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Abstract

Advanced Anomaly Detection Techniques for Cyber-Physical Power Systems

by

Gabriel Andres Intriago Velasquez

Electric power systems are undergoing significant transformations that have brought

fundamental challenges to the system’s situational awareness. This research aims

to develop reliable strategies to manage such challenges for two typical anomaly-

detection problems in modern power systems: cyber-attacks and faults. The growing

complexity of power grids due to the penetration of intelligent monitoring devices and

recent technological advances in energy management systems have rendered cyber-

physical systems like electric grids increasingly vulnerable to cyber threats. These

anomalies have been estimated to have a considerable economic impact during a

severe cyber-attack. This work is essential for protecting modern and clean power

systems because it implements effective methods for detecting and isolating faults in

emerging technologies for renewable electric energy generation. Consequently, this

research not only reduces the frequency of disruptions but also reduces the risk of

damage, lowers maintenance costs, and extends the lifespan of equipment. This work

is vital in preventing economic and power-related disruptions caused by cyber-attacks

and faults.

Cyber-physical power systems (CPPS) rely on wide-area monitoring, pro-

tection, and control (WAMPAC) technologies, allowing operators to drive modern

xviii



systems more efficiently and reliably. WAMPAC technologies use modern devices

such as intelligent relays, digital recorders, and phasor measurement units (PMUs) to

monitor the CPPS state. However, such devices produce continuous and unbounded

data streams, posing significant data handling, storage, and processing challenges.

Moreover, WAMPAC devices and their communication links are vulnerable to cyber-

security risks. To cope with these challenges, this study introduces two novel event

detection methods for cyber and non-cyber contingencies based on the Hoeffding

Adaptive Tree classifier. This robust machine learning classifier can handle high-

velocity and high-volume data streams with limited memory and low computational

burden. We consider several cyber and non-cyber events affecting the physics and

monitoring infrastructure of CPPS, such as short-circuit faults, line maintenance,

remote tripping command injection, relay setting change, and false data injection.

The data are generated based on a modified IEEE 9-bus system. Simulation results

show that our proposed approach outperforms the state-of-the-art method in the

literature.

Fault detection is vital in ensuring the reliable and resilient operation of

modern power systems. Its importance lies in swiftly identifying and isolating faults,

preventing cascading failures, and enabling rapid power restoration. This work pro-

poses a strategy based on observers and residuals for detecting internal faults in

grid-forming inverters with power-sharing coordination for clean and small-scale AC

microgrids. Grid-forming inverters will be the future drivers of modern and clean

power systems to accelerate the adoption of renewable energy sources such as solar

xix



and wind. The dynamics of the inverters are captured through a nonlinear state

space model. The design of our observers and residuals considers H−/H∞ conditions

to ensure robustness against disturbances and responsiveness to faults. The pro-

posed design is less restrictive than existing observer-based fault detection schemes

by leveraging the properties of quadratic inner-boundedness and one-sided Lipschitz

conditions. Also, this work introduces a residual-based adaptive threshold for fault

detection. An inequality for the upper bound on the ℓ2 norm of the residual is de-

rived and used for designing the adaptive threshold. The upper bound is obtained via

semidefinite programming with two linear matrix inequality constraints. The inter-

nal faults considered in this paper include actuator faults, busbar faults, and inverter

bridge faults, which are modeled using vector-matrix representations that modify the

state space model of the inverters. One significant advantage of the proposed meth-

ods is its cost-effectiveness, as it does not require additional sensors. Experiments

are conducted on an islanded AC microgrid with three inductive lines, four inductive

loads, and four grid-forming inverters to validate the merits of the proposed fault

detection strategy. The results demonstrate that our designs outperform existing

methods in the field.

xx
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Chapter 1

Introduction

Situational awareness has been receiving increasing attention for power sys-

tems, especially when it comes to the design of effective anomaly detection strategies.

Such strategies can be defined as the cognition of the elements that allow the sys-

tem operators, during routine procedures, to enable accurate detection of anomalous

events such as cyber threats, non-cyber contingencies, and faults [4]. Moreover,

power system operators constantly face numerous challenges to balance the electri-

cal supply and demand due to modern electrical power systems’ ever-growing size

and complexity. Developing a scheme that detects anomalies in the power system

per the standards imposed by regulators and policymakers is critical in preserving

the system’s reliability. However, multiple underlying factors govern the system’s

stability, turning the scheme’s development into a highly complex process [5]. This

research aims to provide anomaly detection procedures that leverage the system’s

underlying information, improving its situational awareness while coping with these

1



challenges in modern power systems.

The ambition to increase the situational awareness of power systems and the

ever-growing gathering of large volumes of energy data streams pose new challenges

for traditional anomaly detection techniques, especially machine learning techniques.

In such a scenario, a data-driven strategy inherits the requirements of streaming

learning: process one instance at a time and at most once, use a limited amount of

memory, work during a limited amount of time, and pose a timely prediction [6]. Also,

we need to consider that the statistical properties of energy data are time-variant.

That is, the data is expected to evolve unpredictably and unanticipated. Opposed to

traditional machine learning, it is very likely that by the time any selection strategy

is implemented, the underlying data distribution has changed, often making the

strategy no longer valid [7]. In this context, designing an anomaly detection policy

based on machine learning that chooses a relevant portion from the original data and

adapts for data modeled as a stream becomes indispensable. Not doing so may incur

performance degradation of machine learning algorithms and infeasible processing

times under real-time environments such as power systems.

The electrical power system is currently evolving significantly from cen-

tralized to distributed generation. Most distributed energy sources rely on power-

electronics-based technologies, allowing smooth energy conversion between the main

grid and small-scale systems such as microgrids. In the coming years, microgrids

will be increasingly dominated by a significant share of the generation mix stem-

ming from renewable energy sources interfaced by grid-forming inverter technologies
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[8, 9]. Microgrids in the grid-connected mode rely on the main grid for voltage and

frequency regulation and benefit from upstream protection. However, ensuring sta-

bility in an islanded microgrid is more challenging than in the grid-connected mode

[10]. An islanded microgrid functions as an independent system and must indepen-

dently maintain reference voltage magnitude and frequency for its components. This

situation is further aggravated when the power generators are grid-forming inverters,

as they reduce the available electrical inertia in the system [11]. Therefore, it is

crucial to have an intelligent fault detection (FD) strategy that is resilient against

disturbances and sensitive to faults to prevent energy supply interruptions and pro-

mote a stable microgrid performance.

This work aims to answer questions about how using data from the power

system under study could enable reliable anomaly detection of anomalous events:

Can online machine learning algorithms detect cyber- and non-cyber contingencies

in power systems? Do energy data behave as an unbounded stream with fluctuat-

ing underlying properties? Also, we attempt to answer questions about the design

of model-based fault detection for grid-forming inverters: Are observer-centric and

residual-based strategies appropriate for fault detection in grid-forming inverters?

How do internal faults influence the behavior of grid-forming inverters? How does

the built-in uncertainty of the inverter model affect the fault detection design?
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1.1 Scope and organization

The main objective of this thesis is to design and evaluate the performance

of novel anomaly detection strategies dedicated to improving the situational aware-

ness of modern power systems. Specifically, this thesis investigates the effectiveness of

the proposed strategies when dealing with a subset of anomalies: cyber-attacks, non-

cyber contingencies, and faults. We acknowledge that the set of potential anomalies

in modern power systems is vast and varied; however, detecting the subset of anoma-

lies studied in this work enables a reliable and secure operation of modernized power

systems. This thesis comprises four published articles, three journal papers, and

one conference paper introducing events and fault detection schemes using machine

learning for data streams and observer theory.

Chapter 2 introduces two novel event detection strategies for cyber-physical

power systems using a tree-based online machine-learning algorithm 1. The data

obtained from the system are assumed to behave as a data stream, that is, as a con-

tinuous flow of data at a high rate of speed and time-varying statistical properties,

also known as concept drift. However, such an assumption imposes hard constraints

on the performance properties of the chosen algorithm, such as processing one data

instance at a time, a reduced amount of memory, a limited processing time, and being

ready to predict at any time. To deal with the performance challenges imposed by

data streams, our detection strategies are designed as wrappers that enhance the ca-
1The material in this chapter was published at the 2021 IEEE Power and Energy Society General

Meeting conference (https://ieeexplore.ieee.org/abstract/document/9637891) and IEEE ACCESS
(https://ieeexplore.ieee.org/abstract/document/10054027).
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pabilities of a high-performance algorithm for data streams, the Hoeffding Adaptive

Tree (HAT). The first detection strategy improves HAT’s performance by transform-

ing its input data using a feature engineering approach based on semi-supervised

learning. Our approach starts by building a dictionary of higher-level features (such

as sudden, recurrent, or gradual changes) from unlabeled raw data. Then, the la-

beled data are represented as sparse linear combinations of learned dictionary atoms.

We capitalize on those sparse codes to train the online classifier with efficient change

detectors such as the drift detection method (DDM) and adaptive windowing (AD-

WIN). The second detection strategy presented in Chapter 2 develops an instance

selection algorithm that facilitates data management by selecting the most rele-

vant instances for the learning task, further reducing the computational burden and

memory consumption. The instance selection algorithm is combined with the HAT

classifier to deal with evolving phasor measurement unit (PMU) data streams by

constantly retraining the classifier when system changes are detected. Our focus is

to select the instances most similar to the target instance by using a spatiotemporal

distance function that adapts to the range of the PMU measurements. The proposed

selection algorithm can generally determine the optimal subset of data instances in

a nonstationary streaming environment.

Chapter 3 sets the stage for detecting internal faults such as busbar, actua-

tor, inverter bridge, and sensor faults in grid-forming inverters operating in islanded

AC microgrids 2. A nonlinear dynamic model in a state-space formulation describes
2The material in this chapter was published in IEEE Systems Jour-

nal (https://ieeexplore.ieee.org/document/10464193) and IEEE ACCESS
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the inverters’ dynamics, where the model considers the presence of bounded and

polytopic parametric uncertainties. The triggering mechanism that detects the oc-

currence of faults consists of three essential components: the residual norm, the

threshold, and a comparator. The comparator judges the occurrence of a fault when

the residual norm exceeds the threshold and judges the absence of fault otherwise.

One significant advantage of the proposed approaches in this chapter is their cost-

effectiveness, as they do not require additional sensors for achieving fault detection.

The first approach introduces an observer-centric approach using a time-varying

residual norm and a fixed threshold for fault detection. Such a strategy leverages an

H−/H∞ optimization framework to design a Luenberger observer [12] that mimics

the behavior of the inverter. Such a framework allows the design of an observer to

be sensitive to faults and robust against disturbances. The proposed design is less

restrictive than existing observer-based fault detection schemes based on the Lips-

chitz modeling of nonlinearities. Our approach assumes the nonlinear properties of

the inverter model follow the quadratic inner-boundedness and one-sided Lipschitz

conditions. The second approach preserves the residual norm obtained from the Lu-

enberger observer while introducing an adaptive threshold for fault detection. The

effectiveness of the adaptive threshold is assessed using busbar and sensor faults. An

inequality for the upper bound on the ℓ2 norm of the residual is derived and used

for designing the adaptive threshold. The upper bound is obtained via semidefinite

programming with two linear matrix inequality constraints.

(https://ieeexplore.ieee.org/document/10500414).
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Chapter 2

Event detection for electric power

networks

This chapter presents two novel adaptations of the Hoeffding Adaptive Tree

(HAT) classifier for event detection and classification in power systems to enhance

cyber-physical power systems’ (CPPS) situational awareness. Using unlabeled and

labeled data, the first method combines the HAT classifier with semi-supervised

learning techniques to accurately distinguish cyber-attacks from regular system per-

turbations. The approach builds a dictionary by learning higher-level features from

unlabeled data. The labeled data are then represented as sparse linear combinations

of learned dictionary atoms. We capitalize on those sparse codes to train the online

classifier and efficient change detectors. The second method combines HAT with a

novel instance selection algorithm with three algorithmic stages to ease data man-

agement. The instance selection algorithm facilitates data management by selecting
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the most relevant instances for the learning task, reducing the computational bur-

den and memory consumption. A cost and complexity analysis of the algorithm is

discussed. The classifier can handle high-velocity, high-volume, and evolving data

streams from the PMUs with reduced computational effort.

2.1 Literature review

The existing solutions for the contingency detection task can be catego-

rized as model-, machine learning-, neural networks-, and streaming learning-based

approaches. Event detection in power systems is challenging because most events

are infrequent, the system’s measurements are noisy, and the system’s operating

point changes continuously. Traditionally, model-based methods detect events by

observing the deviation between the measurements of the system and its model. A

significant disturbance indicates that an event has occurred in the system [13, 14].

The small-signal model of the system can be used to monitor the parametric sen-

sitivity of the system’s eigenvalues against load-altering attacks, as shown in [15].

However, large-scale attacks demand an analysis under nonlinear grid models rather

than the linearized small-signal model. In [16], the authors develop a framework that

leveraged the system model and a cumulative sum detector to identify stealthy false

data injection (FDI) attacks in an AC smart grid. Despite the merits of these prior

arts, these works face essential challenges, such as requiring a mathematical descrip-

tion of the system and its components, scaling to more extensive power networks,
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and being specific to certain events. In contrast, our work adopts a model-agnostic

approach that can adapt to time-variant scenarios and discriminate events of multiple

types.

Unlike model-based methods, machine learning and NN methods can op-

erate without any information regarding the physics and mathematical models gov-

erning the power system [17–21]. In [22], the authors design an anomaly detection

method using multivariate Gaussian models from micro-phasor measurement units

(µPMUs) to detect malicious attacks. Nevertheless, the efficacy of such a method is

limited to only two types of attacks: transient and steady. Another approach pre-

sented in [23] developed a framework that combines wavelet denoising and filtering

to detect data anomalies accurately. However, the method did not show a favor-

able trade-off between computational time and accuracy. A collaborative machine

learning-based framework for detecting attacks was proposed in [24]. This method

can efficiently extract patterns from attack vectors. However, this method is lim-

ited to FDI attacks and does not incorporate a mechanism to adapt the model to

evolving scenarios. Habibi et al. [21] combined time-series analysis with nonlinear

autoregressive neural networks to study the effect of FDI attacks. Nonetheless, this

approach needs to train neural networks for each distributed energy resource in the

microgrid, which imposes a high computational burden. Machine learning and neural

network methods have shown outstanding performance and flexibility in detecting

events in power systems. However, their main shortcomings are the assumption of

a static environment, the inability to retrain the models in real-time, and the high
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computational burden for model learning, especially for NN methods. The approach

proposed in this work can detect changes in the underlying data distribution and

retrain the model accordingly. The retraining process improves the model’s accuracy

without adding a significant processing burden.

Motivated by the discussions above, researchers have turned to stream

learning to tackle the event detection task for power systems. In [25], Dahal et al.

used a Hoeffding adaptive tree (HAT) to classify the normal operation and electrical

faults of a power system operating with load fluctuations. Dahal demonstrated the

applicability and ability of HAT to classify power system events. However, the ex-

periments in Dahal’s study were not designed to handle multiple events. The authors

in [26] take a step further and modify the HAT classifier to incorporate two change

detectors, the drift detection method (DDM) and adaptive windowing (ADWIN),

to classify binary, ternary, and multiple events, including disturbances and cyberat-

tacks. The authors rely on discretizing the dataset according to domain knowledge,

which may not be affordable in a real-time scenario. Moreover, the results report a

noticeable performance for binary and ternary events, but the performance for the

multiple events scenario was moderate. In this study, our proposed classifier exhibits

high accuracy and low computational cost when dealing with binary, ternary, or

multiple events.

A method based on selecting the most promising features using gradient

boosting trees to enhance the performance of several machine learning classifiers was

presented in [27]. This study shows that feature engineering is a crucial considera-

10



tion in event detection; however, the classifiers are trained to assume a stationary

environment and may not capture the real-time changes occurring in the system.

A framework that dynamically detects and classifies cyberattacks was presented in

[28]. The framework consists of three modules: detection, classification, and signal

retrieval. Although the method has been proven to detect and classify events un-

der harsh learning conditions, it only detects FDI attacks. Moreover, this method

depends on vast historical data, which may not represent the current system state.

We recommend this survey of statistical literature [29] for readers interested

in anomaly detection for time series data.

2.2 Stream learning

2.2.1 Classification for data streams

Classification for data streams inherits many problems from traditional ma-

chine learning. There are also new challenges, such as one-pass learning, limited pro-

cessing time and memory, and changes in data distribution. In this study, we focus

on data stream classification. Let {(ot, zt)}∞
t=1 denote a data stream containing a

set of labeled instances. At time t, ot ∈ Rm denotes the vector of m features while

zt is the corresponding class label. Let O represent the entire feature space and Z

the class space. A classification algorithm learns a mapping f : O 7→ Z such that it

can be used to predict the class label for a new instance. Traditional classification

can load all the data into memory. By contrast, stream classification is a one-pass
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strategy, meaning the processed instances are automatically discarded or only stored

temporarily.

A learning model should meet the following criteria to comply with data

stream learning [6]:

• Learn an instance at a time and inspect it at most once.

• The model must use a limited amount of memory.

• Require limited working time.

• The model must be able to predict at any time.

2.2.2 Concept drift

In the stream learning lexicon, concepts are defined as the target information

that a model aims to predict using a set of features [30]. Data streams are inherently

infinite, temporal, and dynamic. The data distribution may evolve, whereas the

mapping between instances and targets can be time-varying. This situation results

in the concept drift phenomena [7].

As a case of concept drift, feature drift occurs when a subset of features

becomes irrelevant to a learning task [30]. This study’s features are the PMU mea-

surements, such as voltages, currents, and impedances. Feature drift in the context

of power systems includes the following: (i) the removal of an existing PMU from

the monitoring system, (ii) less informative voltage magnitude measurements owing
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Figure 2.1: Streaming learning framework with instance selection.

to the injection of bad data (FDI), and (iii) changes in the PMU measurements due

to cyber-attack events.

2.2.3 Prequential evaluation

We follow the rules of Prequential evaluation [31] to be compliant with the

stream learning framework. Essentially, prequential evaluation comprises two major

stages: testing and training. In the test stage, the base learner predicts the class

of the next available instance from the stream. After the test stage, the model

metrics are updated. The base learner processes the actual instance during training

to update its structure and statistics. In our study, the training stage is governed

by our proposed streaming instance selection method, which is explained in detail

in the next section. Fig. 2.1 depicts the stream learning framework with instance

selection.
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2.2.4 The Hoeffding Adaptive Tree (HAT) classifier

HAT comprises three main components: a window to remember recent ex-

amples, a distribution-change detector, and an estimator for some input data statis-

tics. Once a change is detected, an alternate tree will be created and grow with the

instances appearing right after the change. The existing alternate tree will replace

the current tree if it is more accurate. The HAT [32] classifier has the adaptive

windowing (ADWIN) method as the change detector. A modified version of HAT

is the HAD classifier with an additional change detector, the drift detection method

(DDM).

ADWIN serves as an estimator and change detector that keeps a variable-

length window W of recent data such that the window has the maximal length

statistically consistent with the null hypothesis of the average value inside the window

has not changed. When two “big enough" sub-windows of W have “distinct enough"

averages, it can be said with high probability that a change in the data distribution

has occurred and the older items in W should be dropped. The “big and distinct

enough” can be quantitatively defined by the Hoeffding bound [33].

DDM is a change detector that relies on ‘context,’ defined as a set of con-

tiguous examples whose data distribution is stationary. DDM incrementally controls

the model’s error rate. Statistical theory guarantees that the error decreases if the

data distribution remains stationary, and the error increases when the distribution

changes. A new context is declared if the error reaches a warning level at instance
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kw and a drift level at instance kd. This indicates a distribution change, and a new

model is learned using the examples between kw and kd. A detailed explanation of

DDM can be found in [34].

2.3 Datasets

We test our proposed methods with the multiclass industrial control system

(ICS) cyber-attack dataset, which includes measurements of 37 events in an electric

transmission system [35]. The publicly available dataset comprises 15 sets with 5000

instances and 128 features each. The datasets have three versions: binary, ternary,

and multiclass dataset. Each of the four PMUs measures 29 features (voltages, cur-

rents, frequency, and impedances), adding up to 116 physical features. In addition,

12 additional cyber features correspond to information collected from networking and

SCADA systems measured at substations such as SNORT, Syslog, and the control

panel, totaling 128 features. The 37 simulated events are listed and distributed as

follows:

• Normal operation (1 event). The system operated under stable conditions

with smooth load changes.

• Line maintenance (2 events). The power lines are open via the protection

relays.

• Short-circuit fault (6 events). A power line shortage can occur at different

locations across lines.
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• Attack of remote tripping command injection (6 events). An attacker

opens a breaker by sending a command to the relay.

• Attack of relay setting change (16 events). An attacker turns off the

secure relay configuration, which forces the relay to not trip against real faults

and valid commands.

• Attack of data Injection (6 events). The attacker mimics a valid fault by

changing the values of measurements such as voltages, currents, and impedances.

2.4 Performance Metrics

The performance metrics used in this study are listed below:

1. Accuracy (acc): Percent ratio of the number of correctly predicted instances

to the total number of observed instances,

Accuracy = Number of correct predictions
Number of observed instances . (2.1)

2. Kappa (κ): This statistic takes into account the probability of predictions

agreement by chance [36],

Kappa = ρo − ρran
1 − ρran

, (2.2)

where ρo is the accuracy of the base learner under study, and ρran is the accuracy
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of a random base learner. If Kappa is positive, the base learner is better than

a random prediction. The metric Kappa is expressed in percent units.

3. Time (t): Processing time in seconds.

4. Size (KB): Size of the base learner in Kilobytes.

5. Model cost (cost): Amount of RAM (KB) deployed during one hour.

2.5 Combining semi-supervised learning and the HAT

classifier

Labeling a massive amount of PMU data on the fly in practice is challenging

and costly. Compared with data collection, which depends only on data storage

capacity, data labeling often requires the rich domain knowledge of experts who

can actively identify instances’ labels. Therefore, we have abundant unlabeled and

scarce labeled data with the same generative distribution. Due to this fact, semi-

supervised learning (SSL) is an appropriate tool that combines a small amount of

labeled data with a large amount of unlabeled data during training [37]. The first

method proposes a novel approach for power system events and intrusion detection

to improve classification performance by transforming the data through higher-level

representations extracted from an unlabeled dataset.
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2.5.1 Methodology

We obtain a dictionary by extracting higher-level features (such as oscil-

lations, sudden changes, gradual changes, and stable periods) from the unlabeled

dataset to represent later the labeled data, which are then used to train a classifier

incrementally.

2.5.1.1 Online Dictionary Learning

Given a set of unlabeled instances
{

o(1)
u , . . . , o(p)

u
}

, where o(i)
u ∈ Rn is the

i-th input feature vector, we formulate the following optimization problem to learn

a new feature space representing these data points:

min
D, {β(i)

u }

1
2

p∑
i=1

∥∥∥o(i)
u − Dβ(i)

u

∥∥∥2

2
(2.3a)

s.t.
∥∥∥β(i)

u

∥∥∥
0

≤ q, i = 1, 2, . . . , p, (2.3b)

∥dj∥2 ≤ 1, j = 1, 2, . . . , m (2.3c)

The optimization variables are the dictionary Dt =
[
d1, . . . , dm

]
∈ Rn×m and the

sparse codes β
(i)
u ∈ Rm, i = 1, 2, . . . , p. We typically have m ≫ n so that the

dictionary is rich enough. Hence, by the least square objective, each input o(i)
u is

approximately represented as a linear combination of very few basis vectors in D

with the corresponding coefficients given by β
(i)
u . The zero norm ∥a∥0 denotes the

number of non-zero coordinates of a. Hence, the first constraint forces the vector

18



β
(i)
u to have at most q nonzero elements. The energy of each atom (basis) in the

dictionary D is bounded by one, as given by the second constraint. This constraint

prevents the entries of D from being arbitrarily large while the entries of β
(i)
u are

minimal.

We leverage the alternating minimization method for the resulting noncon-

vex problem (1), i.e., minimizing one variable at each step while keeping all other

variables fixed [38]. In the first step, we obtain the sparse codes β
(i)
u , i = 1, 2 . . . , p.

The second step updates the dictionary D.

• Sparse coding – optimization over β
(i)
u : Start with a fixed random dictionary

D, and solve (1) with the orthogonal matching pursuit (OMP) algorithm to

obtain the β
(i)
u that corresponds to the unlabeled point o(i)

u for i = 1, 2, . . . , p.

• Dictionary update – optimization over D: Keep {β
(i)
u }p

i=1 fixed, find the dictio-

nary Dt by sequentially updating each atom via the block-coordinate descent

(BCD) algorithm:

cj = A−1
jj (bj − Dt−1aj) + dj , j = 1, 2, . . . , m (2.4)

dj = cj

max(∥cj∥2, 1) , j = 1, 2, . . . , m, (2.5)

where Dt−1 is the dictionary at the previous iteration. The matrices A =

[
a1, . . . , am

]
= β

(i)
u β

(i)⊤
u ∈ Rm×m and B =

[
b1, . . . , bm

]
= o(i)

u β
(i)⊤
u ∈ Rn×m

carry the information of the updated β
(i)
u ’s. The update repeats until Dt
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converges.

2.5.1.2 New Feature Representation

Consider a set of labeled instances
{
(o(1)

ℓ , z(1)), . . . , (o(q)
ℓ , z(q))

}
, where o(i)

ℓ ∈

Rn is the ℓ-th input feature vector with label z(i) ∈ {1, . . . , NC} where NC is the

number of classes. Upon learning the dictionary D∗ as elaborated above, the labeled

data can be represented by using the basis vectors of D. This is carried out by

solving the following problem via the OMP for each labeled data point:

min
β

(i)
ℓ

1
2

∥∥∥o(i)
ℓ − D∗β

(i)
ℓ

∥∥∥2

2
(2.6a)

s.t.
∥∥∥β(i)

ℓ

∥∥∥
0

≤ q. (2.6b)

In other words, a labeled data point is now approximately represented as a linear

combination of the learned atoms:

o(i)
ℓ = Dβ

(i)
ℓ + ξ, (2.7)

where ξ is the reconstruction error. We preserve each original label of z(i) by attach-

ing it to the new representation, i.e., the q-sparse code β
(i)
ℓ in a higher dimensional

space. Finally, we train the HAD classifier with these new representations using the

software package MOA [39].

Remark 2.5.1 (Matching pursuit vis-a-vis LASSO). The sparse dictionary learning
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Algorithm 1 Semi-supervised HAD (SSHAD)
Require:

1) Unlabeled data {o(1)
u , . . . , o(p)

u }
2) Labeled data

{
(o(1)

ℓ , z(1)), . . . (o(q)
ℓ , z(q))

}
.

3) Randomly initialize D from unlabeled data vectors.
4) Maximum iteration: max_iter = 200.

1: Normalize the labeled and unlabeled data.
2: for t = 1 to max_iter do
3: Compute the sparse code βu with Dt−1 by solving (1).
4: Update Dt keeping the matrix βu fixed.
5: end for
6: Solve (2.6b) to obtain the matrix βℓ.
7: Attach to βℓ the labels from oℓ.
8: Train HAD with the new labeled dataset

{
(β(1)

ℓ , z(1)), . . . , (β(q)
ℓ , z(q))

}
using

MOA.
9: return The trained HAD classifier.

problem generally has two formulations: matching pursuit and LASSO. The former

is shown by problem (1), while the latter is relaxing ℓ0 norm to ℓ1 norm and lifting

to the objective as a soft constraint. The matching pursuit formulation explicitly

guarantees q-sparsity, which is more user-friendly in finding the “best” value of q by

trial-and-error simulations. According to our numerical experiments, the solution to

the matching pursuit is more stable numerically.

Algorithm 1 features two essential differences from the algorithm in [40].

In [40], the authors build the dictionary using self-taught learning (unlabeled and

labeled datasets having different generative distributions [41]) to train later and test

an SVM classifier with the new representation of the labeled dataset. In contrast, our

model builds the dictionary using SSL and incrementally trains a HAD classifier with

all the transformed labeled dataset instances. In a nutshell, our algorithm capitalizes
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on semi-supervised knowledge to enhance the HAD classifier’s overall performance.

We name the proposed algorithm SSHAD, where “SS” stands for semi-supervised,

to differentiate it from the original version of HAD presented in [26].

2.5.2 Numerical Experiments

We ran all the experiments using MATLAB, WEKA, and the massive online

analysis (MOA) software [42]. The relevant parameters were obtained by using cross-

validation. The value of max_iter = 200 yielded the best results. The parameter q

was set to 10 for both OMP procedures, i.e., each of β
(i)
u ’s and β

(i)
ℓ ’s had at most

ten nonzero values. We tested different sizes for the dictionary and found that 130

atoms performed the best. For both OMP optimization problems, the tolerance of

the squared ℓ2-norm residual was set to 0.01. Finally, the parameters for the HAT

classifier were set to the default values in MOA.

We conducted classification experiments using the 2-class, 3-class, and 37-

class datasets. The performance results were obtained with five different sizes, deter-

mined by the labeled dataset’s sampling ratio. All values given in figures and tables

are 10-fold average. The performance of our model improved with the increased size

of the unlabeled dataset. It can be seen that the performance gets saturated with

50,000 unlabeled data points.

Fig. 2.2, 2.3, and Tab. 2.1 show the classification results for the 2-class

and 3-class datasets. It can be seen that the performances of SSHAD and HAD were

similar. However, when it comes to the 37-class dataset, our model outperformed
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Figure 2.2: 10-fold average accuracy (acc) comparison between SSHAD with param-
eter q = 10 and HAD using the 2-class and 3-class datasets.

HAD as shown in Fig. 2.6, 2.4, and Tab. 2.2. These results corroborated the merits

of our proposed approach; representing the data with higher-level features yielded a

more accurate identification of events in power systems. Moreover, as shown in Fig.

2.5, SSHAD is robust to bad data.

Table 2.1: The 3-class dataset: 10-fold average Kappa (κ) and cost (cost) compar-
isons between SSHAD (q = 10) and HAD.

Sampling κ(%) cost (Ram-Hour)
Ratio SSHAD HAD SSHAD HAD
10% 82.25 82.29 1.43 × 10−8 1.37 × 10−8

30% 88.36 88.44 2.18 × 10−8 2.07 × 10−8

50% 69.87 69.57 2.87 × 10−8 2.89 × 10−8

70% 59.56 59.28 3.67 × 10−8 3.83 × 10−8

90% 51.91 51.70 4.63 × 10−8 5.27 × 10−8
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Figure 2.3: 10-fold average time (t̄) comparison between SSHAD with parameter q
= 10 and HAD using the 2-class and 3-class datasets.

Figure 2.4: 10-fold average time (t̄) comparison between SSHAD with parameter q
= 10 and HAD using the 37-class dataset.

Figure 2.5: 10-fold average time (t̄) comparison between SSHAD with parameter q
= 10 and HAD using the 37-class dataset in the presence of 10% of bad data.
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Figure 2.6: 10-fold average accuracy (acc) comparison between SSHAD with param-
eter q = 10 and HAD using the 37-class dataset.

Table 2.2: The 37-class dataset: 10-fold average Kappa (κ) and cost (cost) compar-
isons between SSHAD (q = 10) and HAD.

Sampling κ(%) cost (Ram-Hour)
Ratio SSHAD HAD SSHAD HAD
10% 29.80 28.39 5.80 × 10−8 5.88 × 10−8

30% 69.62 62.32 1.20 × 10−7 1.64 × 10−7

50% 79.48 77.41 9.24 × 10−8 1.09 × 10−7

70% 82.33 80.30 1.09 × 10−7 1.13 × 10−7

90% 85.64 84.38 1.24 × 10−7 1.28 × 10−7
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2.6 The HAT classifier and instance selection

This section discusses the adaptation of the HAT classifier with a novel

instance selection algorithm to deal with real-time event detection tasks in power

systems. Our model-agnostic approach relies on streaming learning to handle high-

velocity and volume data streams with reduced computational effort. The HAT

classifier uses an incremental decision tree classifier that learns from evolving data

streams and handles data with concept drift. The instance selection algorithm ac-

commodates data handling by selecting the most relevant data instances for the

classification task, further reducing the processing and memory burden. The in-

stance selection algorithm is combined with the HAT classifier to deal with evolving

PMU data streams by constantly retraining the classifier when system changes are

detected.

2.6.1 Methodology

In this section, we first present the concept of spatiotemporal similarity.

Next, we discuss our proposed streaming instance selection’s stream learning setup

and details. Finally, we briefly describe the base learners.

2.6.1.1 Linear Spatio-temporal Similarity

Our proposed instance selection technique for data streams is based on

the similarity among instances. The similarity captures the comparability of a pair

of instances and is measured using a distance function. The concept of similarity
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Figure 2.7: Linear combination of time and spatial distances. Each circle corresponds
to a historical instance. The green circles are the target instance, while the yellow
ones are similar to the targets because they have the least spatiotemporal distance
determined by the red similarity boundary [1].

is inversely related to the concept of distance [43]. In other words, the smaller the

distance between the instances, the more similar they are. Usually, the term distance

is associated with distance in space. However, distance can not only be defined in

space but also in time. Moreover, distance can be defined as a function of time and

space, as suggested in [1] and shown in Fig. 2.7.

Remark 2.6.1. Potentially accurate results can be obtained using a spatiotemporal

distance for contingency detection in power systems. For example, an instance with

a low time distance but a high spatial distance may represent an abrupt change in

the concept, such as transitioning from a normal operation to a single line fault. An

instance with a low spatial and high time distance may indicate the evolution of a

concept such as a single line fault under two different loading conditions.

Let ot ∈ Rm be the target instance whose class is to be predicted, oi ∈ Rm

an already observed instance, T (·) a distance function in time, and S(·) a distance
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function in space. More formally, the spatiotemporal distance between ot and oi is

defined as the following linear relationship:

E(ot, oi) = T (ot, oi) + S(ot, oi) (2.8)

To simplify the notation, we refer to the distance from oi to the target instance ot

as Et−i. In Figure 2.7, we illustrate the concept of linearly combining spatial and

time distances. There are multiple candidate functions to measure the spatial dis-

tance S(·), such as the Euclidean distance, Manhattan distance, or cosine similarity

distance. In this study, we choose the Euclidean distance:

S(ot, oi) = ∥ot − oi∥2 (2.9)

Assuming uniformly spaced time intervals and considering the N most recent ob-

served instances, we choose the distance in time, defined as a linear function of the

time indices:

T (ot, oi) = |t − i|
N

(2.10)

Other more complex time distances can be chosen; for example, the exponential

function T (ot, oi) = e|t−i|. This choice gives more importance to recent instances;

however, we leave this and other complex spatial and time distance functions for

future work.
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Algorithm 2 Main Loop for Streaming Learning
Require: M = {(ot, zt)}∞

t=1, base learner L
1: for t = 1, 2, 3, . . . do
2: ▷ Scale the feature vector ot incrementally
3: ▷ Test L with (ot, zt)
4: ▷ Update the model metrics
5: ▷ Train L with SIS using Algorithm 3
6: end for

A weight can be assigned to the Euclidean distance function using a fixed

or cross-validation strategy [1]. This work assigns a time-variant weight βt to the

Euclidean distance function to reduce the impact of an inappropriate range of feature

values. To do so, we use a scaling function s : Rm 7→ Rm that transforms the

feature domain of all instances so that the values of the features are on a similar

scale. Specifically, we scale the instances such that the values of the features have

zero mean and unit variance. At each time step, the running mean and variance

are maintained. Scaling differs from offline scaling because the exact means and

variances are unknown beforehand [44]. Thus, the Euclidean distance becomes:

S(ot, oi) = ∥s(ot) − s(oi)∥2 = βt ∥ot − oi∥2 (2.11)

Remark 2.6.2. Power systems measurements make the spatiotemporal distance

vulnerable to improper feature scaling because measurements exhibit different orders

of magnitude. For example, voltage magnitudes may be reported in kilovolts and

currents in amperes.
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Algorithm 3 SIS
Require: base learner L, set of most recent instances R = {(ot−i, zt−i)}N

i=1
1: ▷ Reorder instances from set R using Algorithm 4
2: ▷ Reset the base learner L
3: ▷ Search the optimal size for sliding window and train the base learner L using

Algorithm 5
4: Return L

Algorithm 4 Reorder
Require: Target instance ot, set of most recent instances R = {(ot−i, zt−i)}N

i=1
1: for i = 1, . . . , N do
2: ▷ Compute the distance Et−i according to (2.8)
3: end for
4: ▷ Sort the distances in ascending order Eg(1) < Eg(2) < · · · < Eg(N)
5: ▷ Build the natural-valued function g : K 7→ V, where K = {1, 2, . . . , N}, and

V = {t − 1, t − 2, . . . , t − N}
6: Return g

2.6.1.2 The Instance Selection Algorithm

This section describes the proposed stream instance selection (SIS) algo-

rithm. Let ot be the target instance, L be the base learner, and R = {(ot−i, zt−i)}N
i=1

the set containing the most recent observed instances. Let g : K 7→ V denote the

one-to-one natural-valued function, where K = {1, 2, . . . , N}, and V = {t − 1, t −

2, . . . , t − N}. Algorithm 2 presents the steps of the main loop of stream learning,

where the SIS algorithm is used to enhance the performance of the base learner. The

algorithm has three algorithmic stages explained as follows:

(1) Reorder: The observed instances are sorted in ascending order according

to their distance to the target instance ot. The sorting procedure assigns a

new set of indices {g(1), g(2), . . . , g(N)} to the observed instances, so the base

learner is trained first with the most similar instances. Algorithm 4 presents
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the steps of this stage.

(2) Reset: The base learner is reset to forget what was learned in the pre-

vious time step. This reset allows the model to adapt to concept drifts. The

effectiveness of bypassing concept drifts depends on N .

(3) Search: In this stage, SIS uses a sliding window W containing previous

instances to train the base learner. The size of the window W is chosen dynami-

cally, which is upper bounded by N . SIS evaluates the trained base learner with

a trial set containing the k most recent instances. The trial set is indexed by

time {t−1, t−2, . . . , t−N}, and not by the sorted indices {g(1), g(2), . . . , g(N)}.

The training window W is found using a warm restart to alleviate the process-

ing of all the most recent instances in R. SIS performs a local search around the

previous best window size to find the new best size. Let b be the previous best

window size and r a natural number that defines the search size. SIS searches

the next best window’s size in the interval [l, u] ⊆ [1, N ], where l = b − r and

u = b + r. Finally, SIS stops the search when the learner error on the trial set

is less than a threshold ϵ. Algorithm 5 presents the steps involved in this stage.

At each time step, the SIS assigns a new index to the instances in R by
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Table 2.3: Time and memory cost and complexity of the SIS algorithm per stage.

Stage Time Memory
Cost 2N + N log(N) 2N + 1

(1) Reorder
Complexity O(N log(N)) O(N)

Cost 1 1
(2) Reset

Complexity O(1) O(1)
Cost l + 2rk 2N

(3) Search
Complexity O(l + 2rk) O(N)

solving the following optimization problem:

min
g : K 7→ V

N∑
i=2

|Eg(i) − Eg(i−1)|

s.t. K = {1, 2, . . . , N},

V = {t − 1, t − 2, . . . , t − N}

(2.12)

Then, SIS finds the optimal window W by solving:

min
W ⊂ R

|W|

s.t. l ≤ |W| ≤ u,

1
k

k∑
i=1

LW
(
L(ot−i), zt−i

)
≤ ϵ,

LW =


1 ; L(ok) = zk

0 ; L(ok) ̸= zk

,

og(j) ∈ W, ∀j ∈ {1, . . . , |W|}

(2.13)
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Algorithm 5 Search
Require: |R| = N , base learner L, natural-valued function g, number of testing

instances k, previous best window size b, natural number r, error threshold ϵ
1: ▷ Set the upper and lower limits u = b + r, l = b − r
2: for i = 1 : u do
3: if i > u then
4: ▷ break
5: end if
6: ▷ Train the base learner L with (og(i), zg(i))
7: if i < l then
8: ▷ continue
9: end if

10: for j = 1 : k do
11: ▷ Test base learner L with (oj , zj)
12: ▷ Update metric learnerError
13: end for
14: if learnerError < ϵ then
15: ▷ b = i and break
16: end if
17: end for
18: Return L, b

Algorithms 4 and 5 describe the procedures of SIS for solving problems (2.12) and

(2.13), respectively.

The computational complexity per stage of the SIS algorithm is presented

in Table 2.3. The complexity is expressed using the big-O notation and corresponds

to the worst case. The cost represents the time iterations and memory size based on

the parameters of the SIS algorithm, such as N , l, r, and k. The complexity operator

considers the higher-order terms of the cost only and without scaling. The cost and

complexity of each stage are added to obtain the total cost and complexity of the SIS

algorithm. The algorithm uses memory O(N) and time O(N log(N) + l + 2rk), both

of which are concentrated in stages (1) and (3). The second stage, Reset, is a one-
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line statement that reinitializes the parameters of the base learner. Considering stage

(1), the distance computation (lines 1-3 of Algorithm 4) requires time and memory

costs of N and N + 1, respectively. The sorting statement (line 4 of Algorithm 4)

sorts the set R and is executed using the Tim sort algorithm with a time cost of

N log N and a memory cost of N . The natural-valued function g is a mapping with

a memory size N , which is built using N iterations. The third stage trains the base

learner using the first l instances (lines 6-9) of the reordered set R. The base learner

is then validated k times with the following 2r ordered instances of the set R; thus,

the time cost of the third stage is l + 2rk. The third stage requires having the set R

in memory and the function g, each with size N . It is desirable to set r ≪ N/2 and

k ≪ N to reduce the complexity of the third stage.

2.6.2 Numerical Experiments

The experiments were conducted using Massive Online Analysis (MOA)

[45] and River [46]. The MOA is an open-source Java framework for stream ma-

chine learning. River is an open-source Python package dedicated to developing

online/streaming machine learning algorithms. We run the experiments using a Mac-

Book Pro 2019, 2.8 GHz Intel Core i7 processor, 16 GB 2133 MHz LPDDR3 RAM,

and 1 TB hard disk drive. Based on initial tests, we set the SIS hyperparameter

ϵ = 0.1. We used the Hoeffding Tree (HT) [47] and variants of the Hoeffding Adap-

tive Tree (HAT) [32] as the base learners for the experiments. After an initial trial

on the MOA classifiers for streaming machine learning, we selected the HAT+DDM
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and HT+DDM learners because they performed better using a portion of the mul-

ticlass dataset. We set the base learners with the hyperparameters suggested in the

related literature. More detailed tuning of the base learner’s hyperparameters is

left for future work. HAT+SIS and HT+SIS exhibited the same performance for

the multiclass dataset. Finally, we chose HAT+SIS because it performed better for

a price forecasting dataset, as shown in one of our experiments. We assessed the

performance of the three learners in six case studies. Case studies are simulated

by imitating real fault disturbances and cyber-attacks. We explored scenarios that

affect the system’s physics and monitoring architecture, including loading variation,

PMU disappearance, and measurement overlapping. Additionally, we explored the

performance of our proposed classifier using a price forecasting dataset.

2.6.3 Case Study I: Multiple Events

This case study evaluated the performance of the three learners with 37

events from the multiclass dataset. The hyperparameter tuning of the SIS method

using grid search is presented in Table 2.4. A performance comparison is presented

in Fig. 2.8. It can be seen that HAT+SIS is the best performer among all learners,

whereas HAT+DDM is the worst performer. As shown in Fig. 2.8(a), HAT+SIS

achieves an accuracy of more than 99% in the first 250 instances, whereas the

accuracy of HAT+DDM and HT+DDM is less than 99% during the same inter-

val. Around instance 4000, HAT+DDM and HT+DDM obtain an abrupt decrease

in accuracy, while HAT+SIS remains unchanged. The learners HAT+DDM and
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(a) (b)

(c) (d)

Figure 2.8: Performance comparison of the three learners in the case study I using
the first set from the multi-class dataset. The evaluation considers the 37 events
from the multi-class dataset in sequence. The comparison is shown for the following
metrics: (a) Accuracy, (b) Time, (c) Size, and (d) Model cost.
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HT+DDM performed similarly during the first 4,000 instances. Then, HT+DDM

showed a slightly higher recovery rate accuracy than HAT+DDM. Fig. 2.8(b) presents

the time comparison of the learners. We observe that HAT+SIS maintained a linear

running time as the stream progressed. The model sizes of the three learners are

shown in Fig. 2.8(c). It can be seen that the three learners demanded moderate

memory. HAT+DDM and HT+DDM used the same model sizes, while HAT+SIS

exhibited reduced peak memory demands. Fig. 2.8(d) shows the combined effect of

the time and model size.

To evaluate the performance of the three learners in static and evolving

data, we used a window performance evaluator for classification with a window size

of 20, as shown in Fig. 2.9. The three learners presented the same accuracy during

static data, represented by horizontal lines, reaching 100% accuracy. Evolving data

manifests as an abrupt or gradual decrease in accuracy, displayed as downward peaks.

HAT+SIS exhibited minor peaks during evolving data, especially around instance

4000, where HAT+DDM and HT+DDM exhibited significant accuracy degradation.

The performances of the three learners among the fifteen sets from the mul-

ticlass dataset are shown in Table 2.5. Considering the accuracy and Kappa statistic,

HAT+SIS was the best performer among the fifteen sets, whereas HAT+DDM was

the worst performer. Furthermore, HAT+SIS had the smallest running time, model

size, and cost. Table 2.6 presents the mean and standard deviation of the met-

rics across the fifteen sets. The results indicate that the performance of HAT+SIS

remained invariant among the sets while exhibiting the most accurate and precise
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performance.

Table 2.4: 15-fold average hyperparameter tuning of the HAT+SIS learner using the
multiclass dataset in case study I.

Base Metrics r = 10 r = 5 r = 2
Learner k = 4 k = 3 k = 2 k = 1 k = 4 k = 3 k = 2 k = 1 k = 4 k = 3 k = 2 k = 1

Accuracy 99.07 99.13 99.25 99.30 99.07 99.12 99.23 99.29 99.04 97.91 98.60 99.27
HAT Kappa 99.04 99.10 99.23 99.27 99.03 99.09 99.20 99.27 99.00 97.83 98.55 99.24

+ Time 54.62 50.56 46.93 43.10 54.12 50.46 46.49 42.92 53.54 50.55 47.28 43.28
SIS Size 195.83 195.82 195.82 195.82 195.82 195.82 195.82 195.82 195.82 195.82 195.82 195.82

Cost 2.16 1.95 1.76 1.56 2.14 1.95 1.74 1.55 2.12 1.94 1.77 1.59

Table 2.5: Performance of the base learners for the 15 sets of the multiclass dataset
in case study I.

Base Metric Dataset
Learner 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Accuracy 99.25 99.29 99.32 99.31 99.30 99.27 99.29 99.30 99.33 99.37 99.31 99.31 99.30 99.30 99.30
HAT Kappa 99.23 99.26 99.29 99.28 99.28 99.25 99.27 99.28 99.30 99.35 99.29 99.29 99.27 99.27 99.27

+ Time 40.95 42.27 44.57 43.51 42.10 41.38 43.19 43.89 44.03 45.54 43.31 42.63 43.36 42.05 43.73
SIS Size 195.73 195.73 195.92 195.92 195.73 195.97 195.78 195.73 195.92 196.02 195.88 195.73 195.78 195.73 195.78

Cost 1.48 1.53 1.61 1.57 1.52 1.50 1.56 1.59 1.59 1.64 1.56 1.54 1.57 1.52 1.58
Accuracy 97.81 98.42 96.66 98.02 98.57 98.51 98.05 98.61 97.98 97.36 98.59 98.58 98.60 98.55 97.16

HAT Kappa 97.73 98.37 96.53 97.94 98.52 98.46 97.98 98.55 97.89 97.25 98.54 98.53 98.54 98.50 97.04
+ Time 81.71 76.35 75.52 129.42 78.41 99.14 86.84 84.07 211.72 210.14 169.43 88.73 84.13 164.01 72.02

DDM Size 214.34 217.94 228.26 221.93 220.38 214.81 223.03 224.87 226.26 231.94 223.19 222.14 224.54 219.10 224.17
Cost 3.96 3.72 4.21 2.97 4.55 3.17 3.95 4.12 2.41 2.80 1.99 3.53 4.31 2.14 3.18

Accuracy 98.03 98.42 97.67 98.21 98.57 98.51 98.17 98.61 97.98 97.86 98.59 98.58 98.60 98.55 97.82
HT Kappa 97.96 98.36 97.58 98.14 98.52 98.46 98.10 98.55 97.89 97.78 98.54 98.53 98.54 98.50 97.73
+ Time 89.00 69.63 66.30 84.05 65.36 92.21 78.98 62.95 161.98 162.21 194.52 228.09 70.49 142.79 81.59

DDM Size 213.68 217.12 227.43 220.94 219.38 213.65 222.03 223.88 225.10 230.94 222.37 221.14 223.54 217.94 223.18
Cost 2.04 2.64 2.08 2.06 2.48 1.39 2.06 2.19 1.31 1.48 0.70 2.30 2.25 1.45 2.18

2.6.4 Case Study II: Ternary Events

In this case study, we used the three-class dataset to evaluate the perfor-

mance of the proposed approach. The three-class dataset consisted of ternary events,

that is, events labeled as natural, normal, and attack events. The attack events con-

sisted of twenty-eight scenarios, the natural events consisted of eight scenarios, and

the normal events consisted of one scenario. This section is important because the

experiments assessed the efficacy of the proposed classifier in distinguishing normal

operation from cyber and non-cyber contingencies in a cyber-physical power system.
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Figure 2.9: Performance evaluation of the base learners using the accuracy metric in
dealing with stationary data and concept drift in case study I.
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(a) (b)

(c) (d)

Figure 2.10: Performance comparison of the three learners in the case study II using
the first set from the three-class dataset. The comparison is shown for the following
metrics: (a) Accuracy, (b) Time, (c) Size, and (d) Model cost.
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Table 2.6: The mean µ, standard deviation σ, minimum and maximum values of the
performance metrics tested on the 15 sets of the multiclass dataset in case study I.

Learner Metrics Statistics
µ σ min max

Accuracy 99.30 0.027 99.25 99.37
HAT Kappa 99.28 0.025 99.23 99.35

+ Time 43.10 1.22 40.95 45.54
SIS Size 195.82 0.10 195.73 196.02

Cost 1.56 0.044 1.48 1.64
Accuracy 98.10 0.62 96.66 98.61

HAT Kappa 98.02 0.64 96.53 98.55
+ Time 114.11 49.97 72.02 211.72

DDM Size 222.46 4.73 214.34 231.94
Cost 3.88 1.01 1.99 4.55

Accuracy 98.28 0.33 97.67 98.61
HT Kappa 98.21 0.35 97.58 98.55
+ Time 110.01 53.52 62.95 228.09

DDM Size 221.49 4.71 213.65 230.94
Cost 1.81 0.494 0.70 2.64

The hyperparameters of the SIS algorithm were the same as those in section 2.6.3 to

alleviate the burden of hyperparameter tuning. Notice that the target space of the

multiclass dataset is quite diverse and rich; hence, the best hyperparameters from

section 2.6.3 benefited the HAT+SIS learner in this section.

Fig. 2.10 presents the performance of the three learners across the en-

tire first set of the three-class dataset. Although HAT+SIS had a higher accuracy

performance, the three learners showed a similar overall accuracy. HAT+SIS and

HT+DDM exhibited a linear time complexity across the entire simulation, whereas

the time complexity of HAT+DDM departed from being linear around instance 4000.

Notably, HAT+SIS maintained a stable model size of less than 250 KB. HAT+SIS
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Table 2.7: Performance of the three learners for the 15 sets of the three-class dataset
in the case study II.

Learner Metric Dataset
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Accuracy 99.92 99.92 99.93 99.92 99.92 99.92 99.92 99.92 99.91 99.93 99.92 99.92 99.92 99.92 99.92
HAT Kappa 99.77 99.82 99.83 99.84 99.82 99.81 99.80 99.82 99.80 99.83 99.79 99.84 99.78 99.80 99.85

+ Time 48.30 107.90 77.53 50.55 106.75 59.33 47.50 48.08 48.36 49.69 47.41 46.58 47.14 45.49 47.79
SIS Size 219.15 219.15 219.33 219.33 219.15 219.38 219.19 219.15 219.33 219.43 219.29 219.15 219.19 219.15 219.19

Cost 1.81 1.64 1.86 1.89 1.83 1.65 1.77 1.79 1.80 1.86 1.77 1.74 1.76 1.70 1.78
Accuracy 99.83 99.84 99.85 99.84 99.84 99.83 99.84 99.84 99.85 99.85 99.84 99.84 99.84 99.84 99.84

HAT Kappa 99.54 99.65 99.66 99.68 99.64 99.63 99.61 99.65 99.69 99.67 99.60 99.68 99.57 99.60 99.70
+ Time 60.66 50.56 47.04 38.88 131.88 44.34 107.68 95.40 105.95 102.29 60.19 63.46 50.96 40.81 57.01

DDM Size 219.11 219.11 219.30 643.12 302.82 303.37 219.19 219.45 303.20 637.85 302.98 219.19 219.27 219.19 224.85
Cost 1.16 1.43 1.45 1.39 1.59 1.45 1.06 2.01 1.24 1.29 1.77 1.56 1.70 1.51 1.29

Accuracy 99.82 99.83 99.85 99.84 99.83 99.83 99.84 99.84 99.83 99.83 99.84 99.84 99.84 99.84 99.82
HT Kappa 99.52 99.65 99.64 99.68 99.64 99.62 99.61 99.63 99.69 99.65 99.60 99.68 99.59 99.61 99.69
+ Time 39.80 39.65 47.98 49.67 40.65 49.98 60.93 54.88 53.51 58.89 33.26 42.12 40.00 40.12 47.59

DDM Size 590.28 921.81 716.03 585.08 509.08 1000.06 801.64 316.01 428.12 1000.14 224.06 636.65 717.90 513.86 980.01
Cost 0.85 0.83 1.01 1.13 0.87 0.03 1.19 0.72 1.04 0.61 0.67 0.85 0.82 0.83 1.02

showed a linear model cost during the simulation, whereas HT+DDM had the lowest

cost. Table 2.7 presents the metrics of the three learners for the 15 sets of the three-

class dataset. We observe that the accuracy and Kappa metrics were not significantly

different between HAT+SIS and the other two learners. Table 2.8 presents the four

statistics computed from the performance metrics of the fifteen sets.

2.6.5 Case Study III: Binary Events

We conducted the experiments in this case study using the two-class dataset

corresponding to only two events, normal operation, and attack events. Binary clas-

sification is essential because it allows us to test whether our proposed classifier

can detect deviations from normal cyber-physical system behavior. We set the hy-

perparameters of the SIS algorithm as r = 10 and k = 1, as described in section

2.6.4. Fig. 2.11 presents the performance of the three learners across the entire first

set of the two-class dataset. HAT+DDM and HT+DDM showed similar accuracy

across the experiment, whereas HAT+SIS had slightly higher accuracy. HAT+SIS

42



(a) (b)

(c) (d)

Figure 2.11: Performance comparison of the three learners in the case study III using
the first set from the two-class dataset. The comparison is shown for the following
metrics: (a) Accuracy, (b) Time, (c) Size, and (d) Model cost.
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Table 2.8: The mean µ, standard deviation σ, minimum and maximum values of the
performance metrics tested on the 15 sets of the three-class dataset in the case study
II.

Learner Metrics Statistics
µ σ min max

Accuracy 99.92 0.004 99.91 99.93
HAT Kappa 99.81 0.023 99.77 99.85

+ Time 58.56 21.35 45.49 107.90
SIS Size 219.23 0.099 219.15 219.43

Cost 1.77 0.072 1.64 1.89
Accuracy 99.84 0.005 99.83 99.85

HAT Kappa 99.63 0.046 99.54 99.70
+ Time 70.47 29.72 38.88 131.88

DDM Size 298.13 143.85 219.11 643.12
Cost 1.46 0.246 1.06 2.01

Accuracy 99.83 0.005 99.82 99.85
HT Kappa 99.61 0.046 99.52 99.69
+ Time 46.60 8.062 33.26 60.93

DDM Size 662.71 245.82 224.06 1000.14
Cost 0.831 0.275 0.03 1.19

and HAT+DDM exhibited a linear time complexity during the entire simulation.

HT+DDM had the smallest time complexity, but it showed a moderate increase at

the end of the experiment. HAT+SIS maintained a stable model size of approxi-

mately 250 KB overall, whereas HT+DDM had step increases in its model size. The

three learners exhibited a model cost behavior similar to their processing time be-

havior. Table 2.9 presents the performance of the three learners for the 15 sets of the

two-class dataset. In this table, we observe that HAT+SIS was the best performer in

terms of accuracy, Kappa, and model size metrics. Table 2.10 shows the four statis-

tics calculated using the results of the 15 sets of the two-class dataset. HAT+SIS

had a small standard deviation for all metrics except the processing time.
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Table 2.9: Performance of the base learners for the 15 sets of the two-class dataset
in the case study III.

Base Metric Dataset
Learner 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Accuracy 99.92 99.92 99.93 99.92 99.92 99.92 99.92 99.92 99.91 99.93 99.92 99.92 99.92 99.92 99.92
HAT Kappa 99.76 99.81 99.82 99.83 99.81 99.80 99.79 99.81 99.78 99.82 99.79 99.82 99.77 99.79 99.83

+ Time 47.93 61.16 73.72 58.23 59.80 63.59 66.99 66.31 87.75 68.56 49.86 47.41 47.75 46.43 47.70
SIS Size 219.15 219.15 219.33 219.33 219.15 219.38 219.19 219.15 219.33 219.43 219.29 219.15 219.19 219.15 219.19

Cost 1.78 1.94 2.05 1.90 1.93 1.72 1.89 2.09 2.05 2.17 1.84 1.77 1.78 1.73 1.78
Accuracy 99.83 99.84 99.85 99.84 99.84 99.83 99.84 99.84 99.85 99.85 99.84 99.84 99.84 99.84 99.84

HAT Kappa 99.53 99.62 99.64 99.66 99.62 99.61 99.59 99.63 99.66 99.65 99.58 99.65 99.55 99.59 99.66
+ Time 47.18 45.35 44.38 39.27 45.37 40.77 55.28 63.65 63.16 42.18 47.60 44.93 49.09 44.93 42.40

DDM Size 230.15 219.72 219.88 646.82 303.4 303.95 219.79 250.07 303.77 641.55 303.56 219.8 219.84 219.77 226.45
Cost 1.16 1.46 1.16 1.18 1.39 1.30 0.95 1.78 1.17 1.22 1.57 1.35 1.41 1.45 1.26

Accuracy 99.83 99.84 99.85 99.84 99.84 99.83 99.84 99.84 99.85 99.85 99.84 99.84 99.84 99.84 99.84
HT Kappa 99.53 99.62 99.64 99.66 99.62 99.61 99.59 99.63 99.66 99.65 99.58 99.65 99.55 99.59 99.66
+ Time 47.20 72.72 145.43 61.02 53.41 60.75 94.13 61.34 69.95 93.46 39.75 45.31 62.78 211.67 93.56

DDM Size 713.02 921.78 716.03 875.39 717.87 814.12 801.64 735.29 842.32 333.45 224.06 636.65 717.99 921.76 432.83
Cost 1.03 0.88 1.01 1.22 0.96 1.29 1.24 0.79 1.16 0.81 0.78 0.92 0.82 0.81 0.88

2.6.6 Case Study IV: Loading Variations

We tested the three learners in this case study to classify a fault event under

different loading conditions. We simulated a data stream with three stages in this

order: (i) fault from 10−19% on line 2; (ii) the fault is cleared, returning the system

to normal operation; and (iii) fault from 10 − 19% on line 2. Stages (i) and (iii) were

considered to have distinct loads in the system. The confusion matrices are shown in

Fig. 2.12. HAT+SIS accounted for the largest number of correct predictions, whereas

HT+DDM accounted for the smallest. Although HAT+SIS correctly classified the

instances from the normal operation event, it shows the largest misclassification rate

for the fault event. HAT+DDM and HT+DDM exhibited excellent performance

in classifying the fault event. However, these performers did not exhibit attractive

performance for normal event classification.
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Table 2.10: The mean µ, standard deviation σ, minimum and maximum values of
the performance metrics tested on the 15 sets of the two-class dataset in the case
study III.

Learner Metrics Statistics
µ σ min max

Accuracy 99.92 0.004 99.91 99.93
HAT Kappa 99.80 0.021 99.76 99.83

+ Time 59.54 12.03 46.43 87.75
SIS Size 219.23 0.099 219.15 219.43

Cost 1.89 0.141 1.72 2.17
Accuracy 99.84 0.005 99.83 99.85

HAT Kappa 99.61 0.040 99.53 99.66
+ Time 47.70 7.40 39.27 63.65

DDM Size 301.90 143.50 219.72 646.82
Cost 1.32 0.201 0.95 1.78

Accuracy 99.84 0.005 99.83 99.85
HT Kappa 99.61 0.040 99.53 99.66
+ Time 80.83 44.96 39.75 211.67

DDM Size 693.61 208.85 224.06 921.78
Cost 0.973 0.177 0.78 1.29

2.6.7 Case Study V: PMU Disappearance

Consider a monitoring system consisting of four PMUs whose measurements

are modeled as features. After some time, one of the PMUs gets disconnected from

the system. Such a situation can be modeled as a feature disappearance drift, which

may occur owing to a communication bottleneck, malfunctioning, or physical attack

on the device. We simulated this scenario using a data stream consisting of 1450

instances with line maintenance, remote tripping commands, and fault events on

both lines and different locations within the lines. Fig. 2.13 shows the results for the

three learners in case study V with PMU’s disappearance at instance 500. According
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Figure 2.12: Confusion matrices of the three learners in case study IV. (a) HAT+SIS,
(b) HAT+DDM, (c) HT+DDM

Figure 2.13: Accuracy of the three learners in case study V. The vertical black bar
indicates the instance at which one of the PMUs disappears in the data stream. The
light orange shaded area corresponds to the portion of the data stream where the
PMU is inactive, whereas the uncolored area corresponds to the data stream where
the PMU is active.

to the results, HAT+SIS exhibited the best performance.

2.6.8 Case Study VI: Measurements Overlapping

Some cyber-attacks may exhibit similar class conditional measurements dis-

tribution P (X|Y ) as fault disturbances. In other words, cyber-attacks and faults may

fall into the same region of the measurements (features) space. This situation makes

it difficult for learners to discriminate between similar events. In this scenario, we

studied one fault disturbance and two cyber-attacks: (i) fault from 80 − 90% on line

1, and (ii) a data injection attack that mimics a fault from 80 − 90% on line 1 with
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a remote tripping command; and (iii) a fault from 80 − 90% on line 1 with relay

#2 disabled. First, we forced the learner to process a data stream from disturbance

(i), followed by an abrupt concept change in the data distribution corresponding to

cyber-attacks (ii) or (iii). Then, we made the learner learn oppositely, that is, a

cyber-attack (ii) or (iii), followed by the fault disturbance in (i). Fig. 2.14 shows

the accuracy of the three learners under case study VI of measurements overlapping.

HAT+SIS was less vulnerable to abrupt changes in the data distribution. In Figs.

2.14(a) and 2.14(c), the three learners exhibited similar accuracies when they first

process instances from the fault distribution. However, their accuracy performance

differed if they start processing instances from the cyber-attack distribution, as seen

in Figs. 2.14(b) and 2.14(d). The results indicate that HAT+SIS performed best

in this case study because it can correctly classify instances from data injection and

remote tripping attacks.

2.6.9 Price Forecasting Dataset

Table 2.11: Hyperparameter tuning of the HAT+SIS learner using the price fore-
casting Elec2 dataset.

Base Metrics r = 10 r = 5 r = 2
Learner k = 4 k = 3 k = 2 k = 1 k = 4 k = 3 k = 2 k = 1 k = 4 k = 3 k = 2 k = 1

Accuracy 85.840 85.88 86.130 85.42 85.71 85.76 85.95 85.41 85.66 77.61 81.25 85.440
HAT Kappa 71.051 71.12 71.629 70.15 70.78 70.88 71.27 70.14 70.68 54.03 61.64 70.191

+ Time 197.31 178.96 155.11 128.02 193.80 176.87 155.15 131.57 188.79 165.12 147.54 131.83
SIS‘ Size 23.45 23.45 23.45 23.03 23.45 23.45 23.45 23.03 23.45 23.45 23.38 23.03

Cost 1.01 0.89 0.74 0.57 0.98 0.87 0.73 0.58 0.95 0.80 0.68 0.588

This section used a dataset outside the cyber-attack and disturbance do-

main to further assess the merits of our proposed approach. We conducted the

48



(a) (b)

(c) (d)

Figure 2.14: Accuracy of the three learners in case study VI. The vertical black bar
indicates the instance at which the abrupt change in the data stream occurs. The
white-shaded area corresponds to the portion of the stream under a fault disturbance
distribution, whereas the light orange-shaded area corresponds to a cyber-attack dis-
tribution. (a) and (b) for fault disturbance and remote tripping command events; (c)
and (d) for fault disturbance and relay #2 disabled. The performance of HAT+DDM
and HT+DDM is the same in this scenario.
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Figure 2.15: Performance comparison of the three learners using the price forecasting
Elec2 dataset. The comparison is shown for the following metrics: (a) Accuracy, (b)
Time, (c) Size, and (d) Model cost.

following experiments with the price forecasting Elec2 dataset based on the electric-

ity price market in the Australian state of New South Wales [48]. The Elec2 dataset

contains 45312 instances drawn between May 7th, 1996, and December 5th, 1998,

with a sampling resolution of one instance for each half-hour. The market prices are

set by matching the electricity demand with the cheapest combination of energy gen-

eration from all power stations. Electricity market data is subject to concept drifts

because the market is affected by different factors such as weather, time of the day,

season, and other factors, that is, the energy prices are not stationary. The dataset
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Table 2.12: Performance of the base learners using the price forecasting Elec2 dataset.

Base Accuracy Kappa Time Size CostLearner
HAT

86.13 71.62 155.11 23.45 0.74+
SIS

HAT
79.87 58.63 380.82 73.62 0.71+

DDM
HT

73.20 43.95 339.18 702.62 2.05+
DDM

has eight features including electricity demand and price schedules. The class labels

are set as UP or DOWN depending on whether the current electricity price is higher

or lower than the average price over the previous 48 instances (or the previous 24

hours).

The hyperparameters of SIS, r and k, were tuned using a grid search, as

shown in Table 2.11. The best performance is obtained by setting r = 10 and k = 2.

A finer grid search is left for future studies. Fig. 2.15 shows the performance of the

three learners across the entire dataset. HAT+SIS was the best performer overall,

whereas HT+DDM has the worst performance. HAT+DDM and HT+DDM exhib-

ited a nonlinear increasing time complexity of approximately half of the dataset,

whereas HAT+SIS showed a linear time complexity. HAT+SIS had the smallest

model size during the entire simulation, whereas the model size of HT+DDM in-

creased linearly. HT+DDM showed nonlinear behavior for the model cost, similar to

its time complexity. HAT+SIS and HAT+DDM exhibited linearly increasing model
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cost. From Table 2.12, we observe that HAT+SIS outperformed HAT+DDM by

6% and HT+DDM by 12% in terms of accuracy. HAT+SIS required at least half

the processing time and model size of the other two learners. The model cost of

HAT+SIS was similar to that of HAT+DDM but less than twice that of HT+DDM.

In Table 2.13, we compared the classification accuracy of the HAT+SIS

learner and other similar algorithms. Noticeably, we can observe that the HAT+SIS

method outperformed existing algorithms for classifying disturbances and cyber-

attacks. The reported results for the HAT+SIS, HAT+DDM, and HT+DDM learn-

ers were based on the average accuracy among the fifteen sets from the multiclass

dataset presented in Table 2.6.

Table 2.13: Accuracies of HAT+SIS and other adaptive classifiers on the Attack
dataset reported in the literature.

Algorithm # of classes Accuracy
Common Path Mining [49] 7 93.00
NNGE+STEM [17] 41 93.00
HAT+DDM [26] 41 92.00
Weights Voting Algorithm [50] 37 92.40
SSHAD [51] 37 96.84
Tree-based GBFS [27] 37 92.46
HAT+DDM 37 98.10
HT+DDM 37 98.28
HAT+SIS 37 99.30

2.7 Discussion

We use a testbed architecture of three buses with PMUs placed on the ends

of the two lines. If the test bed is a more extensive network, we may need to consider
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a specific PMU placement strategy for the proposed approach. Such a strategy

will place PMUs in areas defined by clusters of buses that share the same dynamic

behavior, reducing the overall number of PMUs [52]. The dataset considered in this

work contains events from dynamic transients such as three-phase short circuits, line

outages, load variations, and breaker tripping. For instance, placing a PMU in a

region where a subset of the system’s buses exhibits similar behavior under a short

circuit and line outages is sound. A drawback of this strategy is that it may be

challenging for the classifier to identify where an event occurs among the buses of

the same cluster. Moreover, a tradeoff between the number of clusters and the cost

of PMU deployment must be considered.

The 37 events in the dataset allow us to judge the efficacy of any classifier,

and a classifier that exhibits a remarkable performance using such events can be

judged as a noteworthy classifier. Although the numerical results show that our

proposed classifiers exhibit a higher accuracy than other existing classifiers, we know

that the set of events is not exhaustive. We acknowledge that different events can

be considered to strengthen our proposed approach. For instance, we can include

denial of service attacks such as data flooding, mutation of MODBUS protocol, or

aurora attacks that refer to opening and closing a breaker near a generator in a rapid

sequence.

The learner must exhibit a fast time response for the event and intrusion

detection task. As mentioned in section 2.3, ICS datasets are built using high-speed

networking and PMU data. PMUs have a very high data rate because they transmit
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tens or hundreds of synchrophasors per second through the networking architecture.

Such a situation forces the learner to make predictions within a concise amount of

time. In addition, the available working memory is not abundant, particularly for

PMUs or phasor data concentrators (PDC). According to numerical results, our two

methods process approximately 5,000 instances in about 43 seconds with a minimal

burden in memory consumption. Existing PMUs or PDCs on the market can handle

such time and memory demands. Hence, our proposed approaches are suitable for

PMU data-based contingency detection.

2.8 Summary

We develop two novel methods based on adaptations of the HAT classi-

fier for power systems event detection. The first method leverages online dictionary

learning techniques to automatically build a new feature space for the labeled data

examples by extracting valuable information from the unlabeled dataset. The learned

sparse codes of the labeled instances become the new feature representations based

on which we train the HAD classifier. The numerical results corroborate the effec-

tiveness of the first method, yielding a better classification performance and compen-

sating for the additional computational burden of learning the higher dimensional

representations.

The second method incorporates an instance selection algorithm that im-

proves HAT capabilities and comprises three algorithmic stages: reordering, reset-
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ting, and searching. The first stage uses a spatiotemporal distance function to mea-

sure the similarity of a set of observations with the target instance. The distance

function uses an adaptive feature weight for the PMU measurements with differ-

ent scales. The second stage reinitializes the parameters of HAT to allow the tree

to adapt to the current concept underlying the data distribution. The third stage

greedily searches the optimal size of a sliding window by identifying the instances

most similar to the target instance. Extensive numerical results demonstrate that

the novel combination of HAT with the SIS algorithm outperforms the first method

and other existing classifiers in the literature, especially for multiclass classification.

This study demonstrates that the proposed methods apply to real-time

scenarios in CPPS, are sensitive to cyber and non-cyber contingencies, and show

superior performance over the competitors.

55



Chapter 3

Fault detection for grid-forming

inverters

The introduction of converter-interfaced power generation has successfully

integrated renewable energy sources into small-scale power systems, such as micro-

grids [53] [54]. Microgrids can operate in two modes: grid-connected or islanded.

In the grid-connected mode, a microgrid relies on the main grid for voltage and

frequency regulation, which benefits from its upstream protection. On the other

hand, an islanded microgrid functions as an independent system and must inde-

pendently maintain reference voltage magnitude and frequency for its components.

Consequently, ensuring stability in the islanded mode is more challenging than in

the grid-connected mode [10]. In addition, independent microgrids face risks to their

stability during abnormal events, such as internal faults, which can result in signifi-

cant imbalances between energy demand and supply. These imbalances can lead to

56



partial power outages or blackouts.

Furthermore, when an islanded microgrid disconnects from the main power

system, the fault current strength decreases, which helps mitigate the decline in

voltage magnitude and frequency following a severe event [55]. This situation is

exacerbated when the power generators are grid-forming inverters, as they reduce

the available electrical inertia in the system [11]. It is crucial to have intelligent fault

detection (FD) that is resilient against disturbances and sensitive to faults to ensure

stable microgrid performance and prevent interruptions in energy supply.

This chapter presents two fault detection strategies for grid-forming in-

verters (GFMs) with power-sharing coordination. The first strategy is based on

observers and residuals for detecting internal faults in grid-forming inverters with

fixed thresholding. The design of our observers and residuals considers H−/H∞

conditions to ensure robustness against disturbances and responsiveness to busbar,

actuator, and inverter bridge faults. The proposed design is less restrictive than exist-

ing observer-based fault detection schemes by leveraging the properties of quadratic

inner-boundedness and one-sided Lipschitz conditions. The second strategy pre-

sented in this chapter consists of a residual-based adaptive threshold for detecting

faults in grid-forming inverters. The adaptive threshold response is evaluated us-

ing unwanted events such as busbar and sensor faults. An inequality for the upper

bound on the ℓ2 norm of the residual is derived and used for designing the adaptive

threshold. The upper bound is obtained via semidefinite programming with two lin-

ear matrix inequality constraints. In both sections, the inverters are modeled as a
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nonlinear system with one-sided Lipschitz nonlinearities and modeling uncertainties.

Also, the inverters are studied while operating in AC microgrids islanded from the

primary grid.

R denotes the set of real numbers. Symbol × denotes the Cartesian product.

Bold letters represent vectors. ∥a∥ is the ℓ2-norm of the vector while ∥a∥[0,t] :=√∫ t
0 ∥a∥2

2 dt is the ℓ2-norm up to time t. A ≻ 0 indicates that matrix A is positive

definite. ⟨a, b⟩ represents the dot product between vectors a and b. a⊤ is the

transpose of vector a.

3.1 Literature review

In general, fault detection algorithms for power converters can be catego-

rized as data-driven, signal-processing, and model-based techniques. Data-driven

techniques rely on various system measurements to extract fault signatures, thereby

implementing fault diagnosis with intelligent algorithms [56–62]. In [56], the authors

combine the information change in SCADA data with a recurrent neural network

(RNN) to compute a residual and adaptive threshold for fault detection in inverters

for wind turbines. In [57], a new spatio-temporal multiscale neural network provides

an end-to-end fault diagnosis for wind turbines using imbalanced SCADA data. The

approach uses multiple thresholding to isolate faults. The authors in [58] design a

fixed threshold and a novel fault diagnostic method for three-phase multilevel con-

verters using 2-D convolutional neural networks and a window-based feature extrac-
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tion technique. Another approach presented in [59] combines a short-time wavelet

entropy calculation method with long short-term memory networks (LSTM) and

support vector machines (SVM) for fault detection in multilevel converters. In [60],

the authors propose a convolutional neural network (CNN) for fault diagnosis of

open-circuit failure in three-phase inverters with multiple thresholds. Despite the

merits of these works, data-driven models usually suffer from issues such as high

computational burden, low interpretability, complicated weights initialization, and

sensitivity to input data.

Signal processing-based methods have effectively identified fault signatures

using non-parametric techniques without an accurate system model and by sampling

voltage, current, or auxiliary signals. However, these techniques are often limited to

specific conditions and scenarios [63–65]. Another approach involves utilizing signal

patterns and local measurements near the generation units to create a dependable

fault detection module [66–68]. Nevertheless, these strategies may require additional

hardware and incur additional costs. In addition to these techniques, model-based

methods are employed for fault detection when a system model is available. These

methods have gained popularity due to their reliance on the physical relationships

governing system dynamics. Among the model-based approaches, observer-based

methods have garnered significant interest due to their fast detection capabilities,

cost-effectiveness, and the availability of powerful tools for observer design [69–73].

Model-based methods are appropriate when the systems under study can be

modeled accurately [71, 74–79]. In [74], the authors propose an adaptive fast voltage-
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based detection method for open-switch faults with an adaptive threshold. However,

the technique is sensitive to noise in measured currents. A detection method with

an adaptive threshold is designed for open-circuit faults using a phase voltage vector

residual [75]. Nonetheless, the approach has a narrow diagnosis time. The authors in

[76] use a combination of a current observer, filter circuits, and an adaptive thresh-

old to detect open-switch faults of voltage source inverters. In [77], high-fidelity

model-based detection and isolation filters are employed for open-circuit and current

sensor faults. However, the method is sensitive to communication latency. Ref-

erences [71, 78] leverage H−/H∞ optimization to design fault detection filters with

fixed thresholds for busbar and line faults for inverter-based resources. The methods,

however, are limited to system-level solutions that do not scale. In [80], the authors

present a model-based method for designing adaptive thresholds for fault detection.

However, the designed threshold is limited to linear systems, has a narrow adaptive

operation, and does not consider the control input for its computation. The authors

in [81] propose a superimposed phase-current scheme with a voltage restraint element

to detect faults in an islanded microgrid with grid-forming inverters. Although the

method correctly identifies faults, the speed of detection is considerable.

In [70], the authors propose a nonlinear observer for a grid-connected pho-

tovoltaic (PV) circuit that monitors unmodeled fault signatures to detect output

deviations that could indicate the presence of a fault. However, their study does not

account for disturbances and uncertainties in the system parameters. [71] presents

an improved fault detection and identification method using H−/H∞ optimization,
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which can effectively handle various component faults. However, their study focuses

on DC microgrids with a linear state-space model. Anagnostou et al. [72] develop a

time-varying observer for predicting the states of synchronous machines. Their ap-

proach linearizes the model at each time step, increasing computational complexity

while not considering model uncertainties and disturbances. [73] introduces a con-

strained minimization program with linear matrix inequality (LMI) constraints and

L−/L∞ performance indices to detect faults in a microgrid comprising synchronous

machines. They utilize a Lipschitz equivalent nonlinear model. Their study neglects

parametric uncertainties and the influence of faults on the nonlinear function in the

state transition model. Moreover, the restrictiveness of the Lipschitz condition is not

addressed.

The primary limitation of fault detection strategies based on the Lipschitz

condition for nonlinear systems is their susceptibility to the Lipschitz constant, re-

sulting in conservative observer designs [82, 83]. In [82], an observer design prob-

lem is introduced for nonlinear systems that take into account the quadratic inner-

boundedness (QB) and one-sided Lipschitz (OL) conditions. [83] presents reduced-

and full-order observer designs for nonlinear systems satisfying the QB and OL con-

ditions, incorporating the Ricatti equation. However, these previous works do not

specifically focus on fault detection nor consider the robustness against disturbances

and the responsiveness to faults.

From the review of the prior works, an internal fault detection solution for

grid-forming inverters operating in islanded AC microgrids that is robust against
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disturbances and exhibits a fast detection response is still missing. To fill this gap,

we develop two model-based fault detection strategies that do not require additional

sensors. The strategies use nonlinear observers to produce a residual signal, which is

compared against a fixed or adaptive threshold that evolves according to the input

dynamics of the grid-forming inverter. We derive the mathematical model of the grid-

forming inverter considering the state space framework while considering external

disturbances and parametric uncertainties. Based on the inverter model, we select a

nonlinear H∞/H− observer to compute the discrepancy between the output of the

grid-forming inverter and the model’s output. Finally, we study the performance of

our design considering four types of internal faults with modeling errors, nonlinear

loads, and input delays.

3.2 Contributions

Protecting grid-forming inverters against internal faults is essential for im-

proving islanded AC microgrids’ transient stability and operation. The low inertia

characteristic of the inverters makes fault currents increase at high rates. Such a sit-

uation demands fast fault detection and clearance of a few milliseconds. Otherwise,

severe and permanent harm may occur to the inverter and microgrid components.

Considering the limitations of prior works, the main contributions of our work are

summarized as follows.

1. We demonstrate the successful application of nonlinear observers designed with
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H−/H∞ optimization for fault detection in grid-forming converters (GFM)

connected to islanded AC microgrids with fixed and adaptive thresholds. The

proposed strategies exhibit robustness against disturbances and responsiveness

to faults.

2. We thoroughly investigate the relationship between the observer designs based

on Lipschitz conditions and the proposed design based on the one-sided Lips-

chitz (OL) and quadratic inner-boundedness (QB) conditions.

3. We derive a deterministic matrix representation for various types of faults af-

fecting GFMs. Our analysis considers the influence of parametric uncertainties

and disturbances on the system model, including the nonlinear function in the

state transition equation.

4. Utilizing a nonlinear observer offers the advantage of performing the one-time

computation of the observer’s gain offline. In contrast, a linearized observer

design increases the time complexity by recalculating the observer gain at each

time step [72]. Unlike the Lipschitz-based observer design in [73], the OL

and QB conditions allow for a less restrictive observer design, avoiding the

observer’s sensitivity to the Lipschitz constant.

5. Our proposed methods also possess a crucial advantage in that they can be

implemented with the two most commonly used practical control techniques:

droop control and virtual synchronous machine control. While this work pri-

marily focuses on detecting internal faults in grid-forming inverters, we believe
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that our observer design can be easily adapted to detect internal faults in grid-

following inverters, given the similar dynamics shared by both technologies.

These advantages greatly enhance our proposed method’s value for real-world

applications.

6. The proposed method with adaptive threshold exhibits fast fault detection

and clearance response times, minimizing to zero the false alarm and missed

detection rates for the faults considered in this study.

3.3 Preliminaries

3.3.1 Observers for nonlinear dynamic systems

The state-space representation of a nonlinear system in the absence of dis-

turbances and faults can be typically expressed as


ẋ = Ax + Bu + ϕ(u, x)

y = Cx + Du
, (3.1)

where y represents the measurement vector, x is the state vector, u the inputs vector,

and function ϕ(x, u) captures nonlinearity of the system. The parametric matrices

A, B, C, and D are formed according to the equations that govern the system. We

further define two convex sets D and U that make up the feasible operating region of

the system. They are the Cartesian products of all intervals formed by the maximum
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and minimum limits of the entire control inputs and states, respectively [84]

D = [xmin
1 , xmax

1 ] × · · · × [xmin
n , xmax

n ],

U = [umin
1 , umax

1 ] × · · · × [umin
p , umax

p ].

A Luenberger observer of the nonlinear system is defined as follows


˙̂x = Ax̂ + Bu + ϕ(x̂, u) + Lr

ŷ = Cx̂ + Du

, (3.2)

where r = y−ŷ is the residual vector, ŷ is the vector of estimated measurements, x̂ is

the vector of estimated states, and the matrix L is the observer gain to be designed.

The ideal state-space model of a nonlinear system subject to faults can be presented

as follows


ẋ = Ax + Bu + ϕ(x, u) + Ef f

y = Cx + Du + Ff f ,

(3.3)

where the terms Ef f and Ff f exist during the fault occurrence. The faults alter the

parametric matrices of the state space model by changing their entry values defined

by the inverter’s physical parameters. Consequently, Ef , Ff , and f are formed by

appropriately manipulating and reorganizing the dynamic equations and the state-

space matrices.
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3.3.2 Fault modeling

We introduce four fault models defined by the fault vector f and the fault

matrices Ef and Ff . The fault models are not derived from the theory of small

signal analysis. Instead, they are modeled according to the theory of model-based

fault diagnosis [85]. Such modeling maps faults as alterations in the inverter’s state

space model, allowing the construction of the fault vector f and fault matrices Ef ,

Ff [71, 73]. Mathematically, the alterations in the GFM state space representation

originate from the offset sudden change in the variables of interest modeled as e′ =

e + ∆e where e can be vbdi and vbqi for busbar faults, ωni and Vni for actuator faults,

or ηvidi
and ηviqi for bridge faults.

3.3.2.1 Busbar faults

A busbar fault affects the voltage phasor at the point of common cou-

pling (PCC) with the microgrid. Such voltage is represented by the inputs vbdi and

vbqi. The busbar fault is implemented as a symmetrical fault corresponding to the

grounding of the point of common coupling (busbar that connects the GFM with the

microgrid, also known as PCC) through a balanced low-resistance branch (0.1 Ω).

The sudden change in the bus voltage at the PCC is modeled as follows

v′
bdi = vbdi + ∆vbdi (3.4)

v′
bqi = vbqi + ∆vbqi (3.5)
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Hence, by plugging (3.4) and (3.5) into (3.1), the fault model for the busbar fault is

given as

f =
[
∆vbdi ∆vbqi

]⊤

,

Ef =

01×11 − 1
Lci

0

01×11 0 − 1
Lci


⊤

,

Ff =
[
07×2

]
.

3.3.2.2 Actuator faults

The actuator signals consist of the inputs ωni and Vni, respectively, which

set the GFMs’ desired frequency and voltage magnitude. A sudden 10% change in

the actuator reference signals is modeled as follows

ω′
ni = ωni + ∆ωni (3.6)

V ′
ni = Vni + ∆Vni. (3.7)

The actuator fault on ωni affects the linear term Bu and the nonlinear function

ϕ(x, u) of (3.1). Hence, by replacing (3.6) in (3.1), the fault model of the actuator

ωni fault is

fωni =
[
∆ωni ∆ωniilqi ∆ωniildi ∆ωnivoqi
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∆ωnivodi ∆ωniioqi ∆ωniiodi

]⊤

Efωni
=


1 01×6

06×1 06×6

06×1 Aωni


Aωni = diag

(
[1 −1 1 −1 1 −1]

)

Ffωni
=

 0 1 01×5

06×1 06×1 06×5


⊤

The actuator fault on Vni affects the linear term Bu of (3.1) exclusively. Similarly,

by replacing (3.7) in (3.1), the fault model of the actuator Vni fault is

fVni =
[
∆Vni

]

EfVni
=
[
01×3 1 0 KP Vi 0 1

Lfi
KP CiKP Vi 01×5

]⊤

FfVni
=
[
0 0 1 KP Vi 0 KP CiKP Vi 0

]⊤

In this study, the actuator ωni and Vni signals are the outputs of secondary

controllers designed to regulate both reference signals. We consider that the actuator

faults occur due to malfunctioning of the secondary controllers’ input signals rather

than the controllers themselves. The actuator signals these controllers compute rely

on measurements such as output voltage magnitude voi and frequency ωi of each

inverter [2, 86]. A physical fault or the malfunctioning of the devices that measure
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voi and ωi impacts the output of the secondary controller and, consequently, the

grid-forming inverter’s performance [3].

3.3.2.3 Inverter bridge faults

The inverter bridge fault is modeled as an abrupt 10% change in the in-

verter’s efficiency. Ideally, the DQ output voltages of the current controller v∗
idi and

v∗
iqi are equal to the inverter bridge’s output voltage vidi and viqi

vidi = ηvidi
v∗

idi, ηvidi
= 1

viqi = ηviqiv
∗
iqi, ηviqi = 1

In this sense, we model the sudden change in the inverter bridge’s efficiency as a

parametric abrupt change

vidi = (1 − ∆ηvidi
)v∗

idi, ∆ηvidi
∈ (0, 1]

viqi = (1 − ∆ηviqi)v∗
iqi, ∆ηviqi ∈ (0, 1]

We find the inverter bridge fault model by modifying the corresponding dynamical

equations that depend on v∗
idi and v∗

iqi. Consequently, we split the analysis into two

parts.

The fault vector and the fault matrix corresponding to vidi are given as
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follows

fvidi
= ∆ηvidi

[
Qi ϕdi γdi ildi ilqi vodi voqi iodi Vni

]⊤

Efvidi
=
[
09×7 ξvidi

09×5

]⊤

Ffvidi
=
[
09×5 τvidi

09×1

]⊤

ξvidi
=
[

KP Ci
KP Vi

nQi
Lfi

−KP Ci
KIVi

Lfi
−KICi

Lfi

KP Ci
Lfi

ωb

KP Ci
KP Vi

Lfi

KP Ci
ωbCfi

Lfi
−KP Ci

Fi

Lfi
−KP Ci

KP Vi
Lfi

]⊤

τvidi
=
[
KP CiKP VinQi −KP CiKIVi −KICi KP Ci

ωbLfi KP CiKP Vi KP CiωbCfi −KP CiFi

−KP CiKP Vi

]⊤

The fault vector and fault matrices corresponding to viqi are given as follows

fviqi = ∆ηviqi

[
ϕqi γqi ildi ilqi vodi voqi ioqi

]⊤

Efviqi
=
[
07×8 ξviqi 07×4

]⊤

Ffviqi
=
[
07×6 τviqi

]⊤

ξviqi =
[
−KP Ci

KIVi
Lfi

−KICi
Lfi

−ωb
KP Ci
Lfi

−KP Ci
ωbCfi

Lfi

KP Ci
KP Vi

Lfi
−KP Ci

Fi

Lfi

]
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τviqi =
[
−KP CiKIVi −KICi −ωbLfi KP Ci

−KP CiωbCfi KP CiKP Vi −KP CiFi

]⊤

.

The inverter bridge fault affects both efficiencies simultaneously. The fault model

of the inverter bridge fault is given as f =
[
fvidi

, fviqi

]⊤

, Ef =
[
Efvidi

, Efviqi

]
, and

Ff =
[
Ffvidi

, Ffviqi

]
.

3.3.3 Fault detection logic

We follow the protocol presented in [85] to decide whether a fault occurs.

We define the function that evaluates the residual as J = ∥r∥2. Ideally, during a

fault-free scenario, the value of J must be zero and strictly positive. Nonetheless, J

is strictly positive even when a fault is absent due to the presence of disturbances.

The adaptive threshold is set by considering the system is in the absence of faults

and subjected to disturbances. The rule for detecting a fault is defined as


Absence of faults, if J ≤ Jth

Fault alarm, if J > Jth.

(3.8)

An essential component in any scheme for detecting faults is the threshold Jth. A

trustworthy threshold reduces the chances of false alarms and missed detection while

enhancing the fault detection capability.
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

A⊤ =



0 0 0 0 0 0 0 0 0 0 0 0 0
−mPi −ωci 0 0 0 0 0 0 0 0 0 0 0

0 0 −ωci −nQi 0 −KP VinQi 0 − 1
Lfi

KP CiKP VinQi 0 0 0 0 0
0 0 0 0 0 KIVi 0 1

Lfi
KP CiKIVi 0 0 0 0 0

0 0 0 0 0 0 KIVi 0 1
Lfi

KP CiKIVi 0 0 0 0
0 0 0 0 0 0 0 1

Lfi
KICi 0 0 0 0 0

0 0 0 0 0 0 0 0 1
Lfi

KICi 0 0 0 0
0 0 0 0 0 −1 0 −

(
Rfi

Lfi
+ 1

Lfi
KP Ci

)
ωb

1
Cfi

0 0 0
0 0 0 0 0 0 −1 −ωb −

(
Rfi

Lfi
+ 1

Lfi
KP Ci

)
0 1

Cfi
0 0

0 0 0 −1 0 −KP Vi ωbCfi − 1
Lfi

+ 1
Lfi

KP CiKP Vi
1

Lfi
KP CiωbCfi 0 0 1

Lci
0

0 0 0 0 −1 −ωbCfi −KP Vi − 1
Lfi

KP CiωbCfi −
(

1
Lfi

+ 1
Lfi

KP CiKP Vi

)
0 0 0 1

Lci

0 0 0 0 0 Fi 0 1
Lfi

KP CiFi 0 − 1
Cfi

0 −Rci
Lci

0
0 0 0 0 0 0 Fi 0 1

Lfi
KP CiFi 0 − 1

Cfi
0 −Rci

Lci


,

B =



−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 KP Vi 0 0
0 0 0 0 0
0 0 1

Lfi
KP CiKP Vi 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 − 1

Lci
0

0 0 0 0 − 1
Lci


, C⊤ =



0
0

−nQi

0
0
0
0
0
0
0
0
0
0


, D⊤ =

0
0
1
0
0

 , ϕ(x, u) =



0
ωci(vodiiodi + voqiioqi)
ωci(voqiiodi − vodiioqi)

0
0
0
0

ωniilqi − mPiPiilqi

−ωniildi + mPiPiildi

ωnivoqi − mPiPivoqi

−ωnivodi + mPiPivodi

ωniioqi − mPiPiioqi

−ωniiodi + mPiPiiodi


(3.9)

3.3.4 Grid-forming inverter model

We use the dq reference frame to represent the grid-forming inverters (GFMs)

dynamics according to [3] where the i-th GFM is indexed with the subscript i. The

dynamical model of each GFM in state space form considering disturbance- and

fault-free scenarios is defined according to (3.1) where

x = [αi Pi Qi ϕdi ϕqi γdi γqi ildi ilqi vodi voqi iodi ioqi]⊤

u = [ωcom ωni Vni vbdi vbqi]⊤

y =
[
αi ωi v∗

odi i∗
ldi i∗

lqi v∗
idi v∗

iqi

]⊤
.

The parametric matrices A, B, C, D are shown in (3.9) and formed according to the

following differential equations governing the GFMs as referenced in [3, 87, 88]. The
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dynamic equations of the inverter’s auxiliary variables are given as

ϕ̇di = v∗
odi − vodi, (3.10a)

ϕ̇qi = −voqi, (3.10b)

γ̇di = Fiiodi − ωbCfivoqi + KP V iv
∗
odi − KP V ivodi (3.10c)

+ KIV iϕdi − ildi,

γ̇qi = Fiioqi + ωbCfivodi − KP V ivoqi + KIV iϕqi − ilqi. (3.10d)

The dynamic equations governing the inverter’s power angle, active power, and re-

active power are presented as follows

δ̇i = ωi − ωcom, (3.11a)

Ṗi = −ωciPi + ωci(vodiiodi + voqiioqi), (3.11b)

Q̇i = −ωciQi + ωci(voqiiodi − vodiioqi). (3.11c)

The differential equations of the inverter’s output current magnitudes, voltage mag-

nitudes, and LC filter output current magnitudes are

i̇ldi = −Rfi

Lfi
ildi + ωniilqi + 1

Lfi
(vidi − vodi), (3.12a)

i̇lqi = −Rfi

Lfi
ilqi − ωniildi + 1

Lfi
(viqi − voqi), (3.12b)

v̇odi = ωnivoqi + 1
Cfi

(ildi − iodi), (3.12c)
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Figure 3.1: Block diagram of grid-forming inverter [2].

v̇oqi = −ωnivodi + 1
Cfi

(ilqi − ioqi), (3.12d)

i̇odi = −Rci

Lci
iodi + ωniioqi + 1

Lci
(vodi − vbdi), (3.12e)

i̇oqi = −Rci

Lci
ioqi − ωniiodi + 1

Lci
(voqi − vbqi). (3.12f)

The nonlinear function ϕ(x, u) arises from the Kirchoff voltage and current

laws and the low-pass filtered reactive and active power. The grid-forming inverter

model considered in this work is described in the block diagram shown in Fig. 3.1.

We assume that the GFMs are connected to a stable DC source. The voltage, current,

and power controllers are tuned such that the GFM can form the microgrid’s reference

voltage magnitude and frequency. The power controller sets the operating frequency

(ωi = ωni − mPiPi) of the inverter bridge, provides the voltage magnitude references
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(v∗
odi = Vni −nQiQi, v∗

oqi = 0) to the voltage controller, and contains the droop curves

for power-sharing coordination. Using a PI control strategy, the voltage controller

aligns the output voltage magnitude perpendicular to the q-axis and provides the

current references to the current controller. The current controller uses a PI control

strategy to charge/discharge the capacitor of the LC filter so that the desired voltage

magnitude is achieved. Both PI controllers introduce auxiliary variables to simplify

the state space modeling where ϕ̇qi = v∗
oqi −voqi, ϕ̇di = v∗

odi −vodi, γ̇qi = i∗
lqi − ilqi, and

γ̇di = i∗
ldi − ildi. The output connector smoothens the output current of the GFM

and couples it with the microgrid at the point of common coupling (PCC) [2, 3].

The dq frame of one of the microgrid’s generators is selected as the com-

mon reference frame rotating at the frequency ωcom. Under ambient conditions, the

rotating frame of the microgrid’s power injection technologies overlaps the common

reference frame. However, when a disturbance occurs, the disturbance introduces a

phase difference δi =
∫

ωi − ωcom between the power injection technologies and the

reference generator where ωi is the rotation frequency of each technology’s frame.

Consequently, the frame of each technology no longer overlaps with the common

reference frame. According to [89], a rotation matrix is used to map the reference

frame to the frame of each technology as follows

xbdi

xbqi

 =

 cos(δi) sin(δi)

− sin(δi) cos(δi)


xbDi

xbQi

 , (3.13)

where x represents voltage (v) or current (i) magnitude. For example, the volt-
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age magnitude at the point of common coupling, denoted as vbDi and vbQi, is con-

verted to the frame of the i-th GFM as vbdi = cos(δi)vbDi + sin(δi)vbQi, and vbqi =

−sin(δi)vbDi + cos(δi)vbQi. A similar conversion is applied for the current magnitude

in the dq domain.

3.4 Fault detection with fixed thresholding

3.4.1 Nonlinear model with bounded uncertainties

The nonlinear model (3.1) can be modified to incorporate both disturbances

and faults as follows


ẋ = Ax + Bu + ϕ(x, u) + Eww + Ef f + η1(x, u)

y = Cx + Du + Fww + Ff f + η2(x, u),

(3.14)

where w is a disturbance input vector, f is the fault vector, Ew and Fw are constant

disturbance matrices, Ef and Ff are deterministic fault matrices. The unknown

functions η1 and η2 represent the model uncertainties which are considered to be

bounded and finite, i.e.,

∥ηi(u, x)∥ < ∞, ∀ x ∈ D and ∀ u ∈ U , i = 1, 2.

In this work, we assume that

1. The nonlinear system (3.14) is observable, and
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2. The disturbance vector w and fault vector f are L2 square-integrable satisfying

∥w∥[0,t] < ∞ and ∥f∥[0,t] < ∞.

3.4.2 Residual generation

Define the error of state e = x− x̂ and measurement residual r = W (y− ŷ).

Then, the dynamics of the error of state can be derived as follows:



ė = (A − LC)e + (Ew − LFw)w

+(Ef − LFf )f + ϕ(x, u) − ϕ(x̂, u)

r = W (y − Cx̂ − Du)

. (3.15)

We can compactly rewrite (3.33) as:


ė = Āe + Φ + Ēww + Ēf f

r = C̄e + F̄ww + F̄f f

(3.16)

with Φ ≜ ϕ(x, u) − ϕ(x̂, u) and


Ā = A − LC, Ēw = Ew − LFw, Ēf = Ef − LFf

C̄ = WC, F̄w = WFw, F̄f = WFf

. (3.17)

We assume W = I as suggested by [90]. The residual r can be used for fault detection

[73].
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3.4.3 Mixed H−/H∞ optimization for observer design

The fault detection problem becomes challenging when there is no clear

distinction between disturbances and faults. Such a situation may mislead the fault

detection filter, triggering false alarms. To cope with such a concern, we considered

the mixed H−/H∞ optimization framework for designing our proposed observer [73].

This framework aims to simultaneously make the fault detector filter responsive to

faults and sturdy against disturbances by satisfying the following criteria

1. Robustness against disturbances w:

∥rw∥[0,t] ≤ α∥w∥[0,t]. (3.18)

2. Sensitivity to faults f :

∥rf ∥[0,t] ≥ β∥f∥[0,t] (3.19)

where

rw = C̄e + F̄ww (3.20)

rf = C̄e + F̄f f . (3.21)

In Section 3.4.6, we pose the task of designing a fault detection filter as

a convex optimization problem. We will find linear matrix inequalities to propose
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sufficient conditions to guarantee the existence of such a filter. In this sense, we

transform conditions (3.18) and (3.19) into linear matrix inequalities to incorporate

them in the filter design effectively.

3.4.4 Threshold computation

The threshold is calculated when the system is in a fault-free condition and

subjected to disturbances

Jth = sup
w∈L2

∥rw∥. (3.22)

The threshold is an upper bound for the residual norm in a fault-free condition.

Notice that the threshold is a fixed magnitude immutable to the faults and the

GFM’s conditions. The third component, the residual norm, is computed from the

proposed observers, which are designed to significantly perturb the residual norms

by the presence of faults, making the residual norm exceed the threshold.

3.4.5 Lipschitz observer design

Lipschitz systems include a broad range of physical systems, providing flex-

ibility for the design of observers. Let us assume the nonlinear function ϕ(·) satisfies

the Lipschitz condition given by the definition given as follows

Definition 3.4.1. A function f(·) is Lipschitz continuous if there exists a constant
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γ > 0 such that ∀ u ∈ U and ∀ x, x̂ ∈ D we have

∥f(x, u) − f(x̂, u)∥ ≤ γ∥x − x̂∥. (3.23)

The lemma presented below gives sufficient conditions for the existence

of a filter gain matrix L based on the mixed H−/H∞ optimization framework for

Lipschitz nonlinear systems.

Lemma 3.4.1 (see [73]). Consider the system (3.14) with a Lipschitz continuous

observer defined in (3.2) and (3.23). If there exists a gain matrix L, strictly positive

scalars α, β, ε1, ε2, and identical positive definite matrices Q and P such that the

following two LMIs hold


Ω1 PĒw + C̄⊤F̄w P

∗ −α2I + F̄ ⊤
w F̄w 0

∗ ∗ −ε1I


≺ 0 (3.24)


Ω2 QĒf − C̄⊤F̄f Q

∗ −β2I + F̄ ⊤
f F̄f 0

∗ ∗ −ε2I


≺ 0, (3.25)

where Ω1 = Ā⊤P + PĀ + C̄⊤C̄ + ε1γ2I, Ω2 = Ā⊤Q + QĀ − C̄⊤C̄ + ε2γ2I, and γ is

the given Lipschitz constant. Then, i) the residual generator in (3.33) is stable, and
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ii) the resulting observer satisfies the robustness and sensitivity constraints (3.18)

and (3.19).

The proof of Lemma 3.4.1 can be found in [73], where an LMI solution

is proposed by considering a nonlinear system that satisfies the Lipschitz condition

under the H−/H∞ framework.

3.4.6 Proposed OL and QB observer design

The Lipschitz constant is sensitive to the operating region of the system

D × U and the parameters that define the nonlinear function ϕ(·). In this scenario,

Lemma 3.4.1 might presumably fail to obtain the observer’s gain matrix L and make

the residual generator dynamics stable. Generalizing the Lipchitz condition by con-

sidering the QB and OL conditions is a suitable alternative according to [82, 83].

Definition 3.4.2. The function f(·) is one-sided Lipschitz continuous if a constant

ρ ∈ R exists such that ∀ u ∈ U and ∀ x, x̂ ∈ D:

⟨f(x, u) − f(x̂, u), x − x̂⟩ ≤ ρ∥x − x̂∥2. (3.26)

Definition 3.4.3. The function f(·) is quadratic inner-bounded continuous if the

constants δ, φ ∈ R exist such that ∀ u ∈ U and ∀ x, x̂ ∈ D

∥f(x, u) − f(x̂, u)∥2 ≤ φ⟨x − x̂, f(x, u) − f(x̂, u)⟩+

δ∥x − x̂∥2. (3.27)
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Remark 3.4.1. Different from the Lipschitz constant γ, the constants ρ, δ, and φ

are not required to be positive. Hence, it is beneficial for observers to have a less

conservative design.

In the following theorem, we propose sufficient conditions that incorporate

the H−/H∞ framework, and conditions (3.26) and (3.27) to demonstrate the exis-

tence of the matrix gain L.

Theorem 3.4.1. Consider the constants ρ, δ, and φ, the system in (3.14) satisfy-

ing the conditions (3.26) and (3.27), the observer defined in (3.2) and the residual

generator in (3.33). If exist a filter gain matrix L, strictly positive scalars α, β, and

{ϵi}4
i=1, and identical positive definite matrices Q and P , such that the LMIs given

as follows hold


Ω1 PĒw + C̄⊤F̄w P + 1

2(ϵ2φ − ϵ1)I

∗ −α2I + F̄ ⊤
w F̄w 0

∗ ∗ −ϵ2I


≺ 0 (3.28)


Ω2 QĒf − C̄⊤F̄f Q + 1

2(ϵ4φ − ϵ3)I

∗ −β2I + F̄ ⊤
f F̄f 0

∗ ∗ −ϵ4I


≺ 0 (3.29)

where Ω1 = Ā⊤P +PĀ+ C̄⊤C̄ +(ϵ1ρ+ϵ2δ)I, Ω2 = Ā⊤Q+QĀ− C̄⊤C̄ +(ϵ3ρ+ϵ4δ)I.

Then, we have i) the residual generator is stable, and ii) the observer satisfies the
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robustness and sensitivity constraints (3.18) and (3.19).

The proof of Theorem 3.4.1 is found in appendix A. Notice that matrices in

(3.28) and (3.29) are nonlinear in terms of L, P and Q. However, if we set Y = PL,

then (3.28) and (3.29) become LMIs in Y . The matrix gain L can be obtained using

L = P −1Y once the problem is solved. Hereafter, we refer to our proposed observer

design as the OL or OL-QB observer.

3.4.7 Relation between Lipschitz and one-sided Lipschitz observer

design for nonlinear systems

The relation between Lemma 3.4.1 and Theorem 3.4.1 is established in

Theorem 3.4.2, which indicates that the latter is less conservative.

Theorem 3.4.2. Assume the function ϕ(x, u) is nonlinear and Lipschitz continuous

with γ as its Lipschitz constant, and the gain matrices L, P , Q, non-negative scalars

ε1, ε2 exist such that the inequalities (3.24) and (3.25) hold. Then, there exist non-

negative scalars ϵ1, ϵ2, ϵ3, ϵ4, real scalars ρ, δ, φ, together with the matrices L, P ,

and Q such that the inequalities in (3.28) and (3.29) are satisfied.

The proof of Theorem 3.4.2 is found in Appendix A.

Remark 3.4.2. One-sided Lipschitz continuity does not imply Lipschitz continuity

because the Lipschitz condition is a two-sided inequality [82]. Hence, the converse of

Theorem 3.4.2 does not hold, which implies that Theorem 3.4.1 is less conservative

than Lemma 3.4.1.
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Figure 3.2: The islanded droop-controlled AC microgrid test system [3].

Figure 3.3: Residual norms under busbar fault at the PCC using a one-sided Lipschitz
observer: (a) GFM #1 at t = 4, (b) GFM #2 at t = 5, (c) GFM #3 at t = 6, and
(d) GFM #4 at t = 7. The faults are cleared after 0.2 seconds.

3.4.8 Numerical experiments

We evaluate our proposed observer- and residual-based strategy using the

islanded AC microgrid shown in Fig. 3.2. The microgrid has four GFMs, three

inductive branches, and four RL loads. The parameters of the microgrid, GFMs,

branches, and loads are presented in Tables 3.1 and 3.2, as described in [3]. We

run the experiments using a MacBook Pro 2019, 2.8 GHz Intel Core i7 processor,

16 GB 2133 MHz LPDDR3 RAM, and 1 TB hard disk drive. The experiments were

performed using MATLAB, Simulink, and the YALMIP toolbox with the semidefinite

programming solvers LMILAB, MOSEK, SeDuMi, and SDPT3 to solve optimization
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Figure 3.4: Residual norms under an actuator fault corresponding to input ωni. (a)
and (b) GFM #2 at t = 5; (c) and (d) GFM #4 at t = 7. The residual norms of
the one-sided Lipschitz observer are shown in (a) and (c), while the residual norms
of the Lipschitz observer correspond to (b) and (d). The fault is cleared after 0.2
seconds.

Figure 3.5: Residual norms under an actuator fault corresponding to input Vni. (a)
and (b) GFM #1 at t = 4; (c) and (d) GFM #3 at t = 6. The residual norms of
the one-sided Lipschitz observer are shown in (a) and (c), while the residual norms
of the Lipschitz observer correspond to (b) and (d). The fault is cleared after 0.2
seconds.

Figure 3.6: Residual norms under an inverter bridge fault (sudden efficiency reduc-
tion). (a) and (b) GFM #1 at t = 4; (c) and (d) GFM #4 at t = 7. The residual
norms of the one-sided Lipschitz observer are shown in (a) and (c), while the residual
norms of the Lipschitz observer correspond to (b) and (d). The fault is cleared after
0.2 seconds.
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problem described by Lemma 3.4.1 and Theorem 3.4.1. The Lipschitz, OL, and QB

constants are presented in Table 3.6 and computed according to [84]. For a single

type of fault, the fault simulations happen in this order: at t = 4 for GFM #1, at

t = 5 for GFM #2, at t = 6 for GFM #3, and at t = 7 for GFM #4. All the

faults are cleared after 0.2 seconds. The disturbances are modeled as uncorrelated

white Gaussian noise on the process and measurements equations. The disturbance

matrices are Ew = B, and Fw = D [73]. The faults of other GFMs are also considered

disturbances or unknown inputs. For each of our experiments, we use a window of

ten seconds to find the highest value of the residual vector r. Such a value is selected

as the corresponding threshold Jth at each experiment. The following simulations

compare our proposed approach based on the OL and QB conditions against the

state-of-the-art Lipschitz design.

3.4.8.1 Threshold and residual computation

The threshold is computed over a finite-length period according to two

criteria. The first criterion points out that the longer the period, the better the

estimate of the actual value of (3.22). The second criterion suggests that a more

extended period leads to selecting a threshold that helps reduce the rate of false

alarms. In this regard, we recommend choosing the minimum data window to be

at least ten times the duration of the faults. In this work, we have chosen a more

conservative data window of fifty times the duration of the faults, that is, a window of

10 seconds. Notice that the computed threshold is valid before, during, and after the
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Table 3.1: Parameters of the grid-forming inverters.

Parameter Values
GFM #1 & #2 GFM #3 & #4

Power rating (kVA) 45 34
Voltage rating (V) 380 380

mP i 9.4 × 10−5 12.5 × 10−5

nQi 1.3 × 10−3 1.5 × 10−3

Rci (Ω) 0.03 0.03
Lci (mH) 0.35 0.35
Rfi (Ω) 0.1 0.1

Lfi (mH) 1.35 1.35
Cfi ( µF ) 50 50

KP V i 0.1 0.05
KIV i 420 390
KP Ci 15 10.5
KICi 20000 16000

ωb (rad/s) 314.16 314.16

fault occurrence, which means that minimum post-fault data is not required. Besides

the threshold, the residual signal computation does not require a data window or

minimum post-fault data. Instead, the residual calculation is instantaneous because

the residual signal is theoretically obtained from the error dynamics represented by

(3.16). Notice that the residual is calculated online before, during, and after the

presence of the faults.

3.4.8.2 Droop control

Busbar fault

Fig. 3.3 shows the response of the residual norm using an OL-QB observer

when a busbar fault occurs at the end of the output connector of all GFMs. The

fault impedance considered is 10% of the nominal voltage magnitude of the busbar.
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Table 3.2: Parameters of the AC microgrid.

Values
Resistance (Ω) Inductance (µH)

Line 1 0.23 318
Line 2 0.35 1847
Line 3 0.23 318
Load 1 30 0.477
Load 2 20 0.318
Load 3 25 0.318
Load 4 25 0.477

The depicted figure illustrates the sensitivity of the four residuals to the busbar fault,

with all residuals measuring less than two units. An important observation is that

the residual for an individual GFM remains robust against disturbances and faults

occurring at other GFMs’ PCC. The fault location can be readily identified due to the

distinct sensitivity of each residual to its corresponding busbar fault. The observer

accommodates the faults at other busbars as disturbances. GFM #1 exhibits the

smallest detection time of to = 8 ms, whereas GFM #4 exhibits the largest around

to = 45 ms. The lowest clearing time tc = 30 ms corresponds to GFM #3, whereas

GFM #1 exhibits the highest tc = 49 ms.

Actuator faults

Actuator faults considering the input signal ωni for GFMs #2 and #4, and

the input signal Vni for GFMs #1 and #3 are shown in Figs. 3.4 and 3.5 respec-

tively. We notice that the behavior of the residual norms is very similar for both the

one-sided Lipschitz and Lipschitz observers. The residual thresholds are a little less
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Table 3.3: Lipschitz, OL, and QB constants for all the grid-forming inverters.

GFM # γ ρ δ φ

1 & 2 44.7488 22.3688 -0.7493 2.3599
3 & 4 44.7488 22.3688 -0.7535 2.3679

Table 3.4: Computational time of OL-QB and Lipschitz observers: Five-fold average
values of the mean µ and the standard deviation σ (both in seconds).

Fault type OL-QB Lipschitz
µ σ µ σ

Three-phase 1144 7.77 – –
ωni 1736 3.85 4076 14.89
Vni 1472 3.11 3784 12.76

Inverter bridge 1686 6.91 1916 6.02

for the one-sided Lipschitz observer. Notice that the residual norm of each GFM re-

mains unaffected by the occurrence of the faults in the other GFMs. In other words,

the actuator faults are correctly identified among the GFMs. Both observer types

present fault detection and clearing times of less than 1 ms.

Inverter bridge fault

A similar situation occurs with the inverter bridge fault, as shown in Fig. 3.6.

The inverter bridge fault corresponds to a reduction in the efficiency of the bridge.

The residual norm is below the threshold during the absence of the fault, and it stays

above the threshold under the presence of the fault. The location of the bridge faults

is properly identified because the residual norms are sensitive to the corresponding

GFM. Both observers present fault detection and clearing times of less than 1 ms.
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Figure 3.7: Residual norms using an OL-QB observer (upper row) and Lipschitz
observer (lower row) in an AC microgrid with technology mix. (a) and (b) GFM #1
under a busbar fault; (c) and (d) GFM #3 under a ωni actuator fault; (e) and (f)
GFM #1 under a Vni actuator fault; (g) and (h) GFM #3 under an inverter bridge
fault. The faults last 0.2 seconds.

Figure 3.8: Voltage magnitude (p.u.) of GFM #1 in an AC microgrid with technology
mix. (a) busbar fault, (b) ωni actuator fault, (c) Vni actuator fault, and (d) inverter
bridge fault. The faults last 0.2 seconds.

3.4.8.3 Virtual synchronous machine control

In this section, we modify the technology mix of the microgrid by replac-

ing GFM #2 and GFM #4 with a grid-following inverter (GFL) and a fourth-order

synchronous machine. The dynamic equations of the GFL and parameters can be

found in [2]. Similarly, the synchronous machine (SM) parameters and model with

turbine-governor and exciter control are found in [91–93]. Second, the droop control

of the remaining GFMs #1 and #3 is transformed into its equivalent virtual syn-
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Figure 3.9: Frequency (p.u.) of GFM #1 in an AC microgrid with technology mix.
(a) busbar fault, (b) ωni actuator fault, (c) Vni actuator fault, and (d) inverter bridge
fault. The faults last 0.2 seconds.

chronous machine control [94].

Busbar fault

Figure 3.7a shows that the residual norm of the OL-QB observer has in-

creased its peak magnitude during the presence of the busbar fault while preserving

the threshold’s magnitude compared with the norm’s response using droop control

as presented in Figure 3.3a. The residual norm of the Lipschitz observer exhibits

unresponsive behavior during the fault occurrence. The OL-QB observer exhibits a

fault detection time around to = 9 ms, whereas the clearing time is close to tc = 50

ms.

Actuator faults

Figure 3.7 shows that the shapes of the residual norm under the ωni and Vni

actuator faults present a slow decay after the fault clearance. Such a decay demands

an increase in the threshold for the OL-QB and Lipschitz observers. According to

our experiments, slow decay results from the dynamics of the frequency and voltage
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magnitude secondary controllers. The detection time for both type of observers is

to = 1 ms, whereas the clearing times are less than to = 1.3 ms.

Inverter bridge fault

The response of the residual norm under the inverter bridge fault for GFM

#3 is shown in Figures 3.7g and 3.7h. Both responses show higher peak values

during the presence of the fault compared to the peak values presented in Figure 3.6.

The threshold magnitudes remain similar to the magnitudes of the droop-controlled

GFM #4 shown in Figures 3.6c and 3.6d. Both observers present fault detection and

clearing times of less than 1 ms.

Figures 3.8 and 3.9 show the voltage magnitude and frequency response per

unit at the PCC of GFM #1 when the four internal faults happen. A remarkable

observation is that faults will likely be decoupled between voltage magnitude and

frequency. For example, the busbar fault is observable in the voltage magnitude,

not the frequency. The reason for this phenomenon lies in the characteristic swing

equation where the equivalent inertia is inversely proportional to the droop coefficient

mP i, which is in the order of 10−5. Consequently, any change in the unfiltered active

power due to the busbar fault does not essentially influence the dynamics of frequency

deviations ∆ω. A similar analysis can be derived for the other internal faults and

the droop-controlled GFMs.

Table 3.4 compares the simulation times between the OL-QB and Lipschitz

observers. We can not report the simulation time of the Lipschitz design under
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Table 3.5: Minimum and maximum fault detection (to) and clearance (tc) response
times of the proposed OL-QB observers. The values are obtained by comparing the
response times of the observers among all the experiments.

Fault
Busbar ωni Vni Bridge
to tc to tc to tc to tc

min 7.5 24.9 1.0 1.1 1.0 1.1 1.0 1.0
max 49.7 52.2 1.0 1.3 1.0 1.2 1.0 1.0

a busbar fault because its corresponding optimization program (cf. Lemma 3.4.1)

that computes the observer gain matrix is reported as infeasible by the optimiza-

tion solvers (cf. Remark 3.4.3). Table 3.5 presents our approach’s minimum and

maximum fault detection and clearing times among all the simulations.

Remark 3.4.3. We identify a drawback of the state-of-the-art Lipschitz observer

design. For this particular design, notice that the squared Lipschitz constant in the

block matrices Ω1 and Ω2 forces the positive definiteness of the LMIs in (3.24) and

(3.25). Hence, the feasible set for the matrix gain L becomes more restricted than

the counterpart of the one-sided Lipschitz observer. The magnitude of the Lipschitz

constant further aggravates the situation. The feasibility issue becomes noticeable

for the busbar faults. The four solvers report the optimization problem described

by Lemma 3.4.1 as infeasible. On the other hand, the OL and QB constants are

not squared in their corresponding constraints and are at least half of the Lipschitz

constant (cf. Table 3.6).
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Figure 3.10: Residual norms under the simultaneous occurrence of faults in GFM
#1 using the proposed OL-QB observer. (a) busbar and actuator ωni fault with
droop control; (b) busbar and both actuator ωni and Vni faults with droop control;
(c) inverter bridge and actuator Vni fault with virtual synchronous machine control;
(d) inverter bridge, busbar and actuator Vni faults with virtual synchronous machine
control. The simultaneous faults occur at t = 4 and are cleared after 0.2 seconds.

3.4.8.4 Simultaneous occurrence of faults

Figure 3.10 presents a set of experiments under the simultaneous occurrence

of faults for GFM #1. Figure 3.10a shows the response of the residual norm under

the simultaneous presence of a busbar and Vni faults using our proposed observer

designed for a busbar fault. In contrast, an additional ωni fault is added to the ex-

periment in Figure 3.10b. The busbar fault is the major contributor to the sensitivity

of the residual signal. It can be seen that the ωni fault plays an almost negligible

role in the sudden change of the residual norm. Figure 3.10c shows the response of

the residual norm under the presence of an inverter bridge and actuator Vni faults

using a Lipschitz observer designed for an inverter bridge fault; an additional bus-

bar fault is added to the experiment in Figure 3.10d. The residual signal exhibits

a slight increase due to the presence of the busbar fault. Notice that regardless of

the simultaneous presence of the faults in the previous four experiments, we observe

that the busbar and inverter bridge faults can be identified precisely.

Remark 3.4.4. Fault diagnosis is a two-stage process consisting of fault detection
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and fault location stages. The fault detection stage sets the basis for a reliable fault

location technique. A fault location strategy can be easily derived once a fault is

detected. It is worth noting that a single fault may perturb the residual norms of

different observers. In this regard, we propose employing a bank of observers to iden-

tify triggering patterns among them, thus mitigating the occurrence of false alarms.

Another approach is to incorporate the matrix expressions Ef and Ff corresponding

to other faults into the disturbance matrix expressions Ew and Fw of the specific fault

being analyzed. Alternatively, combining these two solutions, as outlined in [71], can

also be considered. However, the comprehensive exploration of these directions is

beyond the scope of this paper and will be pursued in future research endeavors.

3.5 Fault detection with adaptive thresholding

3.5.1 Nonlinear model with polytopic uncertainties

In this section, we change the uncertainties in the nonlinear dynamical

system model from bounded to polytopic. Such a model can now be expressed as

follows 
ẋ = Āx + B̄u + Ēww + Ef f + ϕ(x, u)

y = C̄x + D̄u + F̄ww + Ff f

, (3.30)
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where,



Ā = A + ∆A B̄ = B + ∆B

C̄ = C + ∆C D̄ = D + ∆D

Ēw = Ew + ∆Ew F̄w = Fw + ∆Fw

,

and ϕ(x, u) captures the nonlinearities in the system. f is the vector of faults, and

w is the vector of disturbances. The model’s matrices are obtained based on the

system’s dynamical equations. Ef and Ff are the matrix representation of faults,

while Ew and Fw correspond to the matrix representation of disturbances. The model

uncertainties ∆A, ∆B, ∆C, ∆D, ∆Ew, and ∆Fw belong to the polytope defined as

∆A ∆B ∆Ew

∆C ∆D ∆Fw

 = Co {Ξ1, . . . , Ξp} , (3.31)

Ξi =

Ai Bi Ewi

Ci Di Fwi

 , ∀i = 1, . . . , p, (3.32)

where Co denotes the convex hull. Ai, Bi, Ci, Di, Ewi, and Fwi, ∀i = 1, . . . , p are

known matrices of appropriate dimensions.
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3.5.2 Residual generation

Let us define the measurement error r = y − ŷ and state error e = x − x̂.

Define Φ ≜ ϕ(x, u) − ϕ(x̂, u) and ϕ ≜ ϕ(x̂, u). Then, the dynamics of the state error

can be characterized as



ė = (A − LC) e +
(
Ēw − LF̄w

)
w + (Ef − LFf ) f

+Φ + (∆A − L∆C) x + (∆B − L∆D) u

r = Ce + F̄ww + Ff f + ∆Cx + ∆Du.

(3.33)

Let us rewrite the error dynamics as

ė

ẋ

 =

A − LC ∆A − L∆C

0 A + ∆A


e

x

+

∆B − L∆D

B + ∆B

u

+

Ēw − LF̄w

Ēw

w +

Ef − LFf

Ef

 f +

Φ

ϕ

 ,

r =
[
C ∆C

]e

x

+
[
∆D

] [
u

]
+
[
F̄w

] [
w

]
+
[
Ff

] [
f

]
.
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Also, let us define

ẽ =

e

x

 , w̃ = w, ũ = u,

Ã =

A − LC ∆A − L∆C

0 A + ∆A

 , B̃ =

∆B − L∆D

B + ∆B

 ,

C̃ =
[
C ∆C

]
, D̃ = [∆D] , Φ̃ =

Φ

ϕ

 ,

Ẽw =

Ēw − LF̄w

Ēw

 , Ẽf =

Ef − LFf

Ef



F̃w =
[
F̄w

]
, F̃f = [Ff ] .
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Thus, the error dynamics and residual vectors are given as


˙̃e = Ãẽ + B̃ũ + Ẽww̃ + Ẽf f̃ + Φ̃

r = C̃ẽ + D̃ũ + F̃ww̃ + F̃f f̃

, (3.34)

which will be used for fault detection [73].

3.5.3 Adaptive Threshold Design

The following theorem establishes an adaptive threshold for fault detection

in nonlinear systems.

Theorem 3.5.1. Given a scalar α ∈ R+, if there exist γ ∈ R and a positive definite

matrix P , such that the following inequalities hold



P 0 0 C̃⊤

0 I 0 F̃ ⊤
w

0 0 I D̃⊤

C̃ F̃w D̃ γI


≻ 0 (3.35)



Ã⊤P + PÃ + αP PẼw PB̃ P

Ẽ⊤
w P 0 0 0

B̃⊤P 0 −I 0

P 0 0 0


≺ 0 (3.36)
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Then, an adaptive threshold for the residual vector r is

Jth,adp(t) =
√

γ ×
(

e−αt ∗ ũ⊤ũ + d̄ + ũ⊤ũ
)
. (3.37)

We can minimize the upper bound by solving the following semidefinite

program

minimize
γ∈R,P ≻0

γ

subject to (3.35) − (3.36).

The proof of Theorem 3.5.1 can be found in Appendix A. Due to the poly-

topic uncertainty of the nonlinear system, the LMIs (3.35) and (3.36) represent infi-

nite LMI constraints, making the optimization problem infinite-dimensional and not

tractable. To deal with this problem, let us introduce the following theorem

Theorem 3.5.2 (see [95]). The following are equivalent for any H, Li, Ri.

H +
∑

i

Li∆Ri ≻ 0 ∀ ∆ ∈ Co (∆1, . . . , ∆k) (3.38)

H +
∑

i

Li∆jRi ≻ 0 ∀ j = 1, . . . , k (3.39)

The theorem says that the LMIs with polytopic uncertainty only need to

hold at the vertices of the polytope [95]. To apply Theorem 3.5.2 to the LMIs in

(3.35) and (3.36), we set Li = Ri = 1 with i = 1 in (3.39), and follow a series of
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mathematical operations that transform the LMIs into a finite set expressed as



P 0 0 C̃⊤
o

0 I 0 F̃ ⊤
wo

0 0 I D̃⊤
o

C̃o F̃wo D̃o γI


+



0 0 0 ∆C̃⊤
i

0 0 0 ∆F̃ ⊤
wi

0 0 0 ∆D̃⊤
i

∆C̃i ∆F̃wi ∆D̃i 0


≻ 0 ∀i = 1, . . . , p



Ã⊤
o P + PÃo + αP PẼwo PB̃o P

Ẽ⊤
woP 0 0 0

B̃⊤
o P 0 −I 0

P 0 0 0


+



∆Ã⊤
i P + P∆Ãi P∆Ẽwi P∆B̃i 0

∆Ẽ⊤
wiP 0 0 0

∆B̃⊤
i P 0 0 0

0 0 0 0


≺ 0

∀i = 1, . . . , p
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where

Ão =

A − LC 0

0 A

 , B̃o =

 0

B

 ,

C̃o =
[
C 0

]
, D̃o = [0] ,

Ẽwo =

Ew − LFw

Ew

 , F̃wo = [Fw] ,

∆Ãi =

0 ∆Ai − L∆Ci

0 ∆Ai

 , ∆B̃i =

∆Bi − L∆Di

∆Bi

 ,

∆C̃i =
[
0 ∆Ci

]
, ∆D̃i = [∆Di] ,

∆Ẽi =

∆Ewi − L∆Fwi

∆Ewi

 , ∆F̃wi = [∆Fwi] .
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Table 3.6: Parameters of the adaptive threshold for the busbar and sensor faults.

Busbar Sensor
Fault Fault

γ 0.493 0.026
α 1.290 0.121

(a) (b) (c) (d)

Figure 3.11: Impact of the internal faults on the voltage magnitude (p.u.) and
frequency (p.u.). (a) and (c) busbar fault during 0.2 seconds; (b) and (d) sensor
fault during 1 second.

3.5.4 Numerical experiments

We use the islanded AC microgrid, shown in Fig. 3.2, to test the proposed

adaptive threshold. The microgrid consists of two GFMs, one GFL, one SG, four

busbars, four loads, and three inductive RL branches. The parameters and data of

the GFMs and microgrid are shown in Tables 3.1 and 3.2. GFM #1 is selected as

the reference generator. The GFMs are locally controlled by the virtual synchronous

machine technique (GFM #1) and droop curves (GFM #2) [3]. Moreover, the GFMs

incorporate a distributed secondary control layer for the voltage magnitude and fre-

quency. The objective of the secondary voltage controller is to set the input Vni such

that the voltage magnitude components converge to voqi → 0 and vodi → vref . Sim-

ilarly, the secondary frequency controller chooses the input ωni such that ωi reaches
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ωcom. The distributed secondary control layer details are in [2]. The parameters of

the GFL can be found in [2]. We consider the classical fourth-order nonlinear model

for the SG [91] with a BPA-GG governor [93] and low-order exciter [92].

We run the experiments using a MacBook Pro 2019, 2.8 GHz Intel Core

i7 processor, 16 GB 2133 MHz LPDDR3 RAM, and 1 TB hard disk drive. The

simulations were run using Matlab and Simulink. We use the YALMIP toolbox and

the SDPT3 solver to solve the optimization problem in Theorem 3.5.1. All simu-

lations correspond to the grid-forming inverter selected as the reference generator.

Similar simulation results were obtained for the remaining inverters in the microgrid

test system. Our proposed adaptive threshold is compared with a fixed threshold

approach described in a recent work [73]. The disturbance matrices are designed as

Ew = B and Fw = D. The busbar fault is modeled as Ef = [B4 B5], and Ff = 0,

whereas the sensor fault is modeled as Ef = 0, and Ff = 1. The parameter values

for the residual thresholds are presented in Table 3.6. We select the parameters of

the LC filter as the uncertain parameters. Consequently, the vertices of the polytope

{Ξ1, . . . , Ξp} are obtained by uniformly selecting values of these parameters within

two percent of the nominal rating shown in Table 3.1. The number of vertices of the

polytope is set to p = 5.

3.5.4.1 Busbar Fault

The bus at the point of common coupling, which is the bus that connects

the GFM with the microgrid, may be subject to a busbar fault. The busbar fault
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(a) (b) (c)

Figure 3.12: Residual norm, adaptive and fixed threshold comparison: (a) busbar
fault, (b) busbar fault with postprocessing, and (c) sensor fault in v∗

odi.

(a) (b) (c)

Figure 3.13: Residual norm, adaptive and fixed threshold comparison with modeling
errors: (a) busbar fault, (b) busbar fault with postprocessing, and (c) sensor fault in
v∗

odi.

is implemented as a symmetrical fault corresponding to the sudden change of the

PCC’s voltage magnitude (vbi). Fig. 3.11a and Fig. 3.11c present the impact of the

busbar fault in the inverter’s output voltage magnitude (voi) and frequency (ωi).

The figures show that the busbar fault perturbs the voltage magnitude at the PCC

by decreasing it when the fault occurs and increasing it when the fault is cleared.

We observe that the inverter’s frequency remains unchanged during the presence of

the fault. In other words, the effects of the busbar fault are decoupled between the

voltage magnitude and frequency.

The following analysis explains the reason for this phenomenon. The voltage
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magnitude droop ωi = ωni − mP iPi is equivalent to ωi = ωni − ∆ω and a character-

istic swing equation ∆̇ω = 1
Ji

(Pi,uf − Di∆ω), where Ji, Di, Pi,uf are the equivalent

synthetic inertia, damping, and the unfiltered active power measurement for the i-th

GFM, respectively. Notice that the product 1
Ji

Pi,uf is exceedingly diminutive be-

cause the equivalent inertia Ji is inversely proportional to the droop coefficient mP i,

which is in the order of 10−5. Hence, any change in the unfiltered active power Pi,uf

due to the busbar fault does not largely influence the dynamics of ∆ω.

Fig. 3.12a shows the adaptive threshold and residual norm response when

a busbar fault occurs at time t = 2 s at the PCC. After 0.2 seconds, the busbar

fault is cleared at time t = 2.2 s. Both thresholds remain above the residual during

the absence of the fault in the entire simulation horizon. The adaptive threshold

decreases rapidly below the residual norm when the fault happens, as shown in the

left magnified box. The fault is detected as early as 0.01 milliseconds. Notice that

the adaptive threshold quickly responds to the fault presence, making fault detection

fast. On the other hand, using a fixed threshold takes almost ten milliseconds to

detect the busbar fault. In the right magnified box, we observe the behavior of the

thresholds when the fault is cleared. Both thresholds yield similar clearing times

because restoring the fault-free condition takes about 40 milliseconds.

Postprocessing of the adaptive threshold can reduce the threshold’s fault-

clearing time. In Fig. 3.12a, we observe that the adaptive threshold reaches a

maximum value of about six when the busbar fault is cleared at time t = 2.2 s.

This is because the threshold is computed using the input vector u, which is severely
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affected by the bus voltages vbdi and vbqi when the busbar fault occurs. Fig. 3.12b

presents the post-processed response of the adaptive threshold and the residual norm.

The postprocessing consists of holding the value of the dynamic residual for approx-

imately 30 milliseconds as soon as the maximum value of the threshold is detected,

i.e., immediately after the fault is cleared. The threshold follows its original value

afterward. A limitation of such an approach is that a busbar fault cannot be detected

while postprocessing takes effect.

3.5.4.2 Sensor Fault

The sensor fault is implemented as a sudden increase in v∗
odi, the refer-

ence voltage for the GFM’s voltage controller, corresponding to at least the 10% of

its steady-state value. A sudden change above 10% will excite the residual norm

sufficiently for our proposed adaptive threshold to detect the fault. Fig. 3.11b and

Fig. 3.11d present the impact of the sensor fault in the inverter’s output voltage mag-

nitude (voi) and frequency (ωi). We notice that the fault is observable in the voltage

magnitude rather than in the frequency. The explanation for this phenomenon is

the same as the explanation given for the busbar fault in Section 3.5.4.1. Fig. 3.11b

shows that the inverter’s voltage controller immediately reacts at t = 2 s in opposi-

tion to the detected increase in v∗
odi by reducing the output voltage magnitude vodi

and maintaining it around its pre-fault value. A similar situation occurs when the

fault is cleared at t = 3 s.

Fig. 3.12c presents the responses of the residual norm, dynamic, and fixed
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thresholds under a v∗
odi sensor fault. The sensor fault occurs at time t = 2 s and is

cleared at t = 3 s. The adaptive threshold obeys the desired detection logic during

the entire horizon. The adaptive threshold remains above the residual norm dur-

ing fault-free intervals and below the norm during fault occurrence. The proposed

adaptive threshold minimizes the rates of false alarms and missed detection to zero.

Notice that the adaptive threshold allows for a fast detection of around 0.01 mil-

liseconds. Also, it can be seen that the fixed threshold is tighter than the adaptive

threshold. However, the adaptive threshold stays farther from the residual than the

fixed threshold. Such a distance may help to avoid false alarms and missed detections

under potential new disturbances.

3.5.4.3 Modeling Errors

To account for the influence of modeling errors, we double the resistance

(Rfi), inductance (Lfi), and capacitance (Cfi) values of the LC filter. Also, we

double the resistance (Rci) and inductance (Lci) values of the output connector.

Meanwhile, the adaptive threshold parameters are the same as those presented in

Table 3.6. Fig. 3.13a, 3.13b, and 3.13c show the response of the adaptive threshold

with modeling errors for the busbar fault and sensor fault, respectively. The figures

show that the thresholds still follow the same response as the original ones without

errors. The adaptive threshold for busbar fault exhibits a slight positive bias; see

Fig. 3.13a and 3.13b. The adaptive threshold for the sensor fault presents a slight

negative bias; see Fig. 3.13c.
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(a) (b) (c)

Figure 3.14: Response of the residual norm, fixed threshold, and adaptive threshold
with postprocessing and modeling errors under a busbar fault using nonlinear loads
with (a) v = [v2

bdi v2
bqi]⊤, (b) v = [v4

bdi v4
bqi]⊤, and (c) v = [vbdiilodi

vbqiilodi
]⊤.

(a) (b) (c)

Figure 3.15: Response of the residual norm, fixed threshold, and adaptive thresh-
old with modeling errors under a sensor fault using nonlinear loads with (a) v =
[v2

bdi v2
bqi]⊤, (b) v = [v4

bdi v4
bqi]⊤, and (c) v = [vbdiilodi

vbqiiloqi
]⊤.

3.5.4.4 Nonlinear Loads

We evaluate the merits of our proposed adaptive threshold design using

three types of nonlinear loads by running experiments for both busbar and sensor

faults. In general, the dynamics of the loads in the dq domain are expressed as

i̇lo = J ilo + v where ilo = [ilodi iloqi]⊤, v = [vbdi vbqi]⊤ and

J =

 −Rlo
Llo

ωcom

−ωcom −Rlo
Llo

 .
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We modify v as a two-dimensional vector with entries nonlinear in terms

of vbdi and vbqi to model the nonlinear models. For these experiments, we consider

three types of nonlinear loads defined by v = [v2
bdi v2

bqi]⊤, v = [v4
bdi v4

bqi]⊤, and

v = [vbdiilodi vbqiiloqi]⊤. Figures 3.14 and 3.15 show that the response of our adap-

tive threshold design remains almost invariant to the three types of nonlinear load

dynamics across all the experiments. Such a result is congruent with the fault mod-

eling and state-space representation of the inverter, which considers the rest of the

microgrid and its components as external entities. Notice that, from the GFM side,

the dynamics of the nonlinear loads and other microgrid components show up in

the bus voltage magnitudes vbdi and vbqi, which are inputs of the state-space GFM

modeling. Despite these results, we acknowledge that other types of nonlinear loads

should be used to test the robustness of our approach. Nonetheless, these prelimi-

nary results show that our adaptive threshold design achieves an accurate response

in the presence of the considered nonlinear loads.

3.5.4.5 Input Delays

In this section, we evaluate the performance of the proposed approach when

the input vector u is delayed d units of time. Notice that three out of five input

signals, ωcom, ωni, and Vni might be subject to delays because these signals travel

through the communication network established by the secondary control layer. The

other two input signals, the dq bus voltage magnitudes (vbdi) and (vbqi), are not

influenced by the communication delays because they are physical signals. Figures
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(a) (b) (c)

Figure 3.16: Response of the residual norm, fixed threshold, and adaptive threshold
with postprocessing and modeling errors under a busbar fault with an input delay
of (a) d = 1 ms, (b) d = 5 ms, and (c) d = 10 ms.

(a) (b) (c)

Figure 3.17: Response of the residual norm, fixed threshold, and adaptive threshold
with modeling errors under a sensor fault with an input delay of (a) d = 1 ms, (b)
d = 5 ms, and (c) d = 10 ms.

3.16 and 3.17 show the response of the residual norm, fixed threshold, and adaptive

threshold with postprocessing and modeling errors under a busbar and sensor fault

for input delays of 1 ms, 5 ms, and 10 ms. We observe that the input delay setbacks

the response of the adaptive threshold proportionally to the value of d. The higher the

delay d, the longer the adaptive threshold takes to respond to the fault occurrence or

clearance. Figures 3.16a and 3.17a show that the response of the adaptive threshold

and residual norm preserve the accuracy of the fault detection logic. However, as

shown in Figure 3.17c, when the delay is d = 10 ms, both the observer residual and
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START

Compute the OL and QB constants according to
Definitions 3.4.2 and 3.4.3

Select the fault vector f and matrix Ef according to Section 3.3.2

Obtain the observer gain matrix L by solving
the feasibility program presented in Theorem 3.4.1

Compute the fixed (3.22) or adaptive (3.37) threshold Jth

Compute the residual norm r according to (3.16) or (3.34)

∥r∥2 ≤ Jth

Trigger fault alarm

Is the fault cleared?

No

Yes

No Yes

Figure 3.18: Flowchart of the proposed fault detection methods.

adaptive threshold do not synchronize correctly, leading to unwanted outcomes of

the detection logic for almost 5 ms.

Figure 3.18 presents the flowchart of our proposed fault detection methods.

3.6 Discussion

The two detection strategies presented in this chapter can be merged into

one module that exchanges inputs and outputs with the inverter’s sensor and con-
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troller. The module can be implemented in real-time within the inverter’s embed-

ded microcontroller as code written in any programming language with appropriate

software libraries. The processing extra burden exerted over the microcontroller is

minimal due to the advancements in computational processing power for microcon-

trollers. A significant advantage of our approach is that its implementation requires

no additional hardware because the module uses signals already measured by the grid-

forming inverter. Such a solution is cost-effective, with the extra benefit of making

it an entirely internal solution where other external information is not required.

We divide our proposed scheme into four stages to define its complexity

and computation burden. The first stage computes the OL and QB constants in less

than 20 minutes according to the algorithms in [84] with a complexity of O(n3 nD)

and O(n3 n2
D) respectively, where n is the number of states and nD is the number

of samples taken from the operating region D. It takes approximately 20 minutes to

compute the OL and QB constants using the processing power of a MacBook Pro

2019, 2.8 GHz Intel Core i7 processor, 16 GB 2133 MHz LPDDR3 RAM, and 1 TB

hard disk drive. The constants need to be recomputed when the operating region

of the grid-forming inverter is reduced or expanded as a consequence of modeling

the inverter with a simpler or more elaborated state space representation. The

second stage solves the semidefinite program posed in Theorem 3.4.1 in less than

twenty seconds using primal-dual interior points methods, which have a worst-case

complexity estimate of O(p2.75K1.5) where p is the number of variables (states and

measurements), and K is the number of constraints [96]. The threshold computation
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performed in the third stage has a complexity of O(t) for the fixed thresholding

approach, and O(p2.75K1.5) for the adaptive thresholding strategy. Lastly, the fourth

stage computes the residual norm online with a complexity of O(m) where m is the

number of the system’s measurements.

The works [71], [73], and [97] propose methods similar to our proposed ap-

proach because they develop a residual-, observer-, and model-based fault detection

strategy using the H−/H∞ optimization framework with fixed thresholding. How-

ever, the main limitation of [71] is that the observers’ design targets linear dynamic

systems in DC microgrids. The essential drawback of [73] is that the authors need

to consider the limitations of the Lipschitz condition while designing the observers

for fault detection. In [97], the authors limit their approach to sensor faults and do

not study grid-forming inverters. Our proposed fault detection method overcomes

these limitations because the observers are designed for the nonlinear dynamics of

the GFMs in AC microgrids, considering four different types of faults based on the

OL-QB conditions that improve upon the limitation of the state-of-the-art Lipschitz

design.

Finally, choosing between a fixed and adaptive threshold depends primarily

on the input’s dynamics. We suggest the fixed thresholding method in the scenario

where the inverters are governed by primary controllers only, and the microgrid

conditions are stable. In such a scenario, the input vector, mainly governed by the

bus voltage magnitude at the PCC and the voltage and frequency references, changes

slowly over time. Hence, the input dynamics can be considered negligible. Otherwise,
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we recommend considering the adaptive thresholding method.

3.7 Summary

We propose two fault detection strategies using a nonlinear observer de-

sign based on the OL and QB conditions with fixed and adaptive thresholding for

the emergent grid-forming inverters technology. We derive the matrix expressions

of faults and disturbances affecting GFMs and consider them in the observer design

process. The internal faults considered in this work are busbar, actuator, inverter

bridge, and sensor faults. The first strategy poses a set of LMI constraints and

H−/H∞ optimization to design an observer that achieves sensitivity to faults and

robustness against disturbances. The proposed observer design is compared with the

state-of-the-art design based on the Lipschitz condition. The association between

the Lipschitz and the OL-QB observer is studied theoretically and experimentally,

showing that the latter allows for a less restrictive observer design with less com-

putational time. The second strategy presents an adaptive threshold for GFMs in

islanded-mode AC microgrids. The proposed threshold is computed as an upper

bound on the ℓ2 norm of the residual vector under a fault-free condition. The bound

parameters are successfully obtained by solving a semidefinite program with two

constraints of linear matrix inequalities. We demonstrate that the two proposed

approaches perform better than the state-of-the-art designs regarding trustworthy

detection and computational time. Moreover, leveraging the available signals of typ-
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ical grid-forming inverters, our proposed strategies do not require additional sensors,

yielding a cost-effective solution. Our proposed approach is evaluated with an is-

landed droop-controlled microgrid. The numerical tests corroborate our proposed

approaches’ effectiveness and feasibility of real-world implementation.
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Chapter 4

Conclusions and future work

4.1 Conclusion

This thesis aims to create and assess new anomaly detection methods to en-

hance the situational awareness of modern power systems using data mining, machine

learning, and observer-based control theory.

Chapter 2 introduces two novel schemes based on the Hoeffding adaptive

tree classifier for detecting and identifying cyber and non-cyber contingencies in

cyber-physical power systems. The first method constructs a new feature space for

labeled energy data via online dictionary learning under the semi-supervised learning

framework. The new space consists of extracted patterns from an unlabeled dataset

that transforms the labeled data according to the dictionary atoms, delivering valu-

able information to the HAT classifier. The second method develops an instance

selection strategy that works as a wrapper of the HAT classifier, enhancing its capa-
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bilities. The selection strategy consists of three actions that allow the HAT classifier

to adapt to evolving data distributions with minimal time and memory burden. The

extensive numerical results demonstrate the superior performance of our methods

compared to the competitors.

Chapter 3 describes two methods for detecting internal faults with fixed and

adaptive thresholds for grid-forming inverters operating in islanded AC microgrids.

The internal faults considered in this work are the busbar, sensor, actuator, and

inverter bridge. We express the mathematical model of the inverters in a nonlinear

state-space representation with bounded and parametric uncertainties. The model

nonlinear terms are relaxed from satisfying the Lipschitz condition to satisfying the

one-sided Lipschitz and quadratic-inner boundedness conditions. The first method

designs a nonlinear observer sensitive to faults and robust against disturbances based

on the H−/H∞ optimization framework using the OL and QB conditions. The as-

sociation between the Lipschitz and the OL-QB conditions in the observer design

process is studied theoretically and experimentally, showing that the latter allows

for a less restrictive observer design with less computational time. We derive the

matrix expressions of faults and disturbances affecting GFMs as part of the alter-

ations in the state-space representation of the inverters’ model and consider them

in the observer design process. The second method improves upon the first method

by introducing an adaptive threshold that follows the behavior of the inverters’ in-

put signals. The adaptive threshold is calculated as the upper bound on the ℓ2

norm of the residual vector in the absence of faults. The bound parameters are
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obtained as the solution of a semidefinite program with two linear matrix inequali-

ties constraints. We demonstrate that our proposed approaches perform better than

the state-of-the-art designs regarding trustworthy detection and computational time.

Moreover, leveraging the available signals of typical grid-forming inverters, our ap-

proach does not require additional sensors, yielding a cost-effective solution. Our

proposed approach is evaluated in inverters operating in small-sized microgrids. The

numerical tests corroborate our proposed approaches’ effectiveness and feasibility of

real-world implementation.

4.2 Future work

The proposed instance selection algorithm in Chapter 2 consists of three

algorithmic stages. The first stage relies on reordering the instances based on their

spatio-temporal distance to the target. Although instance reordering is an essential

component of the first stage, it may degrade the original temporal distribution of the

data stream, as shown in [98]. The temporal distribution of the data is crucial because

it embeds the actual unknown concept of the data. Reordering the data may cause

it to acquire a different concept over time; such a situation represents a different

learning problem than the original one. In addition, SIS performs a window size

search with a warm restart and stops the search only if the accuracy on a trial set is

below a specified threshold. Such a strategy restricts the search around the previous

best window size, leading to suboptimal window sizes. The search strategy imposes
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a trade-off between reducing the searching space and decreasing the complexity of

the method to avoid time and memory restrictions. Finally, the selection algorithm

introduces four additional hyperparameters that must be tuned according to the

CPPS application. Consequently, the researcher either tunes the hyperparameters

using an existing preprocessed dataset or tunes the hyperparameters on the fly. We

deem it essential to incorporate these considerations as part of future research to

avoid degrading the performance of the proposed classifiers based on the Hoeffding

adaptive tree.

While our proposed fault detection approaches are convenient at the mi-

crogrid level, further analysis is needed for their immediate application to inverter-

dominant large-scale power systems. The fundamental reason is that large-scale

power systems with high penetration of inverters bring significant stability chal-

lenges. Specifically,

1. The dynamics of converters and their controls operate on a similar time scale

as the line dynamics, which can result in resonance phenomena and, ultimately,

instability [99]. This situation is further aggravated by the coupling of multi-

timescale control loops between different inverters’ technologies and the nu-

merous lines or devices connected to large-sized power systems.

2. Large-scale power systems may demand longer interconnection lines. In [100],

the authors showed that the length of the lines is inversely proportional to the

stable penetration of inverter-based resources. They also showed a case study
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where a longer transmission line could not support a higher penetration level

of inverter-based resources such as grid-forming and grid-following inverters

regarding the small-signal stability.

Potential changes in the grid-forming inverters at the parametric and control lev-

els are required to accommodate the aforementioned stability challenges [99]. The

parameters of the grid-forming inverter are critical to determine the dynamic behav-

ior of the power-sharing capability, the output filter, the output connector, and the

controllers’ bandwidth. These parameters must be fine-tuned to meet the power sys-

tem’s stability criteria. Our proposed detection scheme relies on the existence of an

observer matrix L that satisfies a couple of linear matrix inequality (LMI) constraints

given in Theorem 3.4.1. Notice that the grid-forming inverters’ parameters affect the

feasibility of such constraints. Such a situation may impair the application of our

method to an arbitrary system. In this regard, we recommend conducting a sensi-

tivity analysis of the inverter’s parameters to check the feasibility of the LMIs before

possibly applying our proposed approach to inverter-dominant large-scale power sys-

tems. Moreover, the controllers are responsible for setting the voltage magnitude and

frequency supplied to loads and the rest of the microgrid [101]. The advancements in

applied control will potentially present new controller designs for grid-forming invert-

ers to reduce the timescale coupling between the controller and the power devices.

The new controllers may introduce nonlinearities that can affect the magnitude of the

one-sided Lipschitz and quadratic inner boundedness constants from the nonlinear

function ϕ. These constants have a role in determining the existence of the observer

121



matrix gain L. We consider it essential to study the impact of new nonlinearities

added to the state space representation of the grid-forming inverter in our proposed

detection approach.

Stability challenges may exist in small-scale power systems dominated by

power electronics, possibly making it necessary to implement the considerations as

mentioned earlier at the microgrid level. However, accommodating the suggested

considerations in large-scale power systems is more challenging than in small-scale

systems, reinforcing our argument that our proposed approach may not immediately

apply to bulk systems. In large-scale power systems, identifying the inverter or set of

inverters injecting anomalous dynamics into the grid will likely be carried out only at

a geographical level [102]. Furthermore, the ownership mix of inverter-based assets

is diverse. Asset owners usually do not have a transparent model of the converter-

interfaced resource or its controller [103]. The size of small-scale power systems

permits a relatively fast identification and solution of potential stability issues [104].

In this regard, future studies in fault detection for grid-forming inverters should

investigate possible solutions to the stability concerns in multiple power converters-

based systems at small or large scales.

We have chosen a Luenberger observer design over the stochastic counter-

parts, such as Kalman or particle filters, mainly for the implementation and design

simplicity. The stochastic estimators compute the gain online, whereas Luenberger

observers promote an offline computation of the observer matrix gain, reducing the

computational efforts at each time step. However, we leave the study of stochastic
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estimators for fault detection as part of our future endeavors. Such estimators may

play an essential role in more complex scenarios. For example, the Luenberger ob-

server design will not be suitable when considering a more elaborate inverter model,

which may introduce complex nonlinear system dynamics. Also, Luenberger ob-

servers can not handle measurements that are nonlinearly related to the inverter’s

states or measurements with non-Gaussian noise.

Our proposed approach with an adaptive threshold will be affected by net-

work delays when the grid-forming inverters operate under the regulation of a sec-

ondary control layer that relies on a communication network. The reason is that

our approach uses the state-space input signals transported through the network’s

communication channels. Although the convergence of the observer with input de-

lays is guaranteed, its response will be delayed, delaying the residual signal used to

compare it with the adaptive threshold. Our goal is to design an adaptive threshold

for residual-based fault detection; hence, we leave the design of an observer robust to

input delays as part of future endeavors. The designed adaptive threshold performs

well with input delays of less than 10 ms but will exhibit a slow response for longer

delays. For this reason, an extension to this work would be to assess low-latency

communication protocols and their impact on our proposed adaptive threshold for

fault detection.
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Appendix A

Proof of Theorems in Chapter 3

A.1 Proof of Theorem 3.4.1

Proof. Let us choose the following candidate Lyapunov function Z = e⊤Pe with

P > 0 to prove the internal stability of the residual generator (3.33) in the fault-free

case. The time derivative of V is

Ż = e⊤PĒww + e⊤(Ā⊤P + PĀ)e + w⊤Ē⊤
w Pe

+ e⊤PΦ + Φ⊤Pe. (A.1)

Given ϵ1 > 0 and ϵ2 > 0, the conditions (3.26) and (3.27) can be expressed equiva-

lently as

Φ⊤e ≤ ρe⊤e ⇔ ϵ1
(
ρe⊤e − Φ⊤e

)
≥ 0, (A.2)
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Φ⊤Φ ≤ φe⊤Φ + δe⊤e ⇔ ϵ2(δe⊤e + φe⊤Φ − Φ⊤Φ) ≥ 0. (A.3)

Adding (A.2) and (A.3) to the right-hand side of (A.1), we have:

Ż ≤ w⊤Ē⊤
w Pe + e⊤(Ā⊤P + PĀ)e + e⊤PĒww

+Φ⊤Pe + e⊤PΦ + ϵ1ρe⊤e − ϵ1Φ⊤e

+ϵ2δ e⊤e + ϵ2φ e⊤Φ − ϵ2Φ⊤Φ

(A.4)

Rewriting (A.4) as in a matrix inequality:

Ż ≤


e

w

Φ



⊤


(Ā⊤P + PĀ) PĒw P + 1
2(ϵ2φ − ϵ1)I

(ϵ1ρ + ϵ2δ)I

Ē⊤
w P 0 0

P + 1
2(ϵ2φ − ϵ1)I 0 −ϵ2I

︸ ︷︷ ︸
M


e

w

Φ


. (A.5)

Hence, Ż < 0 if M < 0. Considering that Z > 0 and rw in (3.20), we can satisfy

constraint (3.18) by rewriting it as:

∫ t

0

(
Ż + r⊤

wrw − α2 w⊤w
)

dt ≤ 0

Ż + r⊤
wrw − α2 w⊤w ≤ 0

e⊤C̄⊤C̄e − α2 w⊤w + e⊤C̄⊤F̄ww

+Ż + w⊤F̄ ⊤
w F̄ww + w⊤F̄wC̄e ≤ 0. (A.6)
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Assuming zero initial conditions, combining (A.6) with (A.5) we have:

Ż ≤


e

w

Φ



⊤


(Ā⊤P + PĀ) + C̄⊤C̄ P Ēw + C̄⊤F̄w P + 1
2(ϵ2φ − ϵ1)I

(ϵ1ρ + ϵ2δ)I

Ē⊤
w P + F̄wC̄ −α2I + F̄ ⊤

w F̄w 0

P + 1
2(ϵ2φ − ϵ1)I 0 −ϵ2I

︸ ︷︷ ︸
M∗


e

w

Φ


. (A.7)

If M∗ < 0, then Ż < 0, which means that the residual generator is asymptotically

stable in the Lyapunov sense. Therefore, the inequality M∗ < 0 is equivalent to

(3.28).

Similarly, defining the Lyapunov function Y = e⊤Qe with Q > 0 to demon-

strate the internal stability of (3.33) in the disturbance-free case:

Ẏ = e⊤(Ā⊤P + PĀ)e + e⊤PĒf f + f⊤Ē⊤
f Pe

+e⊤PΦ + Φ⊤Pe.

(A.8)

Adding (A.2), and (A.3) with strictly positive scalars ϵ3 and ϵ4 to the right-hand

side of (A.8):

Ẏ ≤ f⊤Ē⊤
f Pe + e⊤PĒf f + e⊤(Ā⊤P + PĀ)e

+Φ⊤Pe + ϵ3ρe⊤e + e⊤PΦ − ϵ3Φ⊤e

+ϵ4δ e⊤e + ϵ4φ e⊤Φ − ϵ4Φ⊤Φ.

(A.9)

Conducting a similar derivation for constraint (3.19) with Schur complements and
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elementary manipulations yields the matrix inequality (3.29).

A.2 Proof of Theorem 3.4.2

Proof. The Lipschitz condition implies the OL and QB conditions [82]. Using the

Cauchy-Schwarz inequality and the assumption that ϕ(x, u) is nonlinear satisfying

the Lipschitz condition in U × D, we obtain:

|⟨x̂ − x, ϕ(x̂, u) − ϕ(x, u)⟩| ≤ ∥x̂ − x∥∥ϕ(x̂, u) − ϕ(x, u)∥

≤ γ∥x̂ − x∥2.

The OL constant ρ can be set equal to ±γ based on Definition 3.4.2. Similarly, using

Definition 3.4.3 we get:

∥ϕ(x̂, u) − ϕ(x, u)∥2 ≤ φ⟨ϕ(x, u) − ϕ(x̂, u), x − x̂⟩

+ δ∥x̂ − x∥2

≤ (δ + φρ) ∥x − x̂∥2 .

We can obtain the value of δ by setting γ2 = (δ + φρ). Notice that the

previous inequality is valid if φ > 0. By comparing (3.28) with (3.24), we establish

the following relations: ϵ1 = ε1φ, ϵ2 = ε1, and γ2 = δ + φρ. Given that φ > 0, then

ϵ1 > 0. A similar analysis can be done by using the entries of inequalities (3.29) and

(3.25).
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A.3 Proof of Theorem 3.5.1

Proof. Define V = ẽ⊤P ẽ, W = w̃⊤w̃, and U = ũ⊤ũ. We propose an upper bound

for the residual norm square r⊤r with γ > 0

r⊤r ≤ γ × (V + W + U)

= γ ×


ẽ

w̃

ũ



⊤ 
P 0 0

0 I 0

0 0 I




ẽ

w̃

ũ


. (A.10)

According to (3.34), r⊤r can be rewritten as

r⊤r =


ẽ

w̃

ũ



⊤ 
C̃⊤

F̃ ⊤
w

D̃⊤


[
C̃ F̃w D̃

]


ẽ

w̃

ũ


. (A.11)

Combining (A.11) and (A.10), we get


ẽ

w̃

ũ



⊤ 


P 0 0

0 I 0

0 0 I


− 1

γ


C̃⊤

F̃ ⊤
w

D̃⊤


[
C̃ F̃w D̃

]



ẽ

w̃

ũ


≥ 0, (A.12)
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which is equivalent to (3.35) by the Schur complement [96]. Consider the first-order

derivative of V

V̇ = ˙̃e⊤P ẽ + ẽ⊤P ˙̃e

=
(
ẽ⊤Ã⊤ + ũ⊤B̃⊤ + w̃⊤Ẽ⊤

w + Φ̃⊤
)

P ẽ

+ ẽ⊤P
(
Ãẽ + B̃ũ + Ẽww̃ + Φ̃

)

=



ẽ

w̃

ũ

Φ̃



⊤ 

Ã⊤P + PÃ PẼw PB̃ P

Ẽ⊤
w P 0 0 0

B̃⊤P 0 0 0

P 0 0 0





ẽ

w̃

ũ

Φ̃


. (A.13)

Given an appropriate value for α, V̇ can be upper-bounded as

V̇ ≤ −αV + ũ⊤ũ, (A.14)

which can be rewritten as:



ẽ

w̃

ũ

Φ̃



⊤ 

Ã⊤P + PÃ + αP PẼw PB̃ P

Ẽ⊤
w P 0 0 0

B̃⊤P 0 −I 0

P 0 0 0





ẽ

w̃

ũ

Φ̃


≤ 0 (A.15)
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yielding (3.36). Furthermore, from (A.14) we get

V ≤ e−αtV (0) +
∫ t

0
e−α(t−τ)

[
ũ⊤ũ

]
dτ

=
∫ t

0
e−α(t−τ)

[
ũ⊤ũ

]
dτ

= e−αt ∗ ũ⊤ũ. (A.16)

By setting w̃⊤w̃ ≤ d̄, we have

r⊤r ≤ γ ×
(
e−αt ∗ ũ⊤ũ + d̄ + ũ⊤ũ

)
.

Therefore, we obtain the adaptive threshold as

Jth,dyn =
√

γ ×
(
e−αt ∗ ũ⊤ũ + d̄ + ũ⊤ũ

)
.
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