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Wendy Saltzman 

Evolution, Ecology, and Organismal Biology 
University of California, Riverside 

 Riverside, California 92521 USA 
 Voice: (951) 827-6356 

 FAX: (951) 827-4286 
E-mail:  Saltzman@ucr.edu 

 
February 15, 2019 
 

Dear Drs. Huston and Maren, 

Attached please find a revision of our manuscript, “Plasticity of paternity: effects of fatherhood on 
synaptic, intrinsic and morphological characteristics of neurons in the medial preoptic area of male 
California mice.”  We are very  grateful to the reviewers for their thoughtful and constructive 
comments on the previous submission of the manuscript.  Our responses are as follows: 

Reviewer 1 

  “The authors found that MPOA neurons in fathers showed lower maximal evoked IPSCs than 
virgins, indicative of a decrease in MPOA inhibition in fathers. The authors need to interpret this 
finding in more detail and discuss its relevance. Does this major finding mean that the effects of 
natural inhibitory inputs to MPOA would be dampened in fathers? Where might such neural afferents 
to MPOA come from? What might be the underlying mechanisms within MPOA neurons that cause 
this dampened inhibitory response? Since the output of MPOA is so important for parental behavior, 
answers to these questions are crucial and should be enlightening.” 

We agree that an expounding on the possible mechanisms of a decrease in maximal IPSCs in fathers 
is needed and have added several sentences about this in the discussion (lines 322-340). These are 
important questions, and answering them experimentally may reveal components of plasticity 
facilitating paternal behavior in California mice. 

“As an example, it has been suggested in rats that PAG input to MPOA might depress parental 
behavior. It would have been interesting to explore whether natural afferent inhibitory inputs to 
MPOA neurons are depressed in fathers.” 

Yes, investigating specific MPOA afferents or efferents implicated in parental care would have been 
valuable. Unfortunately, this is beyond our capabilities currently.  We now mention this point in the 
last paragraph of the discussion (lines 383-385). 

“I think there may be an error in Figure 5B, although it is possible that I am not reading it correctly. 
When comparing Figure 5B with the data in Table 9, it appears that the data in Figure 5B is reversed. 
This figure shows that fathers, rather that virgins, have higher IPSC amplitudes, while the reverse it 
what is reported in the text and in Table 9. If I am interpreting Fig. 5B incorrectly, the authors should 
modify the text to aid the reader in interpreting the figure properly.” 

Thank you for pointing this out.  Yes, the colors in Fig. 5 were inadvertently switched. This has now 
been corrected. 

Reviewer 2 



 
Wendy Saltzman 

Evolution, Ecology, and Organismal Biology 
University of California, Riverside 

 Riverside, California 92521 USA 
 Voice: (951) 827-6356 

 FAX: (951) 827-4286 
E-mail:  Saltzman@ucr.edu 

 
Comments about correlations: 

“Thus, looking at correlations within virgin males with behavior could provide additional clues 
to MPOA function. Even if this approach did not pan out, this will still be an important paper 
because so little is known about the electrophysiological properties of MPOA neurons.” 

“It might be interesting to look at correlations within virgin males to see if individual variation 
in parental care was associated the different electrophysiological parameters.” 

“As with the other ephys variables, did the authors look at correlations between neuronal 
morphology metrics and paternal behavior, especially as this was the primary approach used 
in the Parent et al. 2017 study.” 

Thank you for this suggestion.  We have now performed correlational analyses between key 
behavioral measures (i.e., latency to initiate paternal care, percent time spent in paternal behavior) 
and many electrophysiological and morphological variables. These correlations add a new dimension 
to the paper, although after correcting for false discovery rate, no significant correlations were 
found. The methods (lines 218-224) and results (lines 282-292) now include information about these 
correlations, and a new table has been added (Supplemental Table 1). 

 “The authors state that little is known about the electrophysiological properties of MPOA neurons. 
It seems like it would be relevant to give a short overview of what is known and whether the authors 
expected to see different results in this study.” 

A brief review of the known electrophysiological properties of MPOA neurons occurs in the 
discussion (lines 344-352).  We have added additional information and state our expectations that 
targeting specific cell types, such as cells that express estrogen receptors or the neuropeptide 
galanin, for reasons explained in the discussion, may reveal differences. 

“Were mice randomly assigned to be paired with a female?” 

Mice were assigned into categories of “virgin” or “father” in an aged-matched but otherwise 
random fashion throughout the experiment. We now mention this in the methods (lines 104-106). 

 “On line 241 it would be easier to compare the different parameter by grouping together the 
properties and listing virgins and fathers next to each other.” 

Thank you for this suggestion. We have re-written this sentence accordingly (lines 248-249). 

“Also, did the authors try using a chi-square test to see whether these percentages really were 
similar in fathers and virgins? For example there were almost 42% regular spiking neurons in fathers 
and vs 29% in virgins.” 



 
Wendy Saltzman 

Evolution, Ecology, and Organismal Biology 
University of California, Riverside 

 Riverside, California 92521 USA 
 Voice: (951) 827-6356 

 FAX: (951) 827-4286 
E-mail:  Saltzman@ucr.edu 

 
Because our data did not meet the requirements for a chi-square test (i.e., expected values of some 
cells were <5), we conducted Fisher’s exact tests and Freeman-Halton extension of Fisher’s exact 
tests (lines 250 & 270). We found no differences in percentages of neurons in certain categories in 
virgins and fathers. 

“Line 270, the authors should state how many individual mice were examined in addition to number 
of cells.” 

The numbers of mice and cells are now stated (line 277). 

“I think the authors should address differences in IPSCs earlier in the discussion and make more of an 
effort to discuss the potential behavioral significance. Based on the literature, what would a 
decrease in IPSCs do to MPOA function? What is the main source of inhibitory input into the MPOA? 
How would an increase in IPSC’s be expected to alter MPOA function. The authors might be able to 
draw more from the sexual behavior literature to develop these lines of thought.” 

Several sentences, some of which comprise a new paragraph, have been added to the discussion to 
address the plausible mechanisms of decreased inhibition in the MPOA and sources of inhibitory 
input into the MPOA (lines 328-347).  Due to the nature of our preparation, complex connectivity, 
and heterogeneity of cell types in the MPOA, we do not want to speculate too much on what 
precisely is going on, though answering these questions in future experiments using methods now 
mentioned in the discussion is a goal. 

 “The discussion on biochemical mechanisms of paternal behavior is thoughtful. Perhaps an avenue 
for future research is to test whether estradiol (or other hormones) has different effects on 
neurophysiological parameters in fathers vs virgins?” 

Thank you for this suggestion.  We agree that the possibility of hormonal effects being dependent on 
reproductive status (e.g., virgin or father) is intriguing and could be an interesting topic for future 
studies. We now mention this in the discussion as a possible future direction (lines 365-366). 

Thank you for your consideration.  We look forward to hearing back from you. 
 

Yours sincerely, 

 
Wendy Saltzman 
Professor, Department of Evolution, Ecology, and Organismal Biology 



Highlights 
 

• California mouse fathers provide extensive paternal care to their offspring. 

• We compared properties of medial preoptic area neurons of fathers and virgin males. 

• Few differences were seen in intrinsic, synaptic, or morphological properties. 

• Synaptic inhibition was lower in fathers than in virgin males. 

• Fathers exhibited more paternal behavior toward unfamiliar pups than virgin males. 
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Abstract  25 

Parental care by fathers enhances offspring survival and development in numerous species. In the biparental 26 

California mouse, Peromyscus californicus, behavioral plasticity is seen during the transition into 27 

fatherhood: adult virgin males often exhibit aggressive or indifferent responses to pups, whereas fathers 28 

engage in extensive paternal care. In this species and other biparental mammals, the onset of paternal 29 

behavior is associated with increased neural responsiveness to pups in specific brain regions, including the 30 

medial preoptic area of the hypothalamus (MPOA), a region strongly implicated in both maternal and 31 

paternal behavior. To assess possible changes in neural circuit properties underlying this increased 32 

excitability, we evaluated synaptic, intrinsic, and morphological properties of MPOA neurons in adult male 33 

California mice that were either virgins or first-time fathers. We used standard whole-cell recordings in a 34 

novel in vitro slice preparation. Excitatory and inhibitory post-synaptic currents from MPOA neurons were 35 

recorded in response to local electrical stimulation, and input/output curves were constructed for each. 36 

Responses to trains of stimuli were also examined. We quantified intrinsic excitability by measuring voltage 37 

changes in response to square-pulse injections of both depolarizing and hyperpolarizing current. Biocytin 38 

was injected into neurons during recording, and their morphology was analyzed. Most parameters did not 39 

differ significantly between virgins and fathers. However, we document a decrease in synaptic inhibition in 40 

fathers. These findings suggest that the onset of paternal behavior in California mouse fathers may be 41 

associated with limited electrophysiological plasticity within the MPOA. 42 

Keywords 43 

electrophysiology, hypothalamus, medial preoptic area, neuronal morphology, parental behavior 44 

	  45 
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1.  Introduction  46 

Parental care by mothers occurs in all mammalian species, while care by fathers occurs in only 47 

approximately 5-10% of mammals. Infant-directed behavior of males in biparental species can range from 48 

infanticide to avoidance to paternal care, and a male can display all three behaviors in his lifetime (Kleiman 49 

& Malcom, 1981; Woodroffe & Vincent, 1994).  50 

The monogamous California mouse (Peromyscus californicus) exhibits a biparental care system, in 51 

which both parents provide extensive care to their offspring (Ribble & Salvioni, 1990; Ribble, 1991; 52 

Gubernick & Teferi, 2000). Fathers perform the same parental behaviors (except nursing) as mothers, and to 53 

a similar extent (Dudley, 1974; Gubernick & Alberts, 1987). Male California mice typically exhibit a shift in 54 

pup-directed behavior during the transition into parenthood: virgin males often exhibit infanticide or 55 

indifference when exposed to unrelated pups, whereas fathers exhibit paternal care (de Jong et al., 2009; 56 

Gubernick & Alberts, 1987). Thus, the California mouse is a useful model for investigating neural and 57 

hormonal plasticity underlying the onset of paternal care. 58 

The neurobiological substrates of parental behavior have been examined much more extensively in 59 

females than in males. One of the brain regions most strongly implicated in maternal behavior is the medial 60 

preoptic area (MPOA) of the hypothalamus (see reviews by Numan & Insel, 2003; Numan, 2006, 2014; 61 

Dobolyi, Grattan & Stolzenberg, 2014). In rats (Rattus norvegicus) and house mice (Mus spp.), c-fos is 62 

elevated in the MPOA after females are exposed to pups and/or engage in maternal care (Komisaruk et al., 63 

2000; Lonstein & De Vries, 2000; Okabe et al., 2013). MPOA lesions reduce maternal care in female rodents 64 

(rat: Noonan & Kristal, 1979; Terkel, Bridges, & Sawyer, 1979; Numan & Callahan, 1980; Fleming, Miceli, 65 

& Moretto, 1983; Franz, Leo, & Steuer 1986; Lee, Clancy, & Fleming, 1999; Numan et al., 1988; Olazábal 66 

et al., 2002; Stack et al., 2002; house mouse: Tsuneoka et al., 2013; Siberian hamster [Mesocricetus 67 
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auratus]: Miceli & Malsbury, 1982; California mouse: Lee & Brown, 2002, 2007), as does infusion of 68 

GABA agonists into the MPOA (rat: Arrati et al., 2006). Moreover, kindling of the MPOA increases female 69 

rats’ preference for pup-associated environments in conditioned place-preference paradigms (Morgan, 70 

Watchus, & Fleming, 1997; Morgan et al., 1999).  71 

 The MPOA is also critical for paternal care in male rodents (Bales & Saltzman, 2016; Horrell, 72 

Hickmott, & Saltzman, 2018). MPOA lesions disrupt paternal care in male California mice (Lee & Brown, 73 

2002, 2007) and disrupt or prevent sensitized allopaternal behavior in male rats and house mice (Rosenblatt, 74 

Hazelwood, & Poole, 1996; Sturgis & Bridges, 1997; Tsuneoka et al., 2015). Conversely, optogenetic 75 

activation of the MPOA decreases infanticide in male mice (Tsuneoka et al., 2015). Additionally, c-fos 76 

expression in the MPOA increases after exposure to pups in male house mice (Tsuneoka et al., 2015), prairie 77 

voles (Microtus ochrogaster; Kirkpatrick et al., 1994), North American deermice (Peromyscus maniculatus; 78 

Lambert et al., 2013), and California mice (Lambert et al., 2013; Horrell et al., 2017). California mouse 79 

fathers, but not virgins, display higher levels of c-fos in the MPOA after exposure to a pup than after 80 

exposure to a control stimulus (de Jong et al., 2009).  81 

Changes in morphology of MPOA neurons are associated with the transition into motherhood, the 82 

hormonal milieu of pregnancy, and the extent of maternal care in female rodents (Gubernick, Sengelaub, & 83 

Kurz, 1993; Keyser-Marcus et al., 2001; Shams et al., 2012; Parent et al., 2017). Only one study has 84 

compared MPOA neural morphology between virgin males and fathers in any species: Gubernick, 85 

Sengelaub, and Kurz (1993) reported no differences in MPOA cross-sectional somal area between California 86 

mouse fathers and virgin males, with no other properties of neurons analyzed. 87 

The electrophysiological properties of MPOA neurons have received little attention, especially in the 88 

context of parental care. Here we test the hypothesis that fatherhood increases intrinsic excitability, increases 89 



 5 

synaptic excitation and/or decreases synaptic inhibition, and alters the morphology of MPOA neurons in 90 

California mice.  91 

2.  Materials and methods 92 

2.1.  Animals 93 

Experiments were performed on young adult California mice that were born and maintained in our 94 

breeding colony at the University of California, Riverside and descended from mice purchased from the 95 

Peromyscus Genetic Stock Center (University of South Carolina, Columbia, SC, USA). Animals were 96 

housed in 44 x 24 x 20 cm polycarbonate cages containing aspen shavings and cotton wool for nesting 97 

material, with food (Purina Rodent Chow 5001) and water available ad libitum. Colony rooms were kept on 98 

a 14:10 light:dark cycle (lights on from 0500 h to 1900 h).  99 

2.2.  Experimental design 100 

At 27-33 days of age, prior to the birth of the next litter of siblings, animals were removed from their 101 

parents’ cage and housed in groups of three or four same-sex, age-matched littermates and/or unrelated 102 

juveniles. At sexual maturity (~3 months of age), each male mouse either remained in its group that was 103 

created at weaning (virgin males) or was paired with an unrelated female (fathers). Males were randomly 104 

assigned to the virgin and father conditions, except that those assigned to the two conditions were age-105 

matched. Three to seven days after the birth of their first litter, fathers underwent a pup test followed by 106 

electrophysiological experiments (see below). Virgin males were tested in an age-matched fashion; age on 107 

the day of data collection did not differ between virgin males (162.1±9.4 days [mean ± SE]) and fathers 108 

(175.0±7.4 days [mean ± SE]; p=0.283, df=37). All animal procedures were consistent with the Guide for the 109 

Care and Use of Animals and were approved by the Institutional Animal Care and Use Committee of the 110 
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University of California, Riverside. All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, 111 

USA) unless otherwise indicated. 112 

2.3.  Pup test 113 

At 0900-1000 h, males were taken from their home cage and housed singly in a clean cage for 10 114 

min. An unrelated, 1- to 5-day-old pup was then placed in the corner of the cage farthest from the male. The 115 

cage was video-recorded for 20 minutes, and the following behaviors were scored with The Observer 116 

software v. 11.5 (Noldus, Wageningen, Netherlands): latency to sniff the pup, latency to initiate paternal 117 

behavior (i.e., licking, grooming, or huddling), percent time spent sniffing the pup, percent time spent in 118 

paternal behavior, and percent time not in contact with the pup (i.e., not sniffing or engaging in paternal 119 

behavior). If a pup was attacked, the test was stopped, and the pup was immediately euthanized with 120 

pentobarbital, and the subject was assigned a score of 0 time spent in paternal behavior. 121 

2.4.  Preparation of MPOA slices for in vitro recording 122 

Immediately after the behavioral test, the mouse was anesthetized with isoflurane until areflexic, and 123 

the brain was rapidly removed and placed into modified artificial cerebrospinal fluid (ACSF; in mM: KCl, 124 

2.5; NaH2PO4, 1; MgSO4, 1.3; CaCl2, 2.5; NaHCO3, 26.2; D-(+)-glucose, 11; Sucrose, 196.7; 3-125 

morpholinopropane-1-sulfonic acid (MOPS), 3.5; sodium pyruvate, 2; kynurenic acid, 3; saturated with 126 

95%O2/5%CO2). Coronal slices (300 µm-thick) were cut on a vibrating microtome (VT1000, Leica 127 

Biosystems Inc., Buffalo Grove, IL, USA). Sections containing the preoptic area were selected using easily 128 

identifiable landmarks (i.e., the anterior commissure and third ventricle) and incubated in the modified ACSF 129 

for at least 30 minutes. Slices were then transferred into standard ACSF for at least 30 minutes before 130 
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recording (in mM; NaCl, 119; KCl, 2.5; NaH2PO4, 1; MgSO4, 1.3; CaCl2, 2.5; NaHCO3, 26.2; D-(+)-glucose, 131 

11; saturated with 95%O2/5%CO2; osmolarity: 290-300 mOsm/L).  132 

Electrophysiological data were obtained via blind whole-cell recording (Blanton, Turco, & 133 

Kriegstein, 1989) using patch electrodes with internal tip diameter of 1.5-2.5 μm. Patch electrodes were 134 

filled with either a Cs-based solution with QX-314 for recording synaptic currents or a K-based solution for 135 

recording intrinsic properties. The solutions consisted of (in mM): Cs-Gluconate or K-gluconate, 128; CsCl 136 

or KCl, 7; QX-314, 10; EGTA, 1; HEPES, 10; Mg-ATP, 2; Na-GTP, 0.2; biocytin, 0.1-0.2%; pH 7.0–7.4; 137 

osmolarity: 290-300 mOsm/L. Electrodes had tip resistances of 3-6 MΩ. Recordings were amplified using an 138 

Axoclamp 2B amplifier (Axon Instruments, Union City, CA, USA) in voltage-clamp or current-clamp mode, 139 

digitized at 15 kHz for synaptic currents and 40 kHz for intrinsic properties (National Instruments, Austin, 140 

TX, USA), and saved to the hard disk of a personal computer (Macintosh G4) using the IgorPro 141 

(Wavemetrics Inc., Lake Oswego, OR, USA) data acquisition system. Because the central MPOA has been 142 

strongly implicated in parental care (Tsuneoka et al., 2013; 2015), neurons were obtained in that region (Fig. 143 

1A): 609.32 ± 16.68 μm (SE ± mean) ventral to the anterior commissure and 297.86 ± 11.15 μm (SE ± 144 

mean) lateral to the midline. Location of neurons did not differ between virgins (n=45 neurons) and fathers 145 

(n=51 neurons) with respect to the anterior commissure (p=0.172, df=95) or midline (p=0.168, df=95). 146 

2.5.  Acquisition and analysis of data on intrinsic electrophysiological properties 147 

Neurons were current-clamped at -70 mV, and 500-ms square pulses of positive or negative current 148 

with intensities from sub- to supra-threshold were injected at 0.2 Hz. 149 

 Properties of single action potentials (APs; Fig. 1B, 1C) were measured using small supra-threshold 150 

injections that elicited one to a few spikes. The amplitude of single APs was measured from the inflection 151 
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point between the initial passive depolarization from the current injection and the beginning of the spike to 152 

the peak of the spike. The threshold was measured from baseline to the inflection point. Action potential 153 

half-width was measured as the duration of the AP at 50% of its amplitude. Fast afterhyperpolarizations 154 

(fAHPs) were quantified at two points: as the change in voltage from the inflection point to the minimal 155 

voltage 3-5 ms and 20-25 ms later.  156 

 Spike trains were obtained by increasing the magnitude of current injections. Maximum number of APs 157 

was measured as the highest number of APs resulting from any amount of injected current. Responses to 158 

positive injections of current that elicited spike trains were quantified by plotting the magnitude of the 159 

current injection (the input) and the resulting number of APs (the output). Input/Output (I/O) plots were well 160 

fit by an exponential function, the plateau of which was the modeled maximum number of APs and tau (τ) of 161 

which provided a measure of excitability (Fig. 3B). I/O plots were also created for average inter-spike 162 

interval (ISI) and current injected. From these I/O plots, minimum average ISI as well as tau were quantified 163 

to provide a metric of excitability independent of the maximum number of APs. Following a spike train, 164 

medium afterhyperpolarizations (mAHP) and slow afterhyperpolarizations (sAHP) were measured at -55 mV 165 

from baseline to peak of the hyperpolarization after the AP train and 450 ms after the offset of the AP train, 166 

respectively.  167 

Properties of subthreshold responses to negative current injection were quantified. For subthreshold 168 

potentials, the peak amplitude and the amplitude at 400 ms of the current pulse (i.e., at steady-state) were 169 

determined for each current amplitude and plotted. These I/O plots were well fit by a straight line for both 170 

peak and steady-state measures, and the slopes of the lines were used as an overall measure of 171 

hyperpolarizing potential amplitude (Fig. 4). 172 

2.6.  Acquisition and analysis of data on post-synaptic currents (PSCs) 173 
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To quantify PSCs, stimulation was applied with a bipolar parylene-coated tungsten stimulating 174 

electrode (FHC, Bowdoin, ME, USA; tip resistance ~1 MΩ; tip separation ~50 µm) placed ~200 um dorsal 175 

to the recording electrode. Neurons were clamped at the chloride reversal potential (~-55 mV) to record 176 

excitatory PSCs (EPSCs) and at the glutamate reversal (~0 mV) to record inhibitory PSCs (IPSCs). Single 177 

pulses 100 µs in duration were delivered at varying intensities to attain minimal and maximal PSC 178 

amplitude. Minimal PSC amplitude was operationalized as the current response using the greatest stimulus 179 

intensity that resulted in a failure rate of >20%. Stimulus intensity was then increased incrementally until the 180 

maximal PSC amplitude was reached. Stimulus intensity (the input) and the recorded PSC (the output) were 181 

used to generate I/O curves. These I/O curves were well fit by a single exponential function and from these 182 

exponential models, modeled maximum PSC amplitude was calculated.  183 

Trains of PSCs were elicited by stimuli consisting of 10, 100 µs pulses at various inter-pulse intervals 184 

(IPIs) of 10, 25, 50, 100, 200, 400 ms. For trains, stimulus intensity was adjusted to evoke PSCs of 185 

approximately half the maximal PSC amplitude for that particular cell. For each train of PSCs, the paired-186 

pulse ratio (PPR) was defined as the ratio of the amplitude of the second PSC to the first; the steady-state 187 

ratio (SSR) was defined as the ratio of the mean amplitude of the last 3 PSCs to the first. 188 

Properties of spontaneous PSCs (sPSCs) were determined from unstimulated records of varying 189 

durations. Typically, 30-50 spontaneous events were acquired for both EPSCs (when present) and IPSCs. 190 

Spontaneous excitatory PSCs (sEPSCs) were recorded at -55mV. Spontaneous inhibitory PSCs (sIPSCs) 191 

were recorded at 0 mV. Mean amplitude and frequency of sEPSCs and sIPSCs were determined.  192 

2.7.  Acquisition and analysis of morphological data  193 
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After recordings, slices were fixed in 10% formalin overnight at 4°C, rinsed in phosphate buffer 194 

(PB), then permeabilized in PB with 0.5% Triton X-100 and 5% goat serum for 30 min at room temperature. 195 

Slices were then incubated in a PB-based solution containing 5% goat serum and ALEXA-488 streptavidin 196 

(Molecular Probes; Eugene, OR, USA) at 0.01mg/mL overnight at 4°C. Sections were mounted in 90% 197 

glycerol with 4% N-propyl gallate added. Neurons were imaged using laser-scanning confocal microscopy 198 

(Zeiss 510). Images of dendrites were acquired at 10x with a 2x digital zoom. In all cases, the gain and black 199 

level were adjusted so that most of the labeled dendrites were saturated. Z-stacks were obtained for the entire 200 

depth of the cell, and 2-dimensional projections of neuronal morphology were derived using the maximal 201 

pixel intensity at each point in the X–Y plane. Dendritic morphology was analyzed using the Sholl analysis 202 

(Hickmott & Steen, 2005; Hickmott & Dinse, 2013). In this analysis, concentric circles were overlaid on an 203 

image of a neuron at 20 μm intervals centered on the soma; the number of intersections of each circle with 204 

labeled processes was determined for the entire neuron for a measure of overall neurite complexity. 205 

Quadrantized Sholl analyses for determination of a possible bias in dorsal-ventral and medial-lateral domains 206 

were conducted: Quadrant 1 (Q1) = dorsal medial, Q2 = dorsal lateral, Q3 = ventral medial, and Q4 = ventral 207 

lateral. In addition, number of branch points in each quadrant, total number of branch points, total neurite 208 

length, length of longest neurite, number of neurites leaving the soma, soma circumference, and largest soma 209 

diameter were measured. Properties of primary, secondary, and tertiary neurites were quantified. Primary 210 

neurites were defined as neurites leaving the soma, secondary neurites were defined as the shorter neurite 211 

process after a branch point on a primary neurite, and tertiary neurites were defined as the shorter neurite 212 

process after a branch point on a secondary neurite. 213 

2.8.  Statistical analyses 214 

All data were analyzed using SPSS (IBM Corp, 2013), Microsoft Excel, or SAS. Normality was 215 
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tested using the Shapiro-Wilk test, and homogeneity of variance was tested using Levene’s test. Depending 216 

on normality and homogeneity of variance, data from virgin males and fathers were compared using two-217 

tailed Students’ t-tests or Mann-Whitney U tests. Associations between behavioral and neuronal measures 218 

were evaluated using Spearman correlations. Multiple simultaneous tests involving related data, such as 219 

those in Supplemental Table 1, increase risk of Type 1 errors. To compensate, we used the positive False 220 

Discovery Rate procedure as implemented in SAS Procedure Multtest. That procedure indicated that none of 221 

the correlations reported in Supplemental Table 1 would be considered statistically significant after 222 

controlling for multiple comparisons. We refer to the three correlations with p values <0.05 as nominally 223 

significant. 224 

 225 

3.  Results 226 

3.1.  Pup test  227 

Data on pup-directed behavior was available for 13 virgins and 33 fathers (Fig. 2). Fathers had a 228 

lower latency to sniff and initiate paternal behavior (licking, grooming, or huddling) than virgin males (sniff: 229 

U=114, p=0.014, paternal care: U=79, p=0.001). Additionally, fathers spent less time sniffing (U=118, 230 

p=0.019) more time in paternal behavior (U=110.5, p=0.011), and less time not in contact with pups 231 

(U=131.5, p=0.043). 232 

3.2.  Electrophysiology 233 

For analysis of intrinsic properties, a total of 22 cells were patched in 15 virgin males and a total of 234 

31 cells were patched in 25 fathers. For analysis of PSCs, a total of 22 cells were patched in 11 virgin males 235 

and 19 were patched in 12 fathers. Resting potential and input resistance did not differ between virgins and 236 
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fathers in the Cs-based solution used to measure PSCs or in the K-based solution used to measure intrinsic 237 

properties (Table 1). 238 

3.2.1.  Properties of action potentials 239 

Voltage responses to 500 ms-long square pulses of positive and negative current of various intensities 240 

were acquired while cells were current-clamped at -70 mV. APs were evoked by positive currents, and the 241 

properties of single APs (Fig. 1B, 1C) and trains (Fig. 1D) were examined. Each neuron exhibited one of two 242 

general spiking patterns (Fig. 3): Regular-spiking (RS), in which the inter-spike intervals (ISIs) increased 243 

gradually during the train, and Fast-spiking (FS), in which ISIs did not change during the train. RS and FS 244 

cells were further divided into initial-bursting (IB) and non-initial-bursting, based on the presence or absence 245 

of a high-frequency burst of APs at the start of the train. Measurements of properties of single APs in initial-246 

bursting cells were done on an AP not in the burst. Percentages of neurons in these spiking categories were 247 

similar in virgins and fathers (numbers of cells:  FS: 9 virgin, 13 father; IB-FS: 2 virgin, 1 father; RS: 7 248 

virgin, 13 father; IB-RS: 4 virgin, 4 father; p=0.72, Freeman-Halton extension of Fisher’s exact test). 249 

Initially, we compared all cells from virgins to those of fathers. None of the parameters extracted 250 

differed significantly between groups (Table 2). 251 

Cells were then grouped into RS and FS groups, with IB cells subsumed into those categories, and 252 

properties of single APs (Table 3), trains of APs (Table 4), and responses to hyperpolarizing current (Table 253 

5) were compared between virgins and fathers. Again, we found no significant differences, though the 254 

minimum average AP ISI tended to be longer in RS of fathers than in virgins (Table 4). The peak 255 

slope/steady-state slope tended to be greater in FS cells of fathers than in virgins (Table 5). 256 

Finally, we grouped cells by spiking patterns (FS, IB-FS, RS, IB-RS) and compared properties of 257 
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single APs (Table 6), trains of APs (Table 7), and responses to hyperpolarizing current (Table 8) between 258 

virgins and fathers. IB-RS cells of fathers, compared to virgins, tended to have greater fAHP at 3-5 ms 259 

(Table 6). RS cells of fathers tended to have smaller maximum voltage change in response to hyperpolarizing 260 

current than RS cells of virgins (Table 8).  261 

3.2.2.  Properties of PSCs 262 

 Spontaneous PSCs and PSCs in response to local stimulation were characterized and compared in 263 

virgins and fathers. All cells exhibited inhibitory currents (n=41 cells from 23 animals), while a subset of 264 

cells exhibited both inhibitory and excitatory currents (n=29 cells from 19 animals). The percentage of cells 265 

in the two categories did not differ significantly between virgins (IPSC only: n=7, IPSC+EPSC: n=15) and 266 

fathers (IPSC only: n=5, IPSC+EPSC: n=14; p=0.74, Fisher’s exact test). Representative traces of excitatory 267 

and inhibitory evoked PSCs are shown in Figure 5A. Virgins and fathers did not differ in maximal excitatory 268 

PSC amplitude, but fathers had significantly lower maximal inhibitory current than virgins (Fig. 5B, Table 269 

9).  270 

 PPRs and SSRs of EPSCs and IPSCs did not differ at any inter-pulse interval, though we found a 271 

trend for fathers to have an increased EPSC PPR at 200-ms inter-pulse intervals as well as a strong trend for 272 

fathers to have a lower IPSC PPR at 10-ms inter-pulse intervals, compared to virgins (Fig. 7, Table 9). 273 

Virgins and fathers did not significantly differ in amplitude or frequency of spontaneous EPSCs or IPSCs, 274 

though was a trend for fathers to have less frequent sEPSCs (Fig. 6, Table 9). 275 

3.3.  Morphology 276 

A total of 45 neuronal morphologies were captured: 23 from 17 virgins and 22 from 17 fathers (Fig. 277 

8). Insufficient numbers of morphologies were captured to allow for comparisons between subtypes of 278 
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neurons based on spiking patterns, so tests were conducted between metrics of virgins and fathers (Table 10). 279 

No differences were found in quantified morphological properties, though we found a trend for fathers to 280 

have shorter average length of primary neurites than virgins (Table 10). 281 

3.4.  Correlations of neural and behavioral measurements 282 

Spearman correlations were run between two key behavioral metrics (i.e., latency to engage in 283 

paternal behavior and percent time spent in paternal care) and neural properties in virgins, which exhibited 284 

more variability in paternal behavior than fathers. Latency to engage in parental behavior showed nominally 285 

significant negative correlations with AP amplitude (rs(14)=-0.682, p=0.007) and largest soma diameter 286 

(rs(7)=-0.954, p=0.001), and a nominally significant positive correlation with maximum voltage change in 287 

response to a hyperpolarizing stimulus (rs(14)=0.67, p=0.009). Thus, the more readily a virgin male engaged 288 

in paternal behavior toward the pup, the larger his AP amplitude and maximal soma diameter, and the 289 

smaller his maximum voltage change in response to a hyperpolarizing stimulus. However, after correcting 290 

for multiple comparisons, none of these correlations were statistically significant (see Supplemental Table 1 291 

for full correlation results). Time spent in paternal care did not correlate with any neuronal properties. 292 

4.  Discussion  293 

The MPOA plays a role in parental care in males and/or females in multiple vertebrate clades 294 

(Demski & Knigge, 1971; Slawski & Buntin, 1995; Tsuneoka et al., 2015). The identity of the cells involved 295 

in parental care, categorized by gene expression, afferent or efferent connectivity, or morphological or 296 

electrophysiological profiles, is under investigation but not well understood (e.g., Lonstein & De Vries, 297 

2000; Cservenák et al., 2013; 2017; Tsuneoka et al., 2013; Dobolyi et al., 2014; Kuroda & Numan, 2014; Wu 298 

et al., 2014). Recently, neurons in the central MPOA have been implicated in paternal care in mice 299 
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(Tsuneoka et al., 2013, 2015). In order to attain a thorough, unbiased survey of electrophysiological and 300 

morphological profiles of central MPOA neurons potentially involved in paternal care, we used blind, whole-301 

cell recording to characterize all neurons in a non-specific manner in the central MPOA of both virgin males 302 

and fathers in the biparental California mouse. This experiment is among the first to characterize the 303 

electrophysiological properties of MPOA neurons in males of any species, and the first to attempt to relate 304 

these properties explicitly to paternal behavior. 305 

 The MPOA of California mice likely contains a multitude of cell types. We observed four major 306 

spiking patterns in cells of the central MPOA: fast-spiking (FS), initial-bursting fast-spiking (IB-FS), 307 

regular-spiking (RS), and initial-bursting regular-spiking (IB-RS) (Fig. 3). Initial-bursting cells 308 

characteristically fired a cluster of action potentials at stimulus onset. Regardless of presence or absence of 309 

an initial burst, cells could show accommodation (regular-spiking cells) or no accommodation (fast-spiking 310 

cells). Similar spiking patterns have been observed in neocortex, and their genetic determinants are starting 311 

to be understood (for review see Markram et al., 2004). Comparisons of intrinsic electrophysiological 312 

properties of trains and single action potentials between virgins and fathers in our study revealed no 313 

significant differences in any cell type. The numerous trends for differences in intrinsic electrophysiological 314 

properties in MPOA cells suggest that plasticity may be occurring in specific cells types categorized by 315 

connectivity or gene expression. Input resistances were similar to those reported in a nearly analogous slice 316 

preparation performed in mice by Lundius et al (2010). 317 

 Both spontaneous PSCs and PSCs evoked by stimulating ~200 μms dorsal to the recording electrode 318 

were characterized and compared between virgins and fathers. As in rat MPOA, both excitatory (EPSCs) and 319 

inhibitory (IPSCs) currents were observed (Hoffman et al., 1994; Hoffman, Wuarin, & Dudek, 1994; 320 

Karlsson, Haage, & Johansson, 1997; Sundgren-Andersson & Johansson, 1998; Haage & Johansson, 1999). 321 
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Fathers exhibited lower maximal evoked IPSCs than virgins, suggesting decreased inhibition in the MPOA 322 

in fathers. Since the maximally-evoked IPSC was affected, it is likely that the overall number of inhibitory 323 

synapses onto MPOA cells was reduced.  This might be caused by mating, cohabitation with a (pregnant) 324 

female, experience with pups, and/or a number of hormonal changes that occur during the transition into 325 

fatherhood in California mice (reviewed below).  Frequency of spontaneous PSCs was similar to that 326 

reported in mice by Lundius et al. (2010).  327 

 The observed reduction in inhibition is consistent with the previously documented increase in 328 

excitability of the MPOA in fathers (de Jong et al., 2009; but see Horrell et al., 2017).  How exactly the 329 

reduction in inhibition affects specific behaviors is unclear, in part because the source of inhibition is 330 

unknown.  Many studies on the input to the MPOA have been conducted (e.g., Simerly & Swanson, 1986; 331 

Miller & Lonstein, 2009; Rondini et al., 2010; Been & Petrulis, 2011; Northcutt & Lonstein, 2011; Sanathara 332 

et al., 2014). Unfortunately, the inhibitory inputs onto cells of the MPOA are poorly characterized and not 333 

easily separated into distinct terminal fields that would allow stimulation of identifiable axon terminals in 334 

this preparation. There are certainly inhibitory inputs from both intrinsic interneurons and from extrinsic 335 

sources, including strong projections from other parts of the hypothalamus, bed nucleus of the stria 336 

terminalis, and amygdala (e.g., Fenske et al., 1975; Gardener & Phillips, 1977; Mayer, 1981; Coolen & 337 

Wood, 1998; Pardo-Bellver et al., 2012; Shimogawa et al., 2015; Lebow & Chen, 2016; Kohl et al., 2018).  338 

Further studies using optogenetic activation of identified terminal fields in slices or in vivo could help 339 

resolve this important question. 340 

MPOA neurons in rats exhibit inhibitory currents mediated by GABAA and glycine receptors (Haage 341 

& Johansson, 1999; Hoffman et al., 1994; Hoffman, Wuarin, & Dudek, 1994; Karlsson, Haage, & 342 

Johansson, 1997) as well as excitatory currents mediated by AMPA and NMDA glutamate receptors and 343 
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likely by T-, L-, N-, P- and Q–type Ca+2 channels (Hoffman, Wuarin, & Dudek, 1994; Karlsson et al., 1997; 344 

Sundgren-Andersson & Johansson, 1998; Malinina, Druzin, & Johansson, 2010; Tabarean et al., 2005; Qiu 345 

et al., 2006). Some of these currents in preoptic area neurons are acutely altered by estradiol (Qiu et al., 346 

2006; Druzin et al., 2011; Zhang et al., 2013; Rønnekleiv et al., 2015), allopregnanolone (Haage & 347 

Johansson, 1999; Haage, Bäckström, & Johansson, 2002; 2005), testosterone derivatives (Oberlander et al., 348 

2012), capsaicin (Karlsson et al., 2005), and serotonin (Lee et al., 2008). 349 

If and how these chemicals act on preoptic area neurons to alter paternal care in male California mice 350 

is a promising area of research. Testosterone increases paternal behavior in California mice via aromatization 351 

to estrogen, and fathers in this species have more aromatase activity in the MPOA than mated males without 352 

pups (Trainor and Marler, 2001, 2002; Trainor et al., 2003). Reports of fathers having lower circulating 353 

levels of testosterone and dihydrotestosterone (DHT) than mated males, and lower circulating DHT than 354 

virgin males, as well as the inability of DHT to restore paternal care after castration, further implicate the 355 

increase in aromatase activity and estrogen signaling in the MPOA as important for paternal care in this 356 

species (Trainor and Marler, 2002; Trainor et al., 2003; but see Gubernick & Nelson, 1989). Furthermore, 357 

estrogen implants in the MPOA of male rats increase paternal care (Rosenblatt and Ceus, 1998). 358 

Progesterone, which is metabolized to allopregnanolone, is lower in California mouse fathers than in virgin 359 

males (Trainor et al., 2003), and progesterone antagonism increases while progesterone administration 360 

decreases paternal care in house mice (Schneider et al., 2003). Additionally, the effects of prolactin and 361 

oxytocin on paternal care and on MPOA neurons in California mice merit investigation, as circulating levels 362 

of these peptides may change across the reproductive cycle in males of this species (Gubernick & Nelson, 363 

1989; Gubernick et al., 1995). The possibility that hormonal effects on neural properties differ with 364 

reproductive status (e.g., virgin or father) is a potential avenue for future studies. 365 
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Some aspects of the morphology of MPOA cells (specifically, soma size and dendritic branching) of 366 

female rats are altered by pregnancy and attendant endocrine changes (i.e., progesterone withdrawal 367 

followed by elevated estrogen levels) (Keyser-Marcus et al., 2001). Female California mice show a similar 368 

increase in somal area during the transition into motherhood (Gubernick et al., 1993). In a recent study of 369 

MPOA neuronal morphology in rats, mothers that licked and groomed their pups at high levels had fewer 370 

branches on primary dendrites than low-licking-grooming mothers; however, no differences were found in 371 

Sholl analysis, total dendritic arbor length, number of spines, and number of primary dendrites (Parent et al., 372 

2017). Only one previous study has characterized MPOA properties in male California mice. MPOA volume, 373 

number of neurons, density of neurons, and somal area did not differ among fathers, estranged fathers 374 

(fathers removed from their mate and pups 5 days postpartum for 45 days), and virgin males, according to a 375 

Golgi-Cox stain (Gubernick et al., 1993). Similarly, no major effects of fatherhood were seen in morphology 376 

of MPOA neurons in the present study. Fathers did, however, show a trend for reduction in the average 377 

length of primary neurites. Analysis of morphology of neurons of a specific cell type, such as cells that 378 

express estrogen receptors or the neuropeptide galanin, is a promising avenue of research (Kohl et al., 2018). 379 

Overall, the findings of this study suggest that some plasticity occurs in the MPOA during the 380 

transition into fatherhood and the onset of paternal behavior in male California mice, particularly decreased 381 

inhibition. Future studies targeting specific cell types in the MPOA, categorized on the basis of gene 382 

expression or connectivity, are needed and may reveal plasticity that facilitates parental behavior (e.g., Kohl 383 

et al., 2018; McHenry et al., 2017). Characterization and manipulation of particular inputs to the MPOA such 384 

as those from the medial amygdala, bed nucleus of the stria terminalis, periaqueductal grey, as well as 385 

hypothalamic stress and aggression centers may be of interest. Characterization of plasticity induced by 386 

hormones and neuropeptides implicated in parental behavior via signaling in the MPOA, as well as 387 

experience-dependent plasticity in the MPOA, may elucidate important mechanisms of parental care.	  388 
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Figure Legends 628 

Figure 1.  Medial preoptic area of hypothalamus (MPOA) and properties of single action potentials (APs). A) 629 

Representative photomicrograph of 300 µm-thick coronal section used for recordings. The box, centered on 630 

the third ventricle, approximately delineates the MPOA. The dashed box represents the approximate area 631 

where recordings were made.  AC: anterior commissure. B-C) Properties of single APs, including depictions 632 

of threshold, amplitude, half width and fast afterhyperpolarizations (fAHPs). fAHPs were quantified as the 633 

largest voltage difference from baseline to 3-5 ms and 20-25 ms after the action potential crossed the 634 

baseline voltage. D) Depictions of medium afterhyperpolarization (mAHPs) and slow afterhyperpolarization 635 

(sAHP) after a train of APs. mAHP was quantified as the lowest voltage from baseline after train offset, and 636 

sAHP was quantified as voltage difference from baseline at 450 ms after stimulus offset. 637 

 638 

Figure 2.  Infant-directed behavior of virgin males (n=13) and fathers (n=33). A) Box and whisker plots of 639 

time spent in each behavior. Fathers spent significantly more time in paternal behaviors (licking, grooming, 640 

and/or huddling pup), less time sniffing, and less time not in contact with pups compared to virgins. B) 641 

Latency to engage in pup-directed behaviors. Fathers approached pups and initiated paternal care 642 

significantly more rapidly than did virgins. * P < 0.05.   643 

 644 

Figure 3.  Representative action potential (AP) trains of different cell types in the central medial preoptic 645 

area. A) Fast-spiking (FS), in which inter-spike intervals (ISIs) do not change during the train, and regular-646 

spiking (RS), in which ISIs increase gradually during the train. RS and FS cells could also be initial-bursting 647 

(IB), in which cells fired a short burst of APs at high frequency followed by an increased ISI. B) Example of 648 
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an input/output plot depicting the number of APs evoked by discrete amounts of depolarizing current (black 649 

squares). An exponential function was fitted to the data (black line); from this line, τ and a modeled 650 

maximum number of APs were determined. 651 

 652 

Figure 4.  Properties of responses to hyperpolarizing current injections. A) Example of voltage responses to 653 

hyperpolarizing current steps of 500 ms duration. Responses at maximal hyperpolarization (peak) and at 400 654 

ms (steady-state) were quantified for each step. B-C) Examples of input/output plots for discrete amounts of 655 

hyperpolarizing current and resulting voltage changes from baseline to peak hyperpolarizing voltage 656 

response (B) and to the response at 400 ms (i.e., at steady-state, C). The slopes of lines of best fit were 657 

quantified. 658 

 659 

Figure 5.  Evoked postsynaptic currents (PSCs) in virgin males and fathers. A) Representative traces of an 660 

excitatory postsynaptic current (bottom) and inhibitory postsynaptic current (top). B) Maximal PSCs in cells 661 

from virgins (white, n=22) and fathers (gray, n=19). See Table 9 for full analysis of PSCs. 662 

 663 

Figure 6.  Spontaneous postsynaptic currents (PSCs) in virgin males and fathers. A) Representative traces of 664 

spontaneous excitatory postsynaptic current (top) and inhibitory postsynaptic currents (bottom). B) Average 665 

amplitude of spontaneous postsynaptic currents (sPSCs) of cells from virgins (white; excitatory sPSCs: 666 

n=10; inhibitory sPSCs: n=21) and fathers (gray; excitatory sPSCs: n=5; inhibitory sPSCs: n=13). C) 667 
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Frequency of sPSCs in cells from virgins (white; excitatory sPSCs: n=10; inhibitory sPSCs: n=21) and 668 

fathers (gray; excitatory sPSCs: n=6; inhibitory sPSCs: n=13). 669 

 670 

Figure 7.  Postsynaptic currents (PSCs) evoked by trains of stimuli at various interpulse intervals (IPIs). A) 671 

PSCs in response to stimulation at various IPIs (indicated between traces in ms). Cell were voltage-clamped 672 

at 0 mV to isolate inhibitory postsynaptic currents and at -55mV to isolate excitatory postsynaptic currents. 673 

Note change in scale from top three traces to bottom three traces.  B) Paired-pulse ratios and steady-state 674 

ratios of PSCs evoked at various IPIs. No differences were observed between virgin males (white) and 675 

fathers (gray) at any IPI. See Table 9 for full analysis of PSCs. 676 

 677 

Figure 8.  Examples of MPOA neurons filled with biocytin during whole-cell recordings. Quadrantized Sholl 678 

analysis revealed no differences in morphology between cells from virgin males (white, n=23) and fathers 679 

(gray, n= 22). See Table 10 for more detailed morphological analyses. 680 

 681 

 682 
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Table 1.  Resting potential and input resistance of neurons from virgin males and fathers in Cs-based and K-based solutions. 

  ‘         Virgins       ‘    ‘      Fathers          ‘                   Analysis                ‘ 

Property Unit N Mean  SE N Mean SE Test df t P-value 

Resting potential            

   Cs-based solution mV 22 -44.50 1.09 19 -45.95 1.32 t-test 39 0.85 0.40 

   K-based solution mV 23 -50.17 1.72 32 -44.63 3.66 t-test 53 0.23 0.23 

            

Input resistance            

   Cs-based solution MΩ 22 519.45 40.08 19 567.47 48.10 t-test 49 -0.77 0.44 

   K-based solution MΩ 23 648.56 60.00 31 812.35 77.66 t-test 52 -1.57 0.12 

 

A Cs-based solution with QX-314 was used for recording synaptic currents, and a K-based solution was used for recording 

intrinsic properties (see Materials & Methods). N = number of cells. 

 



Table 2.  Properties of action potentials and responses to hyperpolarizing current in all cell types in virgin males and fathers. 

  ‘         Virgins       ‘    ‘      Fathers        ‘ ‘                 Analysis                          ‘ 

Measure Unit N Mean  SE N Mean SE Test df Stat.  P-value 

 

Properties of single APs 

           

   Threshold mV 22 29.29 1.80 31 27.74 1.64 t-test 51 0.63 0.53 

   Amplitude mV 22 40.89 3.92 31 45.64 2.79 t-test 51 -1.02 0.31 

   Half-width ms 22 0.92 0.09 32 0.85 0.05 MW -- 324.0 0.76 

   fAHP at 3-5 ms mV 22 -11.24 1.24 31 -10.46 1.11 t-test 51 -0.46 0.64 

   fAHP at 20-25 ms mV 22 -10.74 1.29 31 -8.68 0.97 MW -- 289.0 0.35 

 

Properties of trains of APs 

           

   Maximum # of APs # 21 45.86 2.57 32 52.53 4.61 MW -- 335.0 0.99 

   Maximum APs from exp. fit # 21 80.13 12.96 31 76.27 9.66 MW -- 295.0 0.57 

   Tau from AP exp. fit nA 21 0.40 0.15 32 0.24 0.04 MW -- 334.0 0.97 

   Minimum average AP ISI ms 21 10.32 0.83 32 12.26 1.06 MW -- 279.0 0.30 

   Minimum ISI from exp. fit ms 21 16.06 3.31 32 12.18 1.44 MW -- 312.0 0.66 

   Tau from ISI exp. fit ms 21 0.03 0.01 32 0.39 0.32 MW -- 287.0 0.37 

   mAHP mV 20 -3.56 1.05 30 -3.35 0.70 MW -- 273.5 0.60 

   sAHP mV 19 -2.20 0.38 30 -2.31 0.36 t-test 47 0.20 0.84 

 

Responses to hyperpolarizing current 

         

   Maximum voltage change mV 21 -90.74 6.76 28 -76.46 5.50 t-test 47 -1.65 0.10 

   Slope of peak   

   hyperpolarization 

--- 21 45.19 6.06 30 40.30 4.30 MW -- 313.0 0.97 

   Slope of steady-state  

   hyperpolarization 

--- 21 38.95 6.13 30 34.89 3.91 MW -- 301.0 0.79 



   Peak slope/steady-state  

   slope 

--- 21 1.14 0.04 30 1.18 0.03 MW -- 250.0 0.21 

 

N = number of cells, AP = action potential, ISI = inter-spike interval, fAHP = fast afterhyperpolarization, mAHP = medium 

afterhyperpolarization, sAHP = slow afterhyperpolarization, exp. = exponential, Stat. = test statistic, MW = Mann-Whitney U test. 



 

Table 3.  Properties of single action potentials in fast-spiking and regular-spiking cells in virgin males and fathers.  

         Virgins       ‘        Fathers         ‘                         Analysis                     ‘ 

Property Unit N Mean SE N Mean SE Test df t P-value 

 

Fast-spiking 

           

   Threshold mV 11 26.16 2.02 14 24.22 1.77 t-test 23 0.73 0.48 

   Amplitude mV 11 43.44 5.50 14 49.17 4.93 t-test 23 -0.77 0.45 

   Half-width ms 11 0.77 0.11 14 0.79 0.09 t-test 23 -0.12 0.90 

   fAHP at 3-5 ms mV 11 -11.79 2.01 14 -11.27 1.79 t-test 23 -0.19 0.85 

   fAHP at 20-25 ms mV 11 -12.49 2.22 14 -8.80 1.18 t-test 23 -1.56 0.13 

 

Regular-spiking 

          

   Threshold mV 11 32.43 2.76 17 30.63 2.43 t-test 26 0.48 0.64 

   Amplitude mV 11 38.34 5.74 17 42.74 3.05 t-test 26 -0.74 0.47 

   Half-width ms 11 1.06 0.15 17 0.91 0.04 t-test 26 1.12 0.25 

   fAHP at 3-5 ms mV 11 -10.68 1.53 17 -9.79 1.41 t-test 26 -0.42 0.68 

   fAHP at 20-25 ms mV 11 -8.99 1.20 17 -8.58 1.51 t-test 26 -0.19 0.85 

 

N = number of cells, fAHP = fast afterhyperpolarization. 



 

Table 4.  Properties of trains of action potentials of fast-spiking and regular-spiking cells in virgin males and fathers.  

        Virgins          ‘                   Fathers          ‘                 Analysis                 ‘      

Property Unit N Mean SE N Mean SE Test df Stat. P-value 

 

Fast-spiking 

           

   Maximum APs # 10 48.2 4.38 15 62.93 7.13 MW -- 57.5 0.33 

   Maximum APs from exp. fit # 10 62.09 7.39 14 74.13 10.43 MW -- 65.0 0.77 

   Tau from AP exp. fit nA 10 0.19 0.05 15 0.19 0.04 MW -- 75.0 1.00 

   Minimum average AP ISI ms 10 9.85 1.42 15 9.77 1.22 t-test 23 0.42 0.97 

   Minimum ISI from exp. fit ms 10 19.60 6.58 15 11.68 1.50 MW -- 58.0 0.35 

   Tau from ISI exp. fit ms 10 0.03 0.01 15 0.03 0.004 MW -- 74.0 0.96 

   mAHP mV 10 -2.70 1.77 14 -2.87 0.68 t-test 22 0.10 0.92 

   sAHP mV 9 -1.66 0.50 14 -2.11 0.47 t-test 21 0.64 0.53 

 

Regular-spiking 

           

   Maximum APs # 11 43.73 2.94 17 43.35 5.21 MW -- 76.0 0.41 

   Maximum APs from exp. fit # 11 96.53 23.24 17 78.04 15.68 MW -- 76.0 0.41 

   Tau from AP exp. fit nA 11 0.60 0.27 17 0.29 0.07 MW -- 89.0 0.83 

   Minimum average AP ISI ms 11 10.74 0.98 17 14.46 1.51 t-test 26 -1.82 0.08* 

   Minimum ISI from exp. fit ms 11 12.85 2.06 17 12.62 2.40 t-test 26 0.07 0.95 

   Tau from ISI exp. fit ms 11 0.04 0.01 17 0.70 0.60 MW -- 65.0 0.18 

   mAHP mV 10 -4.43 1.15 16 -3.76 1.18 MW -- 63.0 0.37 

   sAHP mV 10 -2.69 0.53 16 -248 0.54 t-test 24 -0.27 0.79 

 

N = number of cells, AP = action potential, ISI = inter-spike interval, fAHP = fast afterhyperpolarization, mAHP = medium 

afterhyperpolarization, sAHP = slow afterhyperpolarization, exp. = exponential, Stat. = test statistic, MW = Mann-Whitney U test. 

* = 0.10 > p > 0.05. 



Table 5.  Responses to hyperpolarizing current in fast-spiking and regular-spiking cells in virgin males and new fathers. 

           Virgins         ‘           Fathers         ‘                 Analysis                 ‘ 

Property Unit N Mean SE N Mean SE Test df Stat. P-value 

 

Fast-spiking 

          

   Maximum voltage change mV 10 -89.31 9.44 14 -76.50 8.47 t-test 22 -1.00 0.33 

   Slope of peak hyperpolarization --- 10 42.86 10.44 14 34.95 5.36 MW -- 63.0 0.68 

   Slope of steady-state hyperpolarization --- 10 40.87 11.04 14 30.19 5.02 MW -- 60.0 0.56 

   Peak slope/steady-state slope --- 10 1.09 0.04 14 1.20 0.06 MW -- 40.0 0.08* 

 

Regular-spiking 

           

   Maximum voltage change mV 11 -92.04 10.05 14 -76.41 7.35 t-test 23 -1.27 0.21 

   Slope of peak hyperpolarization --- 11 42.49 7.15 16 44.98 6.48 t-test 25 -0.15 0.88 

   Slope of steady-state hyperpolarization --- 11 37.20 6.55 16 39.01 5.84 t-test 25 -0.20 0.84 

   Peak slope/steady-state slope --- 11 1.19 0.07 16 1.16 0.03 MW -- 88.0 1.00 

 
Responses to 500 ms-long square pulses of positive and negative current of various intensities were acquired while cells were 

current-clamped at -70 mV (see Material and Methods). N = number of cells, Stat. = test statistic, MW = Mann-Whitney U test. * 

= 0.10 > p > 0.05. 

 



Table 6.  Properties of single action potentials for fast-spiking, initial-bursting + fast-spiking, regular-spiking, and initial-bursting 

+ regular-spiking cells in virgin males and fathers.  

          Virgins         ‘        Fathers         ‘                Analysisa                 ‘ 

Property Unit N Mean SE N Mean SE Test df Stat. P-value 

 

Fast-spiking 

          

   Threshold mV 9 25.90 2.41 12 23.43 1.98 t-test 19 0.80 0.43 

   Amplitude mV 9 42.55 6.36 12 48.89 5.37 t-test 19 -0.76 0.45 

   Half-width ms 9 0.86 0.11 12 0.79 0.10 t-test 19 0.42 0.68 

   fAHP at 3-5 ms mV 9 -11.73 2.40 12 -10.80 2.01 t-test 19 -0.30 0.77 

   fAHP at 20-25 ms mV 9 -13.21 2.53 12 -8.73 1.39 t-test 19 -1.66 0.11 

 

Initial-bursting + fast-spiking 

        

   Threshold mV 2 27.30 --- 2 28.97 --- --- --- --- --- 

   Amplitude mV 2 47.45 --- 2 50.83 --- --- --- --- --- 

   Half-width ms 2 0.4 --- 2 0.78 --- --- --- --- --- 

   fAHP at 3-5 ms mV 2 -12.05 --- 2 -14.14 --- --- --- --- --- 

   fAHP at 20-25 ms mv 2 -9.25 --- 2 -9.20 --- --- --- --- --- 

 

Regular-spiking 

          

   Threshold mV 6 32.88 4.66 13 29.39 3.03 t-test 17 0.64 0.53 

   Amplitude mV 6 42.27 8.39 13 42.74 3.51 t-test 17 -0.06 0.95 

   Half-width ms 6 1.06 0.24 13 0.89 0.05 MW -- 30.5 0.46 

   fAHP at 3-5 ms mV 6 -12.45 1.86 13 -9.36 1.76 t-test 17 -1.07 0.30 

   fAHP at 20-25 ms mV 6 -7.55 1.57 13 -9.32 0.97 t-test 17 1.00 0.33 

 

Initial-bursting + regular-

spiking 

         



   Threshold mV 4 31.83 3.89 4 34.67 2.71 MW -- 6.0 0.56 

   Amplitude mV 4 26.79 5.65 4 42.73 7.15 t-test 6 -1.75 0.13 

   Half-width ms 4 1.19 0.12 4 0.96 0.06 t-test 6 1.82 0.12 

   fAHP at 3-5 ms mV 4 -6.29 0.94 4 -11.18 1.98 t-test 6 2.23 0.07* 

   fAHP at 20-25 ms mV 4 -10.02 2.01 4 -6.21 6.11 t-test 6 -0.59 0.57 

 
N = number of cells, fAHP= fast afterhyperpolarization, Stat. = test statistic, MW = Mann-Whitney U test.  a Properties of initial-

bursting + fast-spiking cells were not analyzed statistically due to small sample sizes. * = 0.10 > p > 0.05. 

 



Table 7.  Properties of trains of action potentials for fast-spiking, initial-bursting + fast-spiking, regular-spiking, and initial-

bursting + regular-spiking cells in virgin males and fathers. 

        Virgins          ‘                   Fathers         ‘                 Analysisa__________                

Property Unit N Mean SE N Mean SE Test df Stat. P-value 

 

Fast-spiking 

           

   Maximum APs # 8 50.88 5.06 13 62.23 7.73 MW -- 40.0 0.39 

   Maximum APs from exp. fit # 8 62.80 9.13 12 76.00 11.67 t-test 18 -0.82 0.43 

   Tau from AP exp. fit nA 8 0.14 004 13 0.21 0.05 MW -- 36.0 0.25 

   Minimum average AP ISI ms 8 8.79 1.56 13 9.85 1.30 MW -- 47.0 0.72 

   Minimum ISI from exp. fit ms 8 20.16 8.31 13 11.98 1.61 MW -- 45.0 0.61 

   Tau from ISI exp. fit ms 8 0.03 0.01 13 0.03 0.005 MW -- 48.0 0.77 

   mAHP mV 8 -2.47 2.13 13 -2.80 0.86 t-test 19 0.174 0.86 

   sAHP mV 7 -1.81 0.60 13 -2.02 0.50 t-test 18 0.25 0.80 

 

Initial-bursting + fast-spiking 

           

   Maximum APs # 2 37.5 --- 2 61 --- --- --- --- --- 

   Maximum APs from exp. fit # 2 59.23 --- 1 35.35 --- --- --- --- --- 

   Tau from AP exp. fit nA 2 0.35 --- 2 0.07 --- --- --- --- --- 

   Minimum average AP ISI ms 2 14.05 --- 2 9.25 --- --- --- --- --- 

   Minimum ISI from exp. fit ms 2 17.37 --- 2 9.701 --- --- --- --- --- 

   Tau from ISI exp. fit ms 2 0.04 --- 2 0.03 --- --- --- --- --- 

   mAHP mV 1 -7.3 --- 1 -3.9 --- --- --- --- --- 

   sAHP mV 1 -2.2 --- 1 -3.3 --- --- --- --- --- 

 

Regular-spiking 

           

   Maximum APs # 6 46.83 4.17 13 43.61 6.27 t-test 17 0.33 0.75 



 

   Maximum APs from exp. fit # 6 111.0

4 

38.08 13 73.39 15.87 MW -- 26.0 0.25 

   Tau from AP exp. fit nA 6 0.62 0.39 13 0.25 0.06 MW -- 34.0 0.66 

   Minimum average AP ISI ms 6 10.38 1.41 13 13.94 1.71 t-test 17 -1.31 0.21 

   Minimum ISI from exp. fit ms 6 11.23 1.93 13 13.01 3.10 t-test 17 -0.37 0.72 

   Tau from ISI exp. fit ms 6 0.04 0.01 13 0.84 0.79 MW -- 37.0 0.86 

   mAHP mV 6 -5.73 1.78 13 -3.01 0.79 t-test 17 -1.63 0.12 

   sAHP mV 6 -1.84 0.76 13 -2.54 0.63 t-test 17 0.65 0.53 

 

Initial-bursting + regular-

spiking 

           

   Maximum APs # 4 42.5 3.78 4 42.5 10.25 t-test 6 0.00 1.0 

   Maximum APs from exp. fit # 4 92.24 28.36 4 93.16 46.89 MW -- 7.00 0.77 

   Tau from AP exp. fit nA 4 0.72 0.50 4 0.42 0.24 MW -- 7.00 0.77 

   Minimum average AP ISI ms 4 13.32 1.26 4 16.13 3.55 t-test 6 -1.01 0.35 

   Minimum ISI from exp. fit ms 4 16.81 3.47 4 11.35 2.20 MW -- 4.00 0.25 

   Tau from ISI exp. fit ms 4 0.03 0.02 4 0.23 0.15 MW -- 2.00 0.83 

   mAHP mV 4 -3.01 1.80 4 -6.01 4.32 t-test 6 0.64 0.55 

   sAHP mV 4 -3.97 0.51 4 -2.28 1.16 MW -- 5.00 0.39 

 

N = number of cells, AP = action potential, ISI = inter-spike interval, fAHP = fast afterhyperpolarization, mAHP = medium 

afterhyperpolarization, sAHP = slow afterhyperpolarization, exp. = exponential, Stat. = test statistic, MW = Mann-Whitney U test.        

a Properties of initial-bursting + fast-spiking cells were not analyzed statistically due to small sample sizes. 



 
Table 8.  Responses to hyperpolarizing current for fast-spiking, initial-bursting + fast-spiking, regular-spiking, and initial-bursting + regular-spiking cells in 

virgin males and fathers.  

         Virgins         ‘         Fathers          ‘                 Analysisa                ‘ 

Property Unit N Mean SE N Mean SE Test df Stat. P-value 

 

Fast-spiking 

          

   Max voltage change mV 8 -94.01 10.91 13 -74.16 8.79 t-test 19 -1.41 0.18 

   Slope of peak hyperpolarization --- 8 46.96 12.69 13 34.99 5.79 MW -- 43.0 0.52 

   Slope of steady-state   

   hyperpolarization 

--- 8 46.0 13.26 13 30.54 5.41 MW -- 39.0 0.35 

   Peak slope/steady-state slope --- 8 1.04 0.02 13 1.19 0.07 t-test 19 -1.72 0.10 

 

Initial-bursting + fast-spiking 

          

   Max voltage change mV 2 -70.5 --- 1 -107 --- --- --- --- --- 

   Slope of peak hyperpolarization --- 2 26.45 --- 1 34.4 --- --- --- --- --- 

   Slope of steady-state   

   hyperpolarization 

--- 2 20.15 --- 1 25.6 --- --- --- --- --- 

   Peak slope/steady-state slope --- 2 1.29 --- 1 1.34 --- --- --- --- --- 

            

Regular-spiking            

   Max voltage change mV 6 -105.32 14.91 12 -74.06 9.13 t-test 14 -1.90 0.08* 

   Slope of peak hyperpolarization --- 6 42.60 7.81 12 43.98 8.15 t-test 16 -0.11 0.92 



 
   Slope of steady-state   

   hyperpolarization 

--- 6 34.62 6.69 12 37.67 7.18 MW -- 34.0 0.85 

   Peak slope/steady-state slope --- 6 1.24 0.11 12 1.17 0.04 MW -- 32.0 0.71 

 

Initial-bursting + regular-spiking 

           

   Max voltage change mV 4 -69.63 10.31 4 -82.28 13.33 t-test 6 0.75 0.48 

   Slope of peak hyperpolarization --- 4 36.43 14.31 4 47.99 10.34 MW -- 4.00 0.25 

   Slope of steady-state   

   hyperpolarization 

--- 4 31.18 11.62 4 43.03 10.31 t-test 6 -0.76 0.47 

   Peak slope/steady-state slope --- 4 1.16 0.05 4 1.13 0.03 t-test 6 0.51 0.63 

a Properties of initial-bursting + fast-spiking cells were not analyzed statistically due to small sample sizes. N = number of cells, Stat. = test statistic, MW = 

Mann-Whitney U test. * = 0.10 > p > 0.05. 



 

 

Table 9.  Properties of post-synaptic currents in virgin males and fathers.  

        Virgins       ‘        Fathers         ‘                    Analysis                    ‘ 

Property Unit N Mean SE N Mean SE Test df Stat. P-value 

 

Single evoked PSCs           

          

   EPSC min nA 15 -0.32 0.04 14 -0.25 0.02 MW -- 79.5 0.26 

   EPSC max nA 15 -2.67 0.46 14 -2.17 0.31 MW -- 95.5 0.68 

   IPSC min nA 22 0.33 0.04 19 0.26 0.03 t-test 39 0.13 0.14 

   IPSC max nA 22 6.36 0.93 19 3.35 0.45 MW -- 111.5 0.01** 

 

Paired-pulse ratio of ePSCs 

          

Inter-pulse interval            

   10 ms --- 11 0.87 0.12 8 0.73 0.10 t-test 17 0.84 0.42 

   25 ms --- 11 0.92 0.07 8 0.89 0.18 t-test 17 0.14 0.89 

   50 ms --- 11 1.09 0.07 8 1.00 0.08 t-test 17 0.87 0.40 

   100 ms --- 11 0.92 0.07 8 0.86 0.07 t-test 17 0.58 0.57 

   200 ms --- 10 0.83 0.07 8 1.23 0.22 t-test 16 -1.85 0.08* 

   400 ms --- 10 0.88 0.08 8 0.80 0.10 t-test 16 0.65 0.53 

 

Steady-state ratio of ePSCs 

          

Inter-pulse interval            

   10 ms --- 11 0.49 0.08 8 0.40 0.16 MW -- 29.0 0.22 

   25 ms --- 11 0.61 0.06 8 0.65 0.21 MW -- 30.0 0.25 

   50 ms --- 11 0.89 0.17 8 0.66 0.09 t-test 17 1.09 0.29 

   100 ms --- 11 0.70 0.07 8 0.69 0.06 t-test 17 0.14 0.89 



 

 

   200 ms --- 10 0.71 0.12 8 0.92 0.17 t-test 16 -1.00 0.33 

   400 ms --- 10 0.57 0.09 7 0.72 0.09 t-test 15 -1.11 0.28 

 

Paired-pulse ratio of iPSCs 

          

Inter-pulse interval            

   10 ms --- 20 0.55 0.08 14 0.35 0.05 t-test 32 1.93 0.06* 

   25 ms --- 20 0.77 0.05 15 0.69 0.06 MW -- 112.0 0.21 

   50 ms --- 20 0.87 0.05 15 0.88 0.08 t-test 33 -0.10 0.92 

   100 ms --- 20 0.91 0.04 15 0.92 0.10 t-test 33 -0.09 0.93 

   200 ms --- 20 0.89 0.04 15 0.94 0.05 t-test 33 -0.88 0.39 

   400 ms --- 20 0.76 0.04 15 0.84 0.08 t-test 33 -1.03 0.31 

 

Steady-state ratio of iPSCs 

          

Inter-pulse interval Unit           

   10 ms --- 20 0.36 0.06 15 0.31 0.07 MW -- 132 0.55 

   25 ms --- 20 0.63 0.06 15 0.59 0.06 t-test 33 0.42 0.68 

   50 ms --- 20 0.71 0.06 15 0.74 0.07 t-test 33 0.45 0.65 

   100 ms --- 20 0.76 0.07 15 0.79 0.08 t-test 33 -0.21 0.83 

   200 ms --- 20 0.74 0.04 15 0.79 0.06 t-test 33 -0.67 0.51 

   400 ms  20 0.72 0.04 15 0.75 0.05 t-test 34 -0.47 0.64 

 

Spontaneous PSCs           

          

sEPSC frequency Hz 10 3.71 1.07 6 1.49 0.60 MW -- 14.0 0.08* 

sEPSC amplitude nA 10 -0.39 0.05 5 -0.29 0.03 t-test 13 -1.34 0.20 

sIPSC frequency Hz 21 8.46 1.94 13 6.92 1.79 t-test 32 0.54 0.59 



 

 

sIPSC amplitude nA 21 0.68 0.19 13 0.45 0.05 t-test 32 0.92 0.36 

 

N = number of cells, PSC = post-synaptic current, EPSC = excitatory post-synaptic current, IPSC = inhibitory post-synaptic 

current, sEPSC = spontaneous excitatory post-synaptic current, sIPSC = spontaneous inhibitory post-synaptic current, Stat. = test 

statistic, MW = Mann-Whitney U test. * = 0.10 > p > 0.05. ** = p < 0.05. 

 



Table 10: Morphological properties of medial preoptic area cells in virgin males and fathers. 

  Virgins 

___(N=23 cells)___ 

Fathers 

     (N=22 cells)___  

Analysis 

     ___(df=43)__  __  

Sholl Analysis Unit Mean SE Mean SE Test Stat. P-value 

Q1 (dorsal medial) intersections # 19.17 4.47 7.86 1.76 MW 190.0 0.15 

Q2 (dorsal lateral) intersections # 13.52 3.01 14.95 2.37 MW 198.5 0.22 

Q3 (ventral medial) intersections # 10.43 2.39 15.23 3.04 MW 186.0 0.13 

Q4 (ventral lateral) intersections # 13.43 2.53 11.59 2.98 MW 232.5 0.64 

Q1+Q3 (medial) intersections # 29.61 4.47 23.09 3.52 MW 211.0 0.34 

Q2+Q4 (lateral) intersections # 26.96 4.56 26.55 4.17 MW 224.0 0.41 

Medial/lateral intersections -- 1.41 0.19 2.73 1.27 MW 177.0 0.08* 

Q1+Q2 (dorsal) intersections # 32.70 5.49 22.82 2.95 MW 232.0 0.63 

Q3+Q4 (ventral) intersections # 23.87 3.60 26.82 3.82 MW 208.5 0.31 

Dorsal/ventral intersections -- 1.75 0.32 1.52 0.49 MW 203.5 0.26 

Total intersections # 56.61 7.56 49.64 5.48 MW 246.5 0.88 

         

Branch points         

Branches in Q1 # 0.96 0.28 0.45 0.13 MW 209.0 0.26 

Branches in Q2 # 0.83 0.27 0.73 0.20 MW 225.0 0.48 

Branches in Q3 # 0.56 0.18 0.86 0.23 MW 213.0 0.31 

Branches in Q4 # 0.65 0.16 0.68 0.21 MW 235.0 0.65 

Total Branches # 3 0.43 2.64 0.51 MW 230.5 0.61 

         

Properties of primary neurites         

Number of primary neurites # 3.17 0.24 3.63 0.23 MW 211.0 0.33 

Average length of primary 

neurites 

μm 271.62 27.58 212.48 17.70 t-test 1.79 0.08* 

Longest length of primary μm 416.62 47.71 371.25 30.82 t-test 0.79 0.43 



neurites 

Total length of primary neurites μm 903.42 123.49 793.47 86.65 MW 244.0 0.84 

         

Properties of secondary neurites         

Number of secondary neurites # 2.78 0.39 2.09 0.31 MW 218.5 0.43 

Average length of secondary 

neurites 

μm 102.37 19.91 97.88 12.91 MW 223.0 0.50 

Longest length of secondary 

neurites 

μm 172.95 29.89 153.94 26.66 MW 245.0 0.86 

Total length of secondary 

neurites 

μm 359.31 72.89 253.46 53.34 MW 238.0 0.73 

         

Properties of tertiary neurites         

Number of tertiary neurites # 0.39 0.14 0.32 0.17 MW 220.5 0.33 

Average length of tertiary 

neurites 

μm 28.38 11.60 6.22 3.01 MW 207.5 0.17 

Longest length of tertiary neurites μm 28.69 11.66 7.45 3.92 MW 207.5 0.17 

Total length of tertiary neurites μm 35.35 13.80 12.30 7.24 MW 210.5 0.20 

         

Other morphological properties         

Total neurite length μm 1296.4 178.02 1055.69 123.99 MW 244.0 0.84 

Largest soma diameter μm 18.81 1.48 17.73 0.65 MW 250.0 0.95 

Soma circumference μm 55.41 4.03 54.06 2.40 MW 246.0 0.87 

Q = quadrant, Stat. = test statistic, MW = Mann-Whitney U test. * = 0.10 > p > 0.05. 



Supplemental Table 1. Correlations of selected behavioral and neuronal measures in virgin males. 

  Latency to engage in paternal care Percent time in paternal care 

  rs P-value N rs P-value  N 

Input resistance in K-based solution -0.09 0.78 15 0.11 0.69 15 

Threshold to AP -0.01 0.98 14 0.08 0.79 14 

AP amplitude -0.68 0.007* 14 -0.17 0.57 14 

AP half-width 0.34 0.23 14 0.35 0.23 14 

fAHP at 3-5 msec 0.38 0.18 14 0.04 0.9 14 

Maximum number of APs 0.02 0.96 13 0.15 0.62 13 

Minimum average AP ISI 0.09 0.76 13 -0.12 0.71 13 

Minimum average AP ISI 0.06 0.84 13 0.41 0.17 13 

Tau from ISI exponential fit 0.13 0.68 13 0.04 0.91 13 

mAHP -0.01 0.96 13 -0.14 0.69 13 

sAHP 0.25 0.41 13 0.23 0.47 13 

Maximum voltage change in response to 

hyperpolarizing current 
0.67 0.009* 14 -0.12 0.67 14 

Input resistance in Cs-based solution -0.48 0.23 8 0.48 0.23 8 

EPSC min 0.49 0.22 8 -0.54 0.17 8 

EPSC max -0.14 0.75 8 0.50 0.21 8 

IPSC min -0.67 0.07 8 -0.15 0.72 8 

IPSC max -0.27 0.52 8 -0.25 0.56 8 

sEPSC frequency -0.30 0.51 7 0.40 0.37 7 

sEPSC amplitude -0.28 0.54 7 0.05 0.92 7 

sIPSC frequency -0.07 0.86 8 0.29 0.49 8 

sIPSC amplitude 0.16 0.70 8 -0.08 0.87 8 

Total Sholl intersection -0.01 0.98 7 0.03 0.95 7 

Total branches 0.40 0.37 7 -0.22 0.64 7 

Total neurite length -0.27 0.60 6 0.21 0.69 6 



Largest soma diameter -0.95 0.001* 7 0.84 0.17 7 

 

Spearman correlations between key infant-directed behaviors and neuronal properties in virgin males. After 

correcting for false discovery rate, none of the correlations were statistically significant. * = nominal significance, p 

< 0.05. N = number of cells, AP = action potential, ISI = inter-spike interval, fAHP = fast afterhyperpolarization, 

mAHP = medium afterhyperpolarization, sAHP = slow afterhyperpolarization, PSC = post-synaptic current, EPSC = 

excitatory post-synaptic current, IPSC = inhibitory post-synaptic current, sEPSC = spontaneous excitatory post-

synaptic current, sIPSC = spontaneous inhibitory post-synaptic current. See methods for full description of metrics. 

 

 




