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Absolutely representing systems, uniform

smoothness, and type

R.Vershynin

May 7, 2017

Abstract

Absolutely representing system (ARS) in a Banach space X is a set
D ⊂ X such that every vector x in X admits a representation by an
absolutely convergent series x =

∑

i aixi with (ai) reals and (xi) ⊂ D.
We investigate some general properties of ARS. In particular, ARS in
uniformly smooth and in B-convex Banach spaces are characterized
via ε-nets of the unit balls. Every ARS in a B-convex Banach space
is quick, i.e. in the representation above one can achieve ‖aixi‖ <

cqi‖x‖, i = 1, 2, . . . for some constants c > 0 and q ∈ (0, 1).

1 Introduction

The concept of absolutely representing system (ARS) goes back to Banach
and Mazur ([B], p. 109–110).

Definition 1.1 A set D in a Banach space X is called absolutely represent-
ing system (ARS) if for every x ∈ X there are scalars (ai) and elements
(xi) ⊂ D such that

x =
∞
∑

i=1

aixi and
∞
∑

i=1

‖aixi‖ < ∞.

It can be observed (Section 2) that if D is an ARS, then there exist a con-
stant c such that each x ∈ X admits a representation x =

∑∞
i=1 aixi with

∑

‖aixi‖ ≤ c‖x‖. Then we call D a ”c-ARS”.
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For needs of complex analysis, ARS were defined also in locally convex
topological spaces [K 81]. In the theory of analytical functions such ARS
happen to be a convenient tool: see [K 96], [G], [A]. Many results of general
kind on ARS are obtained by Yu. Korobĕınik and his collaborators: see, for
example, [K 81], [K 86], [KK].

In the present paper we restrict ourselves to the theory of ARS in Banach
spaces, which is still not quite explored. Some non-trivial examples of ARS
in l2 were found by I.Shrăıfel [S 93]. It should be noted that each example
of a c-ARS in ln2 provides by Theorem 3.1 an example of an ε-net of the
n-dimensional Euclidean ball, ε = ε(c) < 1. See also [S 95] for results on
ARS in Hilbert spaces.

Some general results concerning ARS in Banach spaces and, particularly,
in uniformly smooth spaces, were obtained in [V]. There was introduced
the notion of (c, q)-quick representing system, which is considerably stronger
than that of ARS.

Definition 1.2 Let c > 0 and q ∈ (0, 1). A set D in a Banach space X is
called (c, q)-quick representing system (or (c, q)-quick RS) if for each x ∈ X
there are scalars (ai) and elements (xi) ⊂ D such that

x =
∞
∑

i=1

aixi and ‖aixi‖ ≤ cqi−1 for i ≥ 1.

It is clear that each (c, q)-quick RS is an ARS. Despite of the strong restric-
tions in Definition 1.2, there exist Banach spaces X in which every ARS is,
in turn, a (c1, q)-quick RS for some c1 and q. In [V] it was proved that this
happens in each super-reflexive space X.

In the present paper we generalize this result to all B-convex Banach
spaces. Suppose a space X is B-convex and Y is a subspace of X. We show
that every c-ARS in Y is a (c1, q)-quick RS for some c1 and q depending only
on c and on X. This latter statement characterizes the class of B-convex
Banach spaces.

We characterize ARS and (c, q)-quick RS in uniformly smooth and B-
convex Banach spaces via ε-nets of the unit balls. As a consequence, we have
a theorem of B. Maurey [P] stating that the dimension of a subspace Y of
ln∞ with Y ∗ of a good type is at most c log n.

I am grateful to V.Kadets for the guidance, and to P.Terenzi for his
hospitality when I was visiting Politecnic Institute of Milan.
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2 Characterizations of ARS and quick RS

Let (xi)i∈I and (yi)i∈I be sequences in Banach spaces X and Y respectively,
and let c > 0. We call (xi) and (yi) c-equivalent if there is a linear operator
T : span(xi) → span(yi) which maps xi to yi, and satisfies ‖T‖‖T−1‖ ≤ c.

D being a non-empty set, we denote the unit vectors in l1(D) by ed,
d ∈ D.

The following useful result is more or less known: the equivallence (i)⇔(iv)
goes back to S. Mazur ([B], p. 110), see also [V].

Theorem 2.1 Given a complete normalized set D in a Banach space X, the
following are equivalent:

(i) D is an ARS;
(ii) there is a c > 0 such that each x ∈ B(X) can be represented by a

series x =
∑∞

i=1 aixi with
∑

‖aixi‖ ≤ c. Then we call D a ”c-ARS”;
(iii) there is a quotient map q : l1(D) → Z such that the sequence (d)d∈D

is c-equivalent to (qed)d∈D;
(iv) there is a c > 0 such that for every x∗ ∈ S(X∗) one has

supd∈D |x∗(d)| ≥ c−1.
In (ii), (iii) and (iv) the infimums of possible constants c are equal and

are attained.

Let us observe some nice consequences. The first one states that ARS
are stable under fairly large perturbations. Let A and B be sets in a Banach
space. By definition, put ρ(A, B) = supa∈A infb∈B ‖a − b‖.

Corollary 2.2 Let D and D1 be normalized sets in X. If D is a c-ARS and
ρ(D, D1) = ε < c−1, then D1 is a c1-ARS, where c1 = (1 − εc)−1c.

Proof. It follows easily from (iv) of Theorem 2.1.

Proposition 2.3 Let D be a c-ARS in a Banach space X.
(i) If X is separable, then some countable subset D1 of D is also a c-ARS.
(ii) Let dim X = n and c1 > c. Then some subset D1 of D is a c1-ARS

and |D1| ≤ ean, where a = 2
(

c−1 − c−1
1

)−1
.

(iii) Let dim X = n and ε > 0. Then every x ∈ B(X) can be represented
by a sum x =

∑n
i=1 aixi with (xi) ⊂ D and

∑

‖aixi‖ ≤ c + ε.
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Proof. Clearly, we may assume that D is normalized. Then (i) follows in
the standard way from (iv) of Theorem 2.1.

(ii). Let ε = c−1 − c−1
1 . Consider a maximal subset D1 of D such that

‖x − y‖ > ε for x, y ∈ D1, x 6= y. By maximality, ρ(D, D1) ≤ ε. Apply-
ing Corollary 2.2, we see that D1 is a c1-ARS. Note that the balls (d1 +
(ε/2)B(X))d1∈D1

are mutually disjoint and are contained in (1 + ε/2)B(X).
By comparing the volumes we get |D1| ≤ e2n/ε.

(iii). By (ii), we can extract from D a finite (c + ε)-ARS (xi)i≤m. By
(iii) of Theorem 2.1, there is a quotient map q : lm1 → Z such that the
sequences (xi)i≤m and (qei)i≤m are (c + ε)-equivalent. Let T : X → Z be
the isomorphism corresponding to this equivalence. We have dim Z = n and
B(Z) = a.conv(qei)i≤m. Now we use a simple consequence of Caratheodory’s
theorem:

• Let K be a finite set in Rn. Let a vector z lie on the boundary of
a.conv(K). Then z ∈ a.conv(z1, . . . , zn) for some z1, . . . , zn ∈ K.

Applying this theorem to K = (qei)i≤m, we see that each z ∈ S(Z) can be
represented by a sum z =

∑n
k=1 ak(qeik) for some subsequence (qeik)k≤n of

(qei) and scalars (ak) with
∑n

k=1 |ak| = 1.
Let x ∈ B(X). Setting z = Tx/‖Tx‖ in the preceding observation, we

can write

Tx =
n
∑

k=1

bk(qeik) =
n
∑

k=1

bk(Txik) with
n
∑

k=1

|bk| ≤ ‖T‖.

Thus x =
∑n

k=1 bkxik , and

n
∑

k=1

‖bkxik‖ ≤ ‖T−1‖
n
∑

k=1

‖bk(qeik)‖ ≤ ‖T−1‖
n
∑

k=1

|bk| ≤ ‖T−1‖‖T‖ ≤ c + ε.

The proof is complete.

Remarks. 1. The estimate in (ii) is sharp by order: Corollary 4.2 and
Theorem 2.7 show that any ARS in a B-convex Banach space X has at least
exponential number of terms with respect to dim X.

2. In general, one can not put ε = 0 in (iii). Indeed, consider X = l22 and
let D be a countable dense subset of S(l22). Then D is a 1-ARS. However,
there are points x ∈ S(l22) \ a.conv(D) ; thus (iii) fails unless ε > 0.

Now we give a general characterization of (c, q)-quick RS.
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Theorem 2.4 Let D be a normalized set in a Banach space X. Suppose
(i) D is a (c, q)-quick RS.

Then, given an ε > 0, there are m = m(c, q, ε) and b = c(1 − q)−1 such that
(ii) the set b ·

⋃

{a.conv(D1) : D1 ⊂ D, |D1| ≤ m} is an ε-net of B(X).
Conversely, if ε < 1, then (ii) implies (i) with c = b/ε and q = ε1/m.

Proof. Assume (i) holds. Let m be so that
∑

i>m

cqi−1 ≤ ε. (1)

Let x ∈ B(X). For some (xi) ⊂ D we have x =
∑∞

i=1 aixi with |ai| ≤ cqi−1.
Then, by (1),

‖x −
∑

i≤m

aixi‖ = ‖
∑

i>m

aixi‖ ≤ ε,

while
∑

i≤m

|ai| ≤ c(1 − q)−1 = b.

This proves (ii).
Conversly, assume (ii) holds. Fix an x ∈ B(X). We shall find appropriate

expansion x =
∑

i aixi by successive iterations. Sn will denote the partial sum
∑

i≤n aixi (we assume S0 = 0).
Suppose that for some k ≥ 1 the system (ai)i≤(k−1)m is constructed. By

(ii), there are scalars (ak,i)i≤m and vectors (xk,i)i≤m ⊂ D such that |ak,i| ≤ b
for i ≤ m and

∥

∥

∥

∥

∥

∥

x − S(k−1)m

‖x − S(k−1)m‖
−
∑

i≤m

ak,ixk,i

∥

∥

∥

∥

∥

∥

≤ ε. (2)

Put a(k−1)m+i = ‖x − S(k−1)m‖ak,i for 1 ≤ i ≤ m. Note that for each k

x − Skm = x − S(k−1)m − ‖x − S(k−1)m‖ ·
∑

i≤m

ak,ixk,i.

Therefore, by (2), ‖x−Skm‖ ≤ ‖x−S(k−1)m‖ · ε. By the inductive argument
we get ‖x − Skm‖ ≤ εk. Hence for k ≥ 0 and 1 ≤ i ≤ m,

|akm+i| = ‖x − Skm‖ak+1,i ≤ εkb ≤ ε(km+i)/m−1b = ε−1b · (ε1/m)km+i.

Hence |ai| ≤ ε−1b(ε1/m)i for i ≥ 1. This proves (i) with c = bε−1+1/m ≤ b/ε
and q = ε1/m.
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Theorem 2.4 yields that, actually, the tightness of the definition of (c, q)-
quick RS can be substantially loosened. Let (bi) be a scalar sequence. We
say that a set D in a Banach space X is a (bi)-representing system, if every
x ∈ B(X) admits a representation by a convergent series x =

∑

i aixi with
(xi) ⊂ D and (ai) ⊂ R, ‖aixi‖ ≤ |bi| for each i.

Corollary 2.5 Let D be a set in a Banach space X and let
∑

bi be an ab-
solutely convergent scalar series. Suppose

(i) D is a (bi)-representing system.
Then there are constants c and q dependent only on (bi), such that

(ii) D is a (c,q)-quick representing system.
Conversely, (ii) implies (i) with bi = cqi−1.

Proof. Suppose (i) holds. Let m be so that
∑

i>m |bi| ≤ 1/2. It is enough
to show that (ii) of Theorem 2.4 holds for ε = 1/2. Fix x ∈ B(X) and write
its representation: x =

∑

i≥1 aixi with ‖aixi‖ ≤ |bi|. Then

‖x −
∑

i≤m

aixi‖ = ‖
∑

i>m

aixi‖ ≤
∑

i>m

‖aixi‖ ≤
∑

i>m

|bi| ≤ 1/2.

Thus (ii) holds. The converse part is obvious.

Like ARS, quick representing systems are also stable under fairly large per-
turbations. The following analogue of Corollary 2.2 can easily be derived
from Theorem 2.4.

Corollary 2.6 Let D and D1 be normalized sets in X. If D is a (c, q)-quick
RS and ρ(D, D1) = ε < (1 − q)/c, then D1 is a (c1, q1)-quick RS, where c1

and q1 depend solely on c, q and ε.

Another consequence of Theorem 2.4 states that the cardinality of every
(c, q)-quick RS in a finite-dimensional space is large.

Theorem 2.7 Let D be a (c, q)-quick RS in a n-dimensional Banach space
X. Then |D| ≥ ean for some a = a(c, q) > 0.
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Before we prove this result, observe that there are many spaces posessing
ARS of small cardinalities. Indeed, E. Gluskin’s construction [Gl] gives us
n-dimensional spaces Xn and Yn having ARS of cardinality 2n so that the
Banach-Mazur distance between Xn and Yn is approximately n.

Lemma 2.8 Let X be a Banach space, dim X = n, and E be a subspace of
X, dim E = m. For ε ∈ (0, 1) and b > 0, define

Ub,ε(E) = b(E ∩ B(X)) + εB(X).

Then, for some a = a(b, ε, m) > 0,

Vol(Ub,ε(E)) ≤ e−anVol(B(X)).

Proof. Fix a δ > 0. Let (zi)i≤k be a δ-net of b(E ∩B(X)); by the standard
volume argument, this can be achieved for some k ≤ e2bm/δ (see [MS], Section
2.6) Then (zi)i≤k is a (δ + ε)-net of Ub,ε(E). Thus

Vol(Ub,ε(E)) ≤ k(δ + ε)nVol(B(X)) ≤ e2bm/δ(δ + ε)nVol(B(X)).

Now it is enough to pick δ so that δ + ε ≤ 1.

Proof of the Theorem 2.7. Let ε = 1/2. Theorem 2.4 implies that for
some m = m(c, q) and b = b(c, q),

B(X) ⊂
⋃

{Ub,1/2(E) : E = span(D1), D1 ⊂ D, |D1| ≤ m}.

There are at most

(

|D|
m

)

distinct members Ub,1/2(E) in this union, so

Lemma 2.8 gives us for some a = a(b, m),

Vol(B(X)) ≤

(

|D|
m

)

e−anVol(B(X)).

Hence

(

|D|
m

)

≥ ean. The desired estimate follows easily.

Now we shall find good renormings of a space with a given ARS or (c, q)-
quick RS.
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Proposition 2.9 Let D be a c-ARS in a Banach space X. Then there is a
norm ||| · ||| on X which satisfies ‖ · ‖ ≤ ||| · ||| ≤ c‖ · ‖ and such that D is a
1-ARS in (X, ||| · |||).

Proof. Set |||x||| = inf
∑

i ‖aixi‖, where the infimun is taken over all rep-
resentations x =

∑

i aixi with (xi) ⊂ D. Then it is enough to apply (ii) of
Theorem 2.1.

For (c, q)-quick RS, only an equivalent quasi-norm can be constructed.

Proposition 2.10 Let D be a normalized (c, q)-quick RS in X. Then there
is a quasi-norm ||| · ||| on X which satisfies (1 − q)‖ · ‖ ≤ ||| · ||| ≤ c‖ · ‖ and
such that

(i) D ⊂ B(X, ||| · |||).
(ii) D is a (1, q)-quick RS in (X, ||| · |||);
(iii) the set ∪{tD : |t| ≤ c} is a q-net of B(X, ||| · |||);

Proof. For an x ∈ X, define

|||x||| := inf{sup
i≥1

|ai|/q
i−1}, (3)

where the infimum is taken over all sequences (xi) ⊂ D such that

x =
∞
∑

i=1

aixi. (4)

The homogenity of ||| · |||, (i) and (ii) follow easily.
Now we show that 1− q ≤ |||x||| ≤ c for every x ∈ S(X). The right hand

side follows from (3). Conversely, let (4) be a representation of x such that
supi |ai|/q

i−1 = λ < ∞. Then

1 = ‖
∞
∑

i=1

aixi‖ ≤
∞
∑

i=1

|ai| ≤
∞
∑

i=1

λqi−1 = λ(1 − q)−1.

Thus λ ≥ 1 − q; therefore |||x||| ≥ 1 − q.
It remains to prove (iii). Pick any x ∈ X with |||x||| ≤ 1 and ε > 0. Let

(4) be any expansion with |ai|/q
i−1 ≤ 1 + ε for i ≥ 1. Write

x − a1x1 =
∞
∑

i=1

ai+1xi+1.

Then |||x− a1x1||| ≤ supi |ai+1|/q
i−1 ≤ (1 + ε)q. This proves (iii).

8



Remarks. 1. The statement (iii) of Proposition 2.10 means that in the
new norm one can take ε = q, b = c and m = 1 in Theorem 2.4 (ii).

2. In general, there is no equivalent norm ||| · ||| satisfying (ii) or (iii) of
Proposition 2.10. Indeed, take X = l22 and D = {(1, 0), (0, 1)}. Then D is a
(4, 1/4)-quick RS, but D cannot be (1, 1/4)-quick RS in any norm ||| · ||| on
X, nor can the set ∪{tD : t ∈ R} be a 1/4-net of B(X, ||| · |||).

3 Absolutely representing systems in uniformly

smooth spaces

We recall the notion of uniform smoothness (see [DGZ]). Let X be a Banach
space. The modulus of smoothness of X is the function defined for τ > 0 by

ρ(τ) = sup{(‖x + y‖ + ‖x − y‖)/2− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ ≤ τ}.

X is called uniformly smooth if limτ→0 ρ(τ)/τ = 0.

Theorem 3.1 Let D be a normalized set in a Banach space X and c > 1.
Suppose ρ(τ)/τ ≤ (4c)−1 for some τ ∈ (0, 1). Suppose

(i) D is a c-ARS in X.
Then letting t = 2τ/3 and ε = 1 − τ/3c, we have

(ii) the set ±tD is an ε-net of B(X).
Conversely, if ε < 1, then (ii) implies (i) with c = c(t, ε).

Remark. The converse part of Theorem 3.1 holds in every Banach space
X. Indeed, it is enough to apply Theorem 2.4 and note that each (c, q)-quick
RS is a c1-ARS for c1 = c(1 − q)−1.

An immediate consequence follows:

Corollary 3.2 Let D be a normalized c-ARS in a uniformly smooth space
X. Then there are constants t > 0 and ε < 1 depending solely on c and on
the modulus of smoothness of X so that the set ±tD is an ε-net of B(X).

Recall that each superreflexive space X has an equivalent norm ||| · |||
such that (X, ||| · |||) is a uniformly smooth space (see [DGZ]). Therefore,
for each super-reflexive space X the conclusion of Corollary 3.2 will be true
after an equivalent renorming.

9



Moreover, this property characterizes the class of super-reflexive spaces.
Indeed, let X be not super-reflexive; then X is not super-reflexive in any
equivalent norm. Let δ > 0. Then there are almost square sections of B(X)
(see [DGZ]). More precisely, there is a system of two vectors (z1, z2) in
S(X) which is (1 + δ)-equivalent to the canonical vector basis of l2∞. Let
Z = span(z1, z2). Then Z is (1 + δ)-isomorphic to l2∞ and hence is (1 + δ)-
complemented in X; write X = Z ⊕ Y for an corresponding complement Y
in X. Put D = {zi + y : y ∈ Y, i = 1, 2}. Now it is not hard to check that D
is a 3-ARS in X, but the set ∪{tD : t ∈ R} is not an ε-net of B(X) unless
ε > 1 − δ/2. This argument was shown to me by V. Kadets.

The proof of Theorem 3.1 requires some (ε < 1)-net tools.

Lemma 3.3 Let λ ∈ [0, 1] and A ⊂ λ ·B(X). Suppose that A is a λ-net for
S(X). Then A is a λ-net for B(X).

Proof. For each x ∈ B(X), there exists an y ∈ A such that ‖x/‖x‖−y‖ ≤ λ.
Hence

‖x − y‖ = ‖‖x‖(x/‖x‖ − y) − (1 − ‖x‖)y‖

≤ ‖x‖λ + (1 − ‖x‖)λ = λ.

This completes the proof.

Lemma 3.4 Let A ⊂ X be a (1− δ)-net for S(X) with δ ∈ (0, 1). Then, for
each γ ∈ [0, 1], the set γA is a (1 − γδ)-net for S(X).

Proof. For any x ∈ S(X) there exists an y ∈ A such that ‖x − y‖ ≤ 1 − δ.
Hence

‖x − γy‖ = ‖γ(x − y) + (1 − γ)x‖

≤ γ(1 − δ) + (1 − γ) = 1 − γδ,

which concludes the proof.

Corollary 3.5 Let τ > 0, δ ∈ (0, 1) and let A ⊂ τ · B(X) be a (1 − δ)-net
for S(X). Then, for each 0 ≤ γ ≤ min(1, 1

τ+δ
), the set γA is a (1 − γδ)-net

for B(X).
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Proof. By Lemma 3.4, γA is a (1 − γδ)-net for S(X). On the other hand,
γτ ≤ 1 − γδ, so that γA ⊂ (1 − γδ) · B(X). Then, by Lemma 3.3, γA is a
(1 − γδ)-net for B(X).

Now, we establish a ”locally equivalent norm” on X.

Lemma 3.6 Let x ∈ S(X) and x∗ ∈ S(X∗) be such that x∗(x) = 1. Then
for each z ∈ X we have:

x∗(z) ≤ ‖z‖ ≤ x∗(z) + 2ρ(‖z − x‖).

Proof. Put y = x − z. Then

2ρ(‖y‖) ≥ ‖x + y‖ + ‖x − y‖ − 2

≥ x∗(x + y) + ‖x − y‖ − 2

≥ 1 + x∗(y) + ‖x − y‖ − 2

= ‖x − y‖ − x∗(x − y) = ‖z‖ − x∗(z).

Hence the right inequality is proved while the left one is trivial.

Proof of the Theorem 3.1. Assume (i) holds. We claim that the set ±τD
is a (1 − τ/2c)-net of S(X). Indeed, given an x ∈ S(X), one can pick a
functional x∗ ∈ S(X∗) such that x∗(x) = 1. Then, by Theorem 2.1, we have

θx∗(x) ≥ c−1

for some x ∈ D and some θ ∈ {−1, 1}. Now apply Lemma 3.6 with z =
x − θτx :

‖x − θτx‖ ≤ x∗(x − θτx) + 2ρ(τ)

≤ 1 − τc−1 + 2ρ(τ)

≤ 1 − τc−1 + 2 · τ/4c = 1 − τ/2c.

This proves our claim.
Then apply Corollary 3.5: A = ±τD, δ = τ/2c and γ = 2/3 will satisfy

its conditions. We get that 2
3
A turns to be a (1− τ/3c)-net of B(X), proving

(ii).
The converse part follows from the remark above.
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4 Absolutely representing systems and type

of Banach spaces

The theory of type and cotype for normed spaces can be found in [MS] or
[LeT]. By (εi) we denote a sequence of independent random variables with
the distibution P{εi = 1} = P{εi = −1} = 1/2. Consider a Banach space
X of type p > 1, i.e. such that there is a c > 0 such that the inequality

E‖
∑

i≤n

εixi‖
p ≤ cp

∑

i≤n

‖xi‖
p (5)

holds for each n > 0 and each sequence (xi)i≤n in X. By Tp(X) we denote
the least constant c for which the inequality (5) always holds. For p > 1, we
denote by p∗ the conjugate number: 1/p + 1/p∗ = 1.

The following result is contained implicitly in [P] and is known as a
”dimension-free variant of Caratheodory’s theorem”. For the sake of com-
pleteness, we include its proof.

Theorem 4.1 Let D be a normalized set in a Banach space X of type p > 1.
Suppose that for some c > 1

(i) D is a c-ARS.
Let k > 0. Put c1 = c and ε = 4cTp(X)k−1/p∗. Then

(ii) the set {c1k
−1∑

i≤k ±xi : (xi) ⊂ D} is an ε-net of B(X).
Conversely, (ii) implies (i) with c = c(c1, k).

Applying Theorem 2.4, we obtain

Corollary 4.2 Let D be a normalized set in a Banach space X of type p > 1.
Suppose that for some c > 1

(i) D is a c-ARS.
Then, for some c1 = c1(c, p, Tp(X)) and q = q(c, p, Tp(X)), we have:

(ii) D is a (c1, q)-quick RS.
Conversely, (ii) implies (i) with c = c(c1, q).

Before the proof of Theorem 4.1, let us give some comments. A Banach space
X is called B-convex if it does not contain ln1 uniformly. X is B-convex iff X
is of some type p > 1. It follows that if X is a B-convex Banach space and

12



D is a c-ARS in some subspace of X, then D is a (c1, q)-quick RS, where the
constants c1 and q depend only on c and X.

Moreover, the latter property characterizes B-convex Banach spaces. In-
deed, fix a space X which is not B-convex. Then, for each positive integer n,
there is a sequence (xn,i)i≤n in X which is 2-equivalent to the canonical vector
basis of ln1 . Take Dn = (xn,i)i≤n and Yn = span(Dn). Then Dn is a 2-ARS
in Yn. However, letting n → ∞, we see that Dn cannot be a (c1, q)-quick RS
for fixed c1 and q.

One exciting problem remains unsolved. We have got that each ARS in
a B-convex space X is a (c, q)-quick RS for some c and q. Does this happen
only in B-convex spaces?

Proof of Theorem 4.1. Fix any x ∈ B(X). Then, for some (xi) ⊂ D, there
is a representation x =

∑∞
i=1 aixi with

∑

|ai| ≤ c.
Then there is a sequence (ξj)j≥1 of independent random variables with

the following distribution for every i, j ≥ 1:

P{ξj = sign(ai)cxi} = c−1|ai|,

P{ξj = 0} = 1 − c−1
∑

n

|an|.

Therefore Eξj = x for each j. Now, since ξj are independent, we have

E‖
∑

j≤k

(ξj −Eξj)‖
p ≤ (2Tp(X))p

∑

j≤k

E‖ξj −Eξj‖
p

(see [LeT], Chapter 9). Note that E‖ξj − Eξj‖
p ≤ (c + 1)p; hence

E‖k−1
∑

j≤k

(ξj −Eξj)‖
p ≤ (2Tp(X))pk−p · k(c + 1)p.

Therefore

E‖ − x + k−1
∑

j≤k

ξj‖
p ≤

(

2Tp(X)(c + 1)k−1/p∗
)p

.

In particular, there is one realization of the random variable (−x+k−1∑

j≤k ξj)
so that

‖ − x + k−1
∑

j≤k

ξj‖ ≤ 2Tp(X)(c + 1)k−1/p∗ .

This concludes the proof.
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In conclusion, let us show how these results provide an estimate from above
on the dimension of nice sections of the cube. The following result due to
B. Maurey is proved in [P].

Theorem 4.3 (B. Maurey). Let X be a finite dimensional space, p > 1 and
Tp∗(X

∗) ≤ C. Suppose that X is c-isomorphic to some subspace of ln∞. Then,
for some a = a(p, C, c), we have

dim X ≤ a log n.

Proof. By duality, X∗ is c-isomorphic to some quotient space of ln1 . Then,
Theorem 2.1 gives us a c-ARS D in X∗ with |D| = n. By Corollary 4.2, D
is a (c1, q)-quick RS in X∗ for some c1 = c1(p, C, c) and q = q(p, C, c). Then
Theorem 2.7 yields n ≥ ea dimX for some a = a(c1, q) > 0.
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