequencies. The HS1 pulse

class is defined below.

class HS1_pulse():

'''Given a solution for the pulse parameters generates a Qiskit Pulse object (a.u.) used for experimental

schedules and pulse profile (rad/sec) used for simulation purposes''↪→

def __init__(self, solution, name):

self.type = 'HS1'

duration_samples = int(solution[0])# length of the microwave pulse in samples

t= np.linspace(0,duration_samples,duration_samples)*dt

Tp= duration_samples*dt

beta = solution[1]

mu = solution[2]

self.mu = mu

self.beta=beta

self.t = t #time axis in seconds

self.Tp = Tp #pulse duration in seconds

self.pulse_profile = omega1_conv*np.power(sech(beta*(2*t/Tp-1)),(1+1j*mu))

self.wave = qiskit.pulse.Waveform(np.power(sech(beta*(2*np.linspace(0,1,pulse_length)-1)),(1+1j*mu)))

self.name = name

self.omega1 = omega1_conv*max_amp*sech(beta*(2*t/Tp-1)) #Omega(t) amplitude of drive in rad/sec

self.deltaomega = -mu*beta*2/Tp*tanh(beta*(2*t/Tp-1)) #Delta_q(t) detuning of drive in rad/sec

The objective function maximized by the Pygad genetic algorithm was then implemented

75



by a sum of several terms, as shown below. Failure of the adiabaticity was penalized by a

negative term proportional to the reciprocal minimum distance Ωeff−|dθ
dt
| and by testing for

flaws in the amplitude insensitivity of the inversion probability at several amplitudes using

the inversion simulator. High inversion fidelity was rewarded by a term proportional to

the simulated inversion probability at 1 a.u. The bandwidth of the frequency modulation

was rewarded by a positive term proportional to the amplitude of the frequency modulation.

Longer pulse duration was penalized by a negative term proportional to the duration.

def fitness_func(solution, solution_idx):

solution_pulse = HS1_pulse(solution= solution, Name = f'{solution}')

#define large penalty for critical profile failures

bigpenalty = -1e18

#define quantities for adiabaticity condition

omega1 = solution_pulse.omega1 #amplitude

deltaomega = solution_pulse.deltaomega #detuning

omegaeff = np.sqrt(omega1**2+deltaomega**2)

theta = np.arctan(omega1/deltaomega)

for i in range(len(theta)):

if theta[i]<0:

theta[i]= theta[i]+np.pi

dtheta_dt = (theta[1:]-theta[0:-1])/dt

dtheta_dt = np.append(dtheta_dt, dtheta_dt[-1]) #derivative of rotation axis theta(t) change

adicheck = True #remains true if pulse adiabatic

for index in range(len(dtheta_dt)):

if dtheta_dt[index]>omegaeff[index]:

adicheck = False

if adicheck==False:

#print('nonadiabatic')

adiabatic_penalty = bigpenalty #make huge to have very low fitness for non-adiabatic pulses

else:

adiabatic_penalty= -1/np.min(omegaeff-dtheta_dt)

# Set up fidelity checks at various amplitudes to test for Rabi oscillations/check that the simulated pulse

actually has an adiabatic profile↪→

fid1amp = inversion_simulator(solution_pulse, center_frequency, 0.2) #inversion probability on-resonance

with amplitude scaling factor 0.2↪→

fid2amp = inversion_simulator(solution_pulse, center_frequency, 0.8)

fid3amp = inversion_simulator(solution_pulse, center_frequency, 1)
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fid4amp = inversion_simulator(solution_pulse, center_frequency, 1.5)

fid5amp = inversion_simulator(solution_pulse, center_frequency, 2)

fid6amp = inversion_simulator(solution_pulse, center_frequency, 3)

fid_diffs = np.array([np.abs(fid2amp-fid1amp),np.abs(fid3amp-fid2amp),

np.abs(fid4amp-fid3amp),np.abs(fid5amp-fid4amp),np.abs(fid6amp-fid5amp)])

if (fid_diffs< 0.08).all() == True: #inversion probability is amplitude-invariant, and profile is adiabatic

fidelity = inversion_simulator(solution_pulse, center_frequency, 1)

else:

fidelity = bigpenalty

bandwidth = solution[1]*solution[2]*2/solution_pulse.Tp #amplitude of frequency modulation function

time_penalty = - (solution[0]*dt) #reciprocal duration in s

#rescale terms in objective function

fidelity_cost = fidelity*15

bandwidth_objective = bandwidth*1e-7

time_objective = time_penalty*1e8

adiabatic_objective = adiabatic_penalty*2*1e8

objective= fidelity_cost+bandwidth_objective+adiabatic_objective+time_objective #the function to be

maximized by Pygad genetic algorithm↪→

return objective

The instance of the genetic algorithm was then generated with an initial population

determined from combinations of parameters in the gene space (durations between 96 and

169 ns and β and µ parameters between 1 and 30) that generated simulated contours with

amplitude-insensitive inversion.

def gaInst_init(init_pop, Tmin, Tmax): #Tmin in samples set to 432 (96 ns) Tmax in samples set to 768 (169

ns)↪→

initial_population = [[768. , 5.2, 1.5],

[768. , 4. , 3. ],

[736. , 4. , 2.6],

[640. , 5.2, 1.2],

[592. , 4.5, 1.2],

[576. , 4.8, 1.6],

[544. , 5.2, 1.2]]

gene_space = [{'low':Tmin, 'high':Tmax,'step':16}, {'low':1, 'high':30}, {'low':1, 'high':30}]

num_generations = 200

num_parents_mating = 4

fitness_function =fitness_func
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parent_selection_type = "tournament"

keep_parents = 2

crossover_type = "uniform"

mutation_type = "adaptive"

mutation_num_genes = [2,1]

ga_instance= pygad.GA(num_generations=num_generations,

num_parents_mating=num_parents_mating, initial_population = initial_population,

fitness_func=fitness_function,

parent_selection_type=parent_selection_type,

keep_parents=keep_parents,

crossover_type=crossover_type,

mutation_type=mutation_type,

mutation_num_genes=mutation_num_genes, gene_space =gene_space, on_generation =

on_generation, save_best_solutions=True)↪→

return ga_instance
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