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Design of Multi-Specificity in Protein
Interfaces
Elisabeth L. Humphris

1,2
, Tanja Kortemme

1,2,3*

1 Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America, 2 California Institute for Quantitative Biosciences,

University of California San Francisco, San Francisco, California, United States of America, 3 Department of Biopharmaceutical Sciences, University of California San Francisco,

San Francisco, California, United States of America

Interactions in protein networks may place constraints on protein interface sequences to maintain correct and avoid
unwanted interactions. Here we describe a ‘‘multi-constraint’’ protein design protocol to predict sequences optimized
for multiple criteria, such as maintaining sets of interactions, and apply it to characterize the mechanism and extent to
which 20 multi-specific proteins are constrained by binding to multiple partners. We find that multi-specific binding is
accommodated by at least two distinct patterns. In the simplest case, all partners share key interactions, and
sequences optimized for binding to either single or multiple partners recover only a subset of native amino acid
residues as optimal. More interestingly, for signaling interfaces functioning as network ‘‘hubs,’’ we identify a different,
‘‘multi-faceted’’ mode, where each binding partner prefers its own subset of wild-type residues within the promiscuous
binding site. Here, integration of preferences across all partners results in sequences much more ‘‘native-like’’ than
seen in optimization for any single binding partner alone, suggesting these interfaces are substantially optimized for
multi-specificity. The two strategies make distinct predictions for interface evolution and design. Shared interfaces
may be better small molecule targets, whereas multi-faceted interactions may be more ‘‘designable’’ for altered
specificity patterns. The computational methodology presented here is generalizable for examining how naturally
occurring protein sequences have been selected to satisfy a variety of positive and negative constraints, as well as for
rationally designing proteins to have desired patterns of altered specificity.

Citation: Humphris EL, Kortemme T (2007) Design of multi-specificity in protein interfaces. PLoS Comput Biol 3(8): e164. doi:10.1371/journal.pcbi.0030164

Introduction

Proteins have evolved to operate within the context of
crowded cellular milieus and complex functional networks
[1]. It is not well understood how and to what extent protein
sequences and structures are optimized for multiple and
likely interdependent properties such as stability and
efficiency of folding, low propensity for aggregation, and
functional characteristics. Protein–protein interaction net-
works may impose particular pressures on amino acid
residues in protein interfaces if each protein needs to
maintain correct and avoid unwanted interactions. Not only
specificity of interactions but also a defined level of
promiscuity may be required, as it is known that many
proteins use regions of overlapping interface residues to bind
several partners at different points in time [2].

Protein design predictions offer great promise to help
dissect the structural determinants of the interplay between
promiscuity and specificity, as well as to create new molecules
that interfere with defined cellular protein–protein inter-
actions with high fidelity and selectivity [3]. Protein design
methodologies have generally focused on choosing an amino
acid sequence optimal for a specific criterion, such as protein
stability or interaction energy with a single binding partner.
These computational design techniques have led to several
accomplishments, including the pioneering design of a
complete protein [4], of novel protein folds [5,6], the
engineering of catalytic activity into an uncatalytic scaffold
[7,8], and the redesign of protein–protein interfaces [9–12].
Yet, sequences completely redesigned on a known protein
fold often differ substantially from naturally occurring
sequences [4], and the properties of designed proteins can

be unusual. Top7, a computationally designed protein with a
fold not previously seen in nature [6], has a complex folding
landscape strikingly different from that of evolved small,
single domain proteins [13]. Thus, if we wish to rationally
design new proteins that can be expressed and function
correctly in a cellular environment and in the context of
many possible interaction partners, it is likely that we will
need modeling procedures that are able to consider a variety
of requirements defining optimal protein ‘‘fitness.’’
Here we focus on the multiple constraints interaction

networks may impose on protein interfaces, both to charac-
terize the evolutionary and biophysical principles shaping
these networks, and to develop computational design meth-
ods to reengineer them. Previous studies have suggested the
importance of negative selection to maintain specificity for a
single binding partner [14]. Havranek and Harbury developed
a negative design strategy selecting against unwanted partners
to predict highly specific coiled-coil interfaces [11]. We
extend the idea of incorporating additional selection con-
straints into computational protein design by examining the
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inverse problem: how are multiple positive criteria, such as
the binding of different partners, accommodated at multi-
specific (e.g., promiscuous) protein interfaces?

We perform two computational experiments on 20 multi-
specific proteins. First, we optimize each multi-specific
interface sequence to maintain interactions with all known
structurally characterized partners (multi-constraint proto-
col). Second, we predict interface sequences optimal for
interacting with each partner individually (single-constraint
protocol). We hypothesize that, to the extent that a multi-
constraint protocol is a good approximation of pressures
acting on promiscuous interfaces, predicted sequences
should be more ‘‘native-like’’ when all characterized binding
partners are included in the optimization procedure than if
only the interaction with a single binding partner is
considered. Further, we can compare the differences in
interface sequences selected by each partner alone (single-
constraint) and all partners considered together (multi-
constraint). If multiple pressures play a role for sequence
choices, this comparison should highlight which amino acids
are compromises among the various outcomes favored by
each binding partner individually.

We show that, overall, inclusion of multiple binding
partners during optimization returns sequences closer to
those found in native promiscuous interfaces. We find native
interface residues predicted to be ‘‘hotspots’’ for each
partner remain optimal in the context of optimization for
single or multiple partners, while other positions may or may
not undergo compromises in order to maintain binding of all
partners. These trends resulted in the classification of two
broad groups of multi-specific interfaces. In the first group,
the number of native residues recovered as optimal was
similar for optimizations performed over single or multiple
partners. Here, key interactions within the interface ap-
peared to be shared, and there was little evidence of
compromise in binding preferences among all partners. In
contrast, a second group of multi-specific proteins, including
‘‘hubs’’ such as small GTPases, ubiquitin, and actin, appeared
to have optimized large fractions of their interfaces for
binding multiple partners. In these cases, each partner
appears to pick and choose subsets of the interface to make

key interactions with, and integrating differences in the
binding preferences over all partners often resulted in the
native residues being the ‘‘optimal compromise’’ for main-
taining binding of all partners.
Our method thus both predicts interface sites responsible

for multi-specificity and provides an estimate of the
magnitude of pressure exerted on sites by each interaction
partner. The method we present here can be used as a
predictive tool to study how naturally occurring amino acid
sequences might have been constrained by any number of
positive or negative criteria—including the ability to adopt
two different conformations [15]—or as a protein design tool
to rationally redesign variants of native proteins to have a
desired set of properties matching user-defined constraints.

Results

Rationale: Test for Optimization and Compromise by
Applying Multi- and Single-Constraint Design to
Promiscuous Protein Interfaces
We set out to address two main questions (see Figure 1A).

First, how optimized are native multi-specific interface
sequences for binding multiple partners? It is known that
the free energy of binding a single interacting partner is
generally not evenly distributed among the native interface
residues, but rather some hotspot positions are energetically
more important than others [16]. Further, phage display
experiments have revealed that substantial sequence plasti-
city may be tolerated at protein interfaces without signifi-
cantly destabilizing, and often improving, binding of a single
partner [17–19]. Thus, only a subset of a protein sequence
may need to be constrained to native in order for a single
criterion to be satisfied, while other sequence positions may
be less optimized and tolerate a wider set of amino acid types.
We hypothesize that the presence of multiple constraints
(e.g., multiple binding partners) might substantially restrict
interface sequence space such that only native or near native
amino acid residues would be tolerated at most sites in multi-
specific interfaces. If this is true, sequences that have been
computationally designed to optimize binding with all known
interaction partners should be more ‘‘native-like’’ than
sequences designed to bind each partner independently.
Thus, for each promiscuous protein we examine, we compare
the sequence predicted to be optimal by our multi-constraint
protocol to the wild-type sequence in order to provide an
estimate of how extensively each interface is optimized for
multi-specificity (see Test for Optimization in Figure 1A1).
Importantly, differences between predicted and wild-type
sequences could highlight that evolved sequences are not
necessarily optimized for maximal affinity but that other
pressures are at play.
Second, we ask if each binding partner prefers similar

interactions throughout the binding site, or if some partners
need to make energetic compromises in order for multi-
specificity to be maintained. To address this question, we
compare sequences computationally designed to bind only
one partner at a time (without consideration of the other
characterized partners) with the sequence selected as optimal
for interacting with all partners (see Estimate Cost in Figure
1A2). We reasoned that for a given interface position, if an
identical amino acid is chosen when each partner is optimized
separately as is selected when all partners are included in the
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Author Summary

Computational methods have recently led to remarkable successes
in the design of molecules with novel functions. These approaches
offer great promise for creating highly selective molecules to
accurately control biological processes. However, to reach these
goals modeling procedures are needed that are able to define the
optimal ‘‘fitness’’ of a protein to function correctly within complex
biological networks and in the context of many possible interaction
partners. To make progress toward these goals, we describe a
computational design procedure that predicts protein sequences
optimized to bind not only to a single protein but also to a set of
target interaction partners. Application of the method to character-
ize ‘‘hub’’ proteins in cellular interaction networks gives insights into
the mechanisms nature has used to tune protein surfaces to
recognize multiple correct partner proteins. Our study also provides
a starting point to engineer designer molecules that could modulate
or replace naturally occurring protein interaction networks to
combat misregulation in disease or to build new sets of protein
interactions for synthetic biology.
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optimization process, key interactions at that site might be
highly shared among all partners. In contrast, some single-
constraint optimizations might choose an amino acid type
different from the one selected in the multi-constraint
protocol. For such positions, we can use our scoring function
to estimate the degree of compromise occurring between
differing preferences seen among the interaction partners.

We imagined two extreme case scenarios. If all binding
partners of a given promiscuous protein prefer similar
interface sequences (‘‘shared’’ scenario), single- and multi-
constraint optimizations are expected to give similar results
and comparable agreement with wild-type sequences (termed
‘‘native sequence recovery’’). If only a core set of shared
residues is sufficient for binding to all partners, the total
native sequence recovery over the entire interface could be
low, as the exact amino acid identity of peripheral residues
may be less important. Alternatively, each residue in a multi-
specific interface could be optimal for only one or few
partners (‘‘multi-faceted’’ scenario). In this case, designed
sequences from single-constraint simulations would be
expected to resemble the wild-type sequence only for certain
positions, and these positions could be different for each
partner. The multi-constraint simulations should act to

integrate preferences across all partners and would be
expected to generate sequences that are more native-like
than those resulting from optimization for any single binding
partner alone. For this scenario, there could be significant
tradeoff between the preferences of differing partners, and
amino acid residues within this class of interfaces could be
compromises with respect to the amino acid type preferred
by some or all partners. However, for each interface position,
we hypothesize that there should be an ‘‘optimal compro-
mise’’ that satisfies the constraints imposed by all partners to
maintain multi-specific binding.

Computational Strategy
Our computational protocol to test for optimization and

compromise in multi-specific interfaces outlined above is
illustrated schematically in Figure 1B. To determine whether
the shared or multi-faceted strategies are used in naturally
occurring promiscuous interfaces, we first compiled a dataset
of protein complexes from the PDB (Protein Data Bank) (see
Methods). Each promiscuous protein along with all its
structurally characterized binding partners is listed in Figure 2.
In total, we examined 65 PDB complexes, each of which
included one of 20 multi-specific proteins. While this analysis
is inherently limited by the set of promiscuous proteins

Figure 1. Computational Strategy and Methodology Flowchart

(A) Computational strategy for determining the degree of optimization and predicted cost of multi-specificity.
(B) Flowchart illustrating the methodology for generating a dataset of multi-specific proteins and computational protocol for predicting sequences
optimal for each binding interaction alone (single-constraint) as well as sequences predicted to satisfying binding in the context of all structurally
characterized partners (multi-constraint).
doi:10.1371/journal.pcbi.0030164.g001
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characterized in the PDB and ignores much known informa-
tion on biological interactions, it has the advantage that we
can rely on high-resolution structural information for each of
the complexes, and hence are more likely to obtain reliable
predictions from protein design methods. Our dataset of 20
promiscuous proteins is nevertheless quite broad and
includes all SCOP (Structural Classification of Proteins) [20]
classes (except membrane proteins) as well as representatives
from diverse functional families such as signaling proteins
(GTPases, CheY), structural proteins (actin), ubiquitin, and
several enzymes (see Figure 2). Further, in order to estimate
the connectivity or number of putative protein–protein
interactions for each promiscuous protein in our dataset,
we performed a BLAST search against sequences within the
Database of Interacting Proteins (DIP, http://dip.doe-mbi.ucla.
edu/ [21]). Protein–protein interaction graphs for homologs
to the multi-specific proteins in our set (leftmost column of
Figure 2; e-value , 1 * 10�9, see Methods) suggest that at least
half of the proteins we analyze can be classified as ‘‘hubs’’ (first
shell nodes . 5; second shell nodes . 15) and that many of
these proteins are involved in cellular signaling processes.

As we wished to examine promiscuous interface positions
believed to be under multiple constraints, only interface
positions that had an atom within 4 Å of two or more separate
binding partners were considered in our analysis. On average,
each characterized binding partner contacted 15 (64.5)
residues in this overlapping set (see Figure 2). Any conforma-
tional changes occurring between the different complexes
were taken into account implicitly by using the backbone
conformations directly from each complex PDB structure.

All computational protein design experiments used Roset-
taInterface and RosettaDesign, which have previously been
used to predict binding energy hotspots in protein–protein
complexes and to reengineer specificity in protein interfaces
[12,22]. The scoring function [6,22] is dominated by atomic
packing interactions, an orientation-dependent hydrogen
potential [23], and an implicit solvation model [24]. Side chain
rotamers were modeled on a fixed backbone, and optimal
rotameric conformations were chosen for each complex
backbone using a Monte-Carlo simulated annealing protocol.
Sequence optimizations used a genetic algorithm [11], and
fitness for binding was evaluated using inter-molecular scores
(see Methods). Single-constraint optimizations minimized the
binding score for interaction with a single partner while
multiple-constraint optimizations minimized the sum of the
calculated binding scores over all partners (see Methods).

An Example Case Study: Ran GTPase Shows
Multi-Faceted Binding

Before discussing results over the entire dataset (complete
data for all promiscuous proteins in our set are available as
Tables S1–S20), we consider as a representative example the

promiscuous protein Ran with five of its structurally
characterized interaction partners (Figure 3). One multi-
constraint and five single-constraint optimizations were
performed for the Ran set. The trajectories of the five
independent single-constraint optimizations monotonously
decrease in score at each generation, and in each case the
converged final sequence is predicted to have a binding score
better than wild-type (Figure 3A, crosses at final generation
(right edge of the graph)). Additionally, the sequences
selected as optimal in each single-constraint simulation differ
significantly from native (22%–39% native sequence recov-
ery, plus signs in Figure 3C).
In contrast, the trajectories of the multi-constraint simu-

lation show correlated changes in binding scores as each
sampled sequence is evaluated separately in the context of the
five complexes (Figure 3B). Cases where the simulation makes
tradeoffs that are more favorable to some partners and less
favorable for others can be clearly seen (arrows in Figure 3B).
Here, the sum of scores over all complexes decreases with time
and the final converged sequence ranks closer to the native
score than the sequences selected by the single-constraint
optimizations (compare endpoints of trajectories of Figure 3A
and 3B with crosses at the final generation). Most notably, the
amino acid sequence selected as optimal by the multi-
constraint protocol is quite similar to the evolved wild-type
sequence (67% identical to wild-type, plus signs in Figure 3C).
In the Ran example, the high native sequence recovery seen

in the multi-constraint optimization indicates that a signifi-
cant fraction of wild-type residues in this promiscuous
interface is optimized for multi-specificity by ‘‘adding up’’
information from single-constraint optimizations (Figure 3C).
This is consistent with the multi-faceted scenario described
above. Further, the multi-constraint trajectories illustrate
that there may be tradeoffs in preferences among the binding
partners (Figure 3B, arrows), and comparison of sequences
selected by the single- and multi-constraint simulations
suggest interface positions where the wild-type residue may
represent a compromise to allow promiscuity.
Figure 4A–4F depicts one such instance where several

single-constraint optimizations select residues differing from
native, yet the multi-constraint optimization integrates the
single partner preferences to recover the wild type-glycine
(single-constraint models shown in Figure 4A–4F are for the
interface region around residue 74, first box in Figure 3C).
The design simulations predict that three of Ran’s binding
partners (Figure 4A, 1A2K.pdb; Figure 4C, 1IBR.pdb; Figure
4D, 1K5D.pdb) prefer side-chains larger that the wild-type
glycine that have additional side-chain hydrogen bonding
capability. However, tight steric constraints for binding the
remaining two partners (Figure 4B, 1I2M.pdb, and Figure 4E,
1WA5.pdb) necessitate glycine to be the ‘‘optimal’’ compro-
mise for this interface position. Similar instances of com-

Figure 2. Dataset of Promiscuous Proteins

PDB codes and descriptions of 20 promiscuous proteins and their 65 crystallized interaction partners. For each binding partner, the total number of
residues it contacts (within 4 Å) on its promiscuous binding protein as well as the number of these residues which are also utilized by at least one other
characterized binding partner are given in the ‘‘Total’’ and ‘‘Shared’’ columns. Fold classes are as assigned using SCOP [20]. Protein–protein interaction
maps of sequence homologs to the promiscuous proteins in our dataset (see Methods) are as taken directly from the Database of Interacting Proteins
[21], http://dip.doe-mbi.ucla.edu/, see Table S21). Root nodes are colored red and the number of first (orange) and second (yellow) shell nodes for each
map is given on the far left. Edges are color-coded based on the reliability of data used to infer interactions, with green lines indicating data verified by
one or more computational methods and red lines depicting unverified high-throughput screens. The width of lines in interaction graphs reflects the
number of independent experiments verifying each predicted interaction.
doi:10.1371/journal.pcbi.0030164.g002
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promise at interface positions that are under substantial
steric constraint with a subset of the interaction partners are
a common pattern in our dataset; many of these cases involve
wild-type glycine residues.

In contrast to the compromised scenario described above,
Figure 4G–4J (multi-constraint models shown in Figure 4G–4J
are for the interface region around residue 76, second box in
Figure 3C) depict a Ran interface residue that our simulations
predict to be highly shared among all partners. Here the wild-
type residue, arginine, is correctly recovered by every single-
constraint simulation where it mediates an inter-chain
hydrogen bonding network. This is the case for all partners
except one (see Figure 4I). Here the interchain interactions
are formed largely by the aliphatic part of the arginine side
chain, and design simulations favor a leucine residue. Hence,
for this interface position, where the multiple-constraint
simulation also correctly selects the wild-type arginine, there
is little indication that recovery of this native amino acid is
the result of compromises among the interaction partners.
Interestingly, the Ran interaction partners depicted in Figure
4F and 4G form very similar hydrogen bonding interactions
with the wild-type arginine, although the partner proteins
comprise different fold classes. This behavior of physico-
chemically similar interactions formed by structurally distinct
interfaces has been observed previously [25,26].

Sequences Selected by Multi-Constraint Simulations

Can Be Substantially More Native-Like Than

Single-Constraint Sequences
We next investigated whether the trend of optimization for

promiscuity using the multi-faceted scenario we observed for
Ran was common in our dataset. In total, 65 separate single-
constraint optimizations and 20 multi-constraint optimiza-
tions were performed (Figure 2). Figure 5A shows that, over
our entire dataset, sequences predicted as optimal by the
multi-constraint protocol are more native-like than the
sequences selected in the corresponding single-constraint
runs (compare distance from red squares of black diamonds
or of grey circles). There was only one instance (elastase
complexed with inhibitors, promiscuous protein set #9)
where the single-constraint optimization for binding one of
the partners outperformed the multi-constraint protocol in
native amino acid recovery.
Upon closer look at the pattern of interface residues

recovered as native in each case, there seem to be two broad
groups of multi-specific interfaces represented in the dataset.
About half of the proteins comprised group I (blue shading,
Figure 5A), for which the improvement in native sequence
recovery in multi-constraint optimizations over single-con-
straint optimizations was small and total native amino acid

Figure 3. Single- and Multi-Constraint Simulation Trajectories and Sequences Selected for the Multi-Specific Protein Ran

Trajectories of single-constraint (A) and multi-constraint (B) optimizations. PDB codes for all complexes with the five different binding partners are given
in the legend. For reference, the score of the native amino acid sequence for each binding partner is marked on the y-axis (squares, final generation).
Scores among partners are correlated for multi-constraint simulations (arrows).
(C) Optimal interface sequences taken from the endpoint of the trajectories in (A) and (B). The first row in the table contains the interface residue PDB
numbering, the second row lists the native sequence (red), and the following rows list sequences predicted to be optimal in each simulation: multi-
constraint (second sequence), single-constraint (third through seventh sequences). Plus signs in the table denote that the wild-type amino acid residue
type was recovered as optimal. The number and percent of interface residues recovered as identical to native is shown for each simulation in the
rightmost column. Grey shading denotes interface positions not within 4 Å of the shaded interaction partner (see Methods).
doi:10.1371/journal.pcbi.0030164.g003
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recovery was low, regardless of interface size. As described for
the shared scenario above, the low native sequence recovery
could be due to all interaction partners binding via a few key
residues, with the residues peripheral to these free to vary in
sequence. This behavior is likely for several group I proteins
including elastase, ovomucoid inhibitor, and the SH3 domain
complexes. These proteins bind their targets within a narrow

groove or cavity, and in addition a considerable fraction of
interactions may be mediated through backbone contacts
[27]. Low native sequence recovery in group I could also be
influenced by inclusion of cross-species interactions (en-
zyme-inhibitor complexes and interleukin 6 receptor binding
to mammalian and viral interleukin) as well as lack of
sufficient constraints to fully specify the wild-type sequence
(see discussion below).
In contrast, for the other half of the proteins in our dataset

(group II), sequence optimization over all characterized
binding partners resulted in significant improvements in
native sequence recovery compared with optimizations for
binding to a single partner (pink shading, Figure 5A). Here, as
described for the multi-faceted scenario above, the multi-
constraint optimization procedure was able to ‘‘add up’’
differing amino acid preferences among partners. The
resulting high recovery of native amino acids indicates that
binding interfaces for proteins in this group are optimized
for multi-specificity. Additionally, as compared with group I,
group II proteins tended to use larger and flatter interfaces to
mediate binding, were more likely to show high connectivity
in protein–protein interactions networks, and bound inter-
action partners with a greater number of different fold types
(see Figure 2). Although generalizations of our conclusions
are necessarily limited by the restricted size of our dataset of
20 proteins, a ‘‘multi-faceted’’ recognition pattern spread
over a large interface may be a common strategy used by
highly connected signaling hubs to bind diverse partners.

Binding Scores of Sequences Selected by Multiple-
Constraint Simulations Are Closer to Native Than Those of
Single-Constraint Sequences for Group II Interfaces
Wehave shown that for about half themulti-specific proteins

in our dataset (group II), the multi-constraint–designed
sequences were substantially more native-like than single-
constraint sequences (Figure 5A). According to our rationale
outlined above, this suggested a significant level of optimiza-
tion for multi-specificity in these interfaces. However, not all
interface positions were predicted to be native-like, and native
sequence recovery over thewhole interface inmulti-constraint
simulations varied between 40% and 71% in this group.
Non-native amino acids could be chosen by our optimiza-

tion protocol because they are predicted to be more
favorable than the wild-type residue or, alternatively, because
a number of different amino acid types are allowed at a
certain position without substantial energetic differences. To
test whether the non-native interface residues selected by the
design simulations were predicted to lead to significant
interface stabilization, we compared the binding scores of
sequences selected by the single- and multi-constraint
protocols with the scores of the wild-type sequences. For
both group I and group II, optimization for only a single
binding partner always resulted in a favorable decrease in
predicted interface binding score (Figure 5B, grey line)
relative to the score of the wild-type amino acid sequence
(Figure 5B, red line). The binding score patterns for multi-
constraint optimizations (Figure 5B, black line), however,
differed among the two groups: multi-constraint binding
scores were often similar to single-constraint scores for group
I proteins (compare black and grey lines, blue shaded box),
while for group II proteins multi-constraint binding scores

Figure 4. Single- and Multi-Constraint Models for Two Ran Interface Sites

Shown are computational models of interface regions around residues
predicted to be optimal for binding each partner (orange, 1A2K.pdb;
yellow, 1I2M.pdb; green, 1IBR.pdb, purple, 1K5D.pdb; blue, 1WA5.pdb) of
Ran (pink). Single-constraint predictions for residue 74 (A–E) (wild-type
glycine) indicate compromise among the preferences of the five
partners. Three partners (A,C,D), when optimized alone, prefer a residue
with greater hydrogen bonding capabilities than the wild-type glycine.
Steric constraints imposed by the remaining two partners (B,E) forced
selection of the wild-type glycine by the multi-constraint protocol. Multi-
constraint predictions for residue 76 are shown in panels F–J. The wild-
type arginine is also chosen in all single-constraint predictions where it
mediates an inter-chain hydrogen bonding network (F,G,H,J). Single-
constraint selection of leucine at position 76 for 1K5D.pdb is not shown.
doi:10.1371/journal.pcbi.0030164.g004
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were much closer to those calculated for the wild-type
sequences (compare black and red lines, pink shaded box).

The division of our dataset into two groups suggested by
the native sequence recovery results (Figure 5A) was thus
mirrored in the predicted binding score patterns for wild-
type and designed sequences (Figure 5B). Our simulations
suggest that for group I proteins, where sequences and
binding scores for single- and multi-constraint optimizations
were similar, there might be non-native amino acids which
could improve the promiscuous compromise and at the same
time strengthen each interaction with each binding partner
alone. In contrast, non-native amino acids selected for group
II proteins in multi-constraint simulations are predicted to
offer little improvement over the binding scores of the
original wild-type sequences; this confirms our notion of high
levels of optimization for multi-specificity in this group.
Interestingly, while our simulations sought solely to maximize
binding affinity for each partner, and did not explicitly
consider either the relative binding affinities among partners
or that naturally occurring interfaces often need to be
transient, incorporation of multiple constraints alone was
often sufficient to predict sequences with binding scores near
or identical to that calculated for native sequences.

For All Multi-Specific Interfaces, Energetically Important
Residues Are Generally Optimized for Binding

We next investigated, on a per-residue basis, at which
interface positions our optimization protocols predicted
native residues to be suboptimal. Experimental analysis of
residues critical for maintaining binding with respect to a
single interaction partner have shown that often only a subset
of the interface comprises key hotspot residues optimized for
binding [16,17] and that other non-hotspot positions may
show a high degree of plasticity [19]. We thus wished to
examine how often native residues were being recovered as
optimal by our single- and multi-constraint simulations at
positions calculated to be energetically important hotspots.

For each binding partner, we calculated the per-residue

score of the native residue at every interface position, and
labeled sites with a native per-residue score of less than�2 as
a predicted hotspot. Next we calculated for each position the
difference in score between the residue selected by each of
our protocols and the score of the native residue (see Test for
Optimization in Figure 1A1). We reasoned that small score
differences (,1 score units; scores are parameterized to
approximate kcal/mol [22]) should reflect that a given
optimization protocol recovered the native (or energetically
similar to native) residue during optimization, and large score
differences (.1 score units) should indicate the extent to
which a non-native residue is predicted to improve binding
affinity over native.
At hotspot positions, whether optimizations were per-

formed with respect to single or multiple partners, native (or
energetically equivalent) residues were recovered for each
partner with high fidelity (Figure 6A and 6B, wheat bars, 244/
303 and 272/303 for single- and multi-constraint optimiza-
tions, respectively). This inability to predict non-native
residues scoring better than native at hotspot positions was
seen for proteins in both group I and group II (see Figure S1).
In contrast, at non-hotspot positions, the native residue was
predicted to be suboptimal (yellow, orange, red bars) with
respect to binding a single partner in approximately half of all
instances (Figure 6A, ‘‘all other residues’’, 350/682). This is in
agreement with experimental phage display data showing the
native residue to often be suboptimal for binding at non-
hotspot positions [19]. When considered in the context of
binding multiple partners, however, these same non-hotspot
sites often are now predicted to be suboptimal in only 14% of
all instances (‘‘All other residues’’ in Figure 6B; yellow, orange,
red bars 167/682). Thus, we find that the need to maintain
multi-specificity imposes constraints primarily on non-hot-
spot residues. This results in native residues being recovered
more often at such sites as they become the ‘‘optimal
compromise’’ for binding of multiple partners. This trend
for increased recovery of native residues at non-hotspot

Figure 5. Comparison of Native Amino Acid Recovery and Predicted Binding Scores of Native, Single-Constraint, and Multi-Constraint Sequences

(A) The number of residues recovered as identical to native are plotted for each promiscuous protein (see Figure 2). For reference, the size of the shared
interface is shown for each protein in red. For roughly half the dataset, (group II, pink shading), sequence recovery from the multi-constraint simulations
(black) significantly out-performed the average single-constraint recovery (grey). The remaining proteins (group I, blue shading) showed similar native
recovery regardless of whether sequences were optimized with respect to one or all characterized partners. Error bars represent the best and worst
native sequence recovery in a single-constraint optimization.
(B) Calculated binding scores of native (red), single-constraint (grey), and multi-constraint (black) sequences for each of the 65 complexes examined in
this study (see Figure 2). Sequences selected by single- and multi-constraint optimizations often show a favorable decrease in binding score relative to
native sequences for group I proteins (blue shading), while multi-constraint binding scores were close to native for group II proteins (pink shading).
doi:10.1371/journal.pcbi.0030164.g005
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positions during multi-constraint simulations was much
stronger for proteins in group II than in group I (see Figure S1).

Distributions of Shared and Compromised Interactions in
Promiscuous Interfaces

Finally, we wished to estimate the extent of compromise
each multi-specific protein in our dataset made in order to
maintain binding to all its partners compared with the ‘‘ideal’’
interaction it could have if only a single partner was
considered (see the section Rationale, and Estimate of Cost
in Figure 1A2). For each site within an interface, each partner
was assigned a ‘‘compromise value’’ (ranging from 0 to 2).
Compromise values were defined as the per-residue differ-
ence in score of the amino acid selected when each partner
was optimized alone (single-constraint) and the residue
selected at the same site when all partners were included in
the optimization protocol (multi-constraint). The interface
site itself was then assigned the largest compromise value seen
among all binding partners. For each position in the interface,
this number should provide a rough estimate of the maximal
amount of tradeoff paid by any partner due to the necessity of
other partners binding via the same site (see Methods and
Figure 1A2). Small compromise values (0–1 score units) should
indicate that all binding partners prefer the same (or similar)
residue type as optimal, regardless of the presence or absence
of other binding partners. Larger values (.1 score units)
suggest that for at least one partner, a non-native amino acid
is predicted to make more favorable interactions than the
wild-type, but may not be tolerated when preferences of all
additional binding partners are considered.

Figure 7A shows, over our entire dataset, the percentage of
sites within each protein interface calculated to have a
compromise score between 0 and 0.5. These positions are
predicted to be essentially shared, in that no partner
considered would have to give up potential gain so that
other partners could fulfill their optimal interactions. While

we observed a continuum ranging from interfaces calculated
to have few completely shared interactions (all GTPases,
actin, ubiquitin) to those for which the majority of
interactions were shared (inhibitor complexes, SH3 domain),
this analysis largely confirmed our earlier grouping of the
multi-specific proteins within our dataset (Figure 7A, pink
and blue boxes). A few group I proteins showed levels of
compromise similar to that seen in group II. Interestingly, at
least two of these proteins, importin beta (set #2) and cheY
(set #4), were also calculated to be protein interaction ‘‘hubs’’
in our earlier analysis (see Figure 2). These proteins may thus
also employ a ‘‘multi-faceted’’ binding strategy, and the low
native sequence recovery seen with the multi-constraint
protocol is likely due to our computational prediction being
under-determined (since we lack structural information for a
more complete set of binding partners). Likewise, we note
that among the group II proteins, for IGG1-FC (set #15) many
interactions were predicted to be shared by all binding
partners, a result that is consistent with an earlier structural
analysis of these proteins by Delano et al. [25].
To illustrate the three-dimensional distribution of pre-

dicted compromises in multi-specific interfaces, we generated
color-coded mappings of compromise scores. Figure 7 shows
representative maps for three promiscuous protein interfaces
calculated to display high (Figure 7B, Ran), medium (Figure
7C, CheY), and low (Figure 7D, Ovomucoid Inhibitor) overall
compromise (maps for the entire dataset are given in Figure
S2). Throughout our dataset, higher compromise scores often
occurred along the periphery of a binding site, while highly
shared residues tended to be more centrally located. While
further analysis is needed, this could indicate strong, shared
interactions with core hotspots may be necessary for each
partner to bind, but that it is along the rim of the overlapping
interface site where compromises among the binding partners
have to be integrated in order to maintain multi-specificity.
This is reminiscent of the idea that hotspot residues necessary

Figure 6. Distribution of Optimization in Promiscuous Interfaces

Predicted per-residue binding score improvements (relative to native) for sequences selected in single-constraint (A) and multi-constraint (B)
simulations. Coloring indicates the magnitude of predicted improvement over native. Darker-colored bars (compromise value 1–1.5, orange; more than
1.5, red) indicate positions for which the simulation predicts a non-native residue to bind stronger than native. Lighter-colored bars (compromise value
0–0.5, wheat; 0.5–1, yellow) indicate simulations recovered the native (or near-native) residue type. Whether optimization was in the context of single or
multiple partners, positions calculated to be hotspots (see Methods) consistently returned the native amino acid as optimal (244/303 and 272/303, for
single- and multi-constraint simulations, respectively). In contrast, roughly half of non-hotspot interface positions were predicted as suboptimal for
binding when each partner was considered separately (350/682), but only a quarter (167/682) were estimated to still be suboptimal in the context of
binding multiple partners. Overall, the total number of interface sites for which improvements in binding scores could be found was significantly less for
multi-constraint optimizations. Scores for the same residue position with differing binding partners are included in all plots.
doi:10.1371/journal.pcbi.0030164.g006
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for binding often occur in interface cores sequestered from
solvent, whereas other non-hotspot parts of the interface,
possibly around the rim, account for recognition [16].

Experimental Verification of a Non-Native Residue
Predicted Optimal for Multi-Specific Binding

Our energetic analysis suggests that many positions within
naturally occurring multi-specific interfaces have been
optimized for binding to multiple partners, while some native
amino acids are predicted to be sub-optimal in the context of
single or even multiple partners. Over the entire dataset, the
multi-constraint protocol recovered the native interface
residue as optimal for just under half (161/338) of all interface
residues examined. Ultimately, experimental data are needed
to verify whether choices of non-native amino acids by our
multi-constraint optimization protocol are incorrect predic-
tions by our energy function, or whether the predicted choice
would indeed strengthen binding for all partners.

In general, experimental data validating binding affinities
of sequences predicted by our single- and multi-constraint
simulations with all interaction partners were not available.
However, we did observe one notable case where we could
compare one of our predictions of an improved interface
with direct experimental data. This occurred for the third
domain of turkey ovomucoid inhibitor (set #3) at the key P1
position at which the inhibitor (or natural substrate) residue
extends into a deep binding pocket. The predicted per-
residue binding score at this site suggested that the wild-type

residue was a hotspot crucial for maintaining binding with all
partners, yet our multi-constraint protocol predicted a non-
native amino acid residue to be significantly preferred over
native by all partners. As discussed above, prediction of a
native hotspot residue to be suboptimal was an infrequent
occurrence throughout our dataset (see hotspots in Figure 6;
yellow, red, orange bars).
Binding affinities for ovomucoid inhibitor mutants con-

taining all 20 amino acids at the P1 position have been
experimentally characterized for six different serine pro-
teases [28]. This allowed us to compare the experimental
preferences at the P1 position for the two serine proteases
complexes in our dataset (chymotrypsin and SGPB, see Figure
2) with the computational predictions. The residue chosen at
this site by the multi-constraint protocol, a phenylalanine,
was ranked experimentally as the third and fourth most
favorable residue for chymotrypsin and SGPB, respectively.
There was no amino acid choice more favorable in common
for both proteins and the native lysine residue was ranked
eleventh and eighth, respectively. We note that while the
multi-constraint protocol correctly selected the optimal
choice for binding the two characterized binding partners
in our dataset, other amino acid types may be optimal for
selectively binding different combinations of the six serine
proteases studied. Interestingly, the P1 residue of ovomucoid
inhibitor is known to vary significantly in nature, with eight
differing amino acid types occurring at this position in the
153 avian species analyzed [28].

Figure 7. Distribution of Constraint Scores in Promiscuous Interfaces

Tradeoff at each interface position in our dataset was estimated by the per-residue difference in scores of amino acids chosen when each partner was
optimized alone as compared with when all binding partners were considered in the optimization procedure (see Figure 1A2). The percentage of
interface sites displaying the lowest level (0–0.5) of ‘‘tradeoff value’’ (see Methods and text) is shown for all 20 proteins in our dataset (A). Such positions
are predicted to be highly shared, in that no partner considered had to ‘‘give up’’ potential gain so that other partners could fulfill their optimal
interactions. Blue and pink shading denotes whether each protein was assigned to group I or II. Right-hand panels show color-coded mappings of
constraint scores onto three promiscuous protein interfaces calculated to display high (B) (Ran set #11), medium (C) (CheY set #4), and low (D)
(Ovomucoid Inhibitor set #3) compromise. Compromise values are colored as follows: 0–0.5, wheat; 0.5–1 yellow; 1–1.5 orange; .1.5 red.
doi:10.1371/journal.pcbi.0030164.g007
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Discussion

Our study uses a protein design method that can in
principle be applied to computationally select amino acid
sequences under any set of positive and negative constraints
that can be defined by a fitness function. Here we have made
comparisons between single- and multi-constraint predicted
and naturally occurring sequences to quantify optimization
and compromise in multi-specific interfaces.

Our analysis indicates that first, the protocol presented here
is able to detect optimization for multi-specificity in promis-
cuous interfaces, as sequences and binding scores from multi-
constraint simulations are closer to native than those obtained
in single-constraint optimizations. Second, we identify two
distinct mechanisms for achieving multi-specificity: (1) shared
or low compromise interfaces where a small subset of interface
residues have been optimized such that all binding partners
utilize this set as hotspots and (2) multi-faceted or intermedi-
ate compromise interfaces where a far larger percentage of
the interface has been optimized for multi-specific binding
and each partner picks and chooses a subset of interface
residue interaction with which to make key interactions.

Signaling proteins with large, flat interfaces fall clearly
within the ‘‘multi-faceted’’ group II, while enzymes, motif
recognition domains, and receptors with smaller, narrower
binding interfaces are often found within the shared group I.
We speculate that the ‘‘multi-faceted’’ mode might have an
evolutionary advantage for signaling interfaces, as here the
chance that single mutations will deleteriously affect all
binding interactions is reduced. On the other hand, a single
mutation may substantially alter the pattern of interaction
partners by now favoring certain interactions over others. In
this way, multi-faceted interfaces may be more ‘‘evolvable’’
for new sets of interactions.

It is interesting to note that the ability to a priori predict
binding sites from surface sequence conservation or surface
cavity size has been shown to be easiest for proteins similar to
those classified as ‘‘shared binding’’ by our methodology [29].
This is consistent with our observations, as in these cases
there should be shared evolutionary pressure for conserva-
tion of key surface residues by all partners. In contrast, for
proteins predicted to display some degree of compromise
among the differing binding preferences of their multiple
partners, evolutionary pressures could differ depending on
which subset of binding partners is most strongly selected for
over time. Further, allowing each partner to pick and choose
its own subset of interface amino acids for key interactions, as
in the multi-faceted case, could necessitate large, easily
accessible (i.e., flat) binding surfaces with a certain degree
of conformational flexibility; this mechanism could hence
partly explain why flat surfaces and conformational varia-
bility are frequently seen in multi-specific signaling proteins
such as G-proteins [30].

We hypothesize that there should be significant differences
in the ease with which binding specificities among partners
could be rationally modified and/or small molecule inhibitors
could be designed for proteins exhibiting the two modes of
multi-specificity described here. The patterns of varying
amino acid preferences among different binding partners
revealed by comparing the single- and multi-constraint
protocols suggest mutations at specific interface positions
that could rationally change the specificity or promiscuity

seen among binding partners. However, these same factors
might make drug or small molecule design toward ‘‘multi-
faceted’’ interfaces more difficult. For the group II interfaces
in our set, the different partners display varying interface
residue preferences (see Figure 3C), and there may be a
substantial number of constrained residues in each binding
interface (see Figure 7). Hence, proteins using this mode of
interaction may have fairly distributed hotspots that are
difficult to interfere with by a small molecule targeted to a
single region.
A caveat of our study is that first, generalizations may be

somewhat limited because of the restricted size of our dataset
of high-resolution structures. Second, the results presented
here are necessarily dependent on the quality of the scoring
function used for optimizations. However, improvement in
native recovery seen in multi-constraint simulations could
not be directly due to energy function biases, as the same
scoring function was used for all simulations. The ability of
the Rosetta scoring function to predict energetically im-
portant residues has been analyzed previously [22]. We note
that amino acid types for which our simulations consistently
select the native residue as the best (optimal) choice for
binding multiple partners include tryptophan, tyrosine, and
arginine (Figure S3; the predicted amino acid frequencies for
W, Y, and R closely match the native distribution), amino
acid types which have previously been shown to be energeti-
cally important in binding interfaces [16,31,32]. Interestingly,
where allowed by steric constraints (for example at the
interface periphery), we observed an increased selection in
our simulations of larger amino acids such as tryptophan,
arginine, and histidine, and against smaller amino acids such
as alanine, threonine, and valine (Tables S1–S20 and Figure
S3). While this could be due to approximations in our
scoring function, an alternative explanation could be that
these non-native sequences would, at least in some cases,
truly bind more strongly. An overrepresentation of large
hydrophobic residues may have been selected against in
nature to maintain protein solubility in the absence of
binding partners. In addition, while our computational
protocol optimizes binding score, naturally occurring tran-
sient interfaces may not necessarily have evolved for strong
binding. The complexes between small GTPases and their
exchange factors (GEFs) may be examples of interactions that
need to be transient to fulfill their cellular function: in the
case of the ARF1-Sec7 interaction, the fungal metabolite
Brefeldin A inhibits signaling by stabilizing the complex [33].
It may also be a general trend that multi-specificity must
come at a cost of affinity [34]. Additional constraints not
explicitly considered in our current protocol, such as
selection at the level of on or off rates for complex formation
could also account for differences in native and computa-
tionally selected sequences.
Lastly, we note that while the analysis presented here has

focused on the ability of our simulations to identify the wild-
type amino acid, strict conservation of a single native amino
acid over evolutionary time is rare, and the tolerance for
substitution to differing amino acid types can vary between
sites in an interface [29]. For example, for the multi-specific
protein Ras we found two instances (Table S12, positions 32Y
and 67M) where we predicted the interface positions to be
energetically important but failed to correctly recover the
native amino acid. In both cases, the non-native amino acids
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selected by our multi-constraint simulations were among the
evolutionarily tolerated set seen in a multiple-sequence
alignment (unpublished data, generated as described in
Methods). A clear extension of our method is thus not only
to predict optimal but also a set of tolerated amino acid
sequences for a given set of constraints (ELH and TK,
unpublished data).

While we have applied the multi-constraint design protocol
described in this work to examine whether and how
promiscuous proteins are optimized for binding multiple
partners, the methodology presented here is general and can
be extended to analyze how any number of enumerable
constraints (both positive and negative) affects sequence
selection. A logical related analysis would be to characterize
the sequence determinants of conformational flexibility
where the input constraints would be stability for two or
more different conformations. Further, the multi-constraint
protocol introduced here is not only predictive of naturally
occurring amino acid sequences, but also allows for rational
redesign of proteins with altered binding properties which
could be instrumental toward understand the role of
specificity in protein interaction networks as well as in the
engineering of biosensors and new cellular pathways.

Methods

Generation of a dataset of multi-specific proteins. Each domain of
every protein–protein interface listed in PIBASE (http://alto.compbio.
ucsf.edu/pibase/ [35]) was classified using the standard SCOP domain
definition. SCOP domains were clustered at 90% sequence identity.
Clusters containing only intra-protein domain interactions (only one
chain in the PDB file) were removed, and clusters with duplicates
were merged, leaving 168 clusters. Additional filtering via PDB
header descriptions to remove multi-subunit, viral coat, and
immunoglobulins/MHC proteins resulted in approximately 50 clus-
ters. All clusters containing multiple structures of the same
promiscuous protein interacting with differing binding partners
using an overlapping binding site (by visual inspection) were selected
for the dataset of multi-specific proteins. Lower resolution structures
of redundant protein–protein complexes were discarded, as well as
all structures (except 1FXT) determined by NMR. PDB codes of the
resulting 20 clusters are given in Figure 2.

Energy function and preparation of structures. All simulations
were performed using the RosettaInterface and RosettaDesign
methodologies as outlined in [6,22] and described below. The Rosetta
scoring function is dominated by attractive and repulsive Lennard-
Jones interactions, an orientation-dependent hydrogen bonding term
[23], and an implicit solvation model [24]. Side chains from a rotamer
library including the native amino acid PDB conformation and with
additional rotamers around the v1 and v2 angles [4] were sampled on
a fixed backbone using a Monte-Carlo simulated annealing optimi-
zation protocol.

All water molecules, heteroatoms, and hydrogens present in the
original PDB were removed, and hydrogen atoms were added as
previously described [23]. An initial round of side-chain Monte-Carlo
minimization was then performed using the Rosetta scoring function,
keeping all amino acid identities and backbone coordinates fixed,
while selecting for the optimal rotamer at each side-chain position
from the rotamer set as described above. After this initial
minimization, all backbone and side-chain positions not determined
to be in the shared interface were kept fixed for all subsequent steps.

Single- and multi-constraint optimization protocol. Amino acid
positions on each promiscuous protein were considered for single-
and multi-constraint design simulations only if any atom of two or
more known binding partners was located within 4 Å of any atom of
the side chain of interest. For promiscuous proteins with five or more
characterized binding partners, only interface positions with an atom
within 4 Å of three or more partners were considered. Each single- or
multi-constraint optimization allowed all amino acids (except
cysteine) to be substituted at each position examined. Positions for
which the native residue was a cysteine were disregarded. For all
simulations, a genetic algorithm was used to generate and propagate

putative sequences based on inter-molecular scores, and optimal
rotamers for each sequence were chosen separately with consid-
eration of both inter- and intra-molecular interactions by simulated
annealing Metropolis Monte Carlo for each fixed backbone as taken
from the PDB. This ensured that in the multi-constraint protocol
rotameric conformations could differ among binding partners even
as identical interface amino acids were scored for each.

Simulations were started with an initial random population of
2,000 sequences, and the genetic algorithm was allowed to propagate
for 100–200 generations. For single-constraint simulations, fitness
was defined to be the inter-molecular score for a single complex while
for multi-constraint simulations the fitness was a linear sum of the
inter-molecular scores of a given amino acid sequence calculated
across all characterized binding partners.

FITNESS ¼
X

wi � complex scorei

For all calculations, the weights (wi) were set uniformly to 1. For
single-constraint simulations, the sequence that scored optimal with
respect to a single complex independently was advanced to the next
generation while the multi-constraint protocol advanced the
sequence for which the fitness as defined above was minimized.
Uniform crossover was used to generate the remaining sequences of
the population for the following generation. Random mutation of
any given interface sequence was allowed for each generation with a
probability of 20% at any given interface position. Simulations
converged (dependent on the size of the shared interface) on average
within 50–130 generations (see Figure 3A).

Per-residue energetic analysis. Over the 20 multi-specific proteins
in our dataset, 338 interface residues met the criteria for design.
Consideration of each interface position in the context of the 65
characterized binding partners resulted in 1,199 individual inter-
actions. For each individual interaction, a per-residue inter-chain
score was calculated by summing, for any given residue on chain i,
pair-wise contributions to the score from all residues on chain j 6¼ i.
An interface residue was classified as a hotspot for all binding
partners for which the per-residue inter-chain score of the original
native amino acid in the wild-type complex was calculated to be less
than�2 (see pink shading, Tables S1–S20).

Estimates in predicted per-residue improvements (Figure 6) in
binding affinity were made by calculating, for each binding partner,
the difference in per-residue score of the amino acid chosen by
single- or multi-constraint simulations (Figure 6A and 6B, respec-
tively) from native. Positions for which the per-residue score for the
native amino acid, as well as the amino acid chosen in single- and
multi-constraint simulations was zero, were eliminated from the
analysis. These 214 positions represented cases where one binding
partner did not interact with an interface residue in contact with
other partners in our dataset (see grey shading, Tables S1–S20).

Estimates of per-residue constraint (Figure 7) were made by
calculating, for each binding partner, the difference in per-residue
scores for the amino acid type/rotamer chosen in the single-
constraint optimization from the respective score for the amino acid
type/rotamer selected by the multi-constraint protocol. The largest
magnitude of difference seen among all partners was the constraint
value assigned. For simulations that did not recover the native amino
acid type, constraint scores between sequences selected using single-
and multi-constraint optimization were also calculated and assigned
to the native amino acid type.

Generation of protein–protein network graphs. The complete
sequence, as taken from the pdb files, of each promiscuous protein in
our dataset was searched against all sequences contained within DIP
(http://dip.doe-mbi.ucla.edu/ [21]). Hits were considered as significant
if they had an e-value of less than 1*e�9. Protein–protein interaction
graphs (Figure 2) were shown for sequences predicted to be
homologous to Saccharomyces cerevisiae whenever possible. The DIP
identification number, organism, e-value, and assigned DIP protein
name for the interaction graph shown in Figure 2 are as given in
Table S21.

Multiple-sequence conservation of Ras. A multiple-sequence align-
ment (MSA) and evolutionary rates for Ras were calculated using the
automated Web server http://consurf-hssp.tau.ac.il for the Consurf-
HSSP database [29] using the PDB ID code 1WQ1. Evolutionary
conservation scores (1–10, 10 most conserved) were 9 and 8 for 32Y
and 67M, respectively. 90% (186/206) of sequences within the
multiple-sequence alignment for the native position 32Y contained
either a Y or an H, while 89% (184/206) of sequences at the native
position 67M contained H,I,L,M,Q, or V. Multi-constraint simulations
selected 32H and 67H as optimal, respectively.
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Supporting Information

Figure S1. Group I and Group II Distributions of Optimization in
Promiscuous Interfaces

Predicted per-residue binding score improvements (relative to
native) are shown for sequences selected in single-constraint (A,C)
and multi-constraint (B,D) simulations for group I (top, pink shading)
and group II (bottom, blue shading). Colored bars indicate the
magnitude of predicted per-residue improvement over native.
Darker-colored bars (compromise value .1, orange, red) indicate
positions for which the simulation predicts a non-native residue to
bind stronger than native. Lighter-colored bars (compromise value
,1, wheat, yellow) indicate simulations recovered the native (or near-
native) residue type. Group I and group II proteins show similar
distributions of native residues predicted to be suboptimal when
optimized for single binding interactions alone (A,C); compare red,
orange, yellow bars. Optimization over multiple partners, however,
differed between groups: a larger number of non-hotspot positions
were still predicted to be suboptimal for group I when all partners
were considered for optimization than seen in group II (‘‘All other
residues’’; compare red, orange, yellow bars in (B,D)). This is
consistent with our finding that native sequence recovery is lower
overall for group I.

Found at doi:10.1371/journal.pcbi.0030164.sg001 (206 KB PDF).

Figure S2. Distribution of Compromise for All 20 Promiscuous
Proteins in the Dataset

Constraint scores (see Methods) are mapped onto each promiscuous
protein in the dataset. Darker colors indicate stronger tradeoff in
that some partners considered are predicted to ‘‘give up’’ potential
gain so that other partners could fulfill their optimal interactions.
Overall, group I proteins (1–10, 20) display lower levels of tradeoff
than seen in group II (11–19).

Found at doi:10.1371/journal.pcbi.0030164.sg002 (5.1 MB PDF).

Figure S3. Amino Acid Frequency Distributions of Sequences
Selected as Optimal in the Multi-Constraint Procedure

For each amino acid type, the number of times an amino acid type was
correctly recovered as native is shown as black striped bars. Non-native
substitutions of each amino acid type are shown as white bars. The
native amino acid distribution is plotted for reference (solid black line).

Found at doi:10.1371/journal.pcbi.0030164.sg003 (216 KB PDF).

Table S1. Single- and Multi-Constraint Sequences Selected for FYN
SH3 Domain

For Tables S1–S20, the first row in each Table contains the interface
residue PDB numbering, the second row lists the native sequence
(red), and the following rows contain sequences predicted to be
optimal in each simulation: multi-constraint (second sequence),
single-constraint (third sequence to the last sequence). Plus signs
denote that the native amino acid residue type was recovered as
optimal. The number and percent of interface residues recovered to
be identical to native is shown for each simulation in the rightmost
column. Pink shading denotes that the original wild-type amino acid
type was calculated to be a hotspot for the given binding partner,
while grey shading signifies an interface position not within 4 Å of the
respective interaction partner (see Methods).

Found at doi:10.1371/journal.pcbi.0030164.st001 (30 KB PDF).

Table S2. Single- and Multi-Constraint Sequences Selected for
Importin Beta

Found at doi:10.1371/journal.pcbi.0030164.st002 (31 KB PDF).

Table S3. Single- and Multi-Constraint Sequences Selected for
Ovomucoid Inhibitor

Found at doi:10.1371/journal.pcbi.0030164.st003 (31 KB PDF).

Table S4. Single- and Multi-Constraint Sequences Selected for Che Y

Found at doi:10.1371/journal.pcbi.0030164.st004 (33 KB PDF).

Table S5. Single- and Multi-Constraint Sequences Selected for
Phosphocarrier Protein HPR

Found at doi:10.1371/journal.pcbi.0030164.st005 (31 KB PDF).

Table S6. Single- and Multi-Constraint Sequences Selected for
Thioredoxin

Found at doi:10.1371/journal.pcbi.0030164.st006 (32 KB PDF).

Table S7. Single- and Multi-Constraint Sequences Selected for
Interleukin-6

Found at doi:10.1371/journal.pcbi.0030164.st007 (31 KB PDF).

Table S8. Single- and Multi-Constraint Sequences Selected for
Beta Lactamase

Found at doi:10.1371/journal.pcbi.0030164.st008 (31 KB PDF).

Table S9. Single- andMulti-Constraint Sequences Selected for Elastase

Found at doi:10.1371/journal.pcbi.0030164.st009 (32 KB PDF).

Table S10. Single- and Multi-Constraint Sequences Selected for
Peroxisome Proliferator Receptor

Found at doi:10.1371/journal.pcbi.0030164.st010 (33 KB PDF).

Table S11. Single- and Multi-Constraint Sequences Selected for Ran

Found at doi:10.1371/journal.pcbi.0030164.st011 (34 KB PDF).

Table S12. Single- and Multi-Constraint Sequences Selected for Ras

Found at doi:10.1371/journal.pcbi.0030164.st012 (34 KB PDF).

Table S13. Single- and Multi-Constraint Sequences Selected for Actin

Found at doi:10.1371/journal.pcbi.0030164.st013 (33 KB PDF).

Table S14. Single- and Multi-Constraint Sequences Selected for
Transducin Beta Gamma

Found at doi:10.1371/journal.pcbi.0030164.st014 (34 KB PDF).

Table S15. Single- and Multi-Constraint Sequences Selected for FC

Found at doi:10.1371/journal.pcbi.0030164.st015 (34 KB PDF).

Table S16. Single- and Multi-Constraint Sequences Selected for Rac

Found at doi:10.1371/journal.pcbi.0030164.st016 (34 KB PDF).

Table S17. Single-andMulti-ConstraintSequencesSelectedforUbiquitin

Found at doi:10.1371/journal.pcbi.0030164.st017 (37 KB PDF).

Table S18. Single- and Multi-Constraint Sequences Selected for CDC42

Found at doi:10.1371/journal.pcbi.0030164.st018 (35 KB PDF).

Table S19. Single- and Multi-Constraint Sequences Selected for
RXR Receptor

Found at doi:10.1371/journal.pcbi.0030164.st019 (34 KB PDF).

Table S20. Single- and Multi-Constraint Sequences Selected for PAPD

Found at doi:10.1371/journal.pcbi.0030164.st020 (34 KB PDF).

Table S21. Source of High-Throughput Interaction Data for
Promiscuous Proteins

DIP (http://dip.doe-mbi.ucla.edu/) identification numbers, e-values,
and protein names for sequences identified as homologs to the 20
promiscuous proteins in our dataset. Interaction graphs (see Figure 2)
are taken directly from each DIP protein listed.
Found at doi:10.1371/journal.pcbi.0030164.st021 (57 KB PDF).
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