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Abstract

Fetal alcohol spectrum disorders (FASDs) affect at least 0.8% of the population globally. The 

diagnosis of FASD is uniquely complex, with a heterogeneous physical and neurobehavioral 

presentation requiring multidisciplinary expertise for diagnosis. To expand early identification and 

diagnosis of FASD, many researchers have begun to incorporate machine learning approaches into 

FASD research to identify children with FASD or who are affected by prenatal alcohol exposure. 

This narrative review highlights these efforts. We first include an introduction to machine 

learning. We then summarize examples from the literature into neurobehavioral screening tools 

and physiologic markers of exposure. We discuss individual efforts, including models that classify 

FASD based on parent-reported neurocognitive or behavioral questionaries, 3D facial imaging, 

brain imaging, DNA methylation patterns, microRNA profiles, cardiac orienting response, and 

dysmorphic facial features. We highlight model performance and discuss the limitations of these 

approaches. We conclude with a broader consideration of the scalability of these approaches and 

considerations for how these machine learning models, largely developed from clinical samples or 

highly-exposed birth cohorts, may perform in the general population.

“Fetal alcohol spectrum disorders” (FASDs) is a collective term encompassing a range 

of diagnostic outcomes that result from prenatal alcohol exposure (PAE). FASDs affect 

approximately 8 of 1000 people in the global population, with estimates varying drastically 

by geographic location (Lange et al., 2017a; May et al., 2018) and by ascertainment method 

(Coles et al., 2022, 2016). One outcome within FASD is fetal alcohol syndrome (FAS), 

characterized by central nervous system anomalies, growth deficiency, neurobehavioral 

deficits, and characteristic facial dysmorphism (Hoyme et al., 2016; Jones, 2011). While 

FAS is identifiable by the presence of phenotypic traits, there is a significant variation 
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in the clinical presentation across FASDs, for which at least 11 classification systems 

are used for the diagnostic categorization. While inconsistencies between systems have 

been identified, most require confirmed prenatal exposure to alcohol, neurobehavioral 

impairment, growth impairment, and dysmorphic features (Coles et al., 2022, 2016). There 

is no consensus threshold for PAE, and the report can come directly from the biological 

mother, from a collateral source, or from medical records or other documented encounters 

suggestive of exposure, including justice system records of public intoxication or driving 

under the influence. Neurobehavioral impairment spans the domains of neurocognitive, 

behavioral, and adaptive function (Hyland et al., 2023). The presence of dysmorphic features 

specific to PAE aids in diagnosing individuals presenting with neurobehavioral impairments. 

The three essential elements of dysmorphology include cardinal features (short palpebral 

fissures, smooth philtrum, and thin upper lip vermilion), brain size or structure (or head 

circumference), and growth deficits (Hoyme et al., 2016).

Due to the reliance on these three key diagnostic components, diagnosing individuals 

affected by PAE is a complex medical process requiring expertise across disciplines. 

There are additional difficulties in obtaining an accurate diagnosis of FASDs, including 

lack of awareness or training on FASDs among clinicians, subtlety and variability of the 

physical features, particularly as children age, lack of available data or under-reporting 

of prenatal alcohol exposure, and non-specific or variable expression of the alcohol-

related neurobehavioral and growth abnormalities. Consequently, FASDs are grossly under-

recognized (Chasnoff et al., 2015). In a study by Chasnoff and colleagues, 547 children in 

foster care were evaluated for FASDs. From the sample, 156 met the criteria for FASD, 

of which 125 (80%) had never been diagnosed with a FASD (Chasnoff et al., 2015). 

Early diagnosis is the most important predictor of optimal treatment outcomes, and may 

further reduce subsequent adverse outcome across the life course (Olson and Montague, 

2011; Streissguth et al., 2004). Therefore, promoting processes that facilitate identifying and 

diagnosing children with FASDs is critical.

With the goal of expanding early identification and diagnosis of FASDs, many researchers 

have begun to incorporate machine learning approaches into FASD research. Others have 

performed systematic or scoping reviews of these efforts (Kable and Jones, 2023; Roomaney 

et al., 2022). Here, we present a narrative review of the literature. To enhance the 

accessibility of these studies to researchers without a data science background, we first 

introduce machine learning, particularly as it relates to predictive models. We then will 

highlight select examples of studies in the field. Although heterogenous and not mutually 

exclusive, we group the efforts behind predictive models for FASDs or PAE into two 

categories: 1) neurobehavioral screening tools, and 2) physiologic markers of exposure. 

The performance and limitations of each approach are highlighted. We will then discuss 

scalability of these approaches and considerations for how these machine learning models 

may perform in the general population, and future directions for the field.

Machine learning

Although machine learning shares underlying statistics with classic statistics, the primary 

difference is that classical statistical models are used for inference, while machine learning 
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can be used for prediction (Bzdok et al., 2018). Moreover, statistical models fit project-

specific probability models that often collapse as the numbers of input variables and the 

associations between them increase. In contrast, machine learning (also referred to as 

statistical learning), makes minimal assumptions about the data-generating system and can 

be effective in the presence of complicated interactions often underlying human health 

outcomes (Bzdok et al., 2018). Further, machine learning typically prioritizes predictive 

accuracy over causal inference, often exploiting variables one may consider confounders or 

mediators in inferential statistics (Bi et al., 2019).

Generally, machine learning algorithms can be divided into supervised and unsupervised 

learning. In unsupervised models, data are not labeled; rather, the algorithm searches for 

commonalities or patterns within the data, agnostic to an associated outcome or exposure. 

Conversely, in supervised models, labeled data are provided to train models (e.g. the 

outcome is known and has a specified value (e.g. 0 or 1)). One of the primary applications 

of supervised models in biomedical sciences is to create classifiers that can separate subjects 

into two or more classes based on attributes (or features) measured in each subject (Foster et 

al., 2014) (Figure 1). This results from the machine ‘learning’ important features of a dataset 

to enable it to make predictions about other data that were not included in the training data 

set. Machine learning uses various statistical techniques that allow the computer to derive 

the algorithm that most efficiently identifies a group or solves a given predictive problem. 

Algorithms in classification models range from logistic regression, naïve Bayes, decision 

trees and support vector machines to more complex architectures using neural networks and 

ensemble models that combine base estimators (e.g. random forest; Table 1).

Classifier model accuracy is evaluated through various metrics. Many report the true 

positives, false positives, true negatives and false negatives, which can be shown in a 

confusion matrix. For binary classification, receiver operating curves plot the true positive 

rate versus the false positive rate with accuracy quantified as the area under the curve 

(AUC), where a value of 0.5 indicates the model performs no better than random chance, 

1.0 indicating perfect classification, 0.7–0.8 indicating acceptable performance, and ≥0.8 

indicating excellent or outstanding performance (Hosmer Jr et al., 2013). Alternatively, 

in the case of class imbalances where the group status is not evenly balanced, the 

precision-recall curve is used to mitigate bias in the trained model (Lever et al., 2016). 

The three main metrics reported are accuracy (the percentage of correct predictions for 

the test data), precision (the fraction of true positives among all predicted positives or 

the positive predictive value), and recall (true positives among all actual positives, or the 

sensitivity). Sensitivity (the proportion with the outcome correctly identified) and specificity 

(the proportion without the outcome correctly identified) demonstrate the ability of the 

model to correctly label individuals who do or do not have the outcome.

One vulnerability of algorithms, particularly with highly dimensional data, is overfitting the 

data, where the algorithm performs too well on the training data by fitting the noise of the 

dataset and, conversely, performs poorly on unseen data. Approaches to minimize this are 

splitting the data into training and test subsets (where classifiers are refined in the training 

data, and then evaluated on unseen, ‘test’ data), using cross-validation (a resampling method 

where different portions of the data are used to train or test the data on different iterations), 

Suttie et al. Page 3

Alcohol Clin Exp Res (Hoboken). Author manuscript; available in PMC 2025 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and validating the algorithm on external data from a completely different sample. Studies 

should, at a minimum, test the algorithm in a hold-out sample, and ideally, test it in a 

completely different sample to truly determine the accuracy and application of the model.

One issue often encountered in biomedical models is that of class imbalance- where the 

outcome occurs with much greater or less frequency than 50%. Classes that make up a 

larger proportion are the majority class, while those that make up the smaller portion are the 

minority class. In highly skewed data, classifiers can have a very high accuracy from always 

predicting the majority class. Ways to resolve an imbalance include random undersampling 

of the majority class or oversampling the minority class. Undersampling causes a loss in 

information, and often researchers are working with small datasets and cannot afford to 

further reduce the sample, particularly when splitting data further into training and test data. 

Oversampling the minority class is an approach that often involves the creation of synthetic 

samples through small variations in the observed data. Examples of this include synthetic 

minority oversampling technique (SMOTE), which creates new cases of the minority class 

in the training data using a nearest neighbor approach to balance the dataset. Since its 

publication in 2003, more than 100 variants of SMOTE have been developed (Kovács, 

2019).

Neurobehavioral screening

Although FAS can be diagnosed from dysmorphic features at birth, other diagnoses on 

the spectrum require evidence of neurocognitive or neurobehavioral impairments. While 

severe impairments can be assessed early in life using standardized measures of infant 

development, less severe impairments cannot be assessed using standard instruments until 

later in childhood (Gomez and Abdul-Rahman, 2021), contributing to delayed diagnosis. 

The diagnosis of alcohol-related neurodevelopmental disorder (ARND), which represents 

80–90% of FASD cases (Chudley, 2008), is based primarily on neurodevelopmental 

impairments as the dysmorphic features are typically absent (Lange et al., 2017b). 

Three functional domains for impairment are neurocognition, self-regulation and adaptive 

functioning (Kable and Coles, 2018). However, many other diagnoses share these 

impairments, including ADHD, oppositional defiant disorder, and conduct disorder. The 

difficulty in obtaining confirmation of PAE results in the misdiagnosis of FASDs with these 

and other neurodevelopmental disorders (Lange et al., 2017b). Further, neurodevelopmental 

assessment is costly in time and money, and a shortage of clinicians to perform the 

evaluations further reduces the likelihood of a child with FASD receiving a diagnosis (Lange 

et al., 2017b; Petrenko et al., 2014).

Due to these barriers in the healthcare system, substantial effort has been focused on 

creating predictive models that can accurately discriminate children affected by PAE, 

often compared to typically developing unexposed children and children with ADHD. 

In 2006, Nash and colleagues analyzed a sample of children aged 6–16 with FAS or 

ARND (n=30), ADHD (n=30), and typically developing controls (n=30). Using discriminant 

function analysis and AUC, they analyzed the parent-completed Child Behavior Checklist 

(CBCL) and found that seven items differentiated children with FASD from controls 

(sensitivity= 86%, specificity=82%). Six items differentiating FASDs from ADHD (with 
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some overlap of items that differentiated FASD from controls) had slightly worse 

performance (sensitivity=70%; specificity=80%) (Nash et al., 2006). These same items 

from the CBCL had high sensitivity and specificity for discriminating FASD compared to 

typically developing children when later applied to a sample of children ages 4–6 (94% 

sensitivity and 96% specificity) (Breiner et al., 2013). When the same items were validated 

in a sample of children with FASDs, PAE without FASDs, and typically developing controls, 

sensitivity was reduced for children with FASDs (62.5%) and PAE without FASDs (50%), 

although specificity was high for typically developing children (100%) (LaFrance et al., 

2014). Around the same time, Mattson and colleagues performed latent profile analysis on 

547 neuropsychologic variables in a sample of children with and without FAS (Mattson et 

al., 2010). Using logistic regression, a 2-class model successfully distinguished FAS from 

nonexposed controls with 92% accuracy, with 87.8% of FAS cases and 95.7% of controls 

correctly classified. In a second analysis, the same profile distinguished children with PAE 

but without FAS from non-exposed controls (84.7% accuracy). The authors noted the sample 

was not large enough to validate the model in a hold-out sample (Mattson et al., 2010).

Other neurobehavioral screening measures have been combined with physical features to 

distinguish children affected by PAE from those who are not. Mattson and colleagues tested 

the inclusion of more than 1,000 composite and subtest scores from measures that assessed 

behavior, cognition, and dysmorphology in the development of the decision tree (Goh et 

al., 2016). The final model contained only four measures - the CBCL, Vineland Adaptive 

Behavior Scales, and IQ score and dysmorphology. In validation samples, sensitivity was 

64–81%, and specificity was 78–80%. Young age and co-morbid ADHD contributed to 

misclassification (Goh et al., 2016). The model (named the FASD Tree) was recently 

validated again in a sample of children with (n=224; 186 with FASD diagnosis) and without 

(n=78) PAE (Mattson et al., 2023). Sensitivity (78.1%) and specificity (70.5%) remained 

similar to the original work for classifying PAE. In addition, the FASD Tree had high 

sensitivity (82.8%) and good specificity (62.3%) when classifying FASDs. Recently, the 

features from the FASD Tree were also used to develop a risk score to distinguish alcohol-

exposed children from those who were not (Bernes et al., 2022). In a validation sample, 

setting the score threshold for defining risk or deviance, also known as a cut point, at 1.5 

points had an accuracy of 76.6%, sensitivity of 76.9%, and specificity of 76.5%. When the 

cut point was increased to 2.5, sensitivity fell (63.6%) while specificity increased (87.7%). 

The score also correlated with IQ and executive functioning scores (Bernes et al., 2022).

Similar efforts were undertaken by researchers in Germany, who developed a machine 

learning algorithm (FASDetect) for the detection of FASDs in patients ages 0–19 with 

ADHD symptoms (Ehrig et al., 2023). Researchers used a clinical sample of 275 children 

with FASDs with or without ADHD, and 170 children with ADHD without FASDs. Six 

machine learning algorithms were tested (logistic regression, SVM, random forest, gradient 

boosting decision tree, k-nearest neighbor classification, and Gaussian process classification 

algorithms). The random forest model performed best, and the final model had six features- 

body length and head circumference at birth, IQ less than 85 points, socially intrusive 

behavior, poor memory, and sleep disturbance- and was sufficient to differentiate youth with 

versus without FASDs. The cross-validated AUC was 0.93 (95% CI 0.85, 1.00). Although 

10-fold cross-validation was employed, there was no hold-out data or external validation, 
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which are important measures of model performance and generalizability (Moons et al., 

2012a).

These studies represent some of the efforts that have been made to develop neurobehavioral 

screening tools that can distinguish children with FASDs from typically developing children 

or children with other neurodevelopmental disorders. The lack of reliance on information 

about PAE in these screeners is important, as reliable information can often be a barrier 

to identifying alcohol-affected children. Some of the screeners have included external 

validation samples, which are crucial to ensuring the model is not overfitting the data 

and can be used in other populations potentially affected by PAE. However, to date, 

the majority have focused on clinical samples with a disproportionate number of alcohol-

affected children. These screeners are designed to work in clinical offices; however, it is 

unclear how they will behave in a general population where FASDs are relatively rare, and 

children may have lesser impairments than those captured in clinical samples.

Physiologic markers

Although FASD diagnosis has commonly relied on self-report of PAE in the absence of 

cardinal facial features, this self-report is often difficult to obtain due to stigma, out-of-home 

placements of the affected child, and long recall periods. PAE affects many systems of 

the developing fetus, including the central nervous system, introducing the possibility of 

using physiologic markers of PAE as a substitute for self-report. Historically, matrices like 

meconium, urine, or blood were used to detect products of ethanol metabolism (Bakhireva 

and Savage, 2011; Concheiro-Guisan and Concheiro, 2014; Lussier et al., 2018). However, 

they were limited by short half-life or detection of exposure only proximate to parturition, 

which may not capture early exposure resulting in FASDs. Physiologic markers have 

expanded rapidly over the past two decades, and now include markers thought to be more 

enduring or more sensitive to detecting children affected by alcohol. These include the 

use of 3D facial or brain imaging and epigenetic markers such as DNA methylation or 

microRNAs.

1. Facial and brain imaging

PAE results in craniofacial anomalies that can be used to discriminate exposed children. As 

early as 2007, researchers began using 3D images, allowing precise depth measures that 

were impossible in 2D imaging alone (Roomaney et al., 2022). Early examples include a 

study in 149 Cape Coloured (mixed ancestry) children from South Africa (86 FAS and 

63 control) where a unique set of facial regions and features accurately discriminated 

FAS and control faces without any human intervention (Fang et al., 2008). Linear 

measurements were computed from anatomical landmarks derived from manually annotated 

3D images, providing a series of morphometric parameters to three different machine 

learning approaches to evaluate support vector machine (SVM), k-nearest neighbor, and 

decision tree approaches. The classifier model had a sensitivity of 82.7% and a sensitivity 

of 76.2% in a hold-out sample. A subsequent study on a similar South African dataset 

utilized whole surface modeling from 3D images rather than a landmark-based approach to 

assessing facial dysmorphism across FASDs (Suttie et al., 2013). Dimensionality reduction 
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plays a vital role in data analysis and machine learning, and this study utilized a principal 

component analysis (PCA) based method known as dense surface modeling (DSM) to 

compute a series of principal components that represent facial shape. The DSM algorithm 

builds surface models from raw 3D data, initially aligning and warping surfaces guided by 

a series of manually placed anthropometric landmarks. The result is a dense correspondence 

of points, matching points on different face surfaces to produce a shape-based PCA of 

variation of point displacement from the mean face. Suttie and colleagues utilized DSM of 

the face on 192 participants to perform control-FAS discrimination testing of face shape 

using 20 randomly sampled 90% to 10% training to unseen test subsets. The whole face 

and sub-regions analyzed with discrimination testing using SVM were predicted to be near 

perfect, with the peri-orbit (eye region) achieving AUC > 0.98. This study also utilized 

unsupervised learning methods, referred to as facial signature graphs, where clusters of 

individuals are grouped based on their expression of facial dysmorphism and proximity 

to one another. This method uncovered the more subtle dysmorphism that arises from 

PAE across the FASD spectrum, and not just limited to FAS (Suttie et al., 2013). More 

recent work using DSM techniques included 166 children from South Africa and 249 

children of European ancestry (Suttie et al., 2017), comparing ethnic differences between 

cohorts. Classification algorithms were created to test the control FAS agreement of three 

different algorithms with AUC >0.95 for individuals of South African or European ancestry. 

Separately, Blanck-Lubarsch and colleagues compared decision trees, SVM, and k-nearest 

neighbors for both accuracy and clinical applicability in analyzing 3D facial scans in FAS 

cases (n=30) and controls (n=30) (Blanck-Lubarsch et al., 2021). All three methods were 

found to have accuracy above 89.5% in a hold-out sample; decision trees were found to be 

more practical to use clinically, as they provide an easily implemented, simplistic approach 

making it amenable for frontline clinicians (Blanck-Lubarsch et al., 2021).

More sophisticated machine learning approaches to 3D facial analysis have recently adopted 

deep neural networks (DNNs) for dimensionality reduction using the auto-encoder approach 

(Kingma and Welling, 2019). This DNN architecture typically comprises both an encoder 

and a decoder. The encoder’s primary function is to condense the complex 3D facial shape 

data into lower-dimensional representations of facial morphology. Subsequently, the decoder 

is responsible for restoring these representations, thereby reconstructing the original 3D 

facial shape. Lui and colleagues employed this technique to a dataset containing 9-year-old 

(n=3149), and 13-year-old children (n=2477), with 1878 children assessed at both ages (Liu 

et al., 2023). The resulting auto-encoder dimensionality reduction provided 200 facial traits 

representing each 3D face. They performed an independent linear regression on these traits 

to assess the impact of PAE on facial morphology. No significant associations were found 

in the 13-year-old children, but at the 9 years, PAE was significantly associated with several 

facial traits, even at low levels. Most notably, they discovered an association between facial 

traits and alcohol use only in the 3 months before pregnancy.

In addition to differences in facial morphology, PAE also affects the developing brain. Small 

head circumference is one of the features of FASDs. Given the correlation between head 

circumference and brain volume in young children (Bartholomeusz et al., 2002), researchers 

have evaluated whether regional brain volume can be used in classifier models of FASDs. In 

a sample of 160 children (79 FASDs, 81 controls) from Canada with a separate validation 
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set (67 FASDs, 74 controls), a binary classification model based on brain volumes was 

created to discriminate between typically developing individuals and those with FASDs 

(Little and Beaulieu, 2020). In these models, all FASD diagnoses were grouped together, 

although about 25% of training cases had sentinel features. The model’s ten most heavily 

weighted brain regions included three subcortical gray matter regions, three cortical gray 

matter regions located in the temporal lobe, two cortical regions located in the frontal lobe, 

and two regions along the cingulate gyrus. The model had moderate performance on the 

independent test data (accuracy=77%, sensitivity=64%, and specificity=88%).

Researchers have begun combining these promising results from facial and brain models. 

A study by Suttie and colleagues (Suttie et al., 2018) assessed face and brain morphology 

separately and as a multi-modal representation. Localized regions of the face were combined 

using DSM with 3D representations of the corpus callosum and caudate nucleus. In each 

case, the combined face-brain models had better discrimination of children with FAS than 

the single face and brain representations alone. Results indicated midline facial differences 

were correlative with midline defects of the brain, and the most significant improvements on 

single model representations were made when midline facial representations were combined, 

i.e, the corpus callosum combined with, the nose (AUC=1.00), lip-vermillion (AUC>0.90), 

and philtrum (AUC=0.98).

Notably, most of these approaches aimed to discriminate FAS (which has the presence 

of cardinal facial features in the diagnosis) from controls. However, FAS occurs the 

least frequently among FASDs, potentially limiting the application of 3D facial screening 

models to the larger FASD population. However, a new proprietary software tool called 

Face2Gene (FDNA Inc, Boston, MA) combines facial recognition from 2D photographs 

to evaluate the presence of dysmorphic features. Researchers recently used this approach 

to test discrimination of all FASD diagnoses (FAS (n=36), partial (p)FAS (n=31), and 

alcohol-related neurodevelopmental disorder (ARND; n=22)) against controls (n=50), all 

5–9 years of age (Valentine et al., 2017). It should be noted that in this study, the definition 

of ARND included physical symptoms not typically included, such as small occipital frontal 

head circumference. The comparisons were of the dysmorphology scoring system, either 

manually evaluated by trained dysmorphologists, or the computer-aided by combining the 

Face2Gene results for facial images with dysmorphologist evaluated non-facial features. 

Sensitivity was greatest for FAS or pFAS (78–79%) vs controls, and lowest for ARND 

(50%). Specificity was high (78–92%) for all. Importantly, for FAS and pFAS, the software 

was nearly as accurate as diagnosis made by expert dysmorphologists, and for ARND, it was 

slightly better (Valentine et al., 2017).

2. Epigenomic markers

The epigenome is the collection of modifications and modifiers that regulate DNA 

expression without altering the DNA sequence and include DNA methylation and 

microRNAs (miRNAs). Research in clinical and preclinical models has suggested that PAE 

can result in a potentially life-long DNA methylation signature in the central nervous system 

and peripheral tissues (Lussier et al., 2017). A potential signature of DNA methylation 

was identified in participants from the NeuroDevNet (now Kids Brain Health Network) 
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Canadian FASD study (Portales-Casamar et al., 2016). Using buccal endothelial cells 

from 110 children with FASDs and 96 sex and aged-matched controls, genome-wide 

DNA methylation analysis identified 658 CpG sites that were differentially methylated 

in the children with FASDs compared to the controls. In a follow-up study, Lussier and 

colleagues assessed buccal swabs from 24 children with FASDs and 24 age and sex-matched 

controls (Lussier et al., 2018) as a validation cohort. A signature containing 648 of the 

658 previously identified CpG loci identified children with FASDs with a sensitivity of 

91.7%, specificity of 75%, and AUC of 92%. They further tested the accuracy of their 

methylation signature for FASDs classification using data from a cohort of individuals with 

autism spectrum disorders (ASDs) and typically-developing controls. Only one individual 

with ASD was incorrectly classified as having a FASD (specificity=99%). The authors did 

not detect any bias from sex, age or ethnicity and concluded the findings supported a distinct 

methylation pattern for children with FASDs (Lussier et al., 2018).

To date, a few human studies have evaluated miRNAs as biomarkers of PAE (Balaraman 

et al., 2016; Gardiner et al., 2016; Mahnke et al., 2021). miRNAs are a class of small 

non-protein-coding RNAs that intracellularly act as repressors of protein translation but are 

also released from cells into circulation where they are thought to act as endocrine factors. 

Potential miRNA biomarkers of the effects of PAE were identified in maternal plasma 

from 68 mothers from a longitudinal cohort in Ukraine (22 mothers with heavy alcohol 

exposure and alcohol-affected child (HEa), 23 mothers with heavy alcohol exposure and 

apparently unaffected children (HEua), and 23 mothers with low or no alcohol exposure 

and unaffected children (UE)) (Balaraman et al., 2016). Random forest models were used 

to identify a combination of miRNA expression at mid or late pregnancy and clinical 

variables, e.g. maternal smoking, socioeconomic status, fetal sex, that predicted future infant 

outcomes. For this random forest analysis, the model was trained using subgroups created by 

subsampling with replacement and aggregated across many subgroups, or bagging. Model 

performance was determined by a subsample that was not used in the training, known as 

the out-of-bag sample. In the out-of-bag sample, the HEa and UE groups were classified 

into their respective groups with an overall misclassification rate (proportion of misclassified 

observations) of 13.3%. The classification model more accurately assigned membership 

of UE samples to the UE group, with a classification error rate of 8.7%, whereas the 

error rate for the HEa group was 18.2%. The identified predictive variables were also 

applied to the HEua group and stratified the HEua group into four subgroups: UE-like, 

HEa-like at mid-pregnancy resolving to UE-like at late pregnancy, UE like at mid-pregnancy 

resolving to HEa-like at late pregnancy, and HEa-like. This subcategorization of the HEua 

group suggests that a profile of miRNAs and clinical variables may be able to identify 

apparently unaffected infants that may not be diagnosed for FAS in infancy but are still at 

risk for negative outcomes. The authors concluded that maternal plasma miRNAs predicted 

infant outcomes and may be useful in classifying difficult-to-diagnose FASD subpopulations 

(Balaraman et al., 2016).

Other markers

While by no means exhaustive, others have taken different approaches to assessing markers 

of exposure. Kable and colleagues have been working to identify markers of PAE that 
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could be scalable across populations. Such work includes the assessment of the predictive 

validity of the cardiac orienting response (COR). COR has been shown previously to be 

sensitive to PAE (Sokolov, 2002). They are based on electrocardiogram recordings during 

the presentation of auditory or visual stimuli and are relatively easy to collect on a large 

scale and in low-resource settings (Mesa et al., 2017). In a sample of 124 infants from a 

birth cohort in Ukraine, the COR collected at 6–12 months of age exhibited an AUC score of 

0.81, negative predictive value of 85%, and positive predictive value of 66% with cross-fold 

validation when classifying neurodevelopmental delay (measured with the Bayley Scales 

of Infant Development). In this analysis, SMOTE was used to balance the dataset, and a 

weighted logistic regression was employed as the algorithm. Adding in indices of maternal 

drinking did little to improve performance (Mesa et al., 2017). In a second study, the authors 

repeated classifier models to determine if the COR collected at 6 and 12 months predicted 

FASD diagnosis at 3–4 years of age. There, ROC analysis of the visual response yielded an 

AUC value of 0.77 for predicting to pFAS/FAS status (Kable et al., 2021).

Dysmorphic features and the dysmorphology score have been used to predict FASDs. 

These efforts reflect both the presence of dysmorphic features in the FASD diagnosis, and 

research demonstrating that the presence of cardinal features were associated with poorer 

neurodevelopmental functioning (Chasnoff et al., 2010). Kalberg and colleagues studied 

whether the dysmorphology score (Hoyme et al., 2016) predicted FASD diagnosis. The 

score is a linear combination of the dysmorphic features with assigned weights (ranging 

from 1–3) (Kalberg et al., 2019). From a cohort of children followed from birth through age 

5 in South Africa (n=155; FASD=79), they found that the dysmorphology score at 9 months 

of age predicted FASD diagnosis at age 5 with an AUC of 0.78 (Kalberg et al., 2019). The 

FASD sample was predominantly children with FAS (n=34) and pFAS (n=13), and by 18 

months, the dysmorphology score differentiated the children with FAS or pFAS both from 

controls and from children with ARND (n=18). It does not appear that validation was done 

in hold-out samples or an external sample (Kalberg et al., 2019). In a similar study, Bandoli 

and colleagues sought to determine whether the full list of alcohol-related dysmorphic 

features in infancy, with or without information on PAE, correctly classified children ages 

3–4 years on neurodevelopmental outcomes and FASDs (Bandoli et al., 2022). Using the 

birth cohort from Ukraine (n=273; FASD=62) and a logistic regression classifier, sensitivity 

ranged from 12–19% for the full model predicting neurodevelopmental delay, and 33–63% 

when assessed in children with high PAE. The models were minimally altered by removing 

PAE information and only relying on growth and dysmorphic features. Finally, sensitivity 

for discriminating FASD was 27% in the full sample and 62% when limited to children 

with high PAE (Bandoli et al., 2022). In this approach, the classifier was not examined 

in test or validation datasets. In 2023, Bandoli and colleagues expanded these features 

to include a broad range of pregnancy and infancy characteristics to predict FASD in 

preschool aged children (Bandoli et al., 2023). Data were split into separate training (80%: 

n=245) and test (20%: n=58; 11 FASD, 47 no FASD) datasets. Training data was balanced 

using data augmentation through SMOTE. Four classifier models (random forest, extreme 

gradient boosting (XGBoost), logistic regression (full model) and backwards stepwise 

logistic regression) were evaluated for accuracy, sensitivity, and specificity in the hold-out 

sample. Random forest models had the highest sensitivity (0.54), with accuracy of 0.86 
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(95% CI 0.74, 0.94) in hold-out data. The best performing algorithm correctly classified 6 

of 11 children with FASD, and 44 of 47 children without FASD. The variables contributing 

the most to the model included measures of PAE and infant neurodevelopmental assessment 

scores. Although sensitivity in the full sample (54%) was improved compared to 27% 

observed with only dysmorphic features in earlier work (Bandoli et al., 2022), almost half 

of children who would later receive a diagnosis were not correctly identified (Bandoli et al., 

2023).

FASD is a multifaceted diagnosis reliant on multiple domains. Multi-modal analysis is vital 

to ensure high sensitivity and specificity, as identifying features from a single domain 

is insufficient for providing a full insight into a patient’s presentation. To date, most 

classifier models have focused on single domains, like facial imaging, neurodevelopmental 

screener performance, DNA methylation, etc. Given the relative success of these individual 

approaches, combining models appears a reasonable approach to continuing to improve the 

performance of the models. This was the approach of researchers using data from children 

ages 5–18 recruited in Canada, where they combined data from eye movement behaviors, 

psychometric test scores, and diffusion tensor imaging (DTI) of the brain to construct a 

multimodal classifier (Zhang et al., 2019). Researchers prioritized large-scale applicability, 

using tools from the theory of value of information to evaluate the cost-benefit metrics 

of the approach. Data from saccadic eye movements, DTI and psychometric tests were 

analyzed using SVM-recursive feature elimination. Classification accuracy ranged from 65% 

(saccadic eye movement), 67% (DTI) to 78% (psychometric data). The full multimodal 

model (combining all assessments) was assessed from the probability of the participant 

being identified as having an FASD predicted from each assessment and concatenated 

as input for training a logistic regression classifier. The final classifier had accuracy of 

84.8% (sensitivity 81.8%, specificity 87.5%) in test data. However, due to the cost of 

many paradigms included, researchers proposed using only saccadic eye movement and 

natural viewing tasks (sensitivity=77%, specificity=79%), with children screened as ‘high 

risk’ being recommended for a full evaluation. For older children, authors suggested 

psychometric batteries could be added in to the saccadic eye movement and natural viewing 

tasks for the initial screening (Zhang et al., 2019).

Current limitations and future directions

For at least two decades, researchers have used machine learning to develop classifier 

models to better screen or identify children with FASDs. Most models appear to have 

modest to good discrimination of children affected by PAE or with FASDs. A few 

additional considerations remain when interpreting the efforts to date- cost vs. scalability 

and translation into general populations.

As with all successful screening tools, balancing the accuracy and the cost of the approach 

remains a challenge. The Zhang et al. study highlighted the problem that many domains 

have moderate to good predictive ability but come at very high costs (Zhang et al., 

2019). MRI scans and 3D imaging are not widely available, particularly in low-resource 

settings. Likewise, biomarkers like DNA methylation and miRNA are not yet scalable. And 

models that rely on expert dysmorphologists also severely limit the broad application of 
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the screener. Further, for model development in training data, large samples containing the 

measure are required. Efforts like the Collaborative Initiative on Fetal Alcohol Spectrum 

Disorders (CIFASD), which was created in 2003 to advance the understanding of FASDs, 

is largely responsible for much of the work reviewed here. Yet even with these efforts, 

challenges remain in finding datasets with labeled PAE or FASDs that also contain low-cost 

measures to exploit for model development.

In addition to identifying screeners that can be widely scaled across high and low resource 

settings, the current work is further limited by a lack of translation for general populations. 

Most studies described in this review were conducted in birth cohorts enrolled based on 

heavy prenatal alcohol use, or from clinical settings where children were being assessed due 

to cognitive or behavioral concerns. Although these classifiers work well in those settings, 

they cannot be expected to have the same performance in a general population. Further, 

while a few of the studies were noted as having external validation samples, most did not. 

Machine learning algorithms suffer from over-learning noise in a dataset. While splitting 

samples into training-test subsets or using cross-validation can minimize that risk, validation 

in an independent dataset, preferably from a different setting or population, is required to 

fully evaluate the broad performance of the model. Readers looking to adopt these practices 

can learn more about them (Moons et al., 2012a, 2012b; Poldrack et al., 2020).

Researchers in this space may benefit from reviewing the ASD and ADHD machine 

learning literature, which has similar efforts towards screening and identifying affected 

children. There, machine learning algorithms have shown promise, including the ability to 

differentiate autism both from typically developing children (Kosmicki et al., 2015; Wall et 

al., 2012a, 2012b) as well as from children with ADHD (Duda et al., 2016). It has also been 

used to develop multivariable profiles of children with ADHD (Nilsson, 2005; Yasumura et 

al., 2017) and to predict autism spectrum disorder (ASD) based on facial features (Ahmed 

et al., 2022). Like FASD, the ASD literature has multifaceted efforts, including a large 

literature on classifier models and neuroimaging (Song et al., 2021), eye-tracking (Wei et 

al., 2023) and behavioral inputs. The latter was discussed in a recent systematic review, 

which included 22 studies (Cavus et al., 2021). The authors noted that despite many 

promising results from neuroimaging, eye tracking, and genetic data, that behavioral data 

also showed promise particularly given the scalability. However, like FASD research to 

date, authors noted that while individual results of ASD machine learning studies have been 

promising, none have demonstrated broad clinical relevance to date (Cavus et al., 2021). 

Similar findings have been noted in ADHD machine learning research. In a recent review 

of 92 studies (the majority MRI, followed by physiological signals and questionnaire data), 

authors noted that most focused on single modality studies and had accuracy of 80–90%, yet 

lacked broad clinical adoption (Loh et al., 2022). As the respective fields continue efforts 

towards developing scalable, clinically useful screening tools, they should look to each other 

for new tools or ideas that could be beneficial to efforts across the diagnoses.

In summary, many efforts have been made to create FASD screeners, primarily based 

on neurodevelopmental profiles or physiologic markers. Many of the classifiers have 

shown promise, however, challenges remain in developing models that are both accurate 

and cost effective. Given the heterogeneity of FASD presentation, and the multi-faceted 
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nature of the diagnosis, a prominent direction for machine learning in this field should 

be combining accessible modalities such as neurodevelopmental assessment and facial 

imaging to improve sensitivity and specificity. Ultimately, FASDs remain underdiagnosed, 

and countless children are not afforded interventions that can improve their quality of life. 

Continued collaborations between researchers, clinicians, and among groups like CIFASD 

are critical to advancing the field.
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Figure 1: 
Schematic of machine learning approaches to screen for prenatal alcohol exposure or FASD
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