UC San Diego UC San Diego Previously Published Works

Title

Comparing Charge Compensation Mechanisms of Li1.3Nb0.3Mn0.4O2 and Li1.3Nb0.3Fe0.4O2 As Novel Cathode Material

Permalink https://escholarship.org/uc/item/0p73644b

Journal ECS Meeting Abstracts, MA2020-02(2)

2151-2043

Authors

ISSN

Zuba, Mateusz Chung, Hyeseung Meng, Y Shirley <u>et al.</u>

Publication Date

2020-11-23

DOI

10.1149/ma2020-022260mtgabs

Peer reviewed

Comparing Charge Compensation Mechanisms of Li_{1.3}Nb_{0.3}Mn_{0.4}O₂ and Li_{1.3}Nb_{0.3}Fe_{0.4}O₂ As Novel Cathode Material

Mateusz Zuba¹, Hyeseung Chung², Y. Shirley Meng², Louis F.J. Piper³, Zachary Lebens-Higgins³ and Julija Vinckeviciute⁴

Abstract

Li-rich oxides have generated widespread interest for their use as next generation high energy density Li-ion battery cathodes. Among Li-rich candidates, cation disordered phases are novel lithium intercalation compounds that warrant further fundamental characterization. Here, we compare Li_{1.3}Nb_{0.3}Mn_{0.4}O₂ and Li_{1.3}Nb_{0.3}Fe_{0.4}O₂ system to explore differences in charge compensation and electrochemical performance. Using Operando XANES/EXAFS measurements examine how the Mn/Fe/Nb local environments and oxidation states change and their effect on electrochemistry. Li_{1.3}Nb_{0.3}Mn_{0.4}O₂ displays capacities beyond the traditional transition metal redox (Mn^{3+/4+}), which is considered accessible through oxygen redox. Li_{1.3}Nb_{0.3}Fe_{0.4}O₂ exhibits charge capacities at similar potentials to that of anionic redox but our investigations suggest the charge compensation mechanism displays more Fe^{3+/4+} redox in origin. By using a suite of characterization techniques, we explore the capacity contributions of cation and anionic components in these systems.