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Abstract: We use the AdS/CFT correspondence to study models of entanglement

and correlations between two d = 4 CFTs in thermofield double states at finite

chemical potential. Our bulk spacetimes are planar Reissner-Nordström AdS black

holes. We compute both thermo-mutual information and the two-point correlators

of large-dimension scalar operators, focussing on the small-temperature behavior –

an infrared limit with behavior similar to that seen at large times. The interesting

feature of this model is of course that the entropy density remains finite as T → 0

while the bulk geometry develops an infinite throat. This leads to a logarithmic

divergence in the scale required for non-zero mutual information between equal-sized

strips in the two CFTs, though the mutual information between one entire CFT and

a finite-sized strip in the other can remain non-zero even at T = 0. Furthermore,

despite the infinite throat, there can be extremally charged operators for which the

two-point correlations remain finite as T → 0. This suggests an interestingly mixed

picture in which some aspects of the entanglement remain localized on scales set

by the chemical potential, while others shift to larger and larger scales. We also

comment on implications for the localized-quasiparticle picture of entanglement.
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1 Introduction

The entanglement properties of both ground states and thermal states are interest-

ing topics of study in quantum field theory; see e.g. [1, 2]. Here we consider the

corresponding structure of so-called thermofield double (TFD) states, which are the

natural pure states defined on an (essentially) identical pair of field theories that

reduce to thermal density matrices on either theory alone. This entanglement is of

particular interest in the holographic context [3–5] due the existence in the dual bulk

solution [6] of a wormhole, or Einstein-Rosen-like bridge, between two asymptotic

regions – see figure 1 – and the conjectured generalizations of [7–9]. Holography also

provides useful tools for such studies, ranging from the minimal area entanglement

prescription of Ryu-Takayangi [10] (recently justified in [11]) to the particle-worldline

approximation (a.k.a. the geodesic approximation) of bulk correlators. TFDs also
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provides a simple laboratory in which to explore more general issues of entanglement

in quantum field theory and holography.

We therefore focus on the holographic setting below. TFD entanglement along

these lines was explored in great detail for d = 2 holographic CFTs in [12] by inves-

tigating the dual BTZ black hole, and also earlier in more general contexts through

studies of local two-point functions with one operator near each boundary of various

two-sided black holes [6, 13–17]. Our interest lies in adding charge via an appropriate

chemical potential µ and exploring the behavior at very small temperatures T .

Without the chemical potential, taking T → 0 simply drives each theory into its

ground state and removes all correlations. But nonzero µ provides an opportunity to

maintain finite entanglement even at very small T . The classic gravitational example

of such behavior is of course the Reissner-Nordström black hole near extremality. For

simplicity we therefore focus on TFD states which are holographically dual to planar

Reissner-Nordström AdS (RNAdS). To be concrete, we work with d = 4 CFTs dual

to 5-dimensional bulks.

The interesting feature of such models is that as T → 0 the bulk geometry

develops a throat of finite cross-section but infinite depth. The infinite depth leads

many natural probes of entanglement to vanish at T = 0. For example, this is the case

for two-point functions (with one argument in each CFT) of large-dimension neutral

single-trace operators; such correlators decay exponentially with spacelike separation

in the bulk. It is also the case for the mutual information between finite-sized regions

of our two CFTs as computed via [10], as the diverging distance through the extreme

throat means that at low T the dominant contribution to the von Neumann entropy

of any finite region is given by surfaces lying entirely on one side of the black hole.

Nevertheless, the total density of entanglement remains finite. We take some first

steps toward probing its structure below, showing in particular that i) the mutual

information between one entire CFT and a finite-size strip in the other CFT need

not vanish at small T and ii) as suggested in [18], there can be what one may call

extremally-charged operators whose two-point functions (with one argument in each

CFT) remain finite in the T → 0 limit. The existence of the above extremally-

charged operators indicates that the system lies at the threshold of an instability of

the extreme RNAdS spacetime associated with Schwinger pair creation1 [28, 29].

After a brief review of TFDs and the RNAdS geometry in section 2, we proceed

to study the above mutual information in section 3. Section 4 then examines the

two-point functions of charged operators with one argument in each CFT. Some final

discussion is given in section 5, which in particular connects phenomena described

here at small T with similar infrared (IR) effects seen in [17, 30, 31] at large times.

1 Since we consider bosons, this may also be called either a super-radiant instability or an

instability to forming a super-conducting phase as in [19–23]. The fermionic analogue would be

unstable to forming a Fermi surface as in [24–27].
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Figure 1. A conformal diagram of the maximally extended planar AdS-Schwarzschild

black hole. This geometry is the bulk dual to the TFD state of two disconnected CFTs

living on the two boundaries of the spacetime.

Before beginning, we mention the well-known fact that RNAdS has many po-

tential instabilities that can switch on at low temperature (see e.g. [19, 21, 22, 24–

27, 32]), and one certainly does not expect the extreme limit of RNAdS2 to give an

exact description of any microscopic theory with a finite density of states [33–35].

But at any given T/µ, even very close to extremality, models may well exist in which

RNAdS remains an accurate description. Furthermore, we expect our results to be

typical of those obtained near extreme limits. In particular, at least at first pass one

would expect rotating extreme global AdS black holes to behave similarly. In this

context one can find black holes that saturate a BPS bound (extreme BTZ [36, 37]

for AdS3 and the solutions of [38] and [39] for AdS4 and AdS5), so they are free of

the above supergravity instabilities.

2 Thermofield Doubles in Bulk and CFT

We begin with a brief review of charged thermofield double states, both in the

CFT and in the bulk. In the latter context they become two-sided planar Reissner-

Nordström AdS black holes.

2.1 The Charged Thermofield Double in the CFT

Consider two quantum systems with isomorphic Hilbert spaces H1 = H2 = H and

identical Hamiltonians H1 = H2 = H, which for simplicity we take to be invariant

under a time-reversal operation3 T . We will be interested in considering this theory

in the TFD state

|ψ〉 =
1√
Z

∑
i

e−βEi/2 |Ei〉1 ⊗ |Ei〉2 . (2.1)

2Or, in fact, any black hole whether extreme or otherwise; see e.g. [16] for a modern statement

of this issue.
3 This will be the case for our system. More generally, when time-reversal is not a symmetry,

one takes H1 and H2 to be related by time-reversal with corresponding changes in (2.1).
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Up to the insertion of possible phases, when the spectrum is non-degenerate this

is the unique state on the tensor product H1 ⊗ H2 which restricts to the thermal

state ρ = 1
Z
e−βH on each factor, where Z = TrHe

−βH is the usual partition function.

The state (2.1) may be constructed by cutting open the thermal path integral with

inverse temperature β, where the cut is made along a surface invariant under time-

reversal. Equivalently, it may be evaluated by performing the Euclidean path integral

in which Euclidean time tE runs over an interval I of length β/2. Even in the presence

of degeneracies, this Euclidean recipe continues to be well-defined, and implies that

the terms in (2.1) take the form |E〉 ⊗ T |E〉. Writing the TFD in this form makes

clear that constructing (2.1) involves choosing a special time t = 0 invariant under

T and furthermore that, once this time has been chosen, the anti-linear nature of T
makes the properly defined (2.1) independent of changes of phase in the basis states

|E〉. We also see that in relativistic theories CPT-invariance implies that the two

factors in (2.1) should be taken to have opposite charge .

The generalization to the grand canonical ensemble is straightforward: we simply

introduce a chemical potential into the Boltzmann weights and define the TFD state

to be

|ψ〉 =
1√
Z

∑
i

e−β(Ei+µQi)/2 |Ei, Qi〉1 ⊗ |Ei,−Qi〉2 , (2.2)

where the Qi are eigenvalues of the conserved U(1) charge conjugate to µ and Z is

now the grand partition function. Again, any ambiguities due to degeneracies are

resolved by taking the two states in each term to be CPT conjugates. The state

(2.2) arises from a Euclidean path integral as above if we couple the charge Q to a

background U(1) gauge field A = −iµ dtE with the sign in (2.2) requiring us to take

system 1 to be associated with the minimum value of tE in I and system 2 to be

associated with the maximum value. Note that the gauge field is imaginary, and that

the result is just the TFD state defined by the non-time-reversal invariant deformed

Hamiltonians H̃1 = H + µQ, H̃2 = H − µQ; see footnote 3.

The TFD state (2.2) has a well-behaved zero-temperature limit β → ∞ only if

Ẽ1 = E + µQ is bounded below, or equivalently (by applying T ) if Ẽ2 = E − µQ
is bounded below. In the zero-temperature limit, the sum in (2.2) restricts to those

terms that minimize Ẽ1, Ẽ2. For a general theory one may expect a unique state of

minimal Ẽ1, Ẽ2. But symmetry can force an exact degeneracy or, alternatively, we

may consider a theory with many degrees of freedom (e.g., large N) and an associated

approximate degeneracy when β is large but finite. It is this latter option that one

expects to apply to the RN-AdS black holes studied below (see e.g. comments in

[35]). In either case, up to an irrelevant overall phase the state becomes effectively

independent of time evolutions generated by H̃1, H̃2.

Since any remaining entanglement is associated with excitations of vanishingly

small energy above the ground state (in the sense of H̃1, H̃2), one might expect any

spatial scale characterizing our TFD entanglement to diverge as T → 0. But this will
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not quite be the case. Indeed, since we consider RNAdS5, our bulk dual will have an

AdS2 × R3 infrared fixed point describing the near-horizon region. Such spacetimes

exhibit local criticality, characterized by the limit z → ∞ of dynamical scaling

symmetry (t, x)→ (λzt, λx) which for finite z would give a power law L ∼ T−1/z. As

a result, it is natural to find either that spatial scales L remain constant at small T

or that they diverge logarithmically. We will see that both behaviors occur below.

Let us close with a comment on two-point functions. At µ = 0, the uniqueness of

the ground states and the resulting lack of TFD entanglement at small T implies that

(connected) correlators vanish at T = 0. The non-trivial ground-state entropy makes

the situation different in principle for µ > 0, though two-point functions with one

argument in each CFT can be non-zero at T = 0 only if each operator actually has

some non-zero matrix element between two ground states of the requisite H̃1, H̃2. The

set of operators (if any) for which this occurs will depend on the detailed dynamics

of the CFT. The interesting result we will find in section 4 is that, at least in the

limit of large operator dimensions, this occurs precisely for operators with a certain

“extremal” ratio between their U(1) charge and conformal dimension.

2.2 Planar Reissner-Nordström AdS

In a holographic field theory the bulk dual of (2.2) is straightforward to construct

following [6]. The conserved charge in the field theory will be associated with some

U(1) gauge field in the bulk. We thus simply perform the bulk Euclidean path

integral with boundary conditions given by the above interval I and gauge field A.

Note that the non-trivial gauge field A = −iµdtE on the boundary means that the

generator H̃ of bulk time-translations toward the future may be written H̃ = H±µQ,

where the +/− signs are respectively appropriate for systems 1 and 2 above. Here

H is the generator for µ = 0 given by the standard expression (see e.g. e.g. [40])

for the boundary stress tensor in terms of Fefferman-Graham coefficients of the bulk

metric. See [41] for a general discussion of computing time-translation generators by

holographic methods for boundary conditions involving vector fields.

In the bulk semi-classical limit our path integral should be dominated by a

saddle point. We will consider cases where this saddle point is the planar Reissner-

Nordström AdSd+1 geometry4. We expect this to be the case for d ≥ 3 holographic

field theories on Minkowski space so long as the bulk solution exhibits no instabilities

associated with Schwinger pair creation [28, 29] (see also footnote 1). For definiteness

we consider only d = 4 below. Note that our path integral automatically places

quantum fluctuations of bulk fields into a Hartle-Hawking-like state. Below, we use

the same symbol |ψ〉 to denote the CFT state, the state of full bulk quantum gravity,

4While the semi-classical approximation may break down in surprising ways in generic contexts

involving black holes (see e.g. [18, 33, 42–44]), the TFD case is sufficiently special that it is plausibly

free of such issues [45].
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and the Hartle-Hawking-like state of linearized or perturbative bulk quantum fields

on the RN-AdS background.

The RN-AdS geometry solves the equations of Einstein-Maxwell gravity with

negative cosmological constant. Taking the action to be

S =

∫
d5x
√
−g
[

1

2κ2

(
R +

12

`2

)
− 1

4g2
F 2

]
, (2.3)

and introducing the dimensionless measure γ2 ≡ 3g2`2/2κ2 of the relative strengths

of the gravitational and Maxwell couplings, the solutions for fixed µ may be written

in terms of a scale z0 that will shortly be related to the temperature T . Such solutions

take the form

ds2 =
`2

z2

[
−f(z) dt2 +

dz2

f(z)
+ dx2

3

]
, (2.4a)

Aµdx
µ = µ(1− z̃2) dt, (2.4b)

with

f(z) = (1− z̃2)(1 + z̃2 − α2z̃4), z̃ =
z

z0

, and α2 ≡ z2
0µ

2

γ2
. (2.5)

The rescaling z0 → z0/λ is equivalent to the transformation (t, z, x) → (λt, λz, λx),

µ→ µ/λ, so the physics depends only on the scale-invariant parameter α, or equiv-

alently on µ/T .

The AdS boundary lies at z = 0, while z = z0 is a horizon with temperature

T =
2− α2

2πz0

. (2.6)

This expression can be inverted to obtain z0(T, µ); we will later need the small

temperature behavior z0 =
√

2 γ/µ+O(T/µ). Note that At vanishes at the horizon

as required by regularity in a static gauge. For nonzero α2 < 2 there is also an inner

horizon at z = z+, with

z2
+ = z2

0

1 +
√

1 + 4α2

2α2
. (2.7)

The singularity lies at z = ∞. The conformal diagram of maximally extended RN-

AdS is shown in Figure 2.

The above coordinates will be convenient despite the fact that they become

singular on horizons. The Schwarzschild-like time coordinate t should be considered

to be periodic with period iβ, with β the inverse temperature. Within the real

Lorentz-signature solution above, we also take it to change by ±iβ/4 whenever an

outer horizon is crossed5. Thus the imaginary part of t determines whether a point

5Crossing the bifurcation surface counts as crossing two horizons and gives a change of ±iβ/2.

Upon crossing an inner horizon t changes by iβ+/4 with β+ the inverse temperature of the inner

horizon; see e.g. [15]. We will have no need of this in the following discussion.
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z0z0

z0z0

z+z+

z+z+

z = 0z = 0

z = ∞

z = ∞

z = ∞

z = ∞

I

II

III

IV

Figure 2. The relevant portion of the conformal diagram of RN-AdS. The exterior regions

are I and III, with their boundaries at z = 0. The singularity is at z = ∞, and the

spacetime has inner and outer horizons at z = z0 and z = z+, respectively. We take the

imaginary part of t in regions I-IV to be 0, β/4, β/2, and −β/4, respectively.

lies in region I,II, III, or IV of the conformal diagram (Figure 2). In particular, the

two asymptotic regions correspond to Im(t) = 0 and Im(t) = β/2. Below, it will

often be useful to switch to a new radial coordinate w = z̃2, in terms of which (2.4)

becomes

ds2 =
`2

z2
0w

[
−f dt2 +

z2
0dw

2

4wf
+ dx2

3

]
, (2.8a)

Aµdx
µ = µ(1− w) dt. (2.8b)

We will be most interested in the extreme limit α2 → 2, where z+ → z0 so that

f(z) develops a double pole at z = z0. The metric with α2 = 2 has an infinite

throat, as the horizon at z = z0 is an infinite proper distance away in the slices of

constant t, and a Cauchy slice in the maximally extended extremal geometry has

only a single boundary. We are interested in following the entanglement between

the two boundaries of the non-extremal black hole in this limit, as the length of the

Einstein-Rosen bridge connecting the two asymptotic regions diverges. To this end

we define ε ≡ 2− α2 and write f(z) = (1− z̃2)2(1 + 2z̃2)− εz̃4(1− z̃2).

3 Mutual Information

A useful probe of the entanglement between our two Hilbert spaces is the mutual

information associated with two spacetime regions, with one region in each CFT. In

the TFD context it is natural to call this thermo-mutual information (TMI) following

[12], which studied the corresponding quantity for holographic theories with µ = 0

and d = 2. After a brief review, we compute TMI for general µ and d = 4 for two
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strips of width L located on a common bulk Killing slice, and also for regions defined

by an entire CFT and a single strip of width L in the other CFT. Our main result

is that in the former case L must grow as lnT near extremality in order to have

non-zero TMI while it may remain finite in the latter case.

3.1 Thermo-Mutual Information

Recall [46, 47] that the mutual information between two non-overlapping regions A
and B is

MI(A : B) = SA + SB − SA∪B, (3.1)

where SX = −tr(ρX log ρX) is the von Neumann entropy of the reduced density

matrix ρX describing the region X. In particular, the mutual information is finite in

quantum field theory as all divergences in SX are local terms at boundaries which

explicitly cancel in the combination (3.1). The mutual information is non-negative

by virtue of subadditivity SA + SB ≥ SA∪B for non-overlapping regions; see [48, 49]

and also [50] for a holographic derivation.

The term thermo-mutual information (TMI) refers to the case where we consider

a thermofield double state and the two regions are associated with different copies of

the CFT. We will take A, B to lie on a single Killing slice of the bulk and compute

TMI holographically using the Ryu-Takayanagi prescription [10], which instructs us

to identify

SX =
A(γX)

4GN

, (3.2)

where GN is Newton’s constant and A(γX) is the area of the minimal static surface

γX , which extends into the bulk while being i) homologous to X within the surface

of constant Killing time and ii) anchored on the boundary ∂X of X. Since we will

apply such recipes to bulk black holes that dominate a Euclidean path integral, this

recipe can be justified using the arguments of [11]. The fact that the two regions lie at

different Euclidean times tE = 0 and tE = iβ/2 provides no additional complications.

It is often the case that holographic TMI will vanish identically, saturating the

subadditivity condition. This occurs because the disjoint union of two minimal sur-

faces γA1 and γA2 is an extremal surface anchored on the boundary of A1 ∪ A2.

Holographic TMI vanishes when this is the minimal-area such extremal surface. In

the CFT this should be considered an artifact of the large N limit, though one that

is unmitigated by 1/N corrections. An alternative candidate for γA1∪A2 is a surface

γA1A2 that passes through the horizon connecting the boundary of A1 to the bound-

ary of A2. Varying the sizes of A1,2 will typically result in a transition where the

area of the latter surface becomes smaller than the area of the former and the TMI

becomes non-zero. The scale at which this transition occurs provides information

about the degrees of freedom entangled between the two CFTs.

– 8 –



A1A2 γA1
γA2

γA1A2

H

γ∞

Figure 3. Assorted entangling surfaces at t = 0. The boundary CFTs live on the solid

lines, which show the transverse x1 direction on which we define the stripsA1 andA2, which

have width L. The dashed line is the bifurcation surface. Here we show five surfaces: γA1

and γA2 correspond to the entangling surface of each strip; γA1A2 runs through the bulk

from one strip to the other, and can contribute to the entanglement entropy of the two

strips; H is a surface that runs along the horizon and corresponds to the entangling surface

of the entire left CFT; and γ∞ connects ∂A1 to infinity, and can contribute to the mutual

information between A1 and the left CFT.

3.2 Strips

Consider first the case where A1 and A2 are strips defined by 0 < x1 < L and

extending infinitely far along x2 and x3. In this case the extremization problem

becomes effectively one dimensional.

It is instructive to first review the case of finite T = β−1 and µ = 0 [17]. Here

the physics depends only on the dimensionless combination LT . For our strips the

connected surface γA1A2 extends straight through the bifurcation surface, connect-

ing ∂A1 with ∂A2; see Figure 3. Translational invariance implies that its area is

independent of LT , while the area of the disconnected surface γA1 ∪ γA2 vanishes

as LT → 0. Thus the disconnected surface dominates SA1∪A2 for small LT and the

TMI vanishes. As we increase LT , the surfaces γA1 and γA2 reach further into the

bulk but do not cross the horizon. At large LT they lie mostly along the horizon so

that their areas grow linearly in L. Thus there exists some critical Lstrips of order

T−1 such that for L > Lstrips, the connected surface dominates in the computation of

SA1∪A2 and the TMI becomes nonzero. This phase transition at L = Lstrips is sharp.

The TMI grows linearly in L above the phase transition, with the leading behavior

at large L given by twice the thermal entropy density times the volume of either

region.

We wish to investigate how this picture changes at finite chemical potential. In

particular, this allows us to study a meaningful T → 0 limit with finite entanglement
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density between the two CFTs. For small µ the critical Lstrips will remain of order

T−1, but near extremality we will find that Lstrips grows as ln(1/T ).

The minimal surfaces may be found by extremizing the area functional

A = V2

∫
`3

z3

√
dz2

f(z)
+ dx2 , (3.3)

with boundaries at z = 0 and x1 = 0, L. Here V2 =
∫
dx2dx3 is the (infinite) volume

in the directions along the strip.

For the connected surface, the extremum of (3.3) is clearly attained when dx = 0

in (3.3). Thus
A(γA1A2)

4GN

= 4z0V2s

∫ 1

z̃UV

dz̃

z̃3
√
f(z)

, (3.4)

where s = (1/4GN) (`/z0)3 is the thermal entropy density and z̃UV is a dimensionless

ultraviolet (UV) cutoff which we may take to zero after computing the TMI. At

extremality f will acquire a double pole at z̃ = 1 so the integral (3.4) diverges

logarithmically. In order to extract this divergence we make the change of integration

variable u = 1 − z̃ + ε, where ε = 2 − α2. Expanding the integrand of (3.4) near

ε = 0 then gives

A(γA1A2)

4GN

= 4z0V2s

∫ uUV

ε

du

u

[
1

(u− 1)3(2− u)
√

2u2 − 4u+ 3
+O(ε/u)

]
, (3.5)

where uUV ≡ 1− z̃UV + ε. For small ε and fixed uUV , the integral (3.5) is dominated

by the contribution of the first term, which reduces to

A(γA1A2)

4GN

∼ 4γV2s√
6µ

ln(µ/T ), (3.6)

where we used (2.6) to express z0 in terms of µ. One may also derive (3.6) by writing

(3.4) in terms of standard elliptic integrals; see appendix B for details.

For the surface γA1 , (3.3) yields

A(γA1)

4GN

= z0V2s

∫ L/z0

0

dx̃

z̃3

√
z̃′2

f(z)
+ 1, (3.7)

where x̃ ≡ x/z0 and z̃′ = dz̃/dx̃. The expression for γA2 is of course identical. The

translational symmetry in x implies a conserved quantity

1

z̃3
√
f−1z̃′2 + 1

≡ 1

z̃3
t

, (3.8)

where z̃t is the turning point of γA1 . Since extremal surfaces in static geometries do

not penetrate horizons [51], we must have z̃t ≤ 1. The case z̃t = 1 corresponds to the
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γA1H(reg)

γ
(reg)
∞

LW

LIR

Figure 4. Surfaces relevant to the IR regularization used to compute TMI(A1 : CFT2).

surface γ∞ shown in Figure 3, which asymptotes to the horizon and never returns to

the boundary. For z̃t < 1 the corresponding boundary length L is given by

L

2
= z0

∫ L/2z0

0

dx̃ = z0

∫ z̃t

z̃UV

dz̃

z̃′
= z0

∫ z̃t

z̃UV

dz̃√
f(z)

(
z̃6
t

z̃6
− 1

)−1/2

(3.9)

and the associated area is

A(γA1)

4GN

= 2z0V2s

∫ z̃t

z̃UV

dz̃

z̃′

√
f−1z̃′2 + 1

z̃3
= 2z0V2s

∫ z̃t

z̃UV

dz̃√
f(z)

(
z̃6
t

z̃6
− 1

)−1/2
z̃3
t

z̃6
.

(3.10)

Since (3.5) grows as T → 0, one can obtain nonzero TMI at small T only when

(3.10) is similarly large. This occurs when L is large and z̃t ≈ 1. From (3.9) and

(3.10) we find in this regime that A(γA1) = LV2s + O(1), describing the extensive

thermal entanglement expected for large L. Comparison with (3.6) implies that for

small T , the transition to TMI > 0 occurs at

Lstrips =
γ√
6µ

ln(µ/T ) +O(1). (3.11)

As advertised, an infinite growth of the entangling regions is required to obtain a

non-vanishing TMI near extremality.

3.3 A strip and an entire CFT

In contrast to the above, let us now consider the mutual information between a finite

strip A1 in one CFT and the entire second CFT. The calculations are similar to those

just performed. Defining a surface γ∞ that ends on ∂A1 and extends to infinity on

the other boundary (as shown in Figure 3), we have

TMI(A1 : CFT2) = max

{
0, sV3 +

A(γA1)− A(γ∞)

4GN

}
, (3.12)
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Figure 5. The critical lengths Lstrips (upper curve, red) and Ls+CFT (lower curve, blue)

as functions of temperature. Lstrips diverges logarithmically at small T , whereas Ls+CFT

approaches a constant value ≈ 1.05γ/µ.

where V3 is the spatial volume of the CFT. While sV3 and A(γ∞) are both IR di-

vergent, one can easily show that these divergences cancel. To do so, first consider

the mutual information between the strip A1 of width L in one CFT and a strip of

width W in the other, with W large relative to any other scale; the relevant entan-

gling surfaces H(reg) and γ
(reg)
∞ are shown in Figure 4. The desired result is obtained

in the limit W →∞, so that W serves as an IR regulator. The length LIR of one of

the regulated surfaces γ
(reg)
∞ (see Figure 4) is given by (3.9) with z̃t = z̃IR ≡ 1 + δ,

with δ small and positive6. At large W the entropy of the strip of width W will

approach sW + 2S0 = s(L+ 2LIR) + 2S0, where the W -independent correction S0 is

associated with the part ofH(reg) that stretches from the horizon to the left boundary.

Since this same correction appears in the area of γ
(reg)
∞ we find

sV3 −
A(γ∞)

4GN

=
V2`

3

GNz2
0

[
L

4z0

−
∫ 1

0

1

z̃3

√
1− z̃6

f(z)
dz̃

]
+O(δ). (3.13)

The divergences have canceled as promised.

Since the UV-regularized value of A(γA1) is finite and monotonically increasing

with L, we see that the regulator-independent quantity

sV3 +
A(γA1)− A(γ∞)

4GN

(3.14)

relevant to (3.12) grows linearly at large L and diverges to −∞ as L→ 0. Thus there

is a critical length Ls+CFT(T/µ) at which (3.12) becomes non-zero, given by requiring

(3.14) to vanish. The results are shown in Figure 5, and we find numerically that

Ls+CFT|T/µ=0 ≈ 1.05 γ/µ.

The contrast between Lstrips and Ls+CFT is striking. A further interesting result

is obtained by considering again two strips A1 and A2 of width L, but this time

6In fact, because z̃IR > 1, the upper bound of the integral in (3.9) should be set to 1.
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considering the TMI between A1 and Ac2, the complement of A2 in CFT2. The

possible bulk surfaces for computing SA1∪Ac
2

look much like those studied above (see

Figure 6).7 If we take the limit of small T at fixed L, µ, the surface that connects

the two boundaries in Figure 6c will have divergent area, so it cannot dominate the

others. But the two remaining surfaces allowed by homology (point (i) below (3.2))

are related by reflection through the horizon and so have equal areas. Since one

surface is just γA1 ∪ γAc
2
, we find TMI(A1 : Ac

2) = 0. Thus we have the remarkable

result that for finite L the TMI between A1 and either A2 or its complement vanish

in the limit of small T , but the TMI between A1 and the entire other copy of the

CFT can remain non-zero.

This result is not readily accommodated by the localized-quasiparticle picture

of TFD entanglement (see [17], following [52] in the time-dependent case; see also

[30, 31] for other features that indicate shortcomings of this model). A quasiparticle

picture might suggest that any entanglement between A1 and CFT2 should be visible

even if we separate CFT2 into A2 and Ac2. That is, a localized-quasiparticle picture

would lead us to expect that at least approximately

TMI(A1 : CFT2) = TMI(A1 : A2) + TMI(A1 : Ac
2). (3.15)

This expectation is badly violated in our case at small T , as the former TMI is

non-zero, but both of the terms on the other side vanish. This just a particularly

striking example of a general failure of (3.15). In the holographic context this is

because the mutual information between some regions A and B on the one hand,

and mutual information between A and subregions B1, B2 on the other, will involve

different surfaces, and there is no reason to expect their areas to be related in such

a way as to make (3.15) valid even approximately. While we offer no better model,

it would be interesting to reflect further on what such a model might require, and

perhaps to connect it with information-theoretic phenomena such as information

locking [53, 54].

4 Charged Correlators

We now turn to demonstrating that our TFD entanglement can be seen near ex-

tremality in the correlation functions of charged operators, and to extracting features

of this entanglement. We work in the approximation of large operator dimension,

where the computation of dual bulk two-point correlators amounts to finding appro-

priate spacelike world lines extending from one boundary to the other. Though this

approximation breaks down in certain interesting regimes, it nevertheless provides

7They are also similar to those that might be used to compute MI(A1 : Ac
1), with both regions

in the same CFT. But this is strictly infinite. The UV divergences do not cancel in (3.1) when the

regions overlap.
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Figure 6. Surfaces relevant to the entanglement entropy SA1∪Ac
2
. Note that the surfaces

shown in (a) and (b) are reflections of one another across the horizon. Another surface

(not shown) is related to (c) by a reflection in the vertical direction; i.e., across x1 = 0.

many useful results. We begin with a detailed discussion of general charged correla-

tors in non-extreme black hole backgrounds and specialize to the near-extreme case

only in section 4.4.

4.1 Holographic Two-Point Functions in the worldline approximation

Let us briefly review the connection between CFT two-point functions and bulk

worldlines. In order to probe the entanglement inherent in our charged TFD state,

we will be particularly interested in two-point correlation functions involving an

operator O1 acting on one CFT in our TFD and an operator O2 acting on the other.

The construction of (2.2) suggests that we take O2 to be the time-reverse of O1. For

typical complex scalar fields, this amounts to taking the adjoint: O2 = O†1.

Recall now that CFT scalar operators O with conformal dimension ∆ are holo-

graphically related to bulk scalar fields φ with mass m via

∆ =
d

2
+

√
d2

4
+m2`2, (4.1)

with ` the AdS radius and d the boundary dimension8. At leading order in the

bulk semi-classical limit, the CFT two-point function G12 = 〈ψ|O2(x2)O1(x1)|ψ〉
is dual to a certain rescaled limit of the bulk two-point function G(x1, z1, x2, z2) =

〈ψ|φ†(x2, z2)φ(x1, z1)|ψ〉 as z1, z2 → 0. In the former expression |ψ〉 represents the

CFT charged TFD (2.2), while in the latter expression φ is an otherwise-free (i.e.,

linearized) charged field on RN-AdS and |ψ〉 is the associated Hartle-Hawking state

defined by our Euclidean path integral. Here we consider Wightman two-point func-

tions for definiteness, though in both the CFT and bulk our primary interest will

8For m2 near the Breitenlohner-Freedman bound [55], the bulk field may satisfy alternate bound-

ary conditions in which case we have ∆ = d/2−
√
d2/4 +m2`2 [56]. But this is not relevant for us

since we take m2 large and positive.
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be in two-point functions of commuting operators so that the Wightmann and time-

ordered two-point functions coincide.

In the limit of large m the bulk two-point function can be studied using the WKB

approximation. Since our bulk quantum state was constructed from a Euclidean path

integral, for neutral scalars this reduces to the familiar result G ∼ eim∆τ , where ∆τ is

the proper time that elapses along the geodesic connecting (x1, z2) to (x2, z2); see e.g.

[16, 57]. When the geodesic is spacelike it is more natural to write G(x1, x2) ∼ e−mL,

where L is the proper length. Taking z1, z2 → 0 and performing the above-mentioned

rescaling gives G12 ∼ e−mLreg , where Lreg is an appropriately regulated version of the

geodesic length L.

It is straightforward to generalize this result to charged operators. If the opera-

tor O is charged under our global U(1) symmetry, then the dual bulk operator φ is

charged under the associated bulk Maxwell field. So before integrating over paths,

the proper time ∆τ above should be replaced with the action S of a charged particle.

The relevant saddle points are then extrema of S, which are generally not geodesics,

and the Wightman function becomes G ∼ eimS. Due to our interest in spacelike

separated points at opposite boundaries of the bulk, we write G12 ∼ e−mI with

I = −iSreg =

∫ (√
gµνuµuν −

iq

m
Aµu

µ

)
dλ+ Ict, Ict = −` ln

(
4

wUV

)
, (4.2)

where q and m are the charge and mass of φ, Aµ is the Maxwell field in the bulk

solution. In (4.2), the Ict is the appropriate counter-term which that makes the

result finite for z1 = z2 = 0 and thus enacts the above-mentioned rescaling of bulk

correlators near the boundaries. This Ict is independent of q and thus identical to the

standard counter-term for neutral particles; i.e., it is associated with the divergent

length of geodesics near the boundaries. As usual, we understand (4.2) to be defined

by first evaluating both Ict and the bulk term with UV cutoffs and then taking the

limit where the cutoffs are removed. The detailed justification of the bulk Euclidean

action (4.2) is provided in Appendix A, in part because this expression corrects

certain errors in the literature.

We emphasize that, in our background, the expression (4.2) computes G(x1, x2)

with time dependence generated by H̃1 = H+µQ, H̃2 = H−µQ. Recalling that the

limit T → 0 with fixed µ restricts (2.2) to terms with a unique value of Ẽ1 = E1+µQ1,

one sees that either time-translation of (2.2) changes the T = 0 wavefunction only

by an overall phase. So in this limit G12 should become time-independent in either

argument.

4.2 Equations of Motion

The spacelike world lines we seek extremize the action (4.2). We take both end points

to have the same spatial coordinates ~x in the directions along the planar black hole.
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Parity symmetry and momentum conservation then guarantee that ~x is constant

along our world line. Without loss of generality we henceforth set ~x = 0.

Thus our curves will have tangent vectors uµ = (ṫ, ẇ, 0, 0, 0). We may use the

Killing field ∂t to introduce a conserved (Euclidean) energy EE

(∂t)
µ uµ = iEE + i

q

m
(∂t)

µAµ. (4.3)

Together with the normalization condition uµuµ = 1, the world lines must satisfy the

equations of motion

ṫ = −z0

`
iw
E +Q(1− w)

f(w)
, (4.4a)

ẇ2 =

(
2

`

)2

w2g(w), (4.4b)

where Q = z0qµ/m`, E = z0EE/`, and

g(w) = f(w)− w (E +Q(1− w))2 . (4.5)

We also define q̃ = qg/mκ as a dimensionless measure of the charge-to-mass ratio

of φ.

Recall that we consider theories for which RNAdS5 remains stable close to ex-

tremality. This in turn restricts the possible scalar fields that can exist in the bulk.

In particular, we wish to avoid any Schwinger pair creation instability (see again

footnote 1) [28, 29]. In the worldline approximation, this instability arises when

electrostatic repulsion of the associated particles from the black hole overwhelms the

gravitational attraction. This issue is readily analyzed by studying the potential

V (w) which controls motion of quasi-static (i.e., non-relativistic) timelike worldlines.

For each black hole (with, say, positive charge), there is some critical positive q̃crit

and which V (w) develops a minimum outside the horizon. One finds q̃crit > 1 for

all nonextreme black holes and q̃crit = 1 for extreme black holes. For simplicity, we

therefore restrict discussion below to the case q̃ ≤ 1 unless otherwise noted.

We are interested in world lines running from (t, w) = (tb, 0) to (t, w) = (−tb +

iβ/2, 0). For fixed tb there will generally be a finite set of solutions to (4.4a), (4.4b)

distinguished by their values of E . These values are generally complex, though (4.4a)

implies that one may find solutions with imaginary tb having real E . Since there are

multiple solutions, the full set of solutions for all complex tb may be associated with

a Riemann surface E(tb). While we will focus on the curves defined by taking tb real,

the i that accompanies the Maxwell term in (4.2) makes it particularly natural to

analytically continue to complex parameters.

It will also be useful to characterize solutions by their turning points wt in the

complex w-plane. Such turning points are defined by noting that (4.4b) is invariant

under changing the sign of the affine parameter λ along the worldline while holding

– 16 –



Figure 7. Typical Riemann surfaces wt(E) defined by setting g(wt) = 0 over the complex E
plane. The top left figure displays the Schwarzschild case α = 0; the next three show α =

0.5, with q̃ = 0.2,
√

2/3, and 0.9, from left to right and top to bottom. The height of the

sheets corresponds to |wt|, while the hue represents the phase of wt (with red and turquoise

corresponding to positive and negative real wt, respectively). Along the real axis (parallel

to the common plane of symmetry in each figure), the turning point wt corresponds to the

smallest positive real root, which is then analytically continued to the rest of the complex

plane. Thus the principal branch of wt becomes the the lowermost sheet in each figure at

large real E .

E ,Q, µ fixed. Thus one obtains the same curve w(λ) whether one integrates (4.4b)

starting from w = 0 at the right boundary or from the left, and each solution of

interest has a Z2 symmetry mapping w(λ)→ w(−λ) with a corresponding action on

t(λ). The turning point is just the value of w at the fixed point, wt ≡ w(λ = 0).

Note that ẇ must vanish at this fixed point, so that wt and E satisfy a relation

given by setting g(wt) = 0. Since g is a cubic polynomial in w, one may take this to

define a three-sheeted Riemann surface wt(E) (see e.g. Figure 7) with branch points

corresponding in general to double roots of g. This structure will play an important

role below. For real α our g has a triple root only for the special case E = 0, q̃ = 1

at extremality (α =
√

2), where the root lies at the horizon (w = 1).

In general, the term on the right-hand side of (4.4b) acts as an effective (possibly
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complex) Newtonian potential for w. This understanding allows one to write the total

elapsed time ∆t = −2tb + iβ/2 and the action I along any solution in the form

∆t = −iz0

2

∮
E +Q(1− w)

f(w)
√
g(w)

dw, (4.6a)

I =
`

2

∮
f(w)−Qw(1− w) (E +Q(1− w))

wf(w)
√
g(w)

dw + Ict, (4.6b)

where the integral is over the contour in the complex w-plane defined by our worldline.

Expressions (4.6a), (4.6b) use the prescription of [17] for integrating through zeros

of f so that crossing any horizon adds ±iβ/4 to ∆t as desired. As a technical note

we mention that by writing

g(w) =
(
α2 −Q2

)
(w1 − w)(w2 − w)(w − w3) (4.7)

with wt = w1, the expressions (4.6) can be evaluated explicitly in terms of standard

elliptic integrals. These expressions are functions of w1, w2, w3, α, Q, and E given

in Appendix B and are useful for various asymptotic expansions.

In order to obtain a unique value from (4.6) we must specify
√
g along this

worldline which, as noted above, will necessarily run through a root wt of g. The

correct prescription is determined by taking
√
g to be continuous along the worldline

and requiring the above reflection symmetry λ → −λ to change the sign of
√
g;

roughly speaking, the sign of
√
g changes when one passes through the turning point.

The remaining sign ambiguity in ∆t is fixed by the sign of dw/dt at any point along

our worldline, while the sign of the ambiguity in I is fixed by the condition that the

divergence at w = 0 is canceled by Ict. In particular, although there are two solutions

for given E , wt, the action I takes identical values on both.

One would like to think of (4.6a) and (4.6b) as defining I as a function of tb. But

again the multiple geodesics for each tb mean that I(tb) is actually a multi-sheeted

Riemann surface. A useful way to deal with this complication is to parametrize both I

and tb by the energy E . While the resulting I(E) and ∆t(E) are again multi-sheeted

Riemann surfaces, their structure is closely related to the physics of quasi-normal

modes. We review this connection in section 4.3 below and use it to extract the most

relevant features.

An additional simplifying feature of this perspective is that all branch points in

I(E) coincide with those of wt(E), and thus with wt being a double root of g. This

follows from the above observation that I is uniquely determined once both E , wt
are specified. Specializing for the moment to non-extreme black holes, we see from

(4.5) that f cannot vanish where g has a double root9. As a result, the relation (4.5)

9Note that g(w = 0) = 1 6= 0. Thus from (4.5) f and g can vanish simultaneously at w0 only

when E +Q(1−w0) = 0. But this forces the second term in (4.5) to have a double root. So if w0 is

a double root of g, would also be a double root of f . And when α is real f can have a double root

only at extremality.

– 18 –



ensures that no further factors vanish at wt in either the numerator or denominator of

(4.6b) and that double zeros of g give logarithmic branch points. We see that ∆t also

diverges logarithmically at branch points of wt and that the only additional branch

points in ∆t(E) are those associated with the overall choice of sign. These play only

a very minor role and are not associated with divergences unless they coincide with

those above. Thus the branch points of wt are directly associated with the late time

limit ∆t→∞.

As a final note, we mention that equations (4.6) and the associated boundary

conditions are invariant under the transformation (tb,Q, E) → (−tb,−Q,−E) and

also under (tb,Q, E) → (−tb,Q, Ē) where the overbar denotes complex conjugation.

Without loss of generality we may thus restrict our analysis to tb ≥ 0 and Q ≥ 0.

We may also restrict ourselves to µ ≥ 0 (and thus q̃ ≥ 0), since the equations are

also invariant under (µ, q)→ (−µ,−q).

4.3 The Late-Time Limit and quasinormal modes

We noted above that our problem is associated with multi-sheeted Riemann surfaces

I(E), tb(E), wt(E) for which the interesting branch points occur when wt is a double

zero of g(w). Furthermore, these are precisely the points associated with late-time

limits. We now take a moment to understand the structure of these branch points

in detail and to more carefully review the connection with late times. In particular,

we relate the associated branch cuts with families of quasi-normal modes drawing

heavily from [16] and [17].

Note that double roots of g can arise only at special values Ec of E at which

the discriminant of g vanishes. This discriminant is a sixth order polynomial in E
and, while its explicit form is unilluminating, we plot the associated six roots Ec in

the complex E plane for representative choices of the parameters α, q̃ in Figure 8.

Any curve E(tb) must approach one of these points as tb → ±∞. There is a special

µ-independent value q̃ =
√

2/3 at which two of the Ec merge on the real axis and

disappear. This corresponds to a degenerate case where g(w) becomes quadratic

in w, so at this value there are only four Ec. For q̃ <
√

2/3 no Ec lie on the real axis,

while for q̃ >
√

2/3 two of the Ec always lie on the real axis.

As described in [16], there is a very physical relationship between the critical

energies Ec and the quasi-normal modes (QNMs) of the scalar field probe. In general,

the long-time behavior of two-point functions of fields on a black hole background is

dominated by the lowest QNM ωc. This is usually used as an approximation for the

two-point function in one static region outside the black hole, but continuing one of

the points to the other asymptotic region via t → −t + iβ/2 one sees that it also

provides an approximation to our Wightman function:

G12(tb) ∼ e−2iωctb ⇒ Ilate =
2iωc
m

tb + · · · , (4.8)
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Figure 8. Roots of the discriminant of g(w) in the complex E plane are shown as dots for

representative choices of the parameters α, q̃. From left to right, we take q̃ = 0, q̃ <
√

2/3,

and q̃ >
√

2/3. These indicate possible branch points for wt(E), I(E),∆t(E), with the

actual branch structure of I(E),∆t(E) being determined by that of wt(E). On sheets where

Ec is indeed a branch point, both I and ∆t diverge logarithmically. As these are the

only locations where ∆t can diverge, they serve as endpoints for all curves E(tb). The

jagged lines are rough guesses for the locations of the branch cuts that define the principal

sheet of wt(E), I(E) and ∆t(E), and should correspond to lines of poles in frequency space

correlators for operators of large-but-finite conformal dimension.

where · · · stand for contributions that are subleading in 1/m and 1/tb. Working

in the worldline approximation, this linear behavior at late time can be thought of

as corresponding to a world line at fixed (generally complex) w but extended in

the t direction [17]. To identify these special values of w (which we denote wc), we

extremize the action obtained from (4.2) by setting ẇ to zero. The resulting action

is

Ilate =
i`

z0

∫
V (w) dt, (4.9)

where

V (w) =

√
f(w)

w
−Q(1− w), (4.10)

and its extremization requires solving V ′(w) = 0. Finding the roots wc of V ′(w) for

general α, q̃ amounts to solving the same sextic polynomial. But since from (4.4b)

they satisfy g(wc) = 0, the corresponding energies are just the six Ec defined above:

Ec = V (wc). (4.11)

Thus in the late time limit we may write

Ilate = −2i`Ec
z0

tb + · · · ⇒ ωc = −m (EE)c , (4.12)

where (EE)c = `Ec/z0 is again the Euclidean energy from (4.3). Since the large time

behavior of a physical probe field is controlled by its lowest QNM, we identify the

frequency of this mode as ωc. Thus, up to a factor of m, the critical energies (EE)c
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are directly related to such frequencies. In particular, for stable situations families

of worldlines relevant at late times can have tb → +∞ only for Ec in the upper

half-plane.

Not only does the physics of QNMs determine the branch points Ec, it also selects

a physically meaningful location at which to place associated branch cuts [16]. This

point may be seen by writing the Fourier transform of the worldline-approximation

correlator in the form

G12(ω) ∼
∫
d (∆t) e−iω∆te−mI(∆t), (4.13)

∼
∫
dEE e

−m(I(EE)+i(ω/m)∆t(EE)). (4.14)

For large m, the dominant contribution to this integral comes from those EE which

satisfy the saddle point condition

dI

dEE
+
iω

m

d(∆t)

dEE
= 0. (4.15)

Since I is an action, we have the Hamilton-Jacobi relation

dI = iEE d(∆t), (4.16)

which can also be checked directly from (4.6). Thus (4.15) becomes simply EE =

−ω/m at all times and the frequency space correlator is

G12(ω) ∼ emZ(ω), with Z(ω) = (iEE∆t(EE)− I(EE))
∣∣
EE=−ω/m. (4.17)

Since Z(ω) and I(∆t) are related by a Legendre transformation, the analytic struc-

ture of the functions I and ∆t in the complex energy plane is directly related to the

analytic structure of the frequency space correlator G12(ω).

In particular, the only singularities of the exact Green’s functions G12(ω) at finite

m computed using field theory should be poles corresponding to quasi-normal modes.

In the large m limit these poles organize themselves into closely spaced families that

define curves in the complex ω plane. The endpoints of such curves are (some of)

our Ec’s and the associated lines of poles become branch cuts. The most relevant

observation is that the actual finite m correlators are free of branch points, so that

the parts of our Riemann surfaces I(E) and ∆t(E) beyond the lines of poles are

related much less directly to the physics of finite m. In particular, even at general

complex tb or ω, finite m correlators will never be well-approximated by e−mI for

worldlines described by points behind such lines.

We henceforth restrict discussion to what we may call the principal sheets of

wt(E), I(E), and ∆t(E) defined by introducing branch cuts along the large-m lines

of poles in G12(ω). We also take our principal sheets to include worldlines on which
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Figure 9. Sketches of the E(tb) contours corresponding to real values of tb for a representa-

tive sample of α with q̃ = 0; arrows on the contours indicate the direction of increasing tb.

Figure (a) is Schwarzschild, with α increasing to the right. Taking α > 0 introduces two

additional Ec along the imaginary axis and resolves the bifurcation point at E = 0. Note

the presence of new contours that come in from infinity; following these contours to large

tb takes us cross branch cuts (for which our rough guesses are shown as jagged lines) and

off the principal sheet. At α = αcrit ≈ 0.406 the bifurcation points merge and the contour

topology changes to that of figure (c). We see that at least parts of some (black) contours

move off the principal sheet. Red contours are associated with correlations that decay away

from tb = 0 as in comment (ii).

E , wt, are real and ∆t is purely imaginary. While determining the precise location

of these cuts would require one to compute the full set of QNMs at large m, it will

be enough for our purposes to note that QNMs typically become highly damped

away from the lowest QNM. Thus the branch cuts that determine our principal

sheet must point away from the real E axis. A rough guess as to the appearance of

these branch cuts is sketched in Figure 8. In particular, comparison with Figure 10

indicates that while all six values of Ec define branch points of the principal sheet for

small q̃ <
√

2/3, at some point before q̃ =
√

2/3 two of the Ec move onto a secondary

sheet so that only the remaining four define branch points of the principal sheet and

correspond to physical low-lying QNMs. As one might expect, for q̃ >
√

2/3 these

are the four Ec with non-vanishing imaginary part.

4.4 Correlators in the extreme limit

As discussed for the Schwarzschild case in [14], it is generally quite subtle to de-

termine which of the possible complex worldlines connecting our endpoints actually

provides a good approximations to finite m correlators via G12 ∼ e−mI . The pos-

sible Schwarzschild contours E(tb) for real tb are shown in Figure 9a. While the

correlator at tb = 0 corresponds to the unique E = 0 geodesic, this splits into three

possible branches for nonzero tb. By writing down a toy model for the path inte-

gral, [14] argued that the contours contributing to the path integral are the complex
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Figure 10. Sketches of the E(tb) contours corresponding to real values of tb for a

representative sample of α and q̃; arrows on the contours indicate the direction of in-

creasing tb. Red contours are again associated with correlations that decay away from

tb = 0 as in comment (ii). The three columns take α = α1, α2, α3, respectively,

with α1 < αcrit < α2 < α3 ≈ αext; the rows from top to bottom take q̃ = q̃1 q̃2, q̃3, q̃4,

respectively, with 1 � q̃1 < q̃2 < q̃3 <
√

2/3 < q̃4. As q̃ is increased, two of the Ec in

the right-hand plane cross branch cuts (rough guesses for which are again shown as jagged

lines), taking their associated contours and branch cuts off the principal branch; this is

shown in the third row with such branch cuts indicated by dashed lines (suppressed in the

4th column). At q̃ =
√

2/3, these two Ec annihilate on the real axis; for q̃ >
√

2/3, these Ec
remain on the real axis and no contours on the principal sheet terminate on them.
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ones terminating at Ec =
√

2 eiπ/4+kπ/2 for k = 0, 1, 2, 3, while the contour along

the imaginary E axis (which only reaches a finite value of tb as E → i∞) does

not contribute. This is the case even though the imaginary E contour represents a

smaller action for tb > 0, and so would dominate if it contributed at all. Adding

charge (α > 0) to the black hole and also to the probe (q̃ > 0) leads to even more

interesting structure for these contours which may further complicate the analysis.

See Figure 9 for black holes with neutral probes and Figure 10 for charged probes.

The captions contain rough explanations of the evolution in α, q̃, though due to our

focus on the non-extreme case, we save further commentary for section 4.5.

Luckily, an indirect argument suffices to determine the correct contour in the

extreme limit. To see this, recall from section 2.1 that this limit must make our

correlators independent of tb. Since ∆t = −2tb + iβ/2, applying equation (4.16) to

any contributing saddles requires E(tb) to vanish at extremality for all tb. Taking

the ε→ 0 limit of (4.11) shows that that for q̃ < 1, precisely two critical energies Ec
vanish at extremality; these are

Ec =
q̃ ± i

√
1− q̃2

2
√

3
ε+O(ε)2 (q̃ < 1). (4.18)

One lies in the lower half plane, and the other lies in the upper half plane. So for

the stable case q̃ < 1 there should be a unique contour connecting the two, and

which should flow from the former to the latter. This is precisely what one finds

numerically; see Figure 10. In the extreme limit, consistency thus requires that

correlators receive contributions only from this contour.

Before analyzing this contour in detail, we remark that it displays several addi-

tional pleasing features:

i) At least for 0 ≤ q̃ ≤ 1, for all nonextreme black holes with sufficient charge

(α2 close enough to 2) the Ec values corresponding to endpoints of the chosen

contour continue to be the closest Ec to the real axis; see Figures 9 and 10. Thus,

if they contribute at all, they give the lowest quasi-normal modes.

ii) It is natural to expect |q̃| ≤ 1 correlators to be largest at tb = 0 and to decay

toward both future and past. From (4.16), this requires any dominant worldline

at tb = 0 to have E real10, and also requires the contour in its vicinity to flow

toward the upper half plane.

This expectation is trivially satisfied for our chosen contour at α2 = 2, q̃ = 1

for which E = 0 identically. But the tb = 0 worldline on this chosen contour

10Unless it somehow fails to contribute at all to any correlator with tb > 0 (which would allow

Im(E) > 0), or to any correlator with tb < 0 (which would allow Im(E) > 0). This seems unlikely

even at special values of α, q̃, and completely implausible on open sets of these parameters. The

real E requirement applies also to cases where multiple worldlines share dominance at tb = 0.
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admits a unique continuous deformation to general allowed α, q̃. In each case

one finds the corresponding E(tb = 0) to be real and the contour to flow in the

desired direction. This seen from Figures 9 and 10, recalling that time-reversal

symmetry relates the upper and lower half-planes. Thus if any contour crosses

the real axis at a single point, this point must be tb = 0. The relevant contour

is shown in red for all α, q̃.

iii) The observation that following a branch cut from any Ec at fixed α, q̃ should

take one away from the real axis suggests near extremality that at least a large

part of the other contours (for which Ec does not become small) do indeed move

off the principal sheet. See Figures 9 and 10. It is plausible that at extremality

such contours move off the principal sheet for all tb, though this would require

further analysis to determine.

We also mention a further good property of our chosen contour for q̃ < 1. Here

the behavior near extremality is clear from general considerations even at the quan-

titative level. The RNAdS5 black hole develops a deep AdS2 × R3 throat and, since

this near-horizon region is associated with low energies, the emergent AdS2 isome-

tries define an infrared conformal fixed point that associates each operator with a new

effective infrared conformal dimension ∆IR [19, 20]. As discussed in [21, 22], at finite

but very low temperature to good approximation this is just a finite-temperature

version of the same AdS2. As a result, if we start with two points at the bifurcation

surface and move them radially outward into opposite asymptotic regions then it is

clear that ∆IR also controls the rate of decay of the associated two-point function.

Since this decay must continue up to a cutoff controlled by the temperature we arrive

at

G12 ∼ T 2∆IR . (4.19)

In particular, the precise condition for a non-vanishing two-point function as T → 0 is

∆IR = 0, which indeed implies that the system sits on the threshold of an instability

as discussed in [27].

Returning to our contour, one can readily see that it provides results consistent

with (4.19). Since E ∼ 0 and wt ∼ 1, the leading-order behavior of I at fixed tb is

I = `

∫ 1−ε
√

1− q̃2

3

1

1− w
dw +O(1) = `

√
1− q̃2

3
ln (µ/T ) +O(1). (4.20)

Exponentiating this result gives (4.19) with ∆IR = m`
√

(1− q̃2)/12, which as one

may easily check is the correct result at large m in 5 bulk dimensions.

We now consider q̃ = 1. Since ∆IR = 0 to the approximation with which we work,

the correlator will be finite at extremality. But our worldline approximation provides

interesting information about time-dependence. To extract this information, we take
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the extreme limit ε → 0 of (4.11) in which three of the Ec move to the origin. Two

of these correspond to the endpoints of our chosen E → 0 contour. They are

Ec =

(
1

2
√

3
− e±iπ/3

8 · 31/3
ε1/3
)
ε+O

(
ε5/3
)
, (4.21)

suggesting that the entire E(tb) contour obeys the scaling relation

E =

(
1

2
√

3
− a ε1/3

)
ε (4.22)

with a a complex number ranging between e±iπ/3. Inserting this ansatz into the ellip-

tic integral expressions of appendix B leads to simplified expressions ((B.3) and (B.4))

which satisfy the relation for all tb
11

I = `

[
− π

2
√

3
− 2

√
2

3
arctanh

√
2

3
− 2πi√

3
T tb +O (T/µ)4/3

]
, (4.23)

where the O(T/µ)4/3 term has unspecified time dependence. While this expansion

can be continued to higher orders, it is simpler to focus on the late-time behavior

and use (4.12) and (4.21). For example, we find

ωc = m

[
− π√

3
` T +

e−iπ/3

23/2 · 31/6

`µ

γ
(γπT/µ)4/3 +O(T/µ)5/3

]
. (4.24)

The interesting property of both (4.23) and (4.24) is that, beyond linear order in T ,

the expansion comes in powers of (T/µ)1/3. This differs markedly from the q̃ < 1

expansion which involves only integer powers of T/µ.

4.5 Comments on non-extreme contours

We now make some brief remarks on contours for general non-extreme α, q̃ which,

while tangential to our analysis of the extreme limit, may nevertheless be of interest.

i) The red contours in Figures 9 and 10 are associated with correlations that decay

away from tb = 0 as in comment (ii). We expect these to dominate for all α near

tb = 0, though not necessarily for large tb. Indeed, there is a regime between

Figures 9b and 9c where the red contour would reach the imaginary Ec, while

the complex Ec (off the imaginary axis) have smaller imaginary part, potentially

corresponding to lower QNMs, and may well still contribute.

ii) The exchange of relevance/dominance of the above Ec near αcrit in Figure 9

appears to be related to the massless uncharged scalar results of [58] which

11To this order, the time dependent part of this result can also be obtained by using the leading

(a-independent) term in (4.22) to integrate (4.16).
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found two families of QNMs: purely damped modes, and oscillating damped

modes. The latter give the lowest QNM for small α, while the former do so

beyond some threshold value. Furthermore, the damping time diverges in the

extreme limit. Though [58] studied global RNAdS4, their results persist in the

planar (large radius) limit. Note that we find similar behavior for sufficiently

small q̃ > 0, though this transition disappears at larger q̃.

iii) The location of the bifurcation points in Figure 9 corresponds to the location of

the maxima and minima of tb along the imaginary E axis found by [15], though

they did not follow the complex branches.

5 Discussion

We have studied the behavior of thermofield double states with chemical potential µ

in holographic contexts dual to the two-sided planar Reissner-Nordström AdS5 black

hole. One copy of the CFT is associated with each boundary, and we have focused on

correlations and entanglement between the two. The deep throat that arises in the

extreme limit of RNAdS immediately implies that corresponding two-point functions

of neutral operators vanish as T → 0 at fixed µ. For the same reasons, the thermo-

mutual information between strips (or other finite-sized regions) of size L in the two

CFTs vanishes at small T unless L diverges; see section 3. Such results might at first

seem to suggest that all localized measures of entanglement vanish in this limit.

However, we have shown that other localized measures behave differently. One

example is the thermo-mutual information (3.12) between a width L strip in one

CFT and the full second CFT. As discussed in section 3.2, this remains non-zero

as T → 0 so long as L > Ls+CFT|T/µ=0 ≈ 1.05 γ/µ. Another example is the two-

point function of appropriately-tuned charged scalar operators. In the limit of large

conformal dimensions, the required tuning in bulk language is mκ = qg, which in

field theory terms at large ∆ becomes ∆ = 2|q| for e.g. N = 4 SYM when the U(1)

charge corresponds to a subgroup of the SO(6) R-symmetry. But as explained in

section 4.4, a more complete characterization of the requirement is that the effective

IR conformal dimension of the operator should vanish, so that the system sits just

on the threshold of an instability.

In particular, we saw explicitly in the wordline approximation that CFT two-

point functions G12(x1, x2) with ∆IR = 0 remain non-zero at finite arguments and

that the correlations they measure do not all shift off to infinitely large scales as

T → 0. Since ∆IR controls the scaling of G12 at any fixed spatial separation ~x1− ~x2,

we expect this behavior to continue even for finite-dimension operators; i.e., it is not

an artifact of the worldline approximation.

We find the mixture of divergent and finite length scales as T → 0 quite interest-

ing. The AdS2 × R3 IR fixed point exhibits local criticality, with infinite dynamical
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scaling exponent z. Since dynamical scaling symmetry at finite z would require

length scales L ∝ T−1/z, both constant (T 0) and logarithmic behaviors (lnT ) are

natural at z =∞. We see that AdS2×R3 fixed points involve a particular combina-

tion of the two – a result one would like to understand from the CFT perspective.

Motivated by our results for charged correlators, one would also like to study what

one might call the “charged thermo-mutual information” of two finite strips (one in

each CFT) defined using the von Neumann version of the charged Rényi entropies

of [59]. At least with additional fine-tuning of the new charge parameter, this may

well lead to further entanglement measures that remain localized as T → 0.

Understanding the entanglement structure of physically interesting states at var-

ious scales is an intriguing and complex problem. Indeed, this is the goal of many

studies of tensor network representations of ground states, the multi-scale entangle-

ment renormalization ansatz (MERA), and the like; see e.g. [60–64]. Our parameter

T/µ is a dial that one can turn to explore this scale-dependence for TFD states at

t = 0, just as one may explore the time-dependence of entanglement using the pro-

posal of [65] (see e.g. [17, 30, 31, 52, 65–75]). The two limits are closely related, as

both explore the deep infrared. Indeed, our results for TMI at low T have much in

common with those of [17] at late times: There again the thermo-mutual informa-

tion vanished between strips of fixed finite size in opposing CFTs, while – although

not actually discussed in [17] – TMI(A1:CFT2) need not vanish since it is in fact

independent of time.

As noted earlier, such observations are difficult to reconcile with the quasiparticle

picture of TMI entanglement (see [17], following the time-dependent picture of [52]).

In particular, as described in section 3.3, we find that the TMI between a strip in

one CFT and its complement in the other again vanishes at small T , so that one

cannot even say that the CFT2 degrees of freedom entangled with a given strip in

CFT1 have moved off to infinite scales – they remain tied in some essential way to the

mirror-strip in CFT2. The situation is even more dramatic if we compactify space,

in which case the analogues of A1, A2, Ac1, A2
2, all have pairwise vanishing TMI at

sufficiently small T . And it is clear that this same behavior will be found at late

times using [65]. Assuming this prescription to be correct thus leads to a similarly

dramatic late-time failure of the quasiparticle picture for any initial state12.

A final general feature on which we remark is the sharpness of transitions asso-

ciated with TMI at large N , in that it strictly vanishes below some threshold. Such

sharpness is of course a general feature of transitions involving holographic entangle-

12Other features of the proposal [65] that are diffcult to reconcile with a free-streaming quasi-

particle picture of time-dependence were mentioned in [30, 31]. We comment that CFTs on spaces

with compact directions provide yet another. For example, in a d = 2 CFT on a circle of radius

R, all quantities associated with free-streaming quasiparticles of speed v are periodic with period

2πR/v. But aside from trivial conserved currents at the boundary, holographic duals certainly do

not display this periodicity, and neither should more general CFTs.
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ment [10]. The fact that this behavior is by now well-known should not reduce our

desire to understand it at the microscopic level. Indeed, it seems deeply related to the

general observation that plasmas in holographic CFTs can strongly decouple from

short-distance probes. A particularly striking example of such behavior is the fun-

nel/droplet transition described in [76] – see [77] for a review – in which such plasmas

suddenly become unable to couple to heat sources smaller than some characteristic

size. The funnel/droplet transition was recently linked to color confinement [77], and

the resulting circle of ideas may have implications for the present discussion.

Let us now briefly return to two-point functions. In addition to the results sum-

marized above, we also found new phenomena associated with “extremally charged”

operators (q̃ = 1) at small T . In particular, since all time-dependence of the T = 0

TFD is through an overall phase, physical quantities become time-independent. But

at least for operators tuned to satisfy ∆IR = 0, the precise way in which they do so

seems to be via an unexpected expansion in powers of T 1/3 that governs corrections

beyond the leading linear behavior (see equation (4.24)). While section 3 reported

TMI results only for t = 0, using the proposal of [65] the analysis extends readily to

more general times and produces late-time results that agree with [30, 31] and which

give only smooth functions of T .

As a final comment, we recall that [14] described how two-point TFD correlators

similar to those studied here might be used to probe the classical singularity of the

planar Schwarzschild solution (µ = 0), and thus perhaps to study how this singularity

is resolved by quantum and/or stringy effects. While already nontrivial at µ = 0, we

note that any generalization to µ 6= 0 will involve further subtleties. In particular,

for µ = 0 the idea was to study operators of large but finite dimension and to

analytically continue tb until the associated geodesic passes close to the singularity –

in our notation, until w becomes very large. As is clear from the upper left diagram

in Figure 7, for µ = 0 this happens as E → ±i∞ along the principal sheet of the wt
Riemann surface. But as shown in the other diagrams in Figure 7, for µ 6= 0 one

finds that wt remains bounded on the principal sheet. Thus finite m correlators are

no longer approximated by geodesics passing close to the singularity anywhere in the

complex tb plane. The construction analogous to [14] would thus require first taking

the m→∞ limit of finite-dimension correlators and then analytically continuing to

another sheet of the Riemann surface wt(E). Indeed, from our preliminary numerics

it is unclear whether one can even reach the inner horizon on the principal sheet, so

this same complication may well apply to analogous investigations of inner horizon

instabilities along the lines of [15].
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A Geodesic Approximation for Charged Operators

Here we derive the form of the action (4.2) in the limit of large m, following [57]. The

Green’s function for the field φ with mass and charge m and q should be a Green’s

function of the Klein-Gordon operator H = (−i∂ − qA)2 +m2 = (p− qA)2 +m2; we

can represent this Green’s function as

−i
H

=

∫ ∞
0

e−iNH dN, (A.1)

so that using the standard path integral construction, we get〈
x

∣∣∣∣−iH
∣∣∣∣y〉 =

∫ ∞
0

dN

∫
DxDp exp

{
i

∫ 1

0

[
ẋp−N((p− qA)2 +m2)

]
dλ

}
. (A.2)

We can interpret N as a field in some appropriate gauge-fixing; we can make this

explicit by introducing the gauge-fixing condition and determinant. Then we obtain〈
x

∣∣∣∣−iH
∣∣∣∣y〉 =

∫
DN DxDp∆(x) exp

{
i

∫ 1

0

[
ẋp−N((p− qA)2 +m2)

]
dλ

}
,

(A.3)

where now N is a field to be integrated over. Now, in the WKB approximation,

we can integrate out the fields N and p by replacing them in the action with their

on-shell values. Their equations of motion are

(p− qA)2 +m2 = 0, (A.4a)

ẋ− 2N(p− qA) = 0, (A.4b)

so their on-shell values are

p =
mẋ√
−ẋ2

+ qA, (A.5a)

N =

√
−ẋ2

2m
. (A.5b)
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The correlator then becomes〈
x

∣∣∣∣−iH
∣∣∣∣y〉 =

∫
Dx (· · · ) exp

{
−
∫ 1

0

[
m
√
ẋ2 − iqAẋ

]
dλ

}
, (A.6)

where (· · · ) represents functional determinants that we can neglect at leading order

in the WKB approximation. Approximating the path integral over x using the saddle

point method, we get 〈
x

∣∣∣∣−iH
∣∣∣∣y〉 ∼ e−mI[xcl], (A.7)

where xcl is a solution to the equations of motion that come from the action

I[x] =

∫ [√
ẋ2 − iq

m
Aẋ

]
dλ. (A.8)

This last expression is precisely (4.2) used in the text. Note that it differs from the

action used in [15] by a crucial factor of i in the second term.

B Evaluation of the Elliptic Integrals

Our notation in this appendix follows [78]. The expressions for ∆t and I in terms of

elliptic integrals are

∆t =
2z0Q

α2
√
α2 −Q2

1√
∆21

{
∆20

(w2 − 1)∆2−∆2+

[F (ψ|m)−K(m)]

+
1− w0

(1− w−)(w+ − 1)(w2 − 1)

[
Π

(
w2 − 1

∆21

;ψ

∣∣∣∣m)− Π

(
w2 − 1

∆21

∣∣∣∣m)]
+

∆0−

(1− w−)∆+−∆2−

[
Π

(
∆2−

∆21

;ψ

∣∣∣∣m)− Π

(
∆2−

∆21

∣∣∣∣m)]
+

∆0+

(w+ − 1)∆+−∆2+

[
Π

(
∆2+

∆21

;ψ

∣∣∣∣m)− Π

(
∆2+

∆21

∣∣∣∣m)]} , (B.1a)

I =
2i√
∆21

{
− h(w2)

w2∆2−∆2+

[K(m)− F (ψ|m)]

− h(w−)

w−∆2−∆+−

[
Π

(
∆2−

∆21

∣∣∣∣m)− Π

(
∆2−

∆21

;ψ

∣∣∣∣m)]
+

h(w+)

w+∆2+∆+−

[
Π

(
∆2+

∆21

∣∣∣∣m)− Π

(
∆2+

∆21

;ψ

∣∣∣∣m)]+
h(0)

w2w+w−
Π

(
w2

∆21

∣∣∣∣m)}
+

2ih(0)√
∆21w2w+w−

Π

(
w2

∆21

; arctan

√
∆21

w1 − wUV

∣∣∣∣∣m
)

+ Ict, (B.1b)
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where

tanψ ≡
√

∆21

w1

, (B.2a)

m ≡ ∆23

∆21

, (B.2b)

∆ij ≡ wi − wj, (B.2c)

w0 ≡ 1 +
E
Q
, (B.2d)

h(w) ≡ `

α2
√
α2 −Q2

[
1 + w − α2w2 −Qw(E +Q(1− w))

]
. (B.2e)

These expressions have branch points wherever m = 1 or∞, corresponding to points

where w1 = w2 or w1 = w3.

In the scaling limit (4.22) with q̃ = 1, the above expressions reduce to

2∆t

β
= − 8 · 31/4 i b2/3 [K(m̃)− Π(n|m̃)]

π
(
8 · 32/3eiπ/3a−

√
3 e−iπ/3b2/3

)√
16 · 31/6e−5iπ/6 a b1/3 + 2e−iπ/6b

, (B.3)

I = `

{
4 b2/3 [K(m̃)− Π(n|m̃)]

31/4
(
8 · 32/3eiπ/3a−

√
3 e−iπ/3b2/3

)√
16 · 31/6e−5iπ/6 a b1/3 + 2e−iπ/6b

−2

√
2

3
arctanh

√
2

3

}
, (B.4)

where

b = 1 +

√
1 + 512

√
3 a3, (B.5a)

m̃ =

√
3(8 · 31/6a+ b2/3)

8 · 32/3e−iπ/3a+
√

3 eiπ/3b2/3
, (B.5b)

n =
8 · 31/6e−iπ/6a+ eiπ/6b2/3

8 · 32/3e−iπ/3a+
√

3 eiπ/3b2/3
. (B.5c)

Next, consider the indefinite version of the integral (3.4),

Iα(w) =
i

2α

∫
dw

w2[(1− w)(w − w+)(w − w−)]1/2
. (B.6)

We are interested in the logarithmic divergence that comes from w = 1 for small

ε = 2−α2. We can extract it by noting that (B.6) can be written in terms of Elliptic

integrals as

2α

i
Iα(w) = − 1

ww−

(
(1− w)(w − w−)

w − w+

)1/2

− (w+ − 1)1/2

w+w−
E(ψ̂|m̂)

+
(w+ + 1)

w2
+(w+ − 1)1/2

F (ψ̂|m̂) +
[w− + w+(w− + 1)]

w−w2
+(w+ − 1)1/2

Π(n̂; ψ̂|m̂), (B.7)
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where

tan ψ̂ =

(
w+ − 1

1− w

)1/2

, m̂ =
w+ − w−
w+ − 1

, n̂ =
w+

w+ − 1
. (B.8)

For small ε, the dominant contribution to the integral comes from w = 1, so we can

drop the first term in (B.7) and let ψ̂ = π/2 for all w+ > 1. Then the incomplete

Elliptic integrals reduce to complete ones, i.e. F (π/2|x) = K(x), E(π/2|x) = E(x),

Π(x; π/2|y) = Π(x|y). Using the asymptotics for small z

E
(a
z

)
= i

a1/2

z1/2
+O(z1/2), (B.9)

K
(a
z

)
= −i z

1/2

2a1/2
log

(
−16a

z

)
+O(z3/2), (B.10)

Π

(
b

z

∣∣∣∣1z
)

=
z1/2

2(b− 1)1/2

[
log

(√
b− 1 + i√
b− 1− i

)
− iπ

]
, (B.11)

we arrive at (3.6).
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