
UCLA
UCLA Electronic Theses and Dissertations

Title
Hybrid Heuristic Algorithms for Single-Agent Planning and Search With Limited Memory

Permalink
https://escholarship.org/uc/item/0p70b5w2

Author
Bu, Zhaoxing

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0p70b5w2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Hybrid Heuristic Algorithms for Single-Agent

Planning and Search With Limited Memory

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Zhaoxing Bu

2023

© Copyright by

Zhaoxing Bu

2023

ABSTRACT OF THE DISSERTATION

Hybrid Heuristic Algorithms for Single-Agent

Planning and Search With Limited Memory

by

Zhaoxing Bu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Richard E. Korf, Chair

Heuristic search and planning model real-world problems as graphs, where each node repre-

sents a unique state or configuration of the problem, and each edge represents an operator

that changes one state to another state. The task is to find a shortest or lowest-cost path

between the initial state and a goal state in such a graph, which corresponds to a sequence

of operators to solve the given problem instance with minimum cost.

A* is the standard algorithm for a single-agent heuristic search or planning problem.

However, A* stores all nodes generated during the search and can run out of the available

memory on common heuristic search and planning domains in a few minutes. Therefore,

A* usually cannot solve hard problems. On the other hand, the memory requirement of

iterative-deepening-A* (IDA*) is only linear in the search depth. However, on a domain

where many distinct paths exist between the same pair of nodes, IDA* may generate too

many duplicate nodes and hence run for a prohibitively long time.

In this dissertation, we provide three new algorithms, A*+IDA*, A*+BFHS, and IDUCHS,

for solving problems that cannot be solved by A* due to memory limitations, nor IDA* due to

the existence of many distinct paths between the same pair of nodes. We show that A*+IDA*

is the state-of-the-art algorithm on the classic benchmark 24-Puzzle, while A*+BFHS and

ii

IDUCHS can generate significantly fewer nodes than A*, hence solving more problems than

A* given the same memory limitations.

iii

The dissertation of Zhaoxing Bu is approved.

Adnan Darwiche

Quanquan Gu

Cho-Jui Hsieh

Richard E. Korf, Committee Chair

University of California, Los Angeles

2023

iv

I do not know what I may appear to the world,

but to myself I seem to have been only like

a boy playing on the seashore,

and diverting myself in now and then

finding a smoother pebble or a prettier shell than ordinary,

whilst the great ocean of truth lay all undiscovered before me.

Isaac Newton

v

Table of Contents

List of Figures . x

List of Tables . xii

Acknowledgments . xiii

Vita . xvi

1 Introduction . 1

1.1 Heuristic Search Problems . 1

1.2 Dissertation Overview . 3

2 Foundations of Heuristic Search . 4

2.1 Basic Concepts . 4

2.2 Admissible Heuristics and Pattern Databases 6

2.3 A* . 8

2.4 IDA* . 10

2.5 Disk-Based Search . 11

2.6 Heuristic Search in Planning . 12

3 A* and IDA* Variations . 13

4 Frontier Search . 16

4.1 Breadth-First Frontier Search . 16

4.2 Divide-and-Conquer Frontier A* . 17

4.3 Breadth-First Heuristic Search . 17

vi

4.4 Breadth-First Iterative-Deepening A* . 19

4.5 Drawbacks of BFHS and BFIDA* . 20

4.6 Forward Perimeter Search . 21

4.7 Solution Reconstruction . 21

4.8 Frontier Search on Directed Graphs . 23

5 A*+IDA*: A Simple Hybrid Heuristic Search Algorithm 25

5.1 Motivation . 26

5.2 A*+IDA* . 26

5.3 Comparisons to Previous Work . 29

5.3.1 A*+IDA* vs. MREC . 29

5.3.2 A*+IDA* vs. A* With Lookahead 30

5.3.3 A*+IDA* vs. External IDA* . 31

5.4 Experimental Results and Analysis . 31

5.4.1 24-Puzzle . 31

5.4.2 Rubik’s Cube . 36

5.5 Combining Dual Search With A*+IDA* . 37

5.6 Disk-based A*+IDA* . 39

5.7 Parallel A*+IDA* on the 27 and 29-Puzzle 41

5.8 An Approximation Algorithm Based on A*+IDA* 42

6 A*+BFHS: A Hybrid Heuristic Search Algorithm 44

6.1 Motivation . 44

6.2 A*+BFHS . 45

6.3 Comparisons to Previous Work . 47

vii

6.3.1 A*+BFHS vs. BFIDA* . 47

6.3.2 A*+BFHS vs. FPS . 48

6.4 Solution Reconstruction . 49

6.5 Experimental Results and Analysis . 51

6.5.1 A*+BFHS vs. A* . 57

6.5.2 A*+BFHS vs. BFIDA* . 58

6.5.3 Calling BFHS on Nodes at Multiple Depths 61

6.5.4 Heuristic Functions and Running Time 62

7 Iterative-Deepening Uniform-Cost Heuristic Search 64

7.1 Motivation . 64

7.2 Uniform-Cost Heuristic Search . 65

7.2.1 Uniform-Cost Frontier Search . 65

7.2.2 Uniform-Cost Heuristic Search . 67

7.3 Iterative-Deepening UCHS (IDUCHS) . 72

7.3.1 Calculating the Cost Bounds of Iterations 72

7.3.2 Solution Reconstruction . 74

7.3.3 Algorithm Evolution . 75

7.4 Experimental Results and Analysis . 76

7.4.1 A* vs. IDUCHS . 79

7.4.2 Cost Bounds in IDUCHS . 82

7.5 A*+UCHS . 83

8 Conclusions and Future Work . 85

8.1 Summary of Contributions . 85

viii

8.1.1 A*+IDA* . 85

8.1.2 A*+BFHS . 86

8.1.3 IDUCHS . 87

8.1.4 When to Use Each Algorithm? . 88

8.1.5 Node Ordering Is Important . 88

8.1.6 A Scheme for Combing Heuristic Search Algorithms 89

8.2 Ideas for Future Work . 89

8.2.1 When Will Node Ordering Work? . 90

8.2.2 Disk-based Search . 91

8.2.3 Delayed Closed Node Deletion . 91

8.2.4 Computing Cost Bounds Between Iterations 91

8.2.5 A*+BFHS . 92

8.2.6 IDUCHS . 92

8.2.7 Searching on Directed Graphs . 93

8.3 Conclusions . 93

Bibliography . 95

ix

List of Figures

2.1 Part of the 8-Puzzle search space. Each node represents a state and each edge

represents an operator. 5

2.2 The 6-6-6-6 disjoint PDBs with reflection in [KF02]. 8

2.3 A* on a binary graph with unit-edge costs. Numbers in nodes are f -values. Nodes

not generated by A* are dotted. The two light gray nodes and the dark gray node

have the same f -value but different h-values. 10

4.1 An example of BFHS with a cost bound of 6. f -values are at the left of nodes.

Closed nodes are gray. Deleted nodes are dotted. dg is the delete g-value. 18

4.2 The evolution of breadth-first iterative-deepening A* (BFIDA*). 19

4.3 BFHS with U = 4 on the same graph from Figure 2.3. Numbers in the nodes are

f -values. Nodes generated by both A* and BFHS are gray. Nodes only generated

in BFHS are white. Nodes not generated by either algorithm are dotted. Nodes

generated but not stored in BFHS are dashed. 20

4.4 Breadth-first frontier search on a two-dimensional grid. Stored Closed nodes are

dark gray. Open nodes are light gray. Delete Closed nodes are dashed. Dotted

nodes are the nodes exist in the search space but not being generated yet. . . . 22

4.5 Frontier search on a directed graph. Dashed nodes are deleted. Stored Closed

nodes are gray. x, y, and z are operators. 23

5.1 An example of A*+IDA*. The f -value is at the left of each node. An arrow

means the node’s f -value is updated during the search. The number next to each

edge is the edge cost. Closed nodes of A* are gray. Solid white nodes are the

frontier nodes. Dashed nodes are the nodes generated in the IDA* phase. 28

5.2 A*+IDA*’s speedup over IDA*. 32

x

5.3 A*+IDA*’s last iteration vs. IDA*’s. 35

5.4 Two 7-7-7-6 disjoint PDBs for the 27-Puzzle. 41

5.5 Disjoint PDBs for the 29-Puzzle. 41

6.1 An example of A*+BFHS’s search frontier. Numbers are f -values. Closed nodes

are gray. 46

6.2 A* vs. A*+BFHS in time and memory. 57

6.3 BFIDA* vs. A*+BFHS in time and memory. 57

6.4 The number of nodes generated in BFIDA*’s previous iterations vs. A*+BFHS’s. 59

6.5 The number of nodes generated in BFIDA*’s last iteration vs. A*+BFHS’s. . . 60

7.1 An example of UCFS. Numbers next to edges are edge costs. Closed nodes are

gray. Deleted nodes are dotted. dg is the delete g-value. 66

7.2 An example of UCHS with a cost bound of 8.5. Numbers next to edges are edge

costs and numbers next to nodes are f -values. Closed nodes are gray. Deleted

nodes are dotted. dg is the delete g-value. 69

7.3 The evolution of iterative-deepening uniform-cost heuristic search (IDUCHS). . 75

7.4 A* vs. IDUCHS in memory and time. 80

7.5 Comparisons of IDUCHS’s last iteration. 82

7.6 IDUCHS vs. A*+UCHS in memory and time. 84

xi

List of Tables

5.1 Cumulative data for A*+IDA* on the 24-Puzzle. 33

5.2 Nodes generated in the last iteration in A*+IDA* and Cached-IDA*+node ordering. 36

5.3 A*+IDA* vs. IDA* on Rubik’s Cube. 37

5.4 A*+IDA* combined with dual search. 38

5.5 Three hard 24-Puzzle test cases in Table 5.6. 40

5.6 Disk-based A*+IDA* vs. 48 GB RAM-based A*+IDA* on three hard 24-Puzzle

test cases. 40

6.1 Instances sorted by A* running times. An underline means more than 8 GB of

memory was needed. Smallest memory and shortest times are in boldface. . . . 52

6.2 Instances sorted by A* running times. An underline means more than 8 GB of

memory was needed. Smallest memory and shortest times are in boldface. . . . 53

6.3 Instances sorted by A* running times. An underline means more than 8 GB of

memory was needed. Smallest memory and shortest times are in boldface. . . . 54

6.4 Instances where A* terminated without solving the problem (marked by >) so

are sorted by BFIDA* running times. An underline means more than 8 GB of

memory was needed. Smallest memory and shortest times are in boldface. . . . 55

7.1 Relationships between algorithms. 75

7.2 Peak stored nodes, total generated nodes, and running time of A* and IDUCHS

on domains with non-unit edge costs. Instances sorted by A* running time.

Numbers in parentheses are memory usage in GB. An underline means more

than 8 GB of memory was needed. Undirected graphs are marked with *. . . . 78

xii

Acknowledgments

First and foremost, I would like to express my deepest gratitude and admiration to my

advisor Richard Korf, for his years of solid support and for never giving up on me. Rich

is my role model as a teacher, researcher, and mentor, and I consider myself incredibly

fortunate to have had the opportunity to learn from him. Instead of simply lecturing new

knowledge to students, Rich taught me how to encourage active participation of students by

leading discussions and asking thought-provoking questions. In addition to teaching, Rich

has done a wonderful job at research. Rich has built many fundamental works for heuristic

search and his passion for research really impressed me. Rich taught me to focus on hard

problems, aiming at significant improvements, and solve problems that were not solved

before instead of simply pursuing minor tweaks on easy problems. Rich also emphasized

the importance of writing clear and concise papers and he meticulously edited my paper

and dissertation drafts to ensure that they were of the highest quality. Rich’s commitment

to ethical research practices has also been invaluable to me. During my Ph.D. journey at

UCLA, Rich’s door is always open to not only me but also any other students who need

help or guidance, even though Rich has no previous contact with them. Throughout the

past years, I have had some personal difficulties and challenging times and Rich was always

there, having unlimited patience and care toward me and ready to help me in both academic,

psychological, and emotional aspects. Rich has established the highest standard a professor

can be, and I will always be grateful and remember Rich’s endeavors and help toward me.

Second, I am deeply grateful to Robert Holte for introducing me to the fascinating world

of heuristic search and inspiring my passion for conducting research. Without Robert, I

would never have applied to UCLA in the first place. I would also like to express my sincere

gratitude to my committee members, Adnan Darwiche, Quanquan Gu, and Cho-Jui Hsieh,

for their invaluable feedback and guidance throughout the dissertation process. In addition,

I want to say thank you to Richard Korf, Paul Eggert, D. Stott Parker, Todd Millstein,

Demetri Terzopoulos, John (Junghoo) Cho, and Adnan Darwiche for their excellent courses

xiii

at UCLA.

Third, thanks to the Computer Science Department at UCLA for providing me with the

opportunity to serve as a teaching assistant, and thanks to Tuan Le for being a role model for

teaching assistants. After taking Paul Eggert’s CS 111 and Tuan’s discussions, I discovered

that I had fallen in love with teaching, which led to many rewarding and touching moments

in my Ph.D. journey. Although for some quarters I spent more than 30 hours per week on

teaching, I never regret that. I will always cherish the memories of my time teaching CS 111

and CS 180. I also want to say thank you to those students who attended my discussions,

their enthusiasm and dedication had been a strong motivation for my devotion to teaching.

Hope I have the chance to teach again in the future.

Fourth, thanks to Google for offering me three summer internships, which have been

the best three summers in the past decade. I am especially grateful to my mentors and

colleagues, from whom I learned how to write high-quality code, how to do code reviews,

how to write design docs, and how to work in a team. I would also like to express my

appreciation to the chefs and baristas at Google’s cafes for their wonderful food and coffee.

Till today, I still miss the coffee I used to have in the mornings.

Fifth, I would like to extend my heartfelt thanks to my friends and labmates Ethan

Schreiber, Joseph Barker, Shihan Qin, Zijun Xue, Xu Wu, Huiting Zhang, Yang Pei, Hongbo

Zhao, Wenting Li, Rui Shao, Jie Yu, Qianwen Zhang, Qi Zhao, Ang Li, Li Zhang, Chunnan

Yao, Zhouyihai Ding, Yuan Gao, Zhihao Wu, Peng Ju, Yang Guo, Kun Hu, Yunxin Wu,

Baoliang Wang, Jundong Li, Gaojian Fan, Chuan He, Liang Zhou, Long Tu, and many

others who have stimulated many insightful discussions and happy moments that made my

Ph.D. journey more meaningful and enjoyable.

To my parents, Xifeng Li and Ge Bu, I owe an immense debt of gratitude for their

endless love and support. I could not have completed my degree without their support and

encouragement. I am especially grateful to my mother for instilling in me a resilient and

optimistic attitude toward life, even during the most challenging times.

Last but not least, I want to express my deepest gratitude and appreciation to my partner

xiv

Michelle Lu for her sacrifices, love, support, understanding, and belief in me throughout my

Ph.D. journey. I am truly blessed to have her in my life. Thanks for pointing out all my

drawbacks, pushing me to improve myself, and also taking good care of my health. I am

forever grateful for her patience, kindness, inspiration, and her unwavering commitment to

our shared future.

P.S. ChatGPT was used to edit the original draft of this section.

P.P.S. To any future readers, thanks for reading my dissertation. Here are a few pieces

of advice for current and future Ph.D. students. Firstly, meet with your advisor regularly.

Secondly, follow Rich’s research taste, focus on hard or unsolved problems, and aim for

significant improvements. Do not waste time on easy problems or directions that have less

impact. Thirdly, think out of the box. After my initial A*+IDA* work, I spent a lot of

time and energy trying to improve it, but the results were not significant, while the idea of

A*+BFHS remained buried beneath the surface for years. Fourthly, work hard and avoid

procrastination. I remember one weekend I met Rich at Boelter Hall and Rich told me he

never rests. Even though many years have passed, I still remember that moment. Fifthly,

maintain an optimistic attitude toward life and research. Lastly, believe in yourself and

never never never give up.

xv

Vita

2008 – 2012 B.E. (Software Engineering), Wuhan University, Wuhan, China.

2012 – 2014 M.Sc. student (Computing Science), University of Alberta, Ed-

monton, Alberta.

2015 – 2019 Teaching Assistant, Computer Science Department, UCLA.

2018 – 2020 Software Engineering Intern, Google, Mountain View and Sun-

nyvale, California.

Publications

1. Zhaoxing Bu and Richard E. Korf. “Iterative-Deepening Uniform-Cost Heuristic Search.”

In Proceedings of the Fifteenth International Symposium on Combinatorial Search,

SOCS 2022, Vienna, Austria, July 21-23, 2022, pp. 20–28.

2. Zhaoxing Bu and Richard E. Korf. “A*+BFHS: A Hybrid Heuristic Search Algorithm.”

In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI

2022, Virtual Event, February 22 - March 1, 2022, pp. 10138–10145.

3. Zhaoxing Bu and Richard E. Korf. “A*+IDA*: A Simple Hybrid Search Algorithm.”

In Proceedings of the Twenty-Eighth International Joint Conference on Artificial In-

telligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 1206–1212.

xvi

CHAPTER 1

Introduction

1.1 Heuristic Search Problems

Heuristic search is a sub-field of artificial intelligence that focuses on solving problems and

is closely related to other sub-fields like planning and games. Much of the work in heuristic

search is devoted to finding a shortest path between two nodes in a graph. The graphs

can be either explicitly-defined or implicitly-defined. An explicitly-defined graph has all the

information for all nodes and edges explicitly stored in a file or database. A search on such

graphs requires loading the information for nodes and edges from the stored file. A map of

Los Angeles is an example of an explicitly-defined graph, and we can use various heuristic

search algorithms to find a shortest path between two locations, like UCLA and LAX. An

implicitly-defined graph is defined by simple definitions of nodes and edges representing

operators that transform one node to another node. As a result, an implicitly-defined graph

does not need to store the information for each node or edge in a file or database. For

example, the search space of Rubik’s Cube can be implicitly-defined as a graph, where each

node is a unique configuration of all the cubies, and each different way of twisting the cube

is defined as an operator that transforms one configuration to another.

Brute-force search algorithms can solve easy problems, such as 2 x 2 x 2 Rubik’s Cube,

by enumerating all possible configurations of the game. However, this is not feasible on hard

problems. For example, Rubik’s Cube has about 4.3252∗1019 reachable states from any start

state [Kor97]. If we use only one bit to mark if a configuration of cubies has been generated

before in our brute-force search algorithms, then we need 5,406.5 petabytes (PB) of RAM

to store such a bitmap. Therefore, researchers came up with various algorithms to speed up

1

the search. Those advanced algorithms usually use the concept of heuristics to estimate the

distance between two states. For example, it is intuitive to use the Euclidean distance of two

locations as a heuristic for road navigation because Euclidean distance is cheap to compute

and returns a lower bound on the actual distance between two places.

Various heuristic search algorithms have been proposed in the last 50 years. Those

algorithms can be roughly divided into two categories. The first type stores all the nodes

generated by the algorithm. However, this is not feasible in reality as common heuristic

search solvers can use all 8 GB of RAM in a few minutes. After all available memory is used,

those algorithms may terminate without finding a solution. The second type overcomes the

memory issue by having a space requirement that is only linear in the search depth, at the

price of assuming we have enough time to solve the problems. For example, consider an m

by n grid graph, where the task is to find a shortest path from (0,0) to (m,n). The first type

may store O(mn) nodes but generate the state (m,n) only a few times, while the second type

may store only O(m+ n) nodes but generate the state (m,n) O
(
m+n
m

)
times. As a result, in

practice, when memory is not an issue, the first type is usually faster because they utilize

memory to keep track of what states have been visited, hence reducing the work spent on

visiting the same states again.

On many hard problems, the first type would not find a solution due to memory limita-

tions, while it may take a very long time for the second type to find a solution. We observe

that there is a gap between those two types of algorithms, which is how to utilize memory in

a limited memory setting, so we can solve more hard problems relatively quickly. This dis-

sertation investigates this gap and introduces three new algorithms for solving hard heuristic

search problems where traditional algorithms may either fail due to memory limitations or

run too long due to unnecessary states revisits.

2

1.2 Dissertation Overview

Chapter 2 provides the basic concepts of heuristic search like how to convert a problem into

a search space and how to generate heuristics. Fundamental algorithms like A* [HNR68] and

iterative-deepening-A* (IDA*) [Kor85] as well as their pros and cons are also introduced.

Some other techniques to solve heuristic search problems are also discussed.

Chapter 3 gives a brief introduction to multiple A* and IDA* variations that were de-

veloped in the past several decades.

Chapter 4 introduces frontier search, which is a family of search algorithms that removes

stored nodes from memory whenever it is possible. Two new algorithms in this dissertation

are inspired by those previously invented frontier search algorithms.

Chapter 5 presents the first new algorithm A*+IDA*, which is a simple combination of

A* and IDA*. A*+IDA* is the state-of-the-art algorithm on the 5 × 5 sliding-tile puzzle

(24-Puzzle), which has been a classic benchmark for heuristic search algorithms for several

decades.

Chapter 6 introduces A*+BFHS, which is based on A* and another famous heuristic

search algorithm breadth-first heuristic search (BFHS) [ZH04]. We implemented A*+BFHS

in a planning solver and demonstrated that it can solve more problem instances than the

de facto algorithm A* using the same 8 GB of RAM constraint in the current International

Planning Competition.

A*+BFHS only works on unit-cost domains. To overcome this limitation, Chapter 7

further introduces iterative-deepening uniform-cost heuristic search (IDUCHS), which works

on domains with arbitrary non-negative edge costs. IDUCHS is also proved to require less

memory than A* on planning problems.

Chapter 8 presents the conclusions and ideas for future work of this research.

3

CHAPTER 2

Foundations of Heuristic Search

2.1 Basic Concepts

Heuristic search models a search problem as an implicitly-defined graph. A search problem

has the same meaning as a search domain, for example Rubik’s Cube is a classic search

problem/domain. There are two terms, nodes and states, that are often used interchangeably,

but we will distinguish them. The difference is that a state means a unique configuration of

the problem elements, while a node is an instance of a state that is generated during search

via a particular path. This research focuses on implicitly-defined graphs and assumes that

all edges/operators have non-negative edge costs. The process of applying operators to a

node and generating all its children is called the expansion of a node. A search problem can

have many different problem instances, where each problem instance has a start state and a

set of goal states, and the task is to find an optimal solution, which is a series of operators

that transforms the start state to a goal state, while minimizing the total cost of operators

applied.

In both explicitly and implicitly-defined search graphs, it is possible to have multiple

different paths connecting the same two states. For example, there are many different routes

between UCLA and LAX. Similarly, there are different ways to transform one configuration

of Rubik’s Cube into any particular different configuration. When a state is generated again

via a different path during search, we call the newly generated node a duplicate node.

Here we present how to model a search problem as a search space by using sliding-tile

puzzles. An n-Puzzle is a rectangular board with n non-overlapping tiles, numbered from 1

to n, and one unoccupied position, which is also called the blank. We can slide a tile that is

4

1 2

3 4 5

6 7 8

1 2

3 4 5

6 7 8

3 1 2

4 5

6 7 8

1 2

3 4 5

6 7 8

1 4 2

3 5

6 7 8

3 1 2

4 5

6 7 8

3 1 2

6 4 5

7 8

move 1 left move 3 up

move 2 left move 4 up move 4 left move 6 up

Figure 2.1: Part of the 8-Puzzle search space. Each node represents a state and each edge

represents an operator.

adjacent to the blank to the position of the blank to transform one configuration of the puzzle

into a different configuration. Figure 2.1 presents an example part of the 8-Puzzle search

space. The search space of this puzzle consists of all different reachable configurations of the

tiles, and each unique configuration corresponds to one state in the search space. The move

of one tile to the blank can be considered as one operator of the problem. Each state has a

limited number of applicable operators. For example, the blank is at the top-left position of

the top state in Figure 2.1. There are two applicable operators to this state. The first is to

move tile 1 left, and the second is to move tile 3 up. After applying one operator to a state

n, we generate a new state n′, which is a child state of n.

Breadth-first search (BFS) and depth-first search (DFS) are two fundamental search

algorithms. BFS first generates all nodes at depth one, then expands each node at depth

one to generate the nodes at depth two, etc. Each time a new node is generated, it is

compared to the nodes that have already being generated, and it is discarded if it has been

generated before. We call this process duplicate detection. BFS terminates when either a

5

goal state is generated (not expanded), or all states have been generated and the goal state

is still not found, which means there is no solution to the given problem instance. The main

drawback of BFS is its memory requirement. Suppose a node can generate b children, and

the search depth is d, then BFS needs to store O(bd) nodes in memory.

On the other hand, DFS only uses linear memory. DFS first generates the first child of

the start state, then generates the first grandchild, then the first great-grandchild, etc. DFS

continues doing this until it reaches a leaf node, which has no child nodes, then it backtracks

to that leaf node’s parent and generates the parent’s second child and then expands it, etc. At

any time during search, DFS only stores one node at each depth, so its memory requirement

is O(d), where d is the search depth, and it cannot use duplicate detection (other than the

nodes on the current path).

On graphs where multiple paths from the start state to a goal state exist, DFS does not

guarantee that the first solution it discovers is an optimal one. Another problem of DFS is

that it may run forever if some paths do not end in a leaf node, which is the case for most

implicitly-defined graphs. Therefore, researchers often use depth-first iterative-deepening

(DFID) [Kor85] instead. Assume all operators have the same cost, then DFID performs a

series of depth-limited DFS searches. It starts with a DFS to depth one, then a DFS to

depth two, then to depth three, etc. Due to the lack of duplicate detection, both DFS and

DFID have the drawback of generating and expanding duplicate nodes on graphs.

Implicitly-defined graphs often have a very large search space. Therefore, BFS, DFS,

and DFID are usually not feasible on large search problems and researchers developed the

concept of heuristics to help reduce the number of nodes generated during search.

2.2 Admissible Heuristics and Pattern Databases

Given a start state s and a goal state g, a heuristic function returns a heuristic value h(s),

which is an estimate of the optimal solution cost from s to g. A heuristic function is said to

be admissible if for each state s, h(s) ≤ h∗(s) where h∗(s) is the optimal solution cost from

6

s to g. There are two ways to generate a heuristic function: domain-dependent and domain-

independent. An example of domain-dependent techniques to generate heuristics is the

Manhattan distance in the sliding-tile puzzles. A tile’s Manhattan distance is the optimal

number of slides needed to move this tile from its current position to its goal position,

assuming no other tiles exist on the board. The Manhattan distance heuristic function is

hence the sum of all tiles’ Manhattan distance values.

One way to get a heuristic function using domain-independent techniques is through the

concept of abstraction, which is a simplification of the original problem. An abstraction

creates a new search space that is much smaller than the original search space, and maps

every state in the original search space to a state in the new smaller search space. When

the number of states in the search space created through abstraction is small enough, we

can just run BFS in the abstracted search space to compute the exact cost between any

abstracted state and the abstracted goal state. These costs can then serve as the heuristic

values for the original problem. We store such values in an array, with each abstracted state

having a unique index in this array. During search, for each state n, we first compute its

abstracted state and the index of this abstracted state in the heuristic value array. Then

we use this index to look up the heuristic value h(n) for n from the heuristic value array.

This kind of heuristic function is called a pattern database (PDB) [CS98]. For example, one

8-Puzzle problem instance has 9!/2 = 181,440 reachable states in total. An abstraction for

this puzzle is that we treat tiles 4 through 8 as indistinguishable. The resulting search space

only has 4 distinguishable tiles and 9 × 8 × 7 × 6 = 3,024 states. We can run BFS in this

abstracted search space and store the resulting heuristic values in an array of 3,024 bytes.

PDBs enabled the first optimal solutions to random Rubik’s Cube problem instances

[Kor97], where 3 PDBs were built and the maximum value returned by all 3 PDBs was

used as the heursitc value for each state. However, Korf and Felner [KF02] noticed that on

certain domains like the sliding-tile puzzles, instead of building multiple PDBs and taking

the maximum value, it is in fact possible to build multiple disjoint PDBs and take the sum

of the heuristic values returned from all PDBs, if the cost of an operator is only taken into

7

consideration when building one of those PDBs. This technique is called disjoint PDBs or

additive PDBs and enabled the first optimal solutions to random 24-Puzzle problems [KF02].

We present the 6-6-6-6 disjoint PDBs from [KF02] in Figure 2.2, where the 24 tiles are

partitioned into 4 groups. Here Figure 2.2a shows the default 6-6-6-6 partition and Figure

2.2b shows its reflection along the diagonal. For each PDB, Korf and Felner assumed that

the blank can be at any position that is not occupied by the 6 tiles in consideration. During

the search, for each state, they looked up the heuristic value from each of the 4 PDBs and

added them up. They did this for both the 6-6-6-6 partition in Figure 2.2a and its reflection

in Figure 2.2b, and then took the maximum value among the two different partitions as the

final heuristic value for a state. Furthermore, since there are only two different shapes of

the PDBs, we only need to store two PDBs in RAM and we can then use tile-and-position

mapping to get the heuristics from all remaining PDBs during the search. In fact, the

Manhattan distance heuristic function can also be viewed as disjoint PDBs where each PDB

is built upon exactly one single tile.

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(a) One way to partition the tiles.

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(b) Reflection along the diagonal.

Figure 2.2: The 6-6-6-6 disjoint PDBs with reflection in [KF02].

2.3 A*

A* [HNR68] is a classic and popular heuristic search algorithm that is guaranteed to return

an optimal solution (if one exists) given an admissible heuristic function. In A*, we use two

disjoint lists, Open and Closed, to denote the set of nodes that are waiting to be expanded

8

and have already been expanded, respectively. We use g(n) to represent the cost from the

start state s to state n. There are two main differences between BFS and A*. First, BFS

orders nodes in Open by their g-value, while A* orders nodes in Open by their f -value, which

is the sum of a node’s g and h-value (f(n) = g(n) + h(n)). Second, on unit-cost domains,

BFS terminates immediately when the goal state is generated while A* terminates only after

the goal state is chosen for expansion. This is because the first solution to the goal state

discovered by A* may not be optimal.

A* has two main advantages. The first is duplicate detection. A* uses its Open and

Closed lists to prune all duplicate nodes. The second advantage is node ordering. A* always

picks an Open node whose f -value is minimum among all Open nodes to expand next, which

guarantees an optimal solution returned by A* when using an admissible heuristic function.

However, tie-breaking among nodes of equal f -value significantly affects the set of expanded

nodes whose f -value equals the optimal solution cost C∗. It is a common practice to choose

an Open node whose h-value is minimum among all Open nodes with the same f -value, as

this strategy usually leads to fewer nodes expanded. A survey of the history of tie-breaking

strategies in A* can be found in [AF16].

We present an example of the effect of A*’s node ordering on a binary graph with unit-

edge costs in Figure 2.3, where S is the start node, G is the goal node, the optimal solution

cost is 4, and numbers in nodes are their f -values. The dotted nodes represent states existing

in the search space that are not generated during the search. The two light gray nodes and

the dark gray node have the same f -value but different h-values. As we can see, when A*

breaks ties by expanding the nodes with the lowest h-value first, A* expands the the dark

gray node and generates the goal node before expanding any light gray nodes. On the other

hand, if A* uses a different tie-breaking policy, for example highest h-value first or first-in-

first-out (FIFO), then A* will expand some light gray nodes before expanding the dark gray

node, hence instead end up expanding and generating more nodes on the problem instance

in Figure 2.3.

9

S

4
h=3

3

3

5 4 h=1

5 G

4 h=2

Figure 2.3: A* on a binary graph with unit-edge costs. Numbers in nodes are f -values.

Nodes not generated by A* are dotted. The two light gray nodes and the dark gray node

have the same f -value but different h-values.

2.4 IDA*

Although A* significantly reduces the number of nodes generated by BFS, it still has an

exponential memory requirement and it is not feasible to solve hard problems since A* can

use up all 8 GB of RAM in a few minutes on common search and planning problems like

Rubik’s Cube. Iterative-deepening-A* (IDA*) [Kor85] on the other hand, only has linear

memory requirements like DFS. Unlike DFID, whose search bound is merely based on the

g-value, IDA*’s search bound for each iteration is based on an f -value. The first search

bound is the start state’s heuristic value h(start), then IDA* runs one iteration of depth-

first search below the start state and only expands the nodes whose f -value is less than or

equal to h(start). If the goal state is not found, IDA* increases the search bound to the

minimum f -value among those nodes that have been generated but not expanded. Then

another depth-first search begins from the start state, with the new search bound as the

cutoff. IDA* continues increasing the cost bound until it finds a solution path whose cost

equals the bound, at which time it can declare it has found an optimal solution, if using an

admissible heuristic function.

10

IDA* was the first algorithm to successfully solve randomly generated problem instances

of the 15-Puzzle [Kor85], the 24-Puzzle [KT96, KF02], and Rubik’s Cube [Kor97], since

its memory usage is linear in the search depth. However, IDA* still has the drawback of

generating duplicate nodes due to the lack of duplicate detection. On domains where many

distinct paths exist between the same pair of nodes, most nodes generated by IDA* may be

duplicate nodes. For example, in a grid graph, there are
(
m+n
m

)
distinct shortest paths from

node (0,0) to node (m,n). As a result, even with a cost bound of m+ n, IDA* may expand

state (m,n) up to
(
m+n
m

)
= (m+n)!

m!n!
times, while A* will only expand (m,n) once.

Another drawback of IDA* is the lack of node ordering. Within each iteration, IDA*

orders nodes according to the order of operators being applied. In contrast, A* orders nodes

according to their f -values and breaks ties by expanding the nodes with the lowest h-value

first. On the example problem we presented in Figure 2.3, when the cost bound is 4, if IDA*

generates the left child of each node before the right child, then IDA* would expand the left

light gray node before expanding the dark gray node. Thus, IDA* would expand more nodes

whose f -value equals 4 than A*. As a result, IDA* usually generates most nodes in its last

iteration, where the cost bound is the optimal solution cost C∗ [Kor85, Kor97, KF02].

2.5 Disk-Based Search

One way to mitigate the memory requirement of algorithms like A* is to use disks to store

the generated nodes. Disks are usually much cheaper than RAM and we can increase the

number of stored nodes by several orders of magnitude when using disks. For example, in

BFS, when we are expanding the nodes at depth k, we can store all the generated nodes

at depth k + 1 on the disk. After all nodes at depth k are expanded, we load the nodes at

depth k + 1 from the disk, perform duplicate detection to remove the duplicate nodes, and

then start to expand the nodes at depth k + 1. This technique is called delayed duplicate

detection (DDD) [Kor04] and can be applied to other algorithms like A* as well.

11

2.6 Heuristic Search in Planning

Heuristic search and planning are two closely related sub-fields in artificial intelligence. Many

heuristic search algorithms are used in planning. For example, A* is used by many state-of-

the-art optimal track planners [FTL17, KSS18, FLB18, MME18].

There are three major differences between heuristic search and planning: 1) how to

represent the problem; 2) how to generate the heuristics; and 3) what algorithm to use for

solving the problem. For heuristic search, problem domains are hard coded in algorithm

implementations and we find the best algorithm for each different domain. Furthermore, we

use domain knowledge to generate the heuristics. As a result, given a new domain, we have

to implement the solver for this new domain entirely from scratch and a lot of time would

be spent on finding the best algorithm and heuristic function.

In planning, domains are described using general purpose declarative languages like

STRIPS [FN71] and PDDL [AHK98]. A solver, called planner, is implemented to analyze a

domain’s description, a start state, and the set of goal states. Then this planner will start

to generate heuristics and search for the solution. In a planner, the same search algorithm

and code for generating heuristics are used for all different domains. Given a new domain,

there is no need to write any new code, and the only job is to describe this new domain in

STRIPS or PDDL.

Another angle to view the above differences is that in heuristic search, researchers always

know the problem they are trying to solve, while in planning researchers do not know the

problem in advance.

In sum, those two different approaches have their own pros and cons. Heuristic search

utilizes the best available algorithm and domain specific knowledge to generate the heuristics

and search for solutions, and therefore is usually faster than planning on the same problems.

On the other hand, given a new domain, planning requires very little work thus can adapt

to new domains very quickly and hence is easy to expand to many different domains in a

short time.

12

CHAPTER 3

A* and IDA* Variations

In the past several decades, many researchers have proposed different algorithms trying to

overcome IDA*’s lack of duplicate detection and/or node ordering issues. This chapter gives

a brief introduction to those algorithms in chronological order.

MREC [SB89] is IDA*, except that it stores in memory the first nodes generated up

to a user-defined bound. Similar to IDA*, MREC also starts each iteration from the start

state. For each node that is generated both before and after the memory bound is reached,

duplicate detection is performed against the stored nodes. After the search below a stored

node is done, the stored h-value (hence f -value) for this node is updated if the goal state is not

found below this node under the previous f -value bound. This algorithm was rediscovered,

and referred to as IDA* with a transposition table (IDA*+TT) in [RM94]. Transposition

tables [SA83] were first used in two-player games to cache search states and reduce duplicate

nodes. [AKF10] also implemented IDA*+TT, but did not apply it to the sliding-tile puzzles.

The original MREC paper [SB89] showed no speedup on the 15-Puzzle compared to IDA*.

[RM94] reported a node generation reduction of 54%, and a speedup of 37% compared to

IDA* on the 15-Puzzle. As we will see below, however, such speedups can be very sensitive

to the efficiency of the implementation of IDA* they are compared to. In this research,

we use Korf’s implementation of IDA* on the sliding-tile puzzles, which has been widely

disseminated, and is generally considered very efficient.

MA* [CGA89] and SMA* [Rus92, KK94] represent one family of A* variations where

the main idea is to run A* until memory is almost full, then replace the largest f -value

nodes in Open with their parents to free up memory for future expansions. However, these

13

algorithms do not work well on hard problems where the available memory is small compared

to the amount needed, so the same states will be generated multiple times. In addition, the

implementation of MA* is complex as the hash table needs to be modified to accommodate

deletion of nodes from the hash table.

Dynamic Balanced IDA* (DBIDA*) [ES95] first runs A* up to a limit, then runs IDA*

on the Open nodes of A*. It is similar to our A*+IDA* that will be introduced in Chapter

5. However, DBIDA* dynamically adjusts the frontier nodes by adding new frontier nodes

with a large subtree below them and removing existing frontier nodes that have a small

subtree below them. DBIDA* is very complex as it utilizes multiple sets and priority queues

to adjust the frontier. The authors reported a speedup of less than a factor of two on the

15-Puzzle, but this was for finding all optimal solutions in the last iteration, and hence is not

directly comparable to finding a single optimal solution, since node ordering has no effect in

the former case.

Bidirectional A*-IDA* (BAI) [KKL95] first runs A* from one direction, then runs IDA*

from the other direction. For each node generated in IDA*, it is checked against the stored

nodes in A*. [AK04] further presented several other bidirectional search algorithms based

on BAI and BS* [Kwa89] and showed that their algorithm is faster than IDA* by a factor

of 7 on the 15-Puzzle. [Man95] presented BIDA* and showed that it is faster than IDA* by

a factor of almost 8 on the 15-Puzzle. BIDA* first builds a perimeter of nodes all at the

same distance d from the goal state, then runs IDA* from the start state. For each node

n generated, BIDA* computes the heuristic to the perimeter nodes p, and expands those

for which g(n) + h(n, p) + d does not exceed the current search bound. All these previously

mentioned bidirectional algorithms used the Manhattan distance heuristic and were only

tested on the 15-Puzzle. However, these algorithms cannot beat IDA* on the 24-Puzzle, for

several reasons: 1) These algorithms use the Manhattan distance heuristics so the heuristic

between any two states can be cheaply calculated. However, heuristic calculations are more

expensive with PDBs and the standard heuristic function to use on the 24-Puzzle is the

6-6-6-6 disjoint PDBs [KF02]. 2) IDA* with duplicate detection is two to three times slower

14

than IDA* without duplicate detection on our machine when using PDBs. 3) The search

space of the 24-Puzzle is 7.4∗1011 times larger than that of the 15-Puzzle, making any A* or

BS* variations unable to solve random problem instances. Furthermore, the chance that a

node generated in BAI’s IDA* phase was already generated in its A* phase is very small. 4)

As shown in [BK15], bidirectional algorithms with the 6-6-6-6 PDB on the 24-Puzzle would

generate more nodes than unidirectional search algorithms.

All the above works were done before PDB heuristics enabled optimal solutions to the

24-Puzzle [KF02]. While [KF02] were aware of these previous works, they chose standard

IDA* as their search algorithm.

Dual IDA* (DIDA*) [FZS05, ZFH06, FMS10] was believed to be the state-of-the-art

solver for the 24-Puzzle and reduced the nodes generated by IDA* by a factor of 9.3. How-

ever, there are three considerations here: 1) Dual search is very complicated and hard to

implement. 2) For each state generated in DIDA*, there is a corresponding dual state gener-

ated, so the total number of states generated should be doubled. 3) Korf’s 24-Puzzle solver

[KF02] has two PDB lookups for each new node, while the version of IDA* used for com-

parison in their papers does eight PDB lookups for each node. Compared to Korf’s more

efficient IDA* implementation, DIDA* is only 8.5% faster than IDA*.

A* with lookahead (AL*) [SKF10, BSF14] is another A* variation which performs a single

iteration of IDA* with bound f(n) + k on each generated node n to increase its heuristic

value and hence reduce the memory requirement. Users need to provide the value of k before

AL* can run and there is no single best k-value that works for all domains. In practice, given

a new problem instance to solve, the standard way is to first run AL* with k = 0. If the

problem instance is solved, then no more runs are needed. If not, we increase k gradually

until AL* can finally solve the problem instance within the given memory limit.

External IDA* [ES11, Ede16] first runs disk-based A* then runs IDA* on the frontier

nodes. However, they only reported data for two instances of the 24-Puzzle, did not compare

it to IDA*, and did not report any running times.

15

CHAPTER 4

Frontier Search

Algorithms like BFS and A* never remove any stored nodes from memory. Frontier search

[KZT05] is a family of algorithms that only stores the search frontier in memory and removes

expanded nodes whenever possible. Unlike IDA*, frontier search algorithms detect duplicate

nodes and are guaranteed not to expand a state more than once on undirected graphs.

4.1 Breadth-First Frontier Search

Breadth-first frontier search (BFFS) [Kor04] is the breadth-first version of frontier search,

and applies to unit-cost domains. BFFS deletes all closed nodes at depth d after expanding

all nodes at depth d+ 1. For each stored node n, we define its delete g-value, dg(n), as the

minimum g-value such that once all nodes with g-value of dg(n) or less have been expanded,

then node n can be safely deleted from memory. For BFFS, dg(n) is simply one level greater

than the depth of n.

dg(n) = g(n) + 1 (4.1)

For example, if a node n is at depth 6, or g(n) = 6, then n is deleted after BFFS expands

all nodes at depth 7.

Equation 4.1 prevents expanding the same state more than once on undirected graphs

with unit-edge costs. However, BFFS still has to store nodes at three consecutive depths.

In the above example, all nodes stored at depth 6 are deleted after all nodes at depth 8

are generated. On certain domains like the sliding-tile puzzles, where the inverse of every

operator is known in advance, there is an optimization called forbidden operators or used

16

operators [KZ00] that can reduce the number of depths of the stored nodes into two. Suppose

every node in a domain has at most n operators, then we can use n bits for each node to

mark whether all its operators can be applied or not. For example, assume the parent node

p generates the child node c via operator o, whose inverse is operator o′. Then we can mark

the operator o′ of c as forbidden. After the expansion of p, we can immediately remove p

from memory. Then during the expansion of c, o′ will not be applied, which means p will

not be regenerated and the time for duplicate detection for p is also saved. As a result, this

technique reduces both the space and time requirement of BFFS and can be applied to other

frontier search algorithms as well. The drawback of this technique is that it in general only

works well on undirected domains and the domain has to be analyzed in advance to find the

inverse of every operator, therefore it is in general not used in planning.

4.2 Divide-and-Conquer Frontier A*

Divide-and-conquer frontier A* (DCFA*) [KZ00] is a frontier search algorithm based on A*.

The difference between A* and DCFA* is that DCFA* stores the entire Open list and only

a few layers of the Closed list, which can be done by deleting a parent node after expanding

all its child nodes. Compared to A*, DCFA* saves a large amount of memory when the

Closed list is significantly larger than the Open list. For example, in 2D-grid spaces, the

problem spaces grow polynomially in the search depth d, hence we have |Open| = O(d) and

|Closed| = O(d2). On the other hand, little memory is saved on problems where the Open

list is much larger than the Closed list, which is often the case for exponential problems.

4.3 Breadth-First Heuristic Search

Breadth-first heuristic search (BFHS) [ZH04] is another frontier search algorithm that works

on unit-cost domains, and uses less memory than A*. It is BFFS with heuristics to prune

nodes. BFHS requires a user-specified cost bound U , and prunes every generated node whose

f -value is greater than U .

17

S5g=0 dg=1

A6g=1

dg=2

D6g=2

dg=3

Hg=3 8

E6 dg=3

I6

dg=4

J6

dg=4

B7 C5

dg=2

F5

dg=3

K7

Figure 4.1: An example of BFHS with a cost bound of 6. f -values are at the left of nodes.

Closed nodes are gray. Deleted nodes are dotted. dg is the delete g-value.

We present an example of BFHS with U = 6 on an undirected graph in Figure 4.1,

where all edge costs are 1, the numbers next to the nodes are their f -values, Closed nodes

are gray, and deleted nodes are dotted. The start node S generates nodes A, B, and C.

f(B) = 7 > U = 6 so B is immediately deleted, while A and C are stored at depth 1. Next,

BFHS expands the Open nodes at depth 1. A generates S, D, and E. S is a duplicate node,

while D and E are stored at depth 2. C generates S, E, and F. S and E are duplicate nodes,

while F is stored at depth 2. Although dg(S) = 1, S is not deleted since it is the start node.

Then BFHS expands the Open nodes at depth 2. D generates A and H. A is a duplicate

node, while H is immediately deleted since f(H) > U . E generates A, C, I, and J. A and

C are duplicate nodes, while I and J are stored at depth 3. F generates C and K. C is a

duplicate node, while K is immediately deleted since f(K) > U . After all Open nodes at

depth 2 are expanded, BFHS deletes the nodes at depth 1, A and C, which have dg-values

of 2, since they cannot be generated again. BFHS then expands the Open nodes at depth

3 and continues until it finds a goal node, or proves that no solution exists within the cost

bound U .

18

4.4 Breadth-First Iterative-Deepening A*

BFHS searches for solutions within a given cost bound. If the bound is smaller than the

optimal solution cost C∗, it may never generate a goal node. If the bound is too large, it

may generate many nodes n for which f(n) > C∗. C∗ is rarely known in advance. Zhou

and Hansen [ZH04] hence proposed breadth-first iterative-deepening A* (BFIDA*), which

runs a series of iterations of BFHS with increasing cost bounds. The first cost bound is the

heuristic value of the start node and the last bound is C∗. Similar to IDA*, during each call

to BFHS, BFIDA* keeps track of the minimum f -value generated but not expanded in that

call to BFHS and uses that f -value as the next cost bound. Although the name of BFIDA*

contains IDA*, BFIDA* does not use depth-first search and the name simply means both

IDA* and BFIDA* use the same strategy for increasing the cost bound.

We present the evolution of breadth-first iterative-deepening A* in Figure 4.2, where

each node is an algorithm or search technique. When breadth-first search and frontier search

are combined together, we get breadth-first frontier search (BFFS). Combining BFFS with

heurstics and a cost bound, we get breadth-first heuristic search (BFHS). Finally, after ap-

plying iterative-deepening to BFHS, we get breadth-first iterative-deepening A* (BFIDA*).

breadth-first

iterative-deepening A*

iterative-

deepening
breadth-first

heuristic search

heuristics &

cost bound

breadth-first

frontier search

frontier

search

breadth-first

search

Figure 4.2: The evolution of breadth-first iterative-deepening A* (BFIDA*).

19

4.5 Drawbacks of BFHS and BFIDA*

Compared to A*, BFHS and BFIDA* save significant memory but generate more nodes.

The main drawback of BFHS and BFIDA* is that their node ordering is almost the worst

among different node ordering schemes. BFHS and BFIDA*’s breadth-first ordering means

they have to expand all nodes stored at a single depth before expanding any nodes in the

next depth. As a result, they have to expand almost all nodes whose f -value equals C∗,

excepting only some nodes at the same depth as the goal node, while A* may only expand

a small fraction of such nodes due to its best-first node ordering.

S

4
h=3

4

5 4

5 5

4

4

5 4

4

4 4

3

3

5 4 h=1

5 G

4 h=2

5 5

Figure 4.3: BFHS with U = 4 on the same graph from Figure 2.3. Numbers in the nodes are

f -values. Nodes generated by both A* and BFHS are gray. Nodes only generated in BFHS

are white. Nodes not generated by either algorithm are dotted. Nodes generated but not

stored in BFHS are dashed.

To compare the effects of node ordering between A* and BFHS, we run BFHS with

U = C∗ = 4 on the same graph from Figure 2.3, and we present the result in Figure 4.3.

Here S is the start node, G is the goal node, the optimal solution cost is 4, and numbers

in the nodes are their f -values. Nodes generated by both A* and BFHS are gray. Nodes

only generated in BFHS are white. The dotted nodes represent states existing in the search

space but which are not generated by either algorithm during the search. The dashed nodes,

which have an f -value that is greater than the cost bound 4, are generated but not stored in

20

BFHS. As we can see, due to the nature of breadth-first node ordering, BFHS has to expand

all stored nodes at depths 1 through 3, hence generating many more nodes than A* on the

same problem instance.

4.6 Forward Perimeter Search

Forward Perimeter Search (FPS) [SDR13] first builds a perimeter from the start state by

using BFS, then runs BFIDA* from each node in the perimeter to find a solution. A perimeter

is a set of nodes that have the same or similar distance from the start state. During search,

this perimeter can also be dynamically adjusted. After the perimeter is built, FPS switches

to its BFIDA* phase and uses the lowest f -value among all perimeter nodes as the first cost

bound. In each iteration of the BFIDA* phase, FPS first sorts the perimeter nodes using

a max-tree-first or longest-path-first policy, then calls BFHS on each perimeter node and

updates the f -value of each perimeter node to the smallest f -value of the node generated

but not expanded in that single call to BFHS. Here the max-tree-first policy means that in

each iteration, FPS first calls BFHS on the perimeter node that generated the most nodes in

the previous iteration, while the longest-path-first policy means that FPS first calls BFHS

on the perimeter node that led to the longest path (largest g-value generated in a single call

to BFHS) in the previous iteration.

4.7 Solution Reconstruction

All frontier search algorithms delete stored nodes whenever possible. As a result, when a goal

node is expanded, we only know the optimal solution cost, but not the optimal solution path

because most nodes on this path were already removed from memory. Therefore, frontier

searches need to reconstruct the optimal solution path in the end.

All frontier search algorithms use the same scheme for solution reconstruction. During

the search, they keep a middle layer of nodes in memory and never remove the nodes in

the middle layer from memory. Every node generated below this middle layer will have a

21

pointer to its ancestor in the middle layer. When frontier searches expand the goal node,

they know which node in the middle layer led to this goal node. Then the same algorithm

can be called recursively to reconstruct the optimal path from the start node to the middle

node, and from the middle node to the goal node [ZH04, KZT05].

We present an example of such a middle layer in Figure 4.4, where we apply BFFS on a

two-dimensional grid. The stored Closed nodes are dark gray and the Open nodes are light

gray. The dashed nodes are the deleted Closed nodes and the dotted nodes are the nodes

that exist in the search space but have not been generated yet. S is the start node and G

is the goal node. After G is found, BFFS knows that node M is the middle node led to G.

Then we can call BFFS again to find the optimal solution path from S to M and M to G.

When the subproblem is easy enough, we can just use another algorithm like A* to compute

the optimal path of the subproblem.

S

M

G

Figure 4.4: Breadth-first frontier search on a two-dimensional grid. Stored Closed nodes are

dark gray. Open nodes are light gray. Delete Closed nodes are dashed. Dotted nodes are

the nodes exist in the search space but not being generated yet.

In practice, there are multiple ways to determine what nodes are considered to be in

this middle layer. For example, in DCFA*, we can store a node n into this middle layer if

g(n) = h(n) [KZ00]. In BFHS and BFIDA*, we can store the nodes whose g-value equals

22

U/2 or U/4, where U is the current cost bound [ZH04].

4.8 Frontier Search on Directed Graphs

All frontier search algorithms introduced in this chapter are guaranteed to detect all duplicate

nodes on undirected graphs. However, in general, frontier search algorithms cannot detect

all duplicates on directed graphs [ZH04, KZT05].

Consider the example of frontier search on a directed graph in Figure 4.5, where dashed

nodes are deleted Closed nodes and currently stored Closed nodes are gray. x, y, and z are

operators. Here the frontier search algorithm can be any algorithm described in this chapter.

Frontier search first expands A and generates B. Then frontier search expands B, generates

C, and removes A from memory because all of A’s child nodes have been expanded. Frontier

search would next expand C and generate A again via operator z. At this time, because

A is not stored in memory, this new copy of A will be considered as a new state, hence is

stored and put on Open. As a result, frontier search on this graph may keep generating and

expanding the same states and never terminate, if there exist zero-edge costs or no search

upper bound.

A

B C

x

y

z

Figure 4.5: Frontier search on a directed graph. Dashed nodes are deleted. Stored Closed

nodes are gray. x, y, and z are operators.

The above example is a general case where frontier search algorithms cannot detect all

duplicate nodes on directed graphs. As shown in [KZT05], there is an exception where

frontier search algorithms can detect all duplicates on directed graphs. Suppose for each

node, we know all of its predecessor nodes, then during the search, when we expand a node

n, we can create a “dummy” node for each predecessor node p of n, if p is not already in

23

memory. This “dummy” node will not be expanded, but will be used for duplicate detection.

Consider the example in Figure 4.5, when A is expanded, if we know C is a predecessor

node of A, we can create a “dummy” node C and mark operator z as forbidden. Then B is

expanded and generates C, this new copy of node C is merged with the existing “dummy”

node C, which means operator z remains as a forbidden operator. As a result, during the

expansion of node C, A will not be generated again via z.

In sum, if we can know all the predecessor nodes of every node in advance and create the

corresponding “dummy” nodes during the search, then frontier search algorithms can still

detect all duplicate nodes on directed graphs.

24

CHAPTER 5

A*+IDA*: A Simple Hybrid Heuristic Search

Algorithm

We present a simple combination of A* and IDA*, which we call A*+IDA*. It runs A* until

memory is almost exhausted, then runs IDA* below each frontier node without duplicate

checking. It is widely believed that this algorithm is called MREC, but MREC is just IDA*

with a transposition table. A*+IDA* is the first algorithm to run significantly faster than

IDA* on the 24-Puzzle, by a factor of almost 5. A complex algorithm called dual search

was reported to significantly outperform IDA* on the 24-Puzzle, but the original version

does not. We made improvements to dual search and our version combined with A*+IDA*

outperforms IDA* by a factor of 6.7 on the 24-Puzzle. Our disk-based A*+IDA* shows

further improvement on several hard 24-Puzzle instances. We also found optimal solutions

to a subset of random 27 and 29-Puzzle problems. A*+IDA* does not outperform IDA* on

Rubik’s Cube, for reasons we explain.

Our work on A*+IDA* is presented in the following order. Section 5.1 discusses the

motivation of this research. Section 5.2 presents the new algorithm A*+IDA*. Section

5.3 compares A*+IDA* with some previous algorithms that look similar to A*+IDA* and

discusses the differences. Section 5.4 presents experimental results on the 24-Puzzle and

Rubik’s Cube and shows why A*+IDA* is faster than IDA* on the 24-Puzzle by a factor of

almost 5, but not faster on Rubik’s Cube. Section 5.5 shows the result of A*+IDA* combined

with dual search on the 24-Puzzle. Section 5.6 presents results of disk-based A*+IDA*.

Section 5.7 presents results of parallel A*+IDA* on the 27 and 29-Puzzle. Lastly, Section

5.8 shows how to convert A*+IDA* to an approximation algorithm to quickly find a solution.

25

5.1 Motivation

A* detects all duplicates and expands few nodes whose f -value equals the optimal solution

cost C∗, but has an exponential memory requirement. IDA*’s space is linear in the search

depth at the price of no duplicate detection, and expands a lot of nodes whose f -value

equals C∗. In past years, researchers have developed various algorithms to overcome these

difficulties. Some of these algorithms are in the breadth-first style and use various ways

to reduce the number of nodes stored. Other algorithms are in the depth-first style but

utilize more memory to help reduce the number of duplicate nodes. However, most of the

previous work either cannot solve large problems, or are slower than IDA* on some common

benchmarks like the sliding-tile puzzles. As a result, most of these algorithms are not very

popular and researchers do not often use them.

Based on the pros and cons of A* and IDA*, it is natural to consider the question: how

can we combine A* and IDA* to get the advantages of both without their disadvantages?

To answer this question, we present our new algorithm A*+IDA*.

5.2 A*+IDA*

A*+IDA* runs pure A* in the first phase and stores nodes up to a user-defined limit. In the

A* phase, duplicate detection is performed for each newly generated node. In Open, nodes

are sorted in increasing order of f -value, with ties broken by smaller h-value. All f and h-

values are integers, so we can use a three-dimensional array to order the nodes such that the

f -value corresponds to the first dimension, the h-value corresponds to the second dimension,

and all nodes with the same f and h-value are stored in the last dimension according to the

order they are put in Open. At each step a node with the smallest f -value and the smallest

h-value among that f -value is removed from Open and then expanded. All new child nodes

passing duplicate detection are put in Open and the parent node is then put in Closed. For

a state that is generated again, the new node replaces the old node and is put in Open if the

new node’s g-value is smaller than that of the old node, otherwise the new node is deleted.

26

If A*+IDA* finds the optimal solution in the A* phase, then A*+IDA* terminates without

entering its IDA* phase. If the memory bound is reached before the A* phase finds the

optimal solution, A*+IDA* switches to its IDA* phase, and we define the nodes in Open at

this moment as the frontier nodes.

A*+IDA*’s IDA* phase can be viewed as a doubly nested loop. Each iteration of the

outer loop, which we define as an iteration of the IDA* phase, corresponds to a different cost

bound for IDA*. The first cost bound is set to the smallest f -value among all frontier nodes.

In the inner loop, we make one call to IDA* on each frontier node whose f -value equals

the bound, in increasing order of their h-values. In contrast to pure IDA*, here each call to

IDA* has a fixed bound that is the current bound of the IDA* phase. After each call to the

single-bound IDA* on a frontier node n, we increase the stored f(n)-value to the minimum

f -value of all the nodes generated but not expanded in that call to the single-bound IDA*.

This inner loop continues until a solution is found or all calls to the single-bound IDA*

with the current bound fail to find a solution. There are two important things to note here.

First, unlike A*+IDA*’s A* phase, we do not perform any duplicate detection in the IDA*

phase. Second, similar to pure IDA*, A*+IDA*’s IDA* phase terminates only when the best

solution cost found so far equals the current search bound.

We store all information for all nodes in a hash table. Duplicate detection is performed

by checking this hash table. The Open list is a three-dimensional vector and each element is

a node’s index in the hash table. Adding or removing a node from the Open list can be done

in constant time. All nodes not in Open belong to the Closed list and there is no separate

data structure specifically for the Closed list.

We present an example of A*+IDA* in Figure 5.1, where the f -value is at the left of

each node, an arrow means the node’s f -value is updated during the search, and the number

next to each edge is the edge cost. Closed nodes of A* are gray. Solid white nodes are the

frontier nodes, which are the Open nodes at the end of the A* phase. Dashed nodes are the

nodes generated in the IDA* phase. S is the start node and G is the goal node. In the A*

phase, S is expanded and generates A, B, and C, which all have an f -value of 4. Since B

27

S3

B4

D
4
↓
5

H5

G5

A
4
↓
5

F5

C4

E6

1 2 2

3 1 1

1

1

Figure 5.1: An example of A*+IDA*. The f -value is at the left of each node. An arrow

means the node’s f -value is updated during the search. The number next to each edge is the

edge cost. Closed nodes of A* are gray. Solid white nodes are the frontier nodes. Dashed

nodes are the nodes generated in the IDA* phase.

and C have an h-value of 2 while A has an h-value of 3, A*+IDA* would expand B and C

before expanding A. Suppose A*+IDA* first expands C and generates E with f(E) = 6, then

expands B and generates D with f(D) = 4. At this time, assume A*+IDA* has reached its

storage limit, which is 6 nodes. Then A*+IDA* begins its IDA* phase with nodes A, D, and

E as the frontier nodes, which are the Open nodes at the end of the A* phase. The first cost

bound of the IDA* phase is 4, the smallest f -value among A, D, and E. In each iteration

of the IDA* phase, IDA* is called on the frontier nodes whose f -value equals the current

cost bound in increasing order of their h-values. Therefore, A*+IDA* first calls IDA* with a

fixed cost bound of 4 on D and generates H, whose f -value is 5, greater than the cost bound.

A*+IDA* will not expand H but updates the stored f -value of D to 5. Then A*+IDA* calls

IDA* with a fixed cost bound of 4 on A and generates F, whose f -value is also 5. Thus

A*+IDA* will also update A’s f -value to 5. At this point, there are no more frontier nodes

whose f -value is 4, so A*+IDA*’s IDA* phase will begin its second iteration with the cost

bound of 5, the smallest f -value among all frontier nodes. A*+IDA* then calls IDA* with a

fixed cost bound of 5 on D, which generates H. This time H is also expanded and generates

28

the goal node G with an f -value of 5. Since 5 is the current cost bound, A*+IDA* can claim

that it has found the optimal solution to this problem with a cost of 5.

A*+IDA* is complete and admissible with admissible heuristics. A*+IDA* potentially

makes calls to IDA* on all frontier nodes. When an optimal solution exists, one node on this

optimal path serves as the start node for one of the calls to IDA*. Such a node is guaranteed

to exist by A*’s completeness and admissibility. When the cost bound for the calls to

IDA* equals C∗, the optimal solution will be found, guaranteed by IDA*’s completeness and

admissibility.

5.3 Comparisons to Previous Work

5.3.1 A*+IDA* vs. MREC

A*+IDA* is a simple combination of A* and IDA*, so how did this simple algorithm escape

notice for so long? The answer seems to be that most researchers believe it was discovered

in 1989 as the MREC algorithm [SB89]. For example, [Kor93] described MREC as running

A* until memory is full, then running iterations of IDA* below the frontier nodes. Several

other researchers repeated this erroneous characterization of MREC [ES00, Fel05, SKF10,

AKF10, SDR13].

In fact, as we introduced in Chapter 3, MREC is just IDA* with a transposition table

(IDA*+TT) [RM94]. There are four main differences between A*+IDA* and MREC. First,

A*+IDA* stores the first nodes generated by A*, while MREC stores the first nodes gener-

ated by IDA*. These sets can differ significantly among the nodes of largest f -value that are

stored. Second, A*+IDA* starts each call to IDA* from the frontier nodes, while MREC al-

ways starts from the start state. Third, during the IDA* phase, A*+IDA* orders the frontier

nodes of equal f -value in increasing order of their h-values. Finally, A*+IDA*’s IDA* phase

does not check for duplicate nodes, while MREC always does duplicate detection for each

node generated. This last difference saves significant overhead for A*+IDA* since accessing

a large hash table requires an expensive access to main memory. This expensive access usu-

29

ally comes from three factors: hash table index calculations, comparisons with stored nodes,

and page faults due to the nature of random access to a large hash table. Transposition

tables can also use various replacement strategies to dynamically modify the nodes stored,

but this adds additional overhead and may not really save search time [AKF10].

As we mentioned before, the first appearance of a version of A*+IDA* in the literature

is in [Kor93], where he mistakenly described it as MREC. He also claimed that MREC in

[SB89] did not check for duplicate nodes during the IDA* search on the 15-Puzzle, contrary

to the pseudo-code in the MREC paper. He implemented a version of A*+IDA*, but with

duplicate node checking during the IDA* phase, and no mention of ordering Open nodes. He

reported a 41% reduction in node generations, but a 64% increase in running time compared

to IDA*, presumably due to checking for duplicate nodes during the IDA* phase.

5.3.2 A*+IDA* vs. A* With Lookahead

As introduced in Chapter 3, A* with lookahead (AL*) [SKF10, BSF14] is also a combination

of A* and IDA* that performs a single iteration of IDA* with bound f(n) + k on each

generated node n. We found that on our machine, k = 6 is the smallest k that enables us

to solve all of Korf’ 50 24-Puzzle test cases [KF02]. When k = 6, AL* is also faster than

IDA* on the 24-Puzzle, but slower than A*+IDA*. AL* is similar to A*+IDA* but there

are some significant differences. First, A*+IDA* is guaranteed to solve a problem instance if

a solution exists. On the other hand, AL* may run out of memory before finding a solution

if the problem instance to solve is hard enough and the user-defined k-value is too small.

Second, the best k-value in terms of running time is different for each problem instance and

we cannot predict whether a certain k-value would be enough for AL* to solve a problem

instance. Therefore, to use AL* in practice, a lot of time would be needed to find the correct

k-value. A*+IDA* does not have this issue. Third, A*+IDA* can use all the given memory

for duplicate detection while AL* may only use a small portion of the available memory. For

example, AL* with k = 3 may run out of memory before finding a goal node while AL* with

k = 4 may only store a small number of nodes in memory before termination. In such cases,

30

a lot of memory could be wasted, reducing the power of duplicate detection in A*. Fourth,

AL* may expand a lot of nodes whose f -value is greater than the optimal solution cost even

when using an admissible heuristic function, while A*+IDA* is guaranteed to never expand

such nodes.

5.3.3 A*+IDA* vs. External IDA*

External IDA* [ES11, Ede16] first runs disk-based A* then runs IDA* on the frontier nodes,

which appears similar to our disk-based A*+IDA* that we will introduce later. However,

they did not indicate whether or not duplicate detection is performed during the IDA* phase,

nor whether any node ordering of the Open nodes is done.

5.4 Experimental Results and Analysis

We first present our results and analysis on the 24-Puzzle, then Rubik’s Cube. All experi-

ments were performed on a 3.33GHz Intel Xeon X5680 CPU with 96 GB of RAM.

5.4.1 24-Puzzle

We used the same 6-6-6-6 disjoint PDBs with reflection as we introduced in Figure 2.2 and

the same 50 test cases as in [KF02]. During the search, we took the larger heuristic value

between the values returned from the default grouping in Figure 2.2a and the reflection

grouping in Figure 2.2b. We ran A*+IDA* with 8 GB, 48 GB, and 96 GB of memory,

and the upper bounds of nodes stored for each test case were 96,855,259, 774,842,075, and

1,549,684,150, respectively.

We also implemented the original MREC/IDA*+TT [SB89, RM94]. However, because

of the high cost of duplicate detection for each node generated during search, it is slower

than IDA* by a factor of two to three, so we omit those results here.

For comparison purposes, we also include an algorithm we call Cached-IDA*, which uses

31

a transposition table (TT) to store the first nodes generated by IDA*. Before the TT is

full, Cached-IDA* behaves the same as MREC/IDA*+TT. After TT is full, Cached-IDA*

only does duplicate detection for a node if its parent is stored in TT. As a result, when

Cached-IDA* generates a node c that is not in TT and TT is full, Cached-IDA* turns off

duplicate detection for the search tree below c. Cached-IDA* generates more nodes than

the original MREC/IDA*+TT, but is much faster as it avoids duplicate detection for most

nodes. Our Cached-IDA* used the same upper bound of stored nodes as A*+IDA* with 48

GB memory.

We present the speedups of A*+IDA* over IDA* in run time on all 50 test cases in

Figure 5.2. We sort the 50 test cases according to the number of nodes generated by IDA*,

so the left-most test case is the easiest and the right-most test case is the hardest for IDA*.

The squares, diamonds, and circles correspond to A*+IDA* with 8 GB, 48 GB, and 96 GB

memory respectively. The scattered nature of this plot is due to variation in when the first

optimal solution is found on the last iteration.

0 10 20 30 40 50

0

5

10

15

20

y = 1

Test instances sorted by IDA* nodes generations

T
im

e
sp
ee
d
u
p
ov
er

ID
A
* 8 GB

48 GB
96 GB

Figure 5.2: A*+IDA*’s speedup over IDA*.

We present the cumulative data of the 50 test cases in Table 5.1, where the first column

is the algorithm, the second column is the total number of nodes stored, the third column

is the total number of nodes generated, the fourth column is the nodes generated in the last

32

Algorithm Stored nodes Total nodes Last iteration Time(s)

IDA* 0 18,044,623,983,548 9,861,089,635,700 572,845

Cached-IDA* 33,149,796,158 10,416,963,057,231 5,703,252,119,005 446,293

A*+IDA*(8 GB) 4,565,459,317 4,552,871,977,112 454,939,266,782 150,387

A*+IDA*(48 GB) 30,491,473,996 3,143,297,938,874 24,670,542,049 116,963

A*+IDA*(96 GB) 56,833,924,109 2,839,875,132,068 24,133,797,786 129,871

Table 5.1: Cumulative data for A*+IDA* on the 24-Puzzle.

iteration, and the last column is total time in seconds for all 50 problems.

Over all 50 test cases, A*+IDA*’s speedup over IDA* is 3.8 (8 GB), 4.9 (48 GB), and

4.4 (96 GB) respectively. A* solved 5, 15, and 19 test cases respectively before exhausting

memory. Due to A*’s expensive memory and duplicate detection operations, A* is slower

than IDA* in terms of nodes generated per second by a factor of 7. As a result, A*+IDA*

is slower than IDA* on the easy test cases, where most or all search time was spent on the

A* phase of A*+IDA*. On the medium and hard test cases, A*+IDA* is consistently faster

than IDA*. A*+IDA* (8 GB) is also faster than the 48 GB and 96 GB versions on easy test

cases as its A* phase is much shorter than that of the 48 GB and 96 GB versions. Increasing

the memory from 8 GB to 48 GB reduced the total number of nodes generated by 31.0%,

while increasing the memory from 48 GB to 96 GB only reduced the nodes by an additional

9.7%.

In Table 5.1, the overall nodes ratio for A*+IDA* (48 GB) is 5.74, which is higher than

the speedup ratio of 4.9. There are two reasons for this. First, as discussed above, A* is

slower than IDA* in terms of nodes generated per second. However, this is a minor reason

as the nodes generated in A* are less than 1% of the total generated nodes in A*+IDA*.

The major reason is that the IDA* phase in A*+IDA* is always slower (in terms of nodes

generated per second) than pure IDA* due to the overhead for each separate call to IDA*.

This overhead mainly comes from fetching the start node from a large hash table, which

33

usually causes cache misses. This is also the reason why A*+IDA* (96 GB) is slower than

A*+IDA* (48 GB). The former generated fewer nodes, but as the frontier nodes doubled,

this overhead for all IDA* runs also doubled.

The speedup comes from three factors: fewer IDA* iterations, fewer duplicate nodes,

and early goal termination. A*+IDA* typically performs only two to five iterations in its

IDA* phase, while pure IDA* typically performs around 10 iterations. However, this is a

minor reason as the last two iterations dominate the search. A*+IDA* (48 GB) reduced

the nodes generated in all but the last iteration by a factor of 2.62 over IDA* and 1.51

over Cached-IDA*. By starting from the frontier nodes instead of the start state, we do

not need to re-generate the nodes above the frontier nodes and the search tree generated by

A*+IDA*’s IDA* phase is much smaller than that of IDA*. Our data shows that on average,

each separate call to the single-bound IDA* in A*+IDA* (48 GB) only generated 190 nodes.

This number is dominated by the hard test cases and for most test cases, this number is

below 50. The better duplicate pruning effect of A*+IDA* over Cached-IDA* also suggests

that expanding and storing nodes in a best-first order with tie-breaking by h-value is better

than depth-first order, as the latter can be heavily biased to the left part of the search tree.

The last iteration of IDA* is usually the most time-consuming iteration. In Table 5.1,

54.6% of IDA* nodes were generated in the last iteration. A*+IDA* reduced the nodes

generated in the last iteration by 400 times, making it less than 1% of the total nodes

generated. We present the detailed last iteration comparison in Figure 5.3, where the y-axis

is the number of nodes generated in IDA*’s last iteration over A*+IDA*’s. We see that

the 8 GB version usually leads to more nodes generated, but there is not much difference

between the 48 GB and 96 GB versions. For the 48 GB and 96 GB versions, A*+IDA*

reduced the number of nodes in the last iteration by more than three orders of magnitude

on most test cases. This result shows that by expanding frontier nodes of equal f -values

in increasing order of h-values (decreasing order of g-values), the goal state was found very

early in the final iteration. It also suggests that finding the optimal solution is much easier

than verifying optimality. Expanding nodes according to the f and h-values to significantly

34

10 20 30 40 50

100

102

104

106

108

Test instances sorted by IDA* nodes generations

ID
A
*’
s
la
st

it
er
at
io
n
/
A
*+

ID
A
*’
s

8 GB
48 GB
96 GB

Figure 5.3: A*+IDA*’s last iteration vs. IDA*’s.

reduce the number of nodes generated in the last iteration was first done in [PK89]. For

example, IDA* can order a node’s child nodes based on their h-values to decide which node to

expand next [PK89]. However, as noted in [PK89], the benefit of this limited node ordering

may be mitigated by its extra cost. This may be the reason why node ordering was not

commonly used in IDA* in the past. However, we show that effective node ordering can be

easily achieved by utilizing A*+IDA*’s frontier list.

We further applied the above node ordering on Cached-IDA*’s last iteration. We scanned

the transposition table, selected the nodes that do not have all their children stored in the

transposition table, pruned the nodes whose f -values exceed the bound, then sorted the

nodes in increasing order of stored h-values and expanded them. In this way, Cached-

IDA* begins each iteration from the frontier nodes instead of the root node, and we call

the resulting algorithm Cached-IDA*+node ordering. We present the results for the 31

test cases that A* (96 GB) did not solve in Table 5.2. We only list the number of nodes

generated in the last iteration. IDA* generated 9,789,829,523,428 nodes in its last iteration

on these 31 test cases. We see that A*+IDA* consistently generated fewer nodes than

Cached-IDA*+node ordering. The most significant difference is under the 48 GB setting

where Cached-IDA*+node ordering generated 13 times more nodes than A*+IDA*. This is

35

Memory A*+IDA* Cached-IDA*+node ordering

8 GB 453,763,507,684 557,116,891,535

48 GB 24,636,552,525 320,412,253,835

96 GB 24,133,797,786 40,276,211,512

Table 5.2: Nodes generated in the last iteration in A*+IDA* and Cached-IDA*+node or-

dering.

largely due to one test case where Cached IDA*+node ordering generated 280,591,231,353

nodes, proving that even with node ordering, Cached-IDA*+node ordering can sometimes

find the goal state very late in the last iteration. Similar to Cached-IDA*’s less powerful

duplicate detection compared to A*+IDA*, this late termination in the last iteration also

comes from the stored nodes being biased towards the left part of the search tree.

Another way to use memory to speedup IDA* is to build larger PDBs. We built 8-8-7-

1, 7-7-7-3, 7-7-6-4, and 7-7-5-5 disjoint PDBs and found that none of them is better than

the standard 6-6-6-6 disjoint PDBs for the 24-Puzzle. The reason is that they all produce

more small heuristic values than the 6-6-6-6 disjoint PDBs (see [HNF04] for a more detailed

discussion of the effect of small heuristic values).

5.4.2 Rubik’s Cube

We randomly generated 100 test cases for Rubik’s Cube. We built one PDB based on 8

corner cubies and two PDBs each based on 9 edge cubies, similar to the PDBs in [Kor97],

and took the maximum value among all three PDBs. These three PDBs require 38 GB of

memory. We present the results in Table 5.3, where the first column is the algorithm, the

second column is the number of nodes stored by A*+IDA*’s A* phase, the third column is

the total number of nodes generated, the fourth column is the nodes generated in the last

iteration, and the last column is time. Our A*+IDA* stored the same number of nodes

(774,842,075) as A*+IDA* (48 GB) on the 24-Puzzle, resulting a 32 GB hash map for the

36

Algo. A* stored Total nodes Last iteration Time (s)

IDA* 0 918,896,332,771 576,086,877,811 323,083

A*+IDA* 69,909,543,136 710,571,584,688 381,865,691,696 325,950

Table 5.3: A*+IDA* vs. IDA* on Rubik’s Cube.

A* phase.

A*+IDA* is 1% slower than IDA* and only reduced the nodes generated in IDA* by

23%. There are two reasons for this: 1) With the move pruning used in [Kor97], there are

few duplicate nodes generated in IDA*. Depth-first search only generates 2.1%, 3.1%, 4.2%,

5.4%, 6.6%, and 8.0% more nodes as duplicates at depth 7, 8, 9, 10, 11, and 12 respectively

(http://www.cube20.org and [Kor97]). Most of the frontier nodes stored by A*+IDA* are

at depth 7 to 12. Therefore, there will not be much gain in duplicate detection as there

do not exist many duplicates. 2) A*+IDA* generated more nodes than IDA* in the last

iteration on 19 out of 82 test cases that A* did not solve, with the highest ratio being 39.

The reason is that the frontier nodes that are on the optimal paths sometimes have a perfect

heuristic value and hence a small g-value, causing them to be expanded very late in the last

iteration. For IDA*, the expansion order is based on the order of operators. The lesson here

is that it is hard to get good node ordering for Rubik’s Cube.

As we mentioned before, there is an overhead with each call to the single-bound IDA*, so

A*+IDA*’s IDA* phase generated fewer nodes per second than pure IDA*. The time spent

in the A*-phase, lower speed in the IDA*-phase, rare duplicate nodes, and less powerful early

termination in the last iteration make A*+IDA* not faster than IDA* on Rubik’s Cube.

5.5 Combining Dual Search With A*+IDA*

We further applied dual search [ZFH08] to the IDA* phase of our A*+IDA*. Dual search

(DS) is very complicated and we choose not to explain it here. This section does not require

37

the reader to understand DS.

[ZFH08] compared their DIDA* (IDA* with DS) code to an inefficient IDA* implemen-

tation which does 8 PDB lookups for each node. However, an efficient IDA* implementation

only does two PDB lookups for each node. We compared their DIDA* with Korf’s efficient

IDA* code [KF02] and found that their DIDA* is only 8.5% faster than Korf’s efficient IDA*

code.

The original DIDA* implementation in [ZFH08] performs 8 PDB lookups for a child state

and 8 PDB lookups for the child’s dual state, a total of 16 PDB lookups. We optimized the

DIDA* code to perform only 4.435 PDB lookups in total for each state and its corresponding

dual state. We also discovered an error in the original Dual PDB lookup and Dual search

implementation in [FZS05, ZFH06], resulting in 32% of the total generated nodes’ regular

PDB lookups and reflection PDB lookups always returning the same value. We omit the

details of our optimizations here.

Algorithm Total nodes Time (s) Speedup

IDA* 18,044,623,983,548 572,845 1

Original DIDA* 3,876,071,228,494 523,948 1.1

Our DIDA* 3,684,978,748,642 259,506 2.2

Original A*+IDA* 3,143,297,938,874 116,963 4.9

A*+IDA* w/ DS 858,888,100,914 85,405 6.7

Table 5.4: A*+IDA* combined with dual search.

We present the results in Table 5.4, where the first column is the algorithm, the second

column is the total number of nodes generated, the third column is time, and the last

column is the speedup over IDA*. We used the same 50 test cases as before. [ZFH06]

used bidirectional pathmax (BPMX) [FZS05] in their DIDA*. BPMX, which is used with

inconsistent heuristics, propagates greater heuristic values from a child node to its parent

and siblings, thus reducing node expansions. BPMX reduced the number of nodes generated

38

during search by about 2%. To be consistent with IDA*, we did not use BPMX in Table 5.4.

From Table 5.4 we see that the original DIDA* is only 8.5% faster than Korf’s efficient

IDA* code. After our optimization and bug fix, DIDA* is faster than Korf’s efficient IDA*

code by a factor of 2.2. Our version of DIDA* is by far the fastest linear search algorithm on

the 24-Puzzle. After we combined dual search with A*+IDA*, the speedup increases from

4.9 to 6.7. Contrary to the original dual search paper, we treat a state and its dual state as

two distinct states. Therefore, the number of nodes for the original DIDA* is roughly two

times that in [ZFH08]. The number is only approximate because we did not use BPMX.

5.6 Disk-based A*+IDA*

We then applied delayed duplicate-detection (DDD) [Kor04] to A*+IDA*. Traditional A*

performs duplicate detection whenever a node is generated. A* with DDD first generates

and stores nodes in external-memory without duplicate detection up to a certain limit of

expansions or generations. Then A* with DDD loads nodes back from external-memory and

prunes the duplicate nodes. Our implementation is similar to External IDA* [ES11, Ede16].

However, they did not indicate whether or not duplicate detection was performed during the

IDA* phase, nor whether any node ordering of the frontier nodes was done. They reported

data for only two instances of the 24-Puzzle, did not compare it to IDA*, and did not report

any running times.

We first ran disk-based A* with DDD up to 10.2 billion expansions, then we removed the

duplicates and ran the IDA* phase on the frontier nodes. Common disk-based A* assumes

consistent heuristics [ES11]. However, the 6-6-6-6 PDBs for the 24-Puzzle is an inconsistent

heuristic and pathmax cannot turn it into a consistent heuristic [Hol10]. Therefore, re-

expanding the same state in A* cannot be avoided. This is not mentioned in [ES11]’s

disk-based A* or External IDA* explanation. Our results show that disk-based A*+IDA*

is only faster than RAM-based A*+IDA* on extremely hard problem instances. The reason

is the same as why the 96 GB A*+IDA* version is slower than the 48 GB version: 1) more

39

State Length

s1: 23 1 12 6 16 2 20 10 21 18 14 13 17 19 22 0 15 24 3 7 4 8 5 9 11 113

s2: 0 19 3 14 17 13 21 4 10 22 12 11 9 15 24 18 7 2 6 8 5 1 23 16 20 108

s3: 3 5 0 15 4 13 22 2 21 23 14 7 16 17 10 11 1 8 12 24 9 20 19 18 6 104

Table 5.5: Three hard 24-Puzzle test cases in Table 5.6.

Algo. & Test case Total nodes Time (s) Speedup

A*+IDA*(48 GB), s1 1,343,383,770,705 44,602 1

A*+IDA*(Disk), s1 816,569,465,508 41,085 1.09

A*+IDA*(48 GB), s2 5,011,462,601,471 165,972 1

A*+IDA*(Disk), s2 1,620,137,788,282 76,547 2.17

A*+IDA*(48 GB), s3 3,039,454,921,549 100,722 1

A*+IDA*(Disk), s3 2,043,687,639,368 88,428 1.14

Table 5.6: Disk-based A*+IDA* vs. 48 GB RAM-based A*+IDA* on three hard 24-Puzzle

test cases.

time is spent on the A* phase and 2) with more frontier nodes, the overhead for initiating

IDA* on the frontier nodes increases.

We randomly generated 150 test cases and found two (s2 and s3) that are harder than

the most difficult test case (s1) we used before. We present these three test cases and

their solution lengths in Table 5.5 and the results in Table 5.6, where the first column is

the algorithm and test case, the second column is the total number of nodes generated in

A*+IDA*, the third column is time, and the last column is the speedup of the disk-based

version over the 48 GB RAM-based version. Disk-based A*+IDA* is faster than RAM-based

A*+IDA* on all three problems. On s2, the disk-based version reduced the nodes by a factor

of three and achieved a speedup of 2.17. On s3, disk-based A*+IDA* reduced the nodes by

one third and search time by 12%. The disk-based version performed better on s2 because

40

it reduced the number of nodes generated by 2,479 billion in the last iteration.

5.7 Parallel A*+IDA* on the 27 and 29-Puzzle

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

(a) First 7-7-7-6 PDBs.

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

(b) Second 7-7-7-6 PDBs.

Figure 5.4: Two 7-7-7-6 disjoint PDBs for the 27-Puzzle.

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

(a) First 7-7-7-7-1 PDBs.

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

(b) Second 7-7-7-7-1 PDBs.

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

(c) First 6-6-6-6-5 PDBs.

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

(d) Second 6-6-6-6-5 PDBs.

Figure 5.5: Disjoint PDBs for the 29-Puzzle.

We implemented a multi-threaded A*+IDA* and tested it on the 4 × 7 (27) and 5 ×

41

6 (29) sliding-tile puzzles. We first ran a single-threaded A*, then started multiple calls to

single-bound IDA* in parallel with each thread given a different frontier node. Unlike the

24-Puzzle, 27 and 29-Puzzles cannot use reflections for PDB lookups. For the 27-Puzzle, we

built two 7-7-7-6 PDBs (and took their maximum) whose sparse mapping [FKM07] required

26 GB in total. For the 29-Puzzle, we built two 7-7-7-7-1 PDBs and two 6-6-6-6-5 PDBs

(and took their maximum) whose sparse mapping required 64 GB in total. These PDBs are

shown in Figure 5.4 and Figure 5.5 respectively.

We randomly generated 10 instances for each puzzle. To date, we have found the optimal

solution for 5 and 4 instances for the 27 and the 29-Puzzle respectively. Those instances

took from 4 minutes to 15 hours with 12 threads of single-bound IDA* running in parallel

in the IDA* phase on our machine. To the best of our knowledge, these are the first random

instances of a sliding-tile puzzle larger than the 24-Puzzle to be solved optimally. For the

remaining instances, we have found solutions but not yet verified their optimality. The

solutions we found range from 108 to 149 for the 27-Puzzle and 117 to 152 for the 29-Puzzle.

The average (not guaranteed to be optimal) lengths for the solutions we found are 123.6

and 129.4 respectively. The average heuristic values for one million random states are 81.6,

100.3, and 107.6 for the 24, 27, and 29-Puzzles respectively.

5.8 An Approximation Algorithm Based on A*+IDA*

For the sliding-tile puzzles, A*+IDA* can be easily converted to an approximation algorithm

that enables us to quickly find a solution. For example, in each iteration, we can only call

the single-bound IDA* on the top 20% of the frontier nodes (sorted by h-values) that have

an f -value equal to the current cost bound. Suppose a solution is not found after those

20% frontier nodes are expanded, we then just increase the f -value of the remaining frontier

nodes that can be expanded in this iteration to the next cost bound and then we begin the

next iteration. If a solution is found, we decrease the bound to verify the optimality or find

a better solution.

42

We used this approximation algorithm to quickly find solutions for the 10 test cases for

the 27 and 29-Puzzles. Most of the nodes generated in the IDA* phase are generated below

the frontier nodes with high h-values. For example, the last 5% of the frontier nodes would

generate more than two orders of magnitude more nodes than the first 5% of the frontier

nodes. Therefore, even expanding the first half of the frontier nodes would generate only

a small portion of the nodes generated below the second half of the frontier nodes. The

optimal solutions are always generated very early in the last iteration, so the first solution

found by this algorithm is usually the optimal one. However, our analysis suggests that it

would take months to years to verify the optimality of the hardest 27 and 29-Puzzle test

cases we generated, so we cannot claim to have optimally solved these instances.

This approximation algorithm is based on the property that A*+IDA* usually finds the

solution very early in its last iteration. Given a domain and a heuristic function combination

where A*+IDA* does not have such property, this approximation algorithm may not work

well.

43

CHAPTER 6

A*+BFHS: A Hybrid Heuristic Search Algorithm

We present a new algorithm called A*+BFHS for solving problems with unit-cost operators

where A* and IDA* fail due to memory limitations and/or the existence of many distinct

paths between the same pair of nodes. A*+BFHS is based on A* and breadth-first heuristic

search (BFHS). A*+BFHS combines advantages of both algorithms, namely A*’s node or-

dering, BFHS’s memory savings, and both algorithms’ duplicate detection. On easy problem

instances, A*+BFHS behaves the same as A*. On hard problem instances, it is slower than

A* but saves a large amount of memory. Compared to BFIDA*, A*+BFHS reduces the

search time and/or memory requirement by several times on a variety of planning domains.

Our work on A*+BFHS is presented in the following order. Section 6.1 discusses the

motivation of this research. Section 6.2 presents the new algorithm A*+BFHS. Section 6.3

compares A*+BFHS with previous algorithms and discusses the differences. Section 6.4

describes the solution reconstruction strategy we used for A*+BFHS in our experiments.

Section 6.5 presents experimental results of A*, BFIDA*, and A*+BFHS on 32 hard in-

stances from 18 unit cost International Planning Competition (IPC) domains.

6.1 Motivation

Compared to IDA*, A*+IDA* reduces the number of duplicate nodes expanded and may

reduce the number of nodes expanded in the last iteration, depending on the domain and

heuristic functions. However, on a domain where many distinct paths exist between the

same pair of nodes, for example a grid graph or many planning domains, A*+IDA* would

still expand many duplicate nodes during its IDA* phase. This raises the question: how to

44

further reduce the number of duplicate nodes expanded by A*+IDA*?

On the other hand, BFHS and BFIDA* solve the duplicate nodes issue while still requiring

less memory than A* by using a breath-first search order. However, as we show in Section

4.5, BFIDA* would then expand almost all nodes whose f -value equals the optimal solution

cost C∗, hence end up expanding and generating many more nodes than A*. Therefore,

BFIDA* is usually much slower than A* due to its almost worst-case node ordering scheme.

Enlightened by BFIDA*’s memory-efficient duplicate detection scheme, we came up with

the idea: of replacing depth-first search with breadth-first search in A*+IDA* to reduce the

number of duplicate nodes expanded. Based on this idea, we present our new algorithm

A*+BFHS.

6.2 A*+BFHS

We propose A*+BFHS, a hybrid algorithm to solve problems with many distinct paths

between the same pair of nodes. A*+BFHS first runs A* until a storage threshold is reached,

then runs a series of BFHS iterations on sets of frontier nodes, which are the Open nodes at

the end of the A* phase.

The BFHS phase can be viewed as a doubly nested loop. Each iteration of the outer loop,

which we define as an iteration of the BFHS phase, corresponds to a different cost bound

for BFHS. The first cost bound is set to the smallest f -value among all frontier nodes. In

each iteration of the BFHS phase, we first partition the frontier nodes whose f -value equals

the cost bound into different sets according to their depths. Then the inner loop makes one

call to BFHS on each set of frontier nodes, in decreasing order of their depths. This is done

by initializing the BFS queue of each call to BFHS with all the nodes in the set. This inner

loop continues until a solution is found or all calls to BFHS with the current bound fail to

find a solution. After each call to BFHS on a set of frontier nodes, we increase the f -value

of all nodes in the set to the minimum f -value of all nodes generated but not expanded in

the previous call to BFHS.

45

S6

A7

D7

I8 J8

E8

B8 C7

F8 H7

K8 L8

Figure 6.1: An example of A*+BFHS’s search frontier. Numbers are f -values. Closed nodes

are gray.

Figure 6.1 presents an example of the Open and Closed nodes at the end of the A*

phase. Node S is the start node. All edge costs are 1 and the number next to each node

is its f -value. Closed nodes are gray. The Open nodes B, E, F, I, J, K, L are the frontier

nodes for the BFHS phase. A*+BFHS first makes a call to BFHS with a cost bound of 8

on all frontier nodes at depth 3, namely nodes I, J, K, L. If no solution is found, A*+BFHS

updates the f -values of all these nodes to the minimum f -value of all the nodes generated

but not expanded in that call to BFHS. A*+BFHS then makes a second call to BFHS with

bound 8, starting with all frontier nodes at depth 2, namely nodes E and F. If no solution

is found, A*+BFHS updates the f -values of these nodes, then makes a third call to BFHS

with bound 8, starting with the frontier node B at depth 1. Suppose that no solution is

found with bound 8, the updated f -values for nodes E, F, I, J, K, L are 9, and the updated

f -value for node B is 10. A*+BFHS then starts a new iteration of BFHS with a cost bound

of 9, making two calls to BFHS on nodes at depth 3 and 2 respectively. If the solution is

found in the first call to BFHS with bound 9, BFHS will not be called again on nodes E and

F.

A*+BFHS is complete and admissible with admissible heuristics. A*+BFHS potentially

makes calls to BFHS on all frontier nodes. When an optimal solution exists, one node on

this optimal path serves as one of the start nodes for one of the calls to BFHS. Such a

node is guaranteed to exist by A*’s completeness and admissibility. When the cost bound

for the calls to BFHS equals C∗, the optimal solution will be found, guaranteed by BFHS’s

46

completeness and admissibility.

A state can be regenerated in separate calls to BFHS in the same iteration. To reduce

such duplicates, we can decrease the number of calls to BFHS in each iteration by making

each call to BFHS on a combined set of frontier nodes at adjacent depths. For the example

in Figure 6.1, we can make one call to BFHS on the frontier nodes at depths 2 and 3 together

instead of two separate calls to BFHS, by putting the frontier nodes at depth 3 after the

frontier nodes at depth 2 in the initial BFS queue.

In practice, we can specify a maximum number of calls to BFHS per iteration. Then in

each iteration, we divide the number of depths of the frontier nodes by the number of calls

to BFHS to get the number of depths for each call to BFHS. For example, if the depths of

the frontier nodes range from 7 to 12 and we are limited to three calls to BFHS per iteration,

each call to BFHS will start with frontier nodes at two depths. We used this strategy in our

experiments.

For each node generated in the BFHS phase, we check if it was generated in the A* phase.

If so, we immediately prune the node if its current g-value in the BFHS phase is greater than

or equal to its stored g-value in the A* phase.

The primary purpose of the A* phase is to build a frontier set, so that A*+BFHS can

terminate early in its last iteration. In the A* phase we have to reserve some memory for the

BFHS phase. In our experiments, we first generated pattern databases or the merge-and-

shrink heuristic, then allocated 1/10 of the remaining memory of 8 GB for the A* phase.

6.3 Comparisons to Previous Work

6.3.1 A*+BFHS vs. BFIDA*

A*+BFHS’s BFHS phase also uses the iterative-deepening concept of BFIDA*, but there

are two key differences. First, in each iteration, BFIDA* always makes one call to BFHS on

the start node, while we call BFHS multiple times, each on a different set of frontier nodes.

47

Second, in each iteration, we order the frontier nodes based on their depth, and run BFHS

on the deepest frontier nodes first.

These differences lead to one drawback and two advantages. The drawback is that

A*+BFHS may generate more nodes than BFIDA*, as the same state can be regenerated in

separate calls to BFHS in the same iteration.

The first advantage is that A*+BFHS may terminate early in its last iteration. If

A*+BFHS generates a goal node in the last iteration below a relatively deep frontier node,

no frontier nodes above that depth will be expanded. Therefore, A*+BFHS may generate

only a small number of nodes in its last iteration. In contrast, BFIDA* has to expand al-

most all nodes whose f -value is less than or equal to C∗ in its last iteration. As a result,

A*+BFHS can be faster than BFIDA*.

The second advantage is that A*+BFHS’s memory usage, which is the maximum number

of nodes stored during the entire search, may be smaller than that of BFIDA* for two reasons.

First, the partition of frontier nodes and separate calls to BFHS within the same iteration

can reduce the maximum number of nodes stored in the BFHS phase. Second, BFIDA*

stores the most nodes in its last iteration while A*+BFHS may store only a small number

of nodes in the last iteration due to early termination. Thus, A*+BFHS may store the most

nodes in the penultimate iteration instead.

6.3.2 A*+BFHS vs. FPS

Forward Perimeter Search (FPS) [SDR13] first builds a perimeter from the start state by

using BFS, then runs BFIDA* from each node in the perimeter to find a solution. A perimeter

is a set of nodes that have the same or similar distance from the start state. After the

perimeter is built, FPS switches to its BFIDA* phase and uses the lowest f -value among all

perimeter nodes as the first cost bound. In each iteration of the BFIDA* phase, FPS first

sorts the perimeter nodes using a max-tree-first or longest-path-first policy, then calls BFHS

on each perimeter node and updates the f -value of each perimeter node to the smallest

f -value of the node generated but not expanded in that single call to BFHS. Here the max-

48

tree-first policy means that in each iteration, FPS first calls BFHS on the perimeter node

that generated the most nodes in the previous iteration, while the longest-path-first policy

means that FPS first calls BFHS on the perimeter node that led to the longest path (largest

g-value generated in a single call to BFHS) in the previous iteration.

FPS looks similar to A*+BFHS, but there are several fundamental differences. First,

FPS builds the perimeter using a breadth-first approach while A*+BFHS builds the frontier

via a best-first approach. FPS can also dynamically extend the perimeter but this approach

does not always speed up the search [SDR13]. Second, in each iteration of FPS’s BFIDA*

phase, FPS makes one call to BFHS on each perimeter node. In contrast, in A*+BFHS

each call to BFHS is on a set of frontier nodes. Third, FPS sorts the perimeter nodes at the

same f -value using a max-tree-first or longest-path-first policy, while A*+BFHS sorts the

frontier nodes at the same f -value in decreasing order of their depth. Fourth, FPS needs

two separate searches for solution reconstruction while A*+BFHS only needs one.

6.4 Solution Reconstruction

Each node generated in A*+BFHS’s BFHS phase has a pointer to its frontier node from

the A* phase. When a goal node is generated, the solution path from the start node to

this node is stored in the A* phase and only one more search is needed to reconstruct the

solution path from this node to the goal node. This subproblem is much easier than the

original problem and we can use the same heuristic function as for the original problem.

Therefore, we just use A* to solve this subproblem. In addition, since we know the optimal

cost of this subproblem, we can immediately prune any node whose f -value exceeds this

cost. During our experiments, such subproblems were all easily solved by A*. However, if

A* runs out of memory on this subproblem, we can still switch to A*+BFHS or BFHS to

solve this subproblem.

In BFIDA*, we have to solve two subproblems to recover the paths from the start node to

the middle node and from the middle node to the goal node. [ZH04] called BFHS recursively

49

to solve these two subproblems. However, pattern database heuristics (PDB) [CS98] only

store heuristic values to the goal state, and not between arbitrary pairs of states, which

complicates finding a path to a middle node. Similar to A*+BFHS, we use A* to solve the

second subproblem. For the first subproblem, we use A* to compute the path from the start

node to the middle node using the same heuristic function as for the original problem, which

measures the distance to the goal node, not the middle node. To save memory, we prune any

node whose g-value is greater than or equal to the depth of the middle node, and any node

whose f -value exceeds the optimal cost of the solution. We saved the layer at the 1/4 point

of the solution length as the middle layer instead of the 3/4 point in [ZH04]. In this way,

we do not need to build a new heuristic function for the middle node. In our experiments,

the search time for solution reconstruction in BFIDA* was usually less than 1% of the total

search time.

When using A* to solve the two subproblems, the choice of the depth of the middle layer

in BFIDA* involves a tradeoff between the middle layer size and the search cost of the two

subproblems. A shallower depth of the middle layer, for example 1/8 point or even 1/16

point, would in general lead to a smaller middle layer to store and an easier subproblem

from the original start node to the middle node, but a harder subproblem from the middle

node to the goal node. On the other hand, a deeper depth of the middle layer, for example

1/2 point, would in general lead to a larger middle layer and a harder subproblem from the

original start node to the middle node, but an easier subproblem from the middle node to

the goal node.

Instead of using A*, if we call BFHS resursively to solve these two subproblems, then

the ideal choice of the depth of the middle layer would be at the 1/2 point. However, in this

case, we either have to build PDB heuristics for the middle node, or we user other heuristic

functions like the LM-cut heuristics for the middle node. This approach is in general much

more complicated and won’t speed up search, so we did not use it in our experiments.

50

6.5 Experimental Results and Analysis

We implemented BFIDA*, A*+IDA*, and A*+BFHS in the planner Fast Downward 20.06

[Hel06], using the existing code for node expansion and heuristic functions. A*+BFHS’s

A* phase used the existing A* code. A* stores all nodes in one hash map. We used the

same hash map implementation with the following difference. In each call to BFHS in both

BFIDA* and A*+BFHS, we saved three depth layers of nodes for duplicate detection and

we created one hash map for each layer of nodes. We did this because storing all nodes in

one hash map in BFHS involves a lot of overhead, and is more complicated. [SDR13] did

not test FPS on planning domains and we do not know the optimal perimeter radius and

sorting strategy for each domain, so we did not implement FPS.

We solved about 550 problem instances from 32 unit-cost domains. We present the

results of A*, BFIDA*, and A*+BFHS on the 32 hardest instances. All remaining instances

were easily solved by A* in seconds. We tested two A*+BFHS versions. A*+BFHS (∞)

starts each call to BFHS on frontier nodes at a single depth. A*+BFHS (4) makes each

call to BFHS on frontier nodes at multiple depths with at most four calls to BFHS in each

iteration. All tests were run on a 3.33 GHz Intel Xeon X5680 CPU with 236 GB of RAM.

We used the landmark-cut heuristic (LM-cut) [HD09] for the satellite domain, the merge-

and-shrink heuristic (M&S) with the recommended configuration [SWH14, SWH16, Sie18]

for the tpp and hiking14 domains, and the iPDB heuristic with the default configuration

[HBH07, SOH12] for all other domains.

We present the results in Tables 6.1, 6.2, 6.3, and 6.4. Tables 6.1, 6.2, and 6.3 contain the

26 instances solved by A*. Table 6.4 contains the remaining 6 instances where A* terminated

early without finding a solution due to the limitation of the hash map size in Fast Downward

20.06. The instances in Tables 6.1, 6.2, and 6.3 are sorted by the A* running times and the

instances in Table 6.4 are sorted by the BFIDA* running times.

All four tables have the same columns. The first column gives the domain name, the

instance ID, the optimal solution cost C∗, and the heuristic function used. The second

51

Instance Algorithm Peak stored Total nodes Prev. iterations Last iteration Time (s)

depot A* 70,504,763 344,658,749 344,639,234 19,515 233

14 BFIDA* 17,042,841 1,390,466,785 582,348,193 795,336,992 1,708

C∗=29 A*+BFHS (∞) 21,023,657 556,674,817 540,764,124 15,909,899 596

iPDB A*+BFHS (4) 22,882,537 446,204,987 432,278,188 13,926,005 475

termes18 A* 80,012,545 211,514,579 211,514,568 11 245

05 BFIDA* 9,370,587 3,757,844,868 3,413,500,020 221,186,298 4,796

C∗=132 A*+BFHS (∞) 30,874,300 10,702,979,649 10,701,959,808 911,786 15,415

iPDB A*+BFHS (4) 30,076,170 2,271,661,960 2,270,262,609 1,291,296 3,319

freecell A* 53,080,996 243,947,771 243,244,703 703,068 250

06 BFIDA* 38,054,162 1,220,132,074 732,920,409 485,268,534 1,883

C∗=34 A*+BFHS (∞) 30,481,377 327,209,951 312,812,283 14,388,579 441

iPDB A*+BFHS (4) 35,120,076 403,465,250 302,581,091 100,875,070 561

logistics00 A* 57,689,357 107,083,712 106,929,666 154,046 255

14-1 BFIDA* 15,441,813 3,137,204,256 106,929,666 3,020,315,591 10,381

C∗=71 A*+BFHS (∞) 19,472,255 354,438,805 354,058,774 368,595 1,160

iPDB A*+BFHS (4) 20,169,648 227,903,318 110,674,320 117,217,562 752

driverlog A* 144,065,288 420,609,830 420,609,777 53 344

12 BFIDA* 35,034,406 1,718,350,515 678,644,177 1,030,180,074 1,676

C∗=35 A*+BFHS (∞) 24,712,720 1,020,438,794 1,020,410,754 27,959 944

iPDB A*+BFHS (4) 30,270,816 643,723,984 641,790,459 1,933,444 631

freecell A* 107,183,015 531,379,136 531,378,858 278 522

07 BFIDA* 77,196,602 4,152,881,254 2,897,339,576 1,143,762,584 6,416

C∗=41 A*+BFHS (∞) 54,171,433 3,095,608,289 2,370,094,738 725,267,629 4,775

iPDB A*+BFHS (4) 58,058,327 2,430,947,097 1,896,369,611 534,331,564 3,769

depot A* 172,447,963 764,608,339 764,607,971 368 550

11 BFIDA* 27,192,174 3,037,154,042 1,260,718,486 1,755,157,316 3,544

C∗=46 A*+BFHS (∞) 37,977,775 6,268,318,349 3,092,746,859 3,175,552,575 7,314

iPDB A*+BFHS (4) 46,923,423 3,319,995,622 1,262,429,685 2,057,547,022 4,078

tpp A* 187,011,066 610,996,630 610,995,018 1,612 562

11 BFIDA* 93,759,836 4,290,825,940 754,905,369 3,525,135,895 7,214

C∗=51 A*+BFHS (∞) 30,856,159 5,504,314,294 5,504,268,064 46,111 9,550

M&S A*+BFHS (4) 33,368,912 1,419,143,562 1,285,410,734 133,732,709 2,426

mystery 14 A* 139,924,686 652,569,481 650,036,341 2,533,140 578

C∗=11 BFIDA* 135,963,227 6,213,135,253 727,753,687 5,430,082,105 7,628

iPDB A*+BFHS (∞/4) 20,302,860 730,971,724 676,473,465 54,497,630 839

Table 6.1: Instances sorted by A* running times. An underline means more than 8 GB of

memory was needed. Smallest memory and shortest times are in boldface.

52

Instance Algorithm Peak stored Total nodes Prev. iterations Last iteration Time (s)

tidybot11 A* 69,953,936 171,363,621 170,286,720 1,076,901 662

17 BFIDA* 42,080,838 776,084,110 486,518,217 281,131,278 3,684

C∗=40 A*+BFHS (∞) 33,969,968 661,386,777 467,282,853 194,103,710 3,223

iPDB A*+BFHS (4) 37,090,062 547,745,706 397,125,094 150,620,398 2,694

logistics00 A* 82,161,805 167,974,727 163,970,672 4,004,055 663

15-1 BFIDA* 13,638,319 2,847,571,079 163,970,672 2,660,698,165 19,062

C∗=67 A*+BFHS (∞) 18,827,830 730,154,067 722,390,335 7,763,336 4,897

iPDB A*+BFHS (4) 18,827,830 251,960,077 198,537,096 53,422,585 1,627

pipesworld- A* 123,553,926 284,884,903 284,880,335 4,568 727

notankage 19 BFIDA* 86,818,434 1,227,115,669 634,454,295 576,633,809 4,140

C∗=24 A*+BFHS (∞) 42,192,503 619,095,459 619,013,855 81,147 2,072

iPDB A*+BFHS (4) 44,706,153 574,957,328 570,451,612 4,505,259 1,942

parking14 A* 351,976,816 828,472,606 828,472,562 44 971

16 9-01 BFIDA* 183,832,715 4,846,132,188 1,023,897,982 3,821,980,237 6,236

C∗=24 A*+BFHS (∞) 30,675,587 1,191,570,432 1,191,514,776 55,283 1,468

iPDB A*+BFHS (4) 51,147,740 1,013,776,888 1,011,227,268 2,549,247 1,290

visitall11 A* 407,182,291 795,670,561 795,669,929 632 1,045

08-half BFIDA* 172,474,497 3,159,596,842 1,332,828,069 1,824,866,109 4,220

C∗=43 A*+BFHS (∞) 34,406,966 1,639,641,152 1,639,585,228 55,798 2,233

iPDB A*+BFHS (4) 64,671,078 1,346,690,454 1,312,333,974 34,356,354 1,902

tidybot11 A* 115,965,857 246,756,618 246,756,201 417 1,086

16 BFIDA* 86,095,996 1,090,011,154 652,777,121 431,816,881 5,512

C∗=40 A*+BFHS (∞) 41,342,908 583,309,116 570,082,820 13,225,950 2,923

iPDB A*+BFHS (4) 57,026,598 598,365,499 519,723,294 78,641,859 3,080

snake18 A* 94,699,640 129,288,606 129,273,608 14,998 1,131

08 BFIDA* 44,231,998 1,852,488,086 1,517,078,892 325,204,785 14,877

C∗=58 A*+BFHS (∞) 44,081,853 391,010,354 390,681,641 328,706 3,445

iPDB A*+BFHS (4) 51,166,308 356,988,514 348,015,242 8,973,265 3,192

hiking14 A* 287,192,625 3,299,939,168 3,299,937,850 1,318 1,297

2-2-8 BFIDA* 42,570,885 11,376,337,161 5,757,334,602 5,582,502,874 10,847

C∗=42 A*+BFHS (∞) 44,454,322 16,233,911,987 12,346,881,620 3,886,689,991 14,897

M&S A*+BFHS (4) 53,148,260 9,850,751,126 6,310,295,933 3,540,114,817 9,696

pipesworld- A* 292,998,092 907,283,307 907,283,301 6 1,364

tankage 14 BFIDA* 158,262,429 5,354,342,623 3,680,871,467 1,661,344,123 10,609

C∗=38 A*+BFHS (∞) 84,077,693 5,768,933,724 5,763,927,002 5,002,176 11,622

iPDB A*+BFHS (4) 103,288,306 3,300,541,977 3,220,772,288 79,765,143 6,896

Table 6.2: Instances sorted by A* running times. An underline means more than 8 GB of

memory was needed. Smallest memory and shortest times are in boldface.

53

Instance Algorithm Peak stored Total nodes Prev. iterations Last iteration Time (s)

blocks A* 555,864,249 1,185,065,570 205,172,261 979,893,309 1,540

13-1 BFIDA* 99,782,317 1,742,819,669 463,603,038 1,224,383,750 2,142

C∗=44 A*+BFHS (∞) 54,601,577 2,261,321,708 425,991,501 1,827,341,160 2,817

iPDB A*+BFHS (4) 79,572,108 1,817,197,763 401,559,990 1,407,648,726 2,317

parking14 A* 606,117,759 1,430,911,954 1,430,746,610 165,344 1,714

16 9-03 BFIDA* 291,822,896 8,077,642,530 1,796,305,162 6,280,923,558 10,059

C∗=24 A*+BFHS (∞) 48,304,204 2,519,414,336 2,328,368,930 191,043,484 3,124

iPDB A*+BFHS (4) 63,455,874 2,151,415,198 1,992,188,756 159,224,520 2,679

tidybot11 A* 175,574,760 372,772,055 372,771,560 495 1,730

18 BFIDA* 114,747,861 1,718,896,347 1,093,273,564 613,928,542 8,810

C∗=44 A*+BFHS (∞) 40,540,308 1,045,166,148 1,028,635,660 16,529,544 5,410

iPDB A*+BFHS (4) 65,784,369 1,204,942,101 931,501,196 273,439,961 6,365

blocks A* 704,938,102 1,568,547,017 342,339,737 1,226,207,280 1,990

13-0 BFIDA* 137,821,868 2,421,546,636 775,076,076 1,628,338,675 2,977

C∗=42 A*+BFHS (∞) 81,918,224 3,498,922,607 774,231,514 2,710,189,950 4,483

iPDB A*+BFHS (4) 126,629,640 2,615,897,101 698,028,054 1,903,367,904 3,378

hiking14 A* 368,433,117 6,711,042,999 6,710,971,209 71,790 2,480

2-3-6 BFIDA* 124,686,777 38,476,138,468 29,175,130,389 8,123,329,545 42,379

C∗=28 A*+BFHS (∞) 146,623,619 107,138,328,055 106,429,883,507 682,558,443 120,494

M&S A*+BFHS (4) 148,357,537 68,496,320,172 65,779,382,852 2,691,051,215 76,603

pipesworld- A* 442,232,520 1,028,882,844 1,028,880,896 1,948 2,693

notankage 20 BFIDA* 301,349,348 4,454,789,871 2,384,958,671 2,032,377,777 15,245

C∗=28 A*+BFHS (∞) 133,708,317 3,325,668,014 3,267,529,384 58,132,775 11,499

iPDB A*+BFHS (4) 148,029,967 2,988,248,448 2,728,140,813 260,097,006 10,629

snake18 A* 265,033,991 367,639,596 365,927,487 1,712,109 3,967

17 BFIDA* 60,041,363 2,162,411,969 1,464,995,207 639,565,966 20,418

C∗=62 A*+BFHS (∞) 56,839,243 877,934,374 871,327,013 6,607,339 8,785

iPDB A*+BFHS (4) 73,365,792 855,342,127 776,892,002 78,450,103 8,916

satellite A* 107,395,076 463,747,690 463,744,251 3,439 11,834

08 BFIDA* 20,846,202 3,656,980,017 520,525,131 3,125,446,334 398,884

C∗=26 A*+BFHS (∞) 18,870,254 552,221,751 551,990,933 230,549 54,551

LM-cut A*+BFHS (4) 19,763,323 546,211,783 479,810,475 66,401,039 56,296

Table 6.3: Instances sorted by A* running times. An underline means more than 8 GB of

memory was needed. Smallest memory and shortest times are in boldface.

54

Instance Algorithm Peak stored Total nodes Prev. iterations Last iteration Time (s)

blocks A* (unfinished) >814,951,324 >1,562,632,802 256,247,910 >1,306,384,892 >2,284

15-0 BFIDA* 113,471,990 2,408,362,561 579,842,889 1,827,125,272 3,058

C∗=40 A*+BFHS (∞) 68,070,197 3,861,465,924 550,007,126 3,291,490,500 4,889

iPDB A*+BFHS (4) 106,482,059 2,656,641,036 492,390,560 2,144,282,178 3,514

storage A* (unfinished) >799,907,374 >1,741,590,894 >1,741,590,894 >2,358

17 BFIDA* 397,798,456 13,297,651,168 4,430,334,119 8,825,291,425 19,086

C∗=26 A*+BFHS (∞) 118,138,352 13,403,671,261 13,364,290,422 39,380,047 18,914

iPDB A*+BFHS (4) 133,800,503 7,895,157,984 6,819,827,727 1,075,329,465 11,354

driverlog A* (unfinished) >786,467,847 >2,028,764,217 >2,028,764,217 >1,853

15 BFIDA* 453,643,579 24,705,660,389 6,388,627,692 18,280,039,412 24,297

C∗=32 A*+BFHS (∞) 88,449,751 16,928,608,100 16,913,831,869 14,773,242 15,311

iPDB A*+BFHS (4) 123,602,679 9,160,294,407 8,974,814,158 185,477,260 8,447

rovers A* (unfinished) >801,124,989 >4,427,878,559 >4,427,878,559 >2,776

09 BFIDA* 235,386,020 20,666,689,222 7,239,737,785 13,401,874,237 25,336

C∗=31 A*+BFHS (∞) 96,100,365 34,236,064,765 34,235,937,332 123,597 42,290

iPDB A*+BFHS (4) 99,498,513 12,845,107,625 12,752,327,728 92,776,061 16,770

rovers A* (unfinished) >766,016,316 >3,690,650,688 >3,690,650,688 >2,378

11 BFIDA* 274,612,697 18,975,576,425 6,574,504,656 12,391,406,745 26,022

C∗=30 A*+BFHS (∞) 112,783,085 32,143,105,562 32,139,546,138 3,549,575 43,538

iPDB A*+BFHS (4) 113,594,902 12,342,784,453 11,789,007,437 553,767,167 16,661

parking14 A* (unfinished) >770,874,998 >1,681,926,228 >1,681,926,228 >2,306

16 9-04 BFIDA* 1,045,614,854 27,924,183,007 6,292,017,194 21,628,727,845 37,701

C∗=26 A*+BFHS (∞) 156,758,802 9,778,837,190 9,777,264,498 1,570,687 12,304

iPDB A*+BFHS (4) 181,535,647 7,588,132,706 7,586,728,152 1,402,549 9,813

Table 6.4: Instances where A* terminated without solving the problem (marked by >) so

are sorted by BFIDA* running times. An underline means more than 8 GB of memory was

needed. Smallest memory and shortest times are in boldface.

column lists the algorithm names. We ran each algorithm until it found the optimal cost

and returned the optimal path, or terminated without finding a solution due to hash map

size limitations. The third column gives the maximum number of nodes stored by each

algorithm. For A*, this is the number of nodes stored at the end of the search. For BFIDA*,

this is the largest sum of the number of nodes stored in all three layers of the search, plus the

nodes stored in the 1/4 layer for solution reconstruction. For A*+BFHS, this is the largest

number of nodes stored in the BFHS phase plus the number of nodes stored in the A* phase.

55

An underline means the specific algorithm needed more than 8 GB of memory to solve the

problem. The fourth column is the total number of nodes generated, including the nodes

generated during solution reconstruction. The fifth column is the number of nodes generated

in all but the last iteration. For A*, this is the number of nodes generated before expanding

an Open node whose f -value is C∗. For A*+BFHS, this number includes the nodes generated

in its A* phase. The sixth column is the number of nodes generated in the last iteration. For

A*, this is the number of nodes generated while expanding the Open nodes whose f -value

equals C∗. The last column is the running time in seconds, including the time for solution

reconstruction but excluding the time spent on precomputing the heuristic function, which

is the same for all algorithms. For each instance, the smallest maximum number of stored

nodes and shortest running time are indicated in boldface. For the A* data in Table 6.4, we

report the numbers of nodes and running times just before A* terminated, with a > symbol

to indicate such numbers.

For A*+IDA*, we set the stored nodes threshold for the A* phase to A*+BFHS’s peak

stored nodes. A*+IDA* was faster than A*+BFHS by a factor of 2 on tidybot11 18, but was

slower than A*+BFHS by around 50% on mystery 14, a factor of 2 on visitall11 08-half, 4 on

parking14 16 9-04, and 8 on snake18 17. Furthermore, A*+IDA* was orders-of-magnitude

slower than A*+BFHS on domains such as blocks, depot, driverlog, hiking14, logistics00,

pipesworld-tankage, rovers, satellite, storage, termes18, and tpp. Thus we omit the results of

A*+IDA*.

We further compare the time and memory between A* and A*+BFHS in Figure 6.2,

and between BFIDA* and A*+BFHS in Figure 6.3, where the x-axis is A* or BFIDA*’s

peak stored nodes over A*+BFHS’s and the y-axis is A* or BFIDA*’s running time over

A*+BFHS’s. Figure 6.2 contains the 26 instances solved by A* and Figure 6.3 contains all 32

instances. The red circles and green triangles correspond to A*+BFHS (4) and A*+BFHS

(∞) respectively. The data points above the y = 1 line or to the right of the x = 1 line

represent instances where A*+BFHS outperformed the comparison algorithm in terms of

time or memory.

56

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8
x = 1

A* peak stored # / A*+BFHS peak stored #

A
*
ti
m
e
/
A
*+

B
F
H
S
ti
m
e

A*+BFHS (4)

A*+BFHS (∞)

Figure 6.2: A* vs. A*+BFHS in time and memory.

0 2 4 6

0

5

10

15

y = 1

x = 1

BFIDA* peak stored # / A*+BFHS peak stored #

B
F
ID

A
*
ti
m
e
/
A
*+

B
F
H
S
ti
m
e

A*+BFHS (4)

A*+BFHS (∞)

Figure 6.3: BFIDA* vs. A*+BFHS in time and memory.

6.5.1 A*+BFHS vs. A*

A* was the fastest on all problem instances that it solved, but also used the most memory.

Among the 32 hardest problem instances we present, A* required more than 8 GB of memory

on 22 instances and could not find a solution on 6 of those after exhausting the hash map

used by Fast Downward 20.06. On some of these instances, A* used 30 GB to 40 GB of

memory before it terminated. This means that A* cannot solve these 22 instances under

57

the current IPC memory limit of 8 GB. A*+BFHS required several times, and sometimes

an order of magnitude, less memory than A*. As a result, A*+BFHS only used more than

8 GB of memory on one instance. An interesting comparison is the space-time trade-off.

For example, on parking14, A*+BFHS increased the running time by less than a factor of 2

while saving more than an order of magnitude in memory.

6.5.2 A*+BFHS vs. BFIDA*

In summary, on easy problem instances that A*+BFHS can solve in its A* phase, A*+BFHS

behaves the same as A*, and is always faster than BFIDA*. We solved around 500 such

problem instances, which are not included here. On the 32 hardest problem instances we

present, A*+BFHS is faster than BFIDA* on 27 instances and at least twice as fast on 16 of

those. Furthermore, A*+BFHS requires less memory than BFIDA* on 25 of the 32 instances

and saves more than half the memory on 14 of those. In addition, these time and memory

reductions exist on both the relatively easy and hard problem instances of the 32 instances

presented, demonstrating that A*+BFHS is better than BFIDA* on very hard problem

instances as well as just hard problem instances. In the following paragraphs, we compare

A*+BFHS with BFIDA* in four aspects: duplicate detection, node ordering, memory, and

running time.

Figure 6.4 compares the number of nodes generated prior to the last iteration of BFIDA*

and A*+BFHS. For BFIDA*, this is the number of nodes generated in all but the last

iteration. For A*+BFHS, this is the sum of the nodes generated in its A* phase and all

but the last iteration in its BFHS phase. The y-axis in Figure 6.4 is the number of nodes

generated in BFIDA*’s previous iterations divided by A*+BFHS’s. We sort the 32 instances

on the x-axis according to BFIDA*’s running time, so the left-most instance is the easiest

and the right-most instance is the hardest for BFIDA*. The data points above the y = 1 line

represent instances where A*+BFHS generated fewer nodes than BFIDA* in the previous

iterations. Compared to BFIDA*, A*+BFHS (4) generated a similar number of nodes

in the previous iterations on most instances. Hiking14 2-3-6 is the only instance where

58

0 5 10 15 20 25 30 35

0

1

2

3

4

y = 1

Test instances sorted by BFIDA* running timeB
F
ID

A
*’
s
p
re
v
io
u
s
it
er
a
ti
o
n
s
/
A
*+

B
F
H
S
’s

A*+BFHS (4)

A*+BFHS (∞)

Figure 6.4: The number of nodes generated in BFIDA*’s previous iterations vs. A*+BFHS’s.

A*+BFHS (4) generated at least twice as many nodes in the previous iterations as BFIDA*.

However, A*+BFHS (∞) generated 2 to 7 times as many nodes in the previous iterations

as BFIDA* on 11 instances. This contrast shows that, compared to BFIDA*, significantly

more duplicate nodes are generated by making each call to BFHS on frontier nodes at a

single depth. However, most of those duplicate nodes can be avoided by making each call to

BFHS on frontier nodes at multiple depths.

A*+BFHS generates fewer duplicate nodes than BFIDA* due to fewer BFHS iterations

and making each call to BFHS on a set of frontier nodes. A*+BFHS reduced the number

of nodes in previous iterations by around 50% on freecell 06 and snake18 17, and a factor

of 4 on snake18 08. To our surprise, we found that on snake18 08, the number of nodes

generated in the penultimate iteration of BFIDA* was twice as many as the sum of the nodes

generated in A*+BFHS’s A* phase and the penultimate iteration of the BFHS phase. This

means that many duplicate nodes were generated in BFIDA*. Snake18 generates a directed

graph, in which case frontier search cannot detect all duplicate nodes [ZH04, KZT05].

Compared to BFIDA*, A*+BFHS reduced the number of nodes in the last iteration

significantly, and usually by several orders of magnitude, on 28 of the 32 instances. We

59

0 5 10 15 20 25 30 35

100

101

102

103

104

105

y = 1

Test instances sorted by BFIDA* running time

B
F
ID

A
*’
s
la
st

it
er
at
io
n
/
A
*+

B
F
H
S
’s A*+BFHS (4) A*+BFHS (∞)

Figure 6.5: The number of nodes generated in BFIDA*’s last iteration vs. A*+BFHS’s.

present this comparison in Figure 6.5, where the y-axis is the number of nodes generated

in BFIDA*’s last iteration divided by A*+BFHS’s. We also sort the 32 instances on the

x-axis according to BFIDA*’s running time, so the left-most instance is the easiest and

the right-most instance is the hardest for BFIDA*. The data points above the y = 1

line represent instances where A*+BFHS generated fewer nodes than BFIDA* in the last

iteration. Both A*+BFHS versions usually generated several orders of magnitude fewer

nodes in the last iteration than BFIDA*, while A*+BFHS (∞) generated the fewest nodes on

most instances. This large reduction proves that when ordering the frontier nodes by deepest-

first, A*+BFHS can terminate early in its last iteration. On the three blocks instances and

depot 11, A*+BFHS did not terminate early in its last iteration because the last ancestor of

the goal in the A* phase had a relatively low g-value. In fact, A* generated the most nodes

while expanding the Open nodes whose f = C∗ on the three blocks instances, which shows

that node ordering is also difficult for A* on those instances. In contrast, A* generated

very few nodes while expanding the Open nodes whose f = C∗ on depot 11, suggesting that

A*+BFHS may terminate early in its last iteration given more memory for its A* phase.

A*+BFHS’s A* phase usually stored from 10 to 20 million nodes, with the exception of

60

the snake18 domain where 40 to 50 million nodes were stored. Comparing the maximum

number of stored nodes, A*+BFHS (∞) required less memory than BFIDA* on 25 instances

and less than half the memory on 14 of those. For A*+BFHS (4), these two numbers were

23 and 11 respectively. In contrast, termes18 05 is the only instance where the maximum

number of stored nodes of A*+BFHS was at least twice that of BFIDA*.

Comparing the two versions of A*+BFHS, A*+BFHS (4) was usually faster, sometimes

significantly, due to the reduction in duplicate nodes. Compared to BFIDA*, A*+BFHS

(4) was slightly slower on four instances and 80% slower on one instance. On the other

27 instances, A*+BFHS (4) was faster than BFIDA*, and at least twice as fast on 16 of

those. The large speedups usually were on the instances where BFIDA* generated the most

nodes in its last iteration. The best result was on the logistics00 domain, where an order of

magnitude speedup was achieved. This is because BFIDA* performed very poorly on this

domain due to its breadth-first node ordering. Compared to BFIDA*, A*+BFHS (∞) was

slower on 11 instances and at least twice as slow on three of those, but also at least twice as

fast on 12 instances. The main reason for the slower cases is the presence of many duplicate

nodes generated in certain domains.

6.5.3 Calling BFHS on Nodes at Multiple Depths

Comparing the two A*+BFHS versions, each has its pros and cons. A*+BFHS (4) always

generated fewer duplicate nodes. Comparing the number of nodes generated in the previous

iterations, A*+BFHS (∞) generated at least twice as many nodes on 7 instances. A*+BFHS

(∞) generated significantly fewer nodes in the last iteration than A*+BFHS (4) on 22

instances. However, the number of nodes generated in the last iteration of A*+BFHS is

usually only a small portion of the total nodes generated, so the large difference in the last

iteration is not very important. A*+BFHS (4) stored a larger maximum number of nodes

than A*+BFHS (∞) on almost all instances. However, the difference was usually small and

never more than a factor of two. The difference in the running times was usually less than

50%. Compared to A*+BFHS (∞), A*+BFHS (4) was faster by a factor of 3 on logistics00

61

15-1, 2.5 on rovers 09 and 11, 4.6 on termes18 05, 3.9 on tpp 11, and never more than 30%

slower.

In general, making each call to BFHS on frontier nodes at multiple depths increases both

the memory usage and the number of nodes generated in the last iteration, but reduces the

number of duplicate nodes and hence is often faster. Considering the memory-time trade-

off, given a new problem, we recommend making each call to BFHS on frontier nodes at

multiple depths. However, if we limit the number of calls to BFHS in each iteration to one,

then A*+BFHS (1) will generate about the same number of nodes as BFIDA*, and early

termination is no longer possible. Therefore, at least two calls should be used. So far, we

have only limited BFHS to four calls in each iteration. Determining the optimal number of

calls to BFHS is a subject for future work.

6.5.4 Heuristic Functions and Running Time

For each node generated, A* first checks for duplicates then looks up its heuristic value if

needed. Thus for each state, A* only computes its heuristic value once, no matter how many

times the state is generated. However, the situation is different in BFHS. Even in a single

call to BFHS, a state’s heuristic value may be calculated multiple times. For example, if

a state’s f -value is greater than the cost bound of BFHS, then this state is not stored in

this call to BFHS and its heuristic value has to be computed every time it is generated. In

addition, A* has only one hash map but our BFHS implementation has one hash map for

each layer of nodes. Consequently, for each node generated, A* does only one hash map

lookup while BFHS may have multiple lookups.

Due to the above differences, the number of nodes generated per second of BFIDA* and

A*+BFHS was smaller than that of A*. For the iPDB and M&S heuristics, this difference

was usually less than a factor of two. For the LM-cut heuristic, A* was faster by a factor

of four in terms of nodes generated per second on the satellite domain. This is because

computing a node’s LM-cut heuristic is much more expensive than its iPDB and M&S

heuristics. This contrast shows that the choice of heuristic function also plays an important

62

role in comparing the running time of different algorithms.

63

CHAPTER 7

Iterative-Deepening Uniform-Cost Heuristic Search

Breadth-first heuristic search (BFHS) is a well-known algorithm for optimally solving heuris-

tic search and planning problems. BFHS is slower than A* but requires less memory. How-

ever, BFHS only works on unit-cost domains, meaning all operators have the same cost. We

propose a new algorithm that extends BFHS to domains with different edge costs, which

we call uniform-cost heuristic search (UCHS). Experimental results show that the iterative-

deepening version of UCHS, IDUCHS, is slower than A* but requires less memory on a

variety of planning domains.

Our work on UCHS is presented in the following order. Section 7.1 discusses the moti-

vation of this research. Section 7.2 presents the new algorithms uniform-cost frontier search

(UCFS), which does not use heuristics, and uniform-cost heuristic search (UCHS). Section

7.3 introduces the iterative-deepening version of UCHS, IDUCHS, as well as the solution re-

construction scheme we used. Section 7.4 presents experimental results of A* and IDUCHS

on 20 hard instances from 11 non-unit International Planning Competition (IPC) domains.

Section 7.5 further introduces A*+UCHS, which replaces the BFHS phase in A*+BFHS with

UCHS, and compares it with IDUCHS and discusses why it is not better than IDUCHS.

7.1 Motivation

A*+IDA* utilizes a depth-first search in its IDA* phase, works on domains with arbitrary

edge costs, but still may generate many duplicate nodes on domains where many distinct

paths exist between a pair of nodes. On the other hand, BFIDA* and A*+BFHS’s BFHS

phase utilize a breadth-first search to detect duplicate nodes and hence works well on domains

64

where A*+IDA* would run for a very long time. However, both BFIDA* and A*+BFHS

only work on unit-cost domains.

Dijkstra’s single-source shortest path algorithm [Dij59] generalizes breadth-first search to

the case of non-uniform edge costs. The version that terminates when a goal node is chosen

for expansion is usually called uniform-cost search (UCS), despite the fact that it deals with

non-uniform edge costs. This terminology comes from the fact that the nodes on Open tend

to have uniform g-values.

This suggests the question: how can we extend breadth-first heuristic search, and hence

BFIDA* and A*+BFHS, to domains with arbitrary edge costs? To answer this question, we

present uniform-cost heuristic search and its iterative-deepening version IDUCHS.

7.2 Uniform-Cost Heuristic Search

Previously we introduced breadth-first frontier search (BFFS) [Kor04] in Section 4.1. Here

we describe uniform-cost frontier search (UCFS), a brute-force algorithm that extends BFFS

to the case of non-unit edge costs.

7.2.1 Uniform-Cost Frontier Search

The difference between UCFS and UCS is that UCFS deletes a node after all its child nodes

have been expanded, similar to the difference between BFFS and BFS. This prevents a parent

node from being re-expanded. Suppose p is a parent node, and Φ = {ni|i = 0, 1, 2...} are its

children. In UCFS, the delete g-value of node p, dg(p), is the maximum of the g-values of

its children.

dg(p) = max
ni∈Φ

g(ni) (7.1)

For example, if p has two children with g-values of 5 and 6, then p can be deleted after

expanding all nodes with g = 6.

UCFS works as follows. It first expands the start node and puts all child nodes on Open.

65

The Open list is kept sorted by the g-values of the nodes. After all nodes on Open whose

g-value is 0 are expanded, in the case of zero-cost edges, assume the next smallest g-value

on Open is 3. UCFS deletes the expanded nodes whose dg-value is less than 3. In fact, at

this time, all expanded nodes have a g-value of 0, some expanded nodes may have a dg-value

of 0, while the other expanded nodes’ dg-values are greater than or equal to 3. Next, UCFS

expands all nodes on Open whose g-value is 3. It continues expanding and deleting nodes

until it finds a goal node on an optimal path. On unit-cost domains, BFFS can terminate

when a goal node is generated. On domains with non-unit edge costs, however a node may

be generated with a g-value greater than its optimal cost. Therefore, UCFS only terminates

when a goal node is chosen for expansion.

Sg=0 dg=2

Ag=1

dg=3

D

dg=2

F dg=3

I J Eg=3

Bg=2

dg=0

C

dg=3

H

dg=2

K

dg=3

L

1 1

20

2 4

1

0

1

1

1 1

Figure 7.1: An example of UCFS. Numbers next to edges are edge costs. Closed nodes are

gray. Deleted nodes are dotted. dg is the delete g-value.

Figure 7.1 presents an example of UCFS on an undirected graph, where numbers next

to edges are edge costs, Closed nodes are gray, and deleted nodes are dotted. First the

start node S is expanded, generating nodes A, B, and C. g(A) = g(C) = 1 and g(B) = 2.

dg(S) = 2, the maximum g-value of A, B, and C. Next, A generates nodes S, D, and E. S is a

duplicate node. D and E are stored in memory with g(D) = 1 and g(E) = 3, thus dg(A) = 3.

D generates nodes A and F. A is a duplicate node while g(F) = 2, hence dg(D) = 2. Then

C generates nodes S, E, and H. S and E are duplicate nodes. Since g(E) = 3 and g(H) = 2,

dg(C) = 3. At this point, all Open nodes with g = 1 have been expanded. Since no node

has a dg ≤ 1, UCFS expands nodes at g = 2. B only generates one node which is S, thus

66

dg(B) = 0, and B can be deleted immediately. F generates D, I, and J. D is a duplicate node

while g(I) = g(J) = 3, thus dg(F) = 3. Then H generates C and K. C is a duplicate node

and g(K) = 2, hence dg(H) = 2. K generates H and L. H is a duplicate node, g(L) = 3, and

dg(K) = 3. After expanding all Open nodes with g = 2, nodes D and H are deleted, as they

have a dg-value of 2. S cannot be deleted since it is the start node.

A key difference between BFFS and UCFS is the order of deleting nodes. In BFFS, nodes

at depth d are always deleted before nodes at depth d + 1. In UCFS, however, a node m

with a larger g-value may be deleted before a node n with a smaller g-value, if any of n’s

children have a higher g-value. A child node may even be deleted before its parent node.

For example, in Figure 7.1, H is removed at dg = 2, while H’s parent node C will be removed

later at dg = 3.

7.2.2 Uniform-Cost Heuristic Search

We now extend UCFS by adding heuristics and a cost bound U , allowing us to prune nodes

whose f -value exceeds U . We call the resulting algorithm uniform-cost heuristic search

(UCHS). UCHS generalizes BFHS to handle non-unit edge costs. UCHS is to UCFS as

BFHS is to BFFS, while UCFS is to UCS as BFFS is to BFS.

We present pseudo-code for UCHS in Algorithm 1, where Openk and Closedk are Open

and Closed nodes whose g-value is k. UCHS first expands the start node and adds to Open its

child nodes n for which f(n) ≤ U . If a node n is generated with f(n) > U , it is immediately

deleted. The Open list is kept sorted by the g-values of the nodes. After all nodes on Open

whose g-value is d are expanded, assume the next smallest g-value on Open is d′. UCHS

deletes the expanded nodes for which dg < d′. It then expands all nodes on Open whose

g-value is d′. It continues until it finds a goal node, and verifies that no cheaper path to a

goal exists.

To show how UCHS works, we run it on the same undirected graph from Figure 7.1. We

present the result in Figure 7.2, where the numbers next to the nodes are their f -values,

Closed nodes are gray, and deleted nodes are dotted. Assume UCHS is called with cost

67

Algorithm 1 Uniform-Cost Heuristic Search

1: g(start)← 0

2: Open0 ← {start}
3: d← 0

4: while d ≤ U do

5: for p ∈ Opend do

6: if p is goal then

7: return d

8: dg(p)← 0

9: for n ∈ children(p) do

10: /* Check duplicates against all stored nodes. */

11: if n ∈ Openk or n ∈ Closedk then

12: /* New path to n is not cheaper than old path. */

13: if g(n) ≥ k then

14: dg(p)← max(k, dg(p))

15: continue

16: else

17: Openk ← Openk\n
18: dg(p)← max(g(n), dg(p))

19: if f(n) ≤ U then

20: Openg(n) ← Openg(n) ∪ n

21: /* All nodes with a g-value of d are expanded. */

22: Closedd ← Opend

23: Opend ← ∅
24: /* g-value of the next node to expand. */

25: d′ ← min{k|Openk ̸= ∅}
26: for n ∈ Closed do

27: if dg(n) < d′ then

28: /* Delete Closed node n from memory. */

29: Closed ← Closed \n
30: d← d′

31: return ∞

68

Sg=0 dg=25

Ag=1

dg=3

6D

dg=2

7

F9

Eg=3 6

Bg=2 9

C

dg=3

6

H

dg=2

8 K

dg=3

7

L 8

1 1

20

2 4

1

0

1

1

Figure 7.2: An example of UCHS with a cost bound of 8.5. Numbers next to edges are edge

costs and numbers next to nodes are f -values. Closed nodes are gray. Deleted nodes are

dotted. dg is the delete g-value.

bound U = 8.5. S generates nodes A, B, and C. f(A) = f(C) < U , so they are stored.

g(B) = 2 and f(B) = 9 > U , so B is deleted, but we still consider B when calculating dg(S),

which is 2. Next, A generates S, D, and E. S is a duplicate node, D and E are stored with

g(D) = 1, g(E) = 3, and dg(A) = 3. D generates A and F. A is a duplicate node, F is deleted

since f(F) > U , and dg(D) = 2. C generates S, E, and H. S and E are duplicate nodes, while

H is stored, and dg(C) = 3. At this point, all Open nodes with g = 1 have been expanded.

UCHS continues expanding nodes as there are no nodes to be deleted. H generates C and

K. C is a duplicate node, but K is stored with g(K) = 2, and dg(H) = 2. K then generates

H and L. H is a duplicate node, g(L) = 3, and dg(K) = 3. After expanding all Open nodes

with g = 2, nodes D and H are deleted, as they have a dg-value of 2. S cannot be deleted

since it is the start node.

Similar to UCFS, in UCHS a node stored at a larger g-value may be deleted before a

node stored at a smaller g-value, or a child node may be deleted before its parent.

The definition of dg in Equation 7.1 is simple and intuitive, but on undirected graphs, it

results in UCHS storing nodes for longer than it needs to. For example, D is only removed

after expanding all nodes with g = 2 since g(F) = 2, even though F is not stored. This

suggests that when calculating dg(p), we just ignore any of p’s child nodes n for which

f(n) > U . This choice looks tempting but it can lead to a node being re-expanded. If we

69

used this strategy, then dg(D) = 1. In our example, D is expanded before C. Suppose the

problem in Figure 7.2 changes such that C can also generate F with an edge cost of 0.5, thus

g(F) = 1.5, f(F) = 1.5 + 7 = 8.5 = U , and F will be stored. UCHS would have deleted D

prior to expanding F, since dg(D) = 1. F would then generate D again with g(D) = 2.5 and

f(D) = 2.5 + 6 = 8.5 = U . As a result, D will be treated as a new node and will be stored

and expanded again.

This shows that we have to consider all child nodes while calculating the dg-values,

but we can actually delete D earlier. For D to be generated by F in UCHS, F must be

stored and expanded. Given U = 8.5, the largest g(F) that would allow F to be stored is

U−h(F) = 8.5−7 = 1.5. Therefore, if we remove D after expanding all nodes up to g = 1.5,

then we are guaranteed that D will not be generated again by F, as F cannot still be in

memory when g(F) > 1.5.

Another case to consider is when to delete K. dg(K) = 3 due to g(L) = 3. Since c(K,L),

the cost of the edge between K and L, is 1, when L generates K, we will have g(K) =

g(L)+1 = 3+1 = 4 and f(K) = g(K)+h(K) = 4+5 = 9 > U = 8.5, which means this new

copy of K will be deleted. This suggests that instead of deleting K after expanding all nodes

with g = 3, we can delete K before expanding any node with g = 3. To calculate dg(K),

in addition to the value of g(L), we also consider U − c(K,L) − h(K) = 8.5 − 1 − 5 = 2.5.

This means that if L is stored with g(L) ≤ 2.5, then during the expansion of L, K will be

generated with f(K) = g(L)+ c(K,L)+h(K) ≤ 2.5+1+5 = 8.5 = U . In other words, if L is

expanded with g(L) > 2.5, then the new copy of K generated by L will have f(K) > U , and

will be deleted. Therefore, UCHS can use dg(K) = 2.5, and K will be deleted before UCHS

expands any nodes with g = 3.

Taking the above examples into consideration, we propose a new definition of dg. Suppose

U is the cost bound, p is a parent node, Φ = {ni|i = 0, 1, 2...} are the children of p, and ci

is the cost of the edge between p and ni. Then dg(p) can be defined as follows:

dg(p) = max
ni∈Φ

{
min{g(ni), U − h(ni), U − ci − h(p)}

}
(7.2)

Theorem 1. UCHS using Equation 7.2 is guaranteed not to expand a state more than once

70

on undirected graphs.

Proof. We consider f(ni) of a newly generated node ni.

Case 1: f(ni) ≤ U . ni is stored and g(ni) ≤ U−h(ni), therefore we only need to compare

g(ni) with U − ci − h(p).

(a): g(ni) ≤ U − ci − h(p). When UCHS expands ni, p is still in memory, so the new

copy of p will be deleted.

(b): g(ni) > U−ci−h(p). UCHS may delete p before expanding ni. However, p will only

be deleted after expanding all nodes at g = U − ci − h(p). Thus, even if ni is expanded at

g(ni) > U − ci− h(p), we still have f(p) = g(ni) + ci + h(p) > U − ci− h(p) + ci + h(p) = U .

Therefore, this new copy of p will be immediately deleted. It is possible that after the

expansion of p, ni is generated again with a smaller g-value, but the above analysis still

holds.

Case 2: f(ni) > U . Since g(ni) > U − h(ni), we only need to consider U − h(ni) and

U − ci − h(p).

(a): U − h(ni) ≤ U − ci − h(p). p will not be deleted before expanding all nodes up to

g = U − h(ni), the largest value of g(ni) such that ni is stored and expanded. Therefore,

if ni is ever expanded, for example via a different and cheaper path, it must be expanded

before p is removed.

(b): U − h(ni) > U − ci − h(p). The analysis is similar to Case 1 (b) and is omitted

here.

On directed graphs, the above analysis and the guarantee that no state will be expanded

more than once no longer holds, and p may be expanded multiple times. The reason is that

a node we have not seen yet can regenerate node p. However, this is the price we have

to pay as frontier search algorithms in general, as we show in Section 4.8, cannot prevent

expanded nodes from being re-generated and re-expanded on directed graphs [ZH04, KZT05].

A special case where frontier search algorithms can detect all duplicates on directed graphs

is also discussed in Section 4.8.

71

The graph search version of Iterative Budgeted Exponential Search (IBES) [HLL19] uti-

lizes UCS to minimize the worst-case number of node expansions on domains with various

edge costs and inconsistent heuristics. However, IBES does not remove Closed nodes from

memory so it is not directly comparable to our new algorithm.

7.3 Iterative-Deepening UCHS (IDUCHS)

7.3.1 Calculating the Cost Bounds of Iterations

UCHS requires a user-specified cost bound, but the optimal solution cost C∗ is rarely

known in advance. Therefore, we add iterative-deepening to UCHS, which we call IDUCHS.

IDUCHS generalizes BFIDA* to domains with non-unit edge costs. On unit-cost domains,

BFIDA* usually increases the cost bound by one with each successive iteration. This strat-

egy does not work well on domains with non-unit edge costs, however, as there may be too

many iterations with very few new nodes expanded in each iteration.

On domains with non-unit edge costs, IDA* [Kor85] has the same problem, as it uses

the smallest f -value among the nodes generated but not expanded on the previous iteration

as the cost bound of the next iteration. IDA* CR [SCG91] addresses this issue by using a

larger cost bound increment between iterations. During each iteration, it counts the number

of nodes generated at each f -value greater than the current cost bound. After each iteration,

it decides how many new nodes to expand in the next iteration, say m. It then determines

an f -value that will result in at least m new nodes being expanded in the next iteration,

and uses that as the cost bound for the next iteration.

The same idea can also be applied to UCHS on domains with non-unit edge costs. We

call the resulting algorithm UCHS CR, but it did not work well, for several reasons. First,

UCHS CR uses duplicate detection while IDA* CR does not. As a result, UCHS CR is not

guaranteed to expand m new nodes in the next iteration. Second, on planning domains, dou-

bling the number of expanded nodes does not guarantee that the number of generated nodes

will also be doubled. Third, sometimes the number of nodes generated but not expanded is

72

lower than the desired m-value, making it difficult to choose the next cost bound.

[KRE01] showed that compared to brute-force search, the effect of heuristic functions in

IDA* is to reduce the search depth instead of reducing the branching factor. They accurately

predicted the performance of IDA* on sliding-tile puzzles and Rubik’s Cube. Inspired by

their work, we propose a new way to calculate the cost bounds for IDUCHS on domains

with non-unit edge costs. Let fk be the cost bound of iteration k and Nk be the number

of nodes generated in iteration k. We define a pseudo branching factor b by the equation

bfk−fk−1 = Nk/Nk−1. Note that b is not the brute-force branching factor of the problem

domain, but tends to remain constant between iterations. Therefore, b is sometimes called

the effective branching factor. Suppose we want r = Nk+1/Nk, where r is a user-specified

ratio of the generated nodes between iterations. Then we have bfk+1−fk = r. Taking the

logarithm of both sides, we get (fk − fk−1) ln b = ln (Nk/Nk−1) and (fk+1 − fk) ln b = ln r.

Combining both equations, we get

ln (Nk/Nk−1)

(fk − fk−1)
= ln b =

ln r

fk+1 − fk

(lnNk − lnNk−1)(fk+1 − fk) = (fk − fk−1) ln r

and finally

fk+1 =
(fk − fk−1) ln r

lnNk − lnNk−1

+ fk (7.3)

Thus, given the cost bounds and the numbers of generated nodes of the previous two it-

erations, and the desired ratio of generated nodes between iterations, we can calculate an

estimated cost bound for the next iteration. This equation does not precisely model the

generated nodes in IDUCHS, but is an efficient way to calculate successive cost bounds.

The above equation cannot be used to calculate the second iteration’s cost bound. In the

first iteration, we calculate the average g-value (avg(g)) and depth (avg(d)) of all generated

nodes, and increase the cost bound of the first iteration by avg(g)
avg(d)

to get the second cost

bound.

IDUCHS works on all domains with non-negative edge costs, including unit-cost domains,

73

and hence subsumes BFIDA*. IDUCHS is admissible and complete on both directed and

undirected graphs when using admissible heuristics. Given a cost bound U ≥ C∗, where

C∗ is the optimal solution cost, there always exists a node n on Open such that n is on

an optimal path, and hence reached via its minimal g-value. Furthermore, on undirected

graphs, a single iteration of IDUCHS is guaranteed to never expand a state more than once

when using the dg-value defined in Equation 7.2.

7.3.2 Solution Reconstruction

Similar to BFIDA*, when IDUCHS stops, it only has the solution cost, and additional

searches are needed to reconstruct the actual solution path. Therefore, we also use two A*

searches to reconstruct the solution path for IDUCHS, just like our solution reconstruction

strategy for BFIDA* in Section 6.4.

To compute the solution path from the middle node to the original goal node, we use

A* with the original heuristic function. Computing the solution path from the start node

to the middle node is more complex, as we do not have a heuristic estimate to the middle

node. For this task in BFIDA*, we use A* with the heuristic to the original goal node, but

we modify A* so that any node whose g-value exceeds that of the middle node, or whose

f -value exceeds the original problem’s C∗-value, is pruned. For IDUCHS, we similarly prune

nodes n for which f(n) > C∗ or g(n) > g(middle). To accommodate zero-cost edges, a node

n for which g(n) = g(middle) is not pruned.

In BFIDA*, we save the nodes at depth U/4 as the middle layer when U is the current

iteration cost bound. This is because the layer at depth U/2 is usually larger than that of

U/4. For IDUCHS, we save as the middle layer the Open nodes that exist at the point when

all nodes up to g = U/4 have been expanded. Therefore the middle layer contains nodes

with various g-values. A detailed discussion of the choice of the middle layer depth can be

found in Section 6.4.

74

7.3.3 Algorithm Evolution

Base

algorithm

Adding

frontier search

Adding

heuristics & cost bound

Adding

iterative-deepening

breadth-first

search

breadth-first

frontier search

breadth-first

heuristic search

breadth-first

iterative-deepening A*

uniform-cost

search

uniform-cost

frontier search

uniform-cost

heuristic search

iterative-deepening

uniform-cost heuristic search

Table 7.1: Relationships between algorithms.

iterative-deepening

uniform-cost heuristic search

iterative-

deepening
uniform-cost

heuristic search

heuristics &

cost bound

uniform-cost

frontier search

frontier

search

uniform-cost

search

non-unit

edge cost
breadth-first

search

Figure 7.3: The evolution of iterative-deepening uniform-cost heuristic search (IDUCHS).

We present the relationships between various algorithms mentioned in this chapter in

Table 7.1. Breath-first search (BFS) and uniform-cost search (UCS) are the two base algo-

rithms. Combined with frontier search, BFS becomes breadth-first frontier search (BFFS)

and UCS becomes uniform-cost frontier search (UCFS). After adding heuristics and a cost

bound, BFFS becomes breadth-first heuristic search (BFHS) and UCFS becomes uniform-

cost heuristic search (UCHS). Finally, after applying iterative-deepening, BFHS becomes

75

breadth-first iterative-deepening A* (BFIDA*) and UCHS becomes iterative-deepening

uniform-cost heuristic search (IDUCHS).

Similar to the evolution of BFIDA* in Figure 4.2, we further present the evolution of

iterative-deepening uniform-cost heuristic search in Figure 7.3, where each node is an al-

gorithm or search technique. After combining with non-unit edge cost, frontier search,

heuristics, a cost bound, and iterative-deepening, breadth-first search finally evolves into

iterative-deepening uniform-cost heuristic search.

7.4 Experimental Results and Analysis

We implemented IDUCHS in the planner Fast Downward 20.06 [Hel06]. We used the original

code for node expansions and heuristic functions. The original hash map in Fast Downward

does not support removing a stored node, so we modified the hash map to allow this. When-

ever a node was removed from the hash map, we stored the next new node into the resulting

vacant slot. Therefore, we used a single hash map to store all nodes. The nodes in the

middle layer used for solution reconstruction were not deleted.

We have solved about 300 problem instances from 19 International Planning Competition

(IPC) domains with non-unit edge costs. These domains fall into three categories. First,

binary domains, where the edge costs are either 0 or 1. Second, positive domains, where the

edge costs are positive integers. Third, integer domains, where the edge costs are positive

integers or 0. We are most interested in solving hard problems, so we present the results of

the 20 hardest problem instances we solved from 11 domains. The remaining 280 problem

instances were easily solved by A*, usually within a few seconds. All experiments were run

on a machine with a 3.33 GHz Xeon X5680 CPU and 236 GB of RAM.

We did not test IDUCHS on unit-cost domains, where IDUCHS will perform similarly to

BFIDA*. A*+BFHS is the state-of-the-art algorithm for unit-cost domains when A* fails

due to memory limitations [BK22a].

sokoban08 and spider18 are binary domains. data-network18, elevators08, and ged14

76

are integer domains. The rest are positive domains. elevators08, transport11, and trans-

port14 generate undirected graphs, while the other 8 domains generate directed graphs. We

tested three different heuristic functions and picked the best one for each domain: the

iPDB heuristic with the default configuration in Fast Downward [HBH07, SOH12], the

merge-and-shrink heuristic (M&S) with the recommended configuration in Fast Downward

[SWH14, SWH16, Sie18], and the landmark-cut heuristic (LM-cut) [HD09]. We used LM-cut

for floortile11, M&S for agricola18, barman11, and woodworking08, and iPDB for the rest.

We present the results of A* and IDUCHS in Table 7.2. We used Equation 7.2 to calculate

the dg-values with r = 2 in Equation 7.3 to calculate the cost bounds of IDUCHS. The first

column is the problem instance. The second column is the optimal solution cost C∗ and the

third column is the cost bound of IDUCHS’s last iteration. The fourth and fifth columns

are the peak numbers of stored nodes in A* and IDUCHS. The numbers in parentheses

are the peak memory usage in GB reported by Fast Downward. The sixth column is the

total nodes generated by A*. The seventh column is the number of nodes generated in a

single iteration of UCHS with the cost bound equal to C∗, excluding the nodes generated

in solution reconstruction. The eighth column is the total number of nodes generated by

IDUCHS, including the nodes generated in solution reconstruction. The last two columns

show the running time of A* and IDUCHS, including solution reconstruction in IDUCHS

but excluding the time spent on building the heuristic function. Problem instances from the

three undirected graph domains are marked with *. An underline means that more than 8

GB of memory was needed.

We found that using U/4 for the g-cost of the middle layer was not very practical, as

the A* search from the middle node to the original goal node could be relatively expensive.

Instead, we dynamically set the depth of the middle layer. In each iteration of IDUCHS, we

checked if the size of the middle layer was less than 1% of the peak stored nodes for that

iteration. If so, we then increased the g-value threshold for the middle layer by U/10 in

the next iteration, with U/2 as the upper bound. The number of nodes generated during

solution reconstruction was usually around 1% of the total nodes generated in IDUCHS, and

77

L
a
st

P
ea
k
S
to
re
d
N
o
d
es

&
R
A
M

in
G
B

T
ot
al

N
o
d
es

T
im

e
(s
)

In
st
an

ce
C

∗
B
o
u
n
d

A
*

ID
U
C
H
S

A
*

U
C
H
S
(C

∗)
ID

U
C
H
S

A
*

ID
U
C
H
S

el
ev
a
to
rs
0
8
16

*
87

88
53

,9
43

,0
52

(3
.1
)

3,
37

9,
18

5
(0
.2
)

15
1,
47

6,
40

7
17

7,
86

7,
35

4
4
1
0
,3
0
4
,9
5
5

1
3
1

3
3
7

tr
a
n
sp
o
rt
1
1
09

*
31

3
31

9
56

,0
90

,4
44

(3
.1
)

5,
65

6,
70

1
(0
.4
)

17
7,
07

6,
74

6
18

7,
55

5,
93

0
5
5
1
,3
4
8
,0
1
6

1
6
6

4
9
6

tr
a
n
sp
o
rt
1
1
15

*
1,
07

9
1,
08

6
81

,2
97

,8
37

(3
.5
)

8,
57

7,
20

9
(0
.7
)

23
7,
85

8,
96

3
24

4,
07

4,
95

0
5
8
7
,0
4
7
,3
5
7

2
3
8

5
9
3

d
a
ta
-n
et
w
o
rk
1
8
06

10
7

11
0

54
,8
56

,2
22

(3
.2
)

22
,6
77

,4
95

(1
.4
)

45
1,
73

3,
88

2
1,
49

1,
43

3,
60

6
3
,4
8
6
,9
3
3
,4
7
0

2
4
2

3
,6
4
6

tr
a
n
sp
o
rt
1
4
08

*
1,
17

3
1,
33

8
62

,7
84

,3
07

(2
.9
)

13
,2
00

,2
88

(0
.9
)

39
6,
83

3,
14

0
39

7,
50

1,
04

3
1
,3
2
5
,9
3
8
,1
8
1

2
4
8

1
,3
7
5

so
ko
ba
n
0
8
28

43
46

42
,2
80

,8
57

(1
.8
)

19
,6
96

,9
51

(1
.4
)

10
4,
78

6,
50

8
28

7,
76

2,
40

5
9
3
8
,2
5
3
,8
0
5

2
7
5

2
,5
6
6

sp
id
er
1
8
18

27
27

32
,9
56

,8
06

(3
.5
)

14
,7
25

,6
84

(1
.8
)

35
,2
47

,9
17

19
7,
34

3,
31

7
2
4
5
,0
2
4
,1
4
6

3
1
3

1
,8
5
9

ge
d
1
4
8-
9

6
5

13
8,
96

1,
03

3
(6
.4
)

51
,1
94

,9
55

(3
.6
)

15
5,
04

4,
17

1
33

3,
19

4,
87

5
1
7
6
,3
1
6
,7
1
3

3
3
2

2
3
1

tr
a
n
sp
o
rt
1
1
08

*
32

2
32

2
12

8,
70

5,
84

0
(6
.0
)

8,
05

1,
40

2
(0
.4
)

38
7,
83

4,
09

1
41

2,
87

3,
22

4
8
8
4
,7
1
8
,5
4
8

3
4
6

8
0
1

sp
id
er
1
8
13

39
39

22
,4
25

,2
96

(3
.0
)

11
,2
37

,9
94

(1
.7
)

24
,2
12

,9
99

90
,9
45

,2
06

1
3
6
,0
2
0
,3
4
6

3
8
6

1
,9
9
8

w
oo
d
w
o
rk
in
g0
8
27

35
0

35
7

14
7,
87

0,
49

0
(7
.4
)

11
,9
04

,3
97

(0
.7
)

33
9,
09

7,
80

6
86

1,
63

0,
21

6
2
,0
6
9
,2
1
9
,6
3
5

4
5
9

3
,8
3
2

ba
rm

a
n
1
1
02

-0
05

12
1

13
2

12
0,
52

0,
77

5
(6
.1
)

68
,2
96

,3
32

(5
.5
)

52
1,
64

4,
31

7
2,
60

8,
77

4,
30

9
7
,9
1
8
,0
3
1
,4
7
2

5
4
4

1
5
,7
2
3

tr
a
n
sp
o
rt
1
4
09

*
96

6
99

6
12

7,
47

2,
98

9
(5
.9
)

37
,1
10

,5
56

(2
.6
)

74
1,
92

2,
58

7
74

7,
59

1,
22

8
2
,3
0
8
,5
7
1
,0
0
6

5
4
9

2
,3
2
7

a
gr
ic
o
la
1
8
02

87
8

93
5

11
8,
89

1,
47

2
(6
.7
)

47
,7
21

,8
93

(2
.9
)

49
4,
41

2,
74

9
51

2,
74

7,
51

7
1
,2
8
8
,1
0
7
,5
2
1

6
1
7

3
,0
8
7

a
gr
ic
o
la
1
8
03

78
8

79
3

15
2,
52

8,
39

1
(7
.5
)

11
2,
54

9,
40

3
(7
.5
)

70
6,
79

7,
82

2
82

3,
74

8,
77

4
2
,2
8
7
,8
0
7
,4
1
6

7
9
0

5
,6
1
7

a
gr
ic
o
la
1
8
01

78
6

81
1

16
5,
04

4,
13

4
(7
.9
)

80
,7
11

,8
67

(5
.5
)

74
8,
67

4,
87

0
86

2,
71

5,
07

9
1
,8
7
0
,5
0
7
,3
7
3

8
0
1

4
,1
7
0

el
ev
a
to
rs
0
8
29

*
10

1
10

2
51

0,
12

5,
70

9
(2
4
)

39
,3
85

,7
42

(2
.6
)

1,
58

5,
44

3,
77

4
1,
97

8,
65

0,
72

4
4
,9
1
5
,3
9
1
,6
9
6

1
,4
0
4

4
,4
7
7

a
gr
ic
o
la
1
8
05

97
9

98
0

26
2,
63

5,
60

3
(1
3
)

79
,6
32

,7
41

(5
.7
)

1,
18

4,
93

2,
85

4
1,
39

8,
77

1,
12

5
3
,2
3
8
,7
5
1
,2
4
6

1
,5
3
3

8
,7
8
8

el
ev
a
to
rs
0
8
19

*
11

2
11

5
76

5,
07

5,
24

7
(3
1
)

11
4,
95

2,
00

4
(6
.7
)

2,
15

9,
25

2,
86

1
2,
57

1,
56

3,
85

5
8
,4
0
9
,5
3
4
,1
8
3

2
,1
4
0

7
,9
5
7

fl
oo
rt
il
e1
1
05

-0
09

76
76

55
,0
90

,8
01

(2
.9
)

5,
45

8,
65

2
(0
.3
)

11
7,
95

5,
92

4
18

6,
57

5,
43

0
3
7
0
,3
5
4
,5
1
0

5
,3
3
2

4
7
,9
3
2

T
ab

le
7.
2:

P
ea
k
st
or
ed

n
o
d
es
,
to
ta
l
ge
n
er
at
ed

n
o
d
es
,
an

d
ru
n
n
in
g
ti
m
e
of

A
*
an

d
ID

U
C
H
S
on

d
om

ai
n
s
w
it
h
n
on

-u
n
it

ed
ge

co
st
s.

In
st
an

ce
s
so
rt
ed

b
y
A
*
ru
n
n
in
g
ti
m
e.

N
u
m
b
er
s
in

p
ar
en
th
es
es

ar
e
m
em

or
y
u
sa
ge

in
G
B
.
A
n
u
n
d
er
li
n
e
m
ea
n
s
m
or
e

th
an

8
G
B

of
m
em

or
y
w
as

n
ee
d
ed
.
U
n
d
ir
ec
te
d
gr
ap

h
s
ar
e
m
ar
ke
d
w
it
h
*.

78

never more than 10%.

7.4.1 A* vs. IDUCHS

IDUCHS required less memory than A* on 19 out of these 20 problem instances, sometimes

significantly less, while A* was faster than IDUCHS. IDUCHS reduced the peak number

of stored nodes by up to an order of magnitude over A* on the elevators08, floortile11,

transport11, and woodworking08 domains, by a factor of about 4 on transport14, and by a

factor of around 2 on the other 6 domains. On the other hand, IDUCHS always generated

more nodes than A*, and sometimes significantly more. As a result, IDUCHS was slower

than A* on 19 out of these 20 problem instances.

To our surprise, on ged14 8-9, IDUCHS generated more nodes than A* but was faster,

for three reasons. First, A* stored more nodes, resulting in more cache misses and more time

spent on rehashing, which occurs when the hash map size is increased. Second, A* performs

duplicate detection for each generated node, while IDUCHS prunes a node whose f -value is

above the cost bound without duplicate checking. Third, we optimized our IDUCHS code to

perform goal checking on every generated node. As a result, on ged14 8-9, IDUCHS found

the goal node at its optimal g-value 6 in the iteration where the cost bound was 5. After

IDUCHS verified that no optimal solution with a cost of 5 exist, IDUCHS did not need to

run the iteration with cost bound U = C∗ = 6 at all.

We present the memory and time comparisons in Figure 7.4, where the x-axis is A*’s

peak stored nodes over IDUCHS’s, and the y-axis is IDUCHS’s running time over A*’s.

Each circle represents one problem instance in Table 7.2. The points below the y = x line

represent problems for which the memory reduction ratio of IDUCHS over A* is higher than

the increased running time ratio, while the points above the line represent the problems with

the opposite property.

Comparing the memory usage in GB, the memory reduction ratio is usually less than the

peak stored nodes reduction ratio for two reasons. First, the memory usage in GB includes

memory used by the planner itself and the heuristic functions. On some problem instances,

79

0 2.5 5 7.5 10 12.5 15

0

5

10

15

20

25

30

y = x

A* peak stored # / IDUCHS peak stored #

ID
U
C
H
S
ti
m
e
/
A
*
ti
m
e

Figure 7.4: A* vs. IDUCHS in memory and time.

the heuristic function took up to 1 GB of memory. Second, our implementation was not

optimized for memory, compared to the original A* implementation in Fast Downward. In

our code, we used several C++ STL vectors, whose memory usage grows multiplicatively

by a factor of 2. Optimizing memory usage of our code is for future work. Furthermore, a

state’s heuristic value is computed only once in A* no matter how many times the state is

generated. In IDUCHS, the heuristic value of a state can be calculated more than once if

that state is generated but then deleted. Therefore, the running time ratio of IDUCHS over

A* is different from the total nodes ratio.

We compared IDUCHS using Equations 7.1 and 7.2 for computing the dg-values. Using

Equation 7.1 stored around 60% more nodes on elevators08, 30% more nodes on floortile11

05-009, 40% to 90% more nodes on transport11, and 50% more nodes on woodworking08

27. In contrast, using Equation 7.1 generated 60% fewer nodes than Equation 7.2 on data-

network18 06 while storing 8% more nodes.

When the cost bound equals or exceeds the optimal solution cost C∗, the order in which

nodes are generated can significantly impact the time of this final iteration, depending on

how soon an optimal solution is found. This is due to node ordering. BFIDA* in general

has very poor node ordering, since its breadth-first search order usually generates almost all

80

nodes in the final iteration. As a result, on unit-cost domains, the number of nodes generated

by a single call to BFHS with a cost bound C∗ is usually significantly larger than that of A*.

However, the situation is different on domains with non-unit edge costs. In Table 7.2, we

see that UCHS (C∗) generated a similar number of nodes to A* on many problem instances,

including all instances from the three undirected graph domains. In fact, the only domains

where UCHS (C∗) generated significantly more nodes than A* due to node ordering are

ged14, spider18, and woodworking08. This is because nodes generated on domains with non-

unit edge costs usually have many more different f -values than that of unit-cost domains.

For example, there are hundreds of different f -values on the two transport domains, which is

very rare in unit-cost domains. As a result, on domains with non-unit edge costs, if the cost

bound of IDUCHS is increased by one, usually only a few new nodes will be expanded. Thus,

the almost-worst node ordering of IDUCHS is not a serious drawback on these problems.

On undirected graphs, frontier search can avoid leaking back into the interior of the search

space, and re-expanding nodes that have already been expanded. This cannot be done in

general with directed graphs, since there is nothing to prevent the generation of a node

in the interior of the search [ZH04, KZT05]. As a result, on the directed-graph domains

barman11, data-network18, and sokoban08, UCHS (C∗) generated many more nodes than

A*. To reduce the number of node re-expansions on directed graphs, we modified IDUCHS

to increase the dg-value of each node by U/5, where U was the cost bound. For example, if a

node n originally had dg(n) = 50 according to Equation 7.2 and U = 100, then we increased

dg(n) to 50 + 100/5 = 70. Compared to IDUCHS with Equation 7.2, IDUCHS with this

new dg formula stored around 15% more nodes on barman11 02-005 and data-network18

06, but reduced the total generated nodes by 78% and 61% respectively. On sokoban08

28, IDUCHS with this new dg formula also pruned most duplicate nodes, but did not save

memory compared to A* due to the last iteration being larger than A*.

81

7.4.2 Cost Bounds in IDUCHS

Table 7.2 shows the cost bound of the last iteration of IDUCHS. These bounds were calculated

by Equation 7.3. The last cost bound was usually greater than C∗, with an exception on

ged14 8-9, where the last cost bound was C∗ − 1, for reasons we have explained in the

previous subsection.

To analyze our cost-bound equation, we present the last iteration analysis in Figure 7.5,

where the x-axis is the number of nodes generated in IDUCHS’s last iteration divided by

that of UCHS (C∗), the y-axis is the number of nodes generated in IDUCHS’s last iteration

divided by that of all iterations, and each triangle corresponds to one problem instance in

Table 7.2. With r = 2 for Equation 7.3, we expected to see all data points having y ≈ 50%

and x ≤ 2.

0.5 0.75 1 1.25 1.5 1.75

30%

40%

50%

60%

70%

80%

90%

y = 50%

IDUCHS last iteration / UCHS (C∗)

ID
U
C
H
S
la
st

it
er
at
io
n
/
al
l
it
er
at
io
n
s

Figure 7.5: Comparisons of IDUCHS’s last iteration.

From Figure 7.5, we see that the number of nodes generated in the last iteration of

IDUCHS was within a factor of two of the nodes generated in UCHS (C∗) on all 20 problem

instances. The number of nodes generated in the last iteration of IDUCHS was around 50%

of the nodes generated in all IDUCHS iterations on most problem instances. This percentage

is higher for some problem instances. For example, ged14 8-9 had y = 91% and spider18 13

82

and 18 had y = 70% and y = 81% respectively. This is because those instances have a small

number of unique f -values, and the cost bound difference between iterations was just one,

as in unit-cost domains. As a result, a generated nodes ratio of two between iterations was

not possible, as one is the minimum cost bound increment. On the other hand, transport14

08 had a percentage of 32%. This is because compared to the penultimate iteration, not

many new nodes were generated in the last iteration, despite the large cost bound. In short,

Figure 7.5 and the above analysis show that Equation 7.3 was very accurate in calculating

the cost bounds of IDUCHS on domains where each iteration is not much larger than its

previous iteration when using a cost bound increment of one.

7.5 A*+UCHS

Inspired by A*+BFHS, we implemented A*+UCHS, a hybrid algorithm combining A* and

UCHS. A*+UCHS first runs A* up to a user-specified memory threshold, then runs a series

of UCHS iterations on the Open nodes of A*. A*+UCHS uses Equation 7.3 to calculate

the cost bounds in the UCHS phase. Similar to our experiments in Section 6.5, we first

generated the heuristics, then allocated 1/10 of the remaining 8 GB of memory for the A*

phase.

Figure 7.6 shows the comparison between IDUCHS and A*+UCHS. The x-axis is the

peak stored nodes of IDUCHS divided by that of A*+UCHS, the y-axis is IDUCHS’s time

divided by A*+UCHS’s, and each square represents one problem instance in Table 7.2. In

Figure 7.6, the data points to the right of the x = 1 line represent problem instances where

A*+UCHS used less memory than IDUCHS, while the data points above the y = 1 line

represent problem instances where A*+UCHS was faster than IDUCHS.

Little speedup was achieved when switching from IDUCHS to A*+UCHS on domains

with non-unit edge costs. A*+UCHS was faster than IDUCHS by a factor of at least two on

only three of the 20 problem instances in Table 7.2. The speedups of A*+BFHS over BFIDA*

mainly come from A*+BFHS terminating early in the last iteration, as A*+BFHS can im-

83

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

y = 1

x = 1

IDUCHS peak stored # / A*+UCHS peak stored #

ID
U
C
H
S
ti
m
e
/
A
*+

U
C
H
S
ti
m
e

Figure 7.6: IDUCHS vs. A*+UCHS in memory and time.

mediately stop when a goal node is generated. However, on domains with non-unit edge

costs, cost bounds usually increase by more than one in A*+UCHS’s UCHS phase. Thus,

when A*+UCHS finds a goal node, it usually cannot stop but has to continue searching

to verify that the solution is optimal. Therefore, early termination is usually not possi-

ble in A*+UCHS, with the exception of problem instances where the cost bounds between

iterations increase by one. It is worth noting that on the easy non-unit cost problem in-

stances which can be solved in A*+UCHS’s A* phase, A*+UCHS is faster than IDUCHS

but IDUCHS also quickly solves the easy problem instances. On unit-cost domains, however,

A*+UCHS behaves similarly to A*+BFHS, and hence is faster than IDUCHS.

84

CHAPTER 8

Conclusions and Future Work

8.1 Summary of Contributions

A* [HNR68] is usually the first algorithm to try for a new heuristic search domain and the

de facto algorithm for classic optimal planning. However, A* can run out of 8 GB of RAM

on common heuristic search and planning domains in a few minutes. On the other hand, the

memory requirement of iterative-deepening-A* (IDA*) [Kor85] is only linear in the search

depth, and therefore does not run out of memory on common heuristic search and planning

domains. However, on a domain where many distinct paths exist between the same pair of

nodes, IDA* may generate too many duplicate nodes, and hence run for a very long time.

In this research, we provide three new algorithms, A*+IDA*, A*+BFHS, and IDUCHS,

for solving problems that cannot be solved by A* due to memory limitations, nor IDA* due

to the existence of many distinct paths between the same pair of nodes.

8.1.1 A*+IDA*

A*+IDA* is a simple combination of A* and IDA* to make use of additional memory. It is

widely believed that this algorithm was discovered in 1989 and called MREC [SB89], but in

fact MREC is just IDA* with a transposition table. While there are several combinations of

A* and IDA* in the literature, to the best of our knowledge, none of them forego duplicate

detection during IDA* and order the frontier nodes of equal f -value by increasing h-values

at the same time.

A*+IDA* is faster than the most efficient implementation of IDA* on the 24-Puzzle by a

85

factor of almost 5, and the first algorithm to significantly outperform IDA* on this problem.

We corrected the original dual search implementation and optimized it to be faster than

IDA* by a factor of 2.2, which is the fastest linear search algorithm on the 24-Puzzle. We

further combined A*+IDA* with our improved dual search and found that it is faster than

IDA* by a factor of 6.7. We also show that using a disk-based A* search in A*+IDA* speeds

up search on several very hard 24-Puzzle instances. We also found optimal solutions to a

subset of random 27 and 29-Puzzle problems and we show how to use A*+IDA* to quickly

find a solution on sliding-tile puzzles. A*+IDA* is not faster than IDA* on Rubik’s Cube,

due to many fewer duplicate nodes and less effective node ordering in the last iteration, but

not significantly slower either.

In general, if A* solves a problem, there is no overhead in using A*+IDA*. If not, then

compared to pure IDA*, the overhead of A*+IDA* is likely to be more than compensated

for by the duplicate pruning in its A* phase, and the improved node ordering of the last

iteration in its IDA* phase.

This work was published in the Twenty-Eighth International Joint Conference on Arti-

ficial Intelligence (IJCAI), 2019, under the title “A*+IDA*: A Simple Hybrid Search Algo-

rithm” [BK19].

8.1.2 A*+BFHS

A*+BFHS is a hybrid heuristic search algorithm based on A* and breath-first heuristic

search (BFHS) [ZH04] that can be used for solving problems with unit-cost operators that

cannot be solved by A* or IDA*. A*+BFHS first runs A* until a user-specified storage

threshold is reached, then runs multiple iterations of BFHS on the frontier nodes, which are

the Open nodes at the end of the A* phase. Each iteration has a unique cost bound and

contains multiple calls to BFHS. Each call to BFHS within the same iteration starts with

the same cost bound but a different set of frontier nodes. Within an iteration, frontier nodes

are sorted deepest-first so that A*+BFHS can terminate early in its last iteration.

We tested A*+BFHS on 32 unit-cost planning domains. On about 500 easy problem

86

instances solved, A*+BFHS behaves the same as A*, and is always faster than breath-first

iterative-deepening A* (BFIDA*) [ZH04]. On the 32 hard instances presented, A*+BFHS

is slower than A* but uses significantly less memory. A*+BFHS is faster than BFIDA* on

27 of those 32 instances and at least twice as fast on 16 of those. Furthermore, A*+BFHS

requires less memory than BFIDA* on 25 of those 32 instances and saves more than half the

memory on 14 of those. Another contribution of this research is a comprehensive testing of

BFIDA* on many planning domains, which is lacking in the literature.

This work was published in the Thirty-Sixth AAAI Conference on Artificial Intelligence

(AAAI), 2022, under the title “A*+BFHS: A Hybrid Heuristic Search Algorithm” [BK22a].

8.1.3 IDUCHS

We also propose uniform-cost heuristic search (UCHS) and its iterative-deepening version

IDUCHS, for optimally solving heuristic search and planning problems. Unlike breadth-first

heuristic search [ZH04], which only works on unit-cost domains, UCHS works on domains

with arbitrary non-negative edge costs. UCHS is a uniform-cost frontier search that uses

a heuristic evaluation function to prune nodes. UCHS is guaranteed not to expand a state

more than once on undirected graphs. On directed graphs, UCHS can re-expand nodes, but

we show how to adjust UCHS to avoid many such re-expansions. We also propose a new

way to calculate the cost bounds of IDUCHS iterations.

We have solved around 300 problem instances from 19 planning domains with non-unit

edge costs, and presented the results of the hardest 20 problem instances. Experimental

results show that IDUCHS is slower than A*, but requires less memory than A*, sometimes

significantly, on a variety of planning domains.

This work was published in the Fifteenth International Symposium on Combinatorial

Search (SOCS), 2022, under the title “Iterative-Deepening Uniform-Cost Heuristic Search”

[BK22b].

87

8.1.4 When to Use Each Algorithm?

Since we have introduced three new algorithms, one immediate question is: given a new

problem, how to choose which algorithm to use? In general, given a new problem instance,

we can first run A* and count the number of duplicate nodes generated during A*. If A*

solves it, then we can stop. Otherwise, if the majority of nodes generated in A* represent

unique states, as in the case of the 24-Puzzle, we can try A*+IDA*. If many duplicate

nodes are generated in A*, then we can use A*+BFHS or IDUCHS, depending on whether

the problem instance comes from a unit-cost domain.

8.1.5 Node Ordering Is Important

Both A*+IDA* and A*+BFHS order their frontier nodes based on the heuristic value of

those nodes and expand the frontier node with the smallest heuristic value first in each

iteration. In contrast, IDA* orders nodes based on the order of operators being applied

while BFIDA* orders nodes according to their depth, which means that the heuristic values

of nodes do not contribute to the node ordering, with the exception of pruning nodes based

on the current cost bound.

Our experimental results of A*+IDA* and A*+BFHS show how much node ordering

can affect the number of nodes generated in heuristic search algorithms. Both IDA* and

BFIDA* generate most nodes in their last iteration, while A*+IDA* and A*+BFHS generate

most nodes in their penultimate iteration on most domains. The significant savings of nodes

in the last iteration is the main reason for the speedups of A*+IDA* over IDA* on the 24-

Puzzle, and A*+BFHS over BFIDA* on various planning domains. The explanation for why

node ordering works well in A*+IDA* and A*+BFHS is quite intuitive. When the heuristic

function is relatively accurate, which means a state’s heuristic value is roughly proportional

to its optimal cost to the goal state, then when we expand frontier nodes in increasing order

of the heuristic values, it is highly likely that we expand the frontier node leading to the

optimal goal quite early.

88

As a result, our work suggests that node ordering should play an important role in

algorithm design. If a heuristic search algorithm does not order nodes based on the heuristic

values, then there may be a chance to change the node ordering scheme in this algorithm to

speed up search.

8.1.6 A Scheme for Combing Heuristic Search Algorithms

Our combination of A* and IDA* provides a general way to combine best-first search al-

gorithms with depth-first search algorithms. We also combined A* with recursive best-first

search (RBFS) [Kor93] and observed similar speedups as A*+IDA* on the 24-Puzzle. Simi-

larly, we can also combine IDA* or RBFS with other A* variations like divide-and-conquer

frontier A* (DCFA*) [KZ00] to achieve similar speedups.

Our combination of A* and BFHS also provides a general way to combine two memory-

intensive search algorithms, which is rare in the literature. Traditionally, when a combination

of different heuristic search algorithms is used, usually one memory intensive search algorithm

is combined with one linear space search algorithm. However, such combination can still

generate a lot of duplicate nodes during the search if only a small portion of nodes in the

search space can be stored in memory. Our A*+BFHS shows that when designed properly,

two different memory-intensive search algorithms can be combined together to achieve the

advantages of both algorithms at the same time.

We anticipate that as heuristic search and planning come of age, it will be more and more

common to develop new search algorithms that are a combination of different previously

developed search algorithms to achieve the advantages of those combined algorithms while

minimizing their disadvantages.

8.2 Ideas for Future Work

Future work based on this research includes several directions. For example, we can test

A*+IDA*, A*+BFHS, and IDUCHS on more domains and problem instances. In addition,

89

we may explore if such algorithm combinations are possible in other related fields like multi-

agent path finding, answer set programming, constraint satisfaction problems, and games.

8.2.1 When Will Node Ordering Work?

Currently, we do not know if node ordering in A*+IDA* and A*+BFHS will work well

before we actually run both algorithms on a domain. Our current observation is that if the

heuristic value returned by a heuristic function is roughly proportional to the state’s optimal

cost to the goal state, then node ordering should work well in general on this domain, and

A*+IDA* and A*+BFHS should generate most nodes in their penultimate iteration.

On the other hand, if many states that are far from the goal state have a similar heuristic

value to the states that are close to the goal state, then node ordering may not work well.

In this case, the frontier nodes that have a relatively small heuristic value, which are also

the nodes expanded early in each iteration, may in fact be far from the goal state, hence

A*+IDA* and A*+BFHS may not discover the goal early in their last iteration. A good

example is our A*+IDA* results on Rubik’s Cube. The states that are 10 to 20 moves away

from the goal state all have the similar heuristic values. Therefore, the frontier node on an

optimal path was expanded quite late on some test cases because many frontier nodes that

are in fact far from the goal state had a smaller heuristic value, and hence were expanded

before the goal-led frontier node.

How can we know if the heuristic value returned by a heuristic function is roughly pro-

portional to the state’s optimal cost to the goal state? To get a good estimation, we may

have to generate random states at various depths and then compute their heuristic values

and check the heuristic value distribution. However, when we randomly generate a state,

we do not know its optimal cost to the goal state, and the only way to find that out is to

actually solve it. Therefore, more ideas are needed here.

90

8.2.2 Disk-based Search

We can also use external memory such as magnetic disk or flash memory in A*+BFHS and

IDUCHS to solve even harder problems. For example, in A*+BFHS, instead of allocating

1/10 of RAM for the A* phase, we can first run A* until RAM is almost full, then store

both Open and Closed nodes in external memory and remove them from RAM. Then in the

BFHS phase, we load back the set of frontier nodes for each call to BFHS from external

memory. This A*+BFHS version would never perform worse than A*, since it is identical

to A* until memory is exhausted, at which point the BHFS phase would begin.

8.2.3 Delayed Closed Node Deletion

On directed graphs, both A*+BFHS and IDUCHS cannot detect all duplicate nodes. To

mitigate this issue, we can modify both algorithms such that they only remove a node from

memory when the memory is almost full. For example, in IDUCHS, instead of removing a

node from memory after expanding all nodes up to its dg-value, we may just keep all nodes

stored in memory until the RAM is almost full, at which time we start to remove nodes

according to their dg-values. In this way, we will be able to detect more duplicate nodes on

directed graphs, hence speeding up the search.

8.2.4 Computing Cost Bounds Between Iterations

On domains with non-unit edge costs, if we only increase the cost bounds between iterations

by 1, then we may end up having hundreds or thousands of iterations with each iteration

being only slightly larger than the previous one. Therefore, we proposed Equation 7.3 to

calculate the cost bonds between iterations, so that each iteration is much larger than its

previous iteration.

For IDUCHS, we could refine Equation 7.3 to achieve more accurate results in calculating

the cost bounds. For example, we may take the previous three or more iterations into

consideration.

91

Furthermore, as can be seen in Table 6.1, sometimes each iteration in BFIDA* and

A*+BFHS is also only slightly larger than its previous iteration on unit-cost domains. For

instance, the number of nodes generated in BFIDA*’s last iteration on termes18 05 is only

5.9% of the total nodes generated. As a result, BFIDA* and A*+BFHS generated more

than an order of magnitude more nodes than A* on this problem instance. Therefore, we

could also apply Equation 7.3 on unit-cost domains to reduce the number of iterations, hence

speeding up BFIDA* and A*+BFHS on those problems. For example, we may first increase

the cost bound by only one. After several iterations, if we see each iteration is only slightly

larger than its previous one, then we can use Equation 7.3 to compute the future cost bounds.

8.2.5 A*+BFHS

Other ideas that are specific to A*+BFHS include the following. First, investigating what

is the best memory threshold for the A* phase. Second, determining the optimal number

of calls to BFHS in each iteration. Third, finding other ways to partition the frontier nodes

besides the current depth-based approach. If a set of frontier nodes is too large, we may

split it into multiple smaller sets and make one call to BFHS on each such smaller set. This

approach may reduce the maximum number of stored nodes but may generate more duplicate

nodes. In addition, when we make each call to BFHS on frontier nodes at multiple depths,

we may consider the number of frontier nodes at each depth so each call to BFHS is on a

different number of depths instead of a fixed number.

8.2.6 IDUCHS

Future work that is specific to IDUCHS includes the following. First, adjust the dg-values

automatically to reduce the duplicate nodes of IDUCHS on directed graphs. For example,

at the beginning of IDUCHS, we can make a few calls to UCHS, each with the same cost

bound but a different dg-value adjustment to find out if the problem is a directed graph and

whether the dg-value adjustment works. Second, we can optimize the code to reduce the

memory usage.

92

8.2.7 Searching on Directed Graphs

As shown in [KZT05] and in our Section 4.8, frontier search in general cannot detect all

duplicate nodes on directed graphs, with the exception in the case where we know all the

predecessor nodes of each node in advance. Our experimental results of A*+BFHS and

IDUCHS also show that they can generate many more nodes than A* on directed graphs.

This shows that compared to undirected graphs, it is harder to develop algorithms than can

work well on directed graphs. Therefore, we could also explore this direction and see if we

can come up with a new algorithm for directed graphs.

8.3 Conclusions

Heuristic search and planning have existed as sub-fields of artificial intelligence for several

decades, during which an average computer’s RAM size has increased from multiple KB to

16 GB or even more. In addition to the hardware evolution, new heuristic search algorithms

and heuristic functions like pattern databases [CS98] have enabled us to optimally solve

hard problems that we could not solve before, like Rubik’s Cube [Kor97] and the 24-Puzzle

[KF02].

Due to the nature of exponential domains, RAM size will never be enough for hard

problems. As a result, even A* cannot solve 24-Puzzle instances due to memory limitations

on modern computers. In contrast, IDA*’s linear space requirement makes it possible to

solve any hard problem in theory. However, many domains in both heuristic search and

planning have the property that many distinct paths exist between the same pair of nodes.

As a result, most nodes generated by IDA* on those domains will be duplicate nodes, hence

making IDA* run an exceptionally long time on such problems.

In light of above observations, we present in this dissertation three new algorithms for

solving problems that cannot be solved by A* due to memory limitations, nor IDA* due to

the existence of many distinct paths between the same pair of nodes. Our algorithms also

illustrate the importance of node ordering in algorithm design and we provide a scheme for

93

building new algorithms by combining existing algorithms to realize their advantages. We

hope our algorithms provide new insights and directions for solving hard problems. Instead

of testing new algorithms on easy domains that have already been solved, such as the 15-

Puzzle, we encourage researchers and future readers of this dissertation to focus on solving

hard problems that could not be solved before.

94

Bibliography

[AF16] Masataro Asai and Alex S. Fukunaga. “Tiebreaking Strategies for A* Search: How
to Explore the Final Frontier.” In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp. 673–
679. AAAI Press, 2016.

[AHK98] Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott,
Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins SRI, Anthony Barrett,
Dave Christianson, et al. “PDDL — The Planning Domain Definition Language.”
Technical Report, Tech. Rep., 1998.

[AK04] Andreas Auer and Hermann Kaindl. “A Case Study of Revisiting Best-First vs.
Depth-First Search.” In Proceedings of the 16th Eureopean Conference on Artificial
Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems,
PAIS 2004, Valencia, Spain, August 22-27, 2004, pp. 141–145. IOS Press, 2004.

[AKF10] Yuima Akagi, Akihiro Kishimoto, and Alex Fukunaga. “On Transposition Tables
for Single-Agent Search and Planning: Summary of Results.” In Proceedings of the
Third Annual Symposium on Combinatorial Search, SOCS 2010, Stone Mountain,
Atlanta, Georgia, USA, July 8-10, 2010. AAAI Press, 2010.

[BK15] Joseph Kelly Barker and Richard E. Korf. “Limitations of Front-To-End Bidirec-
tional Heuristic Search.” In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pp. 1086–1092.
AAAI Press, 2015.

[BK19] Zhaoxing Bu and Richard E. Korf. “A*+IDA*: A Simple Hybrid Search Al-
gorithm.” In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp.
1206–1212. ijcai.org, 2019.

[BK22a] Zhaoxing Bu and Richard E. Korf. “A*+BFHS: A Hybrid Heuristic Search Algo-
rithm.” In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022,
Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence,
IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp. 10138–10145.
AAAI Press, 2022.

[BK22b] Zhaoxing Bu and Richard E. Korf. “Iterative-Deepening Uniform-Cost Heuristic
Search.” In Lukás Chrpa and Alessandro Saetti, editors, Proceedings of the Fif-
teenth International Symposium on Combinatorial Search, SOCS 2022, Vienna,
Austria, July 21-23, 2022, pp. 20–28. AAAI Press, 2022.

[BSF14] Zhaoxing Bu, Roni Stern, Ariel Felner, and Robert Craig Holte. “A* with Looka-
head Re-Evaluated.” In Stefan Edelkamp and Roman Barták, editors, Proceedings

95

of the Seventh Annual Symposium on Combinatorial Search, SOCS 2014, Prague,
Czech Republic, 15-17 August 2014. AAAI Press, 2014.

[CGA89] P. P. Chakrabarti, Sujoy Ghose, Arup Acharya, and S. C. De Sarkar. “Heuristic
Search in Restricted Memory.” Artif. Intell., 41(2):197–221, 1989.

[CS98] Joseph C. Culberson and Jonathan Schaeffer. “Pattern Databases.” Comput.
Intell., 14(3):318–334, 1998.

[Dij59] Edsger W. Dijkstra. “A note on two problems in connexion with graphs.” Nu-
merische Mathematik, 1:269–271, 1959.

[Ede16] Stefan Edelkamp. “External-Memory State Space Search.” In Algorithm Engi-
neering - Selected Results and Surveys, volume 9220 of Lecture Notes in Computer
Science, pp. 185–225. 2016.

[ES95] Jürgen Eckerle and Sven Schuierer. “Efficient Memory-Limited Graph Search.”
In KI-95: Advances in Artificial Intelligence, 19th Annual German Conference on
Artificial Intelligence, Bielefeld, Germany, September 11-13, 1995, Proceedings,
volume 981 of Lecture Notes in Computer Science, pp. 101–112. Springer, 1995.

[ES00] Stefan Edelkamp and Stefan Schrödl. “Localizing A*.” In Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth Conference
on on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000,
Austin, Texas, USA, pp. 885–890. AAAI Press / The MIT Press, 2000.

[ES11] Stefan Edelkamp and Stefan Schroedl. Heuristic search: theory and applications.
Elsevier, 2011.

[Fel05] Ariel Felner. “Finding optimal solutions to the graph partitioning problem with
heuristic search.” Ann. Math. Artif. Intell., 45(3-4):293–322, 2005.

[FKM07] Ariel Felner, Richard E. Korf, Ram Meshulam, and Robert C. Holte. “Compressed
Pattern Databases.” J. Artif. Intell. Res., 30:213–247, 2007.

[FLB18] Santiago Franco, Levi HS Lelis, Mike Barley, Stefan Edelkamp, Moises Martines,
and Ionut Moraru. “The Complementary2 planner in the IPC 2018.” IPC-9
planner abstracts, pp. 28–31, 2018.

[FMS10] Ariel Felner, Carsten Moldenhauer, Nathan R. Sturtevant, and Jonathan Schaef-
fer. “Single-Frontier Bidirectional Search.” In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA,
July 11-15, 2010. AAAI Press, 2010.

[FN71] Richard Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving.” Artif. Intell., 2(3/4):189–208, 1971.

96

[FTL17] Santiago Franco, Álvaro Torralba, Levi H. S. Lelis, and Mike Barley. “On Cre-
ating Complementary Pattern Databases.” In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pp. 4302–4309. ijcai.org, 2017.

[FZS05] Ariel Felner, Uzi Zahavi, Jonathan Schaeffer, and Robert C. Holte. “Dual Lookups
in Pattern Databases.” In IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 -
August 5, 2005, pp. 103–108. Professional Book Center, 2005.

[HBH07] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig.
“Domain-Independent Construction of Pattern Database Heuristics for Cost-
Optimal Planning.” In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada,
pp. 1007–1012. AAAI Press, 2007.

[HD09] Malte Helmert and Carmel Domshlak. “Landmarks, Critical Paths and Abstrac-
tions: What’s the Difference Anyway?” In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki,
Greece, September 19-23, 2009. AAAI, 2009.

[Hel06] Malte Helmert. “The Fast Downward Planning System.” J. Artif. Intell. Res.,
26:191–246, 2006.

[HLL19] Malte Helmert, Tor Lattimore, Levi H. S. Lelis, Laurent Orseau, and Nathan R.
Sturtevant. “Iterative Budgeted Exponential Search.” In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pp. 1249–1257. ijcai.org, 2019.

[HNF04] Robert C. Holte, Jack Newton, Ariel Felner, Ram Meshulam, and David Furcy.
“Multiple Pattern Databases.” In Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling (ICAPS 2004), June 3-7 2004,
Whistler, British Columbia, Canada, pp. 122–131. AAAI, 2004.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths.” IEEE Trans. Syst. Sci. Cy-
bern., 4(2):100–107, 1968.

[Hol10] Robert C. Holte. “Common Misconceptions Concerning Heuristic Search.” In Pro-
ceedings of the Third Annual Symposium on Combinatorial Search, SOCS 2010,
Stone Mountain, Atlanta, Georgia, USA, July 8-10, 2010. AAAI Press, 2010.

[KF02] Richard E. Korf and Ariel Felner. “Disjoint pattern database heuristics.” Artif.
Intell., 134(1-2):9–22, 2002.

[KK94] Hermann Kaindl and Aliasghar Khorsand. “Memory-Bounded Bidirectional
Search.” In Proceedings of the 12th National Conference on Artificial Intelligence,

97

Seattle, WA, USA, July 31 - August 4, 1994, Volume 2, pp. 1359–1364. AAAI
Press / The MIT Press, 1994.

[KKL95] Hermann Kaindl, Gerhard Kainz, Angelika Leeb, and Harald Smetana. “How to
Use Limited Memory in Heuristic Search.” In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,
Canada, August 20-25 1995, 2 Volumes, pp. 236–242. Morgan Kaufmann, 1995.

[Kor85] Richard E. Korf. “Depth-First Iterative-Deepening: An Optimal Admissible Tree
Search.” Artif. Intell., 27(1):97–109, 1985.

[Kor93] Richard E. Korf. “Linear-Space Best-First Search.” Artif. Intell., 62(1):41–78,
1993.

[Kor97] Richard E. Korf. “Finding Optimal Solutions to Rubik’s Cube Using Pattern
Databases.” In Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Confer-
ence, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island, USA, pp.
700–705. AAAI Press / The MIT Press, 1997.

[Kor04] Richard E. Korf. “Best-First Frontier Search with Delayed Duplicate Detection.”
In Proceedings of the Nineteenth National Conference on Artificial Intelligence,
Sixteenth Conference on Innovative Applications of Artificial Intelligence, July
25-29, 2004, San Jose, California, USA, pp. 650–657. AAAI Press / The MIT
Press, 2004.

[KRE01] Richard E. Korf, Michael Reid, and Stefan Edelkamp. “Time complexity of
iterative-deepening-A*.” Artif. Intell., 129(1-2):199–218, 2001.

[KSS18] Michael Katz, Shirin Sohrabi, Horst Samulowitz, and Silvan Sievers. “Delfi: On-
line planner selection for cost-optimal planning.” IPC-9 planner abstracts, pp.
57–64, 2018.

[KT96] Richard E. Korf and Larry A. Taylor. “Finding Optimal Solutions to the Twenty-
Four Puzzle.” In Proceedings of the Thirteenth National Conference on Artificial
Intelligence and Eighth Innovative Applications of Artificial Intelligence Confer-
ence, AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 2,
pp. 1202–1207. AAAI Press / The MIT Press, 1996.

[Kwa89] James B. H. Kwa. “BS*: An Admissible Bidirectional Staged Heuristic Search
Algorithm.” Artif. Intell., 38(1):95–109, 1989.

[KZ00] Richard E. Korf and Weixiong Zhang. “Divide-and-Conquer Frontier Search Ap-
plied to Optimal Sequence Alignment.” In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on on Innovative Ap-
plications of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas, USA,
pp. 910–916. AAAI Press / The MIT Press, 2000.

98

[KZT05] Richard E. Korf, Weixiong Zhang, Ignacio Thayer, and Heath Hohwald. “Frontier
search.” J. ACM, 52(5):715–748, 2005.

[Man95] Giovanni Manzini. “BIDA: An Improved Perimeter Search Algorithm.” Artif.
Intell., 75(2):347–360, 1995.

[MME18] M Martinez, I Moraru, S Edelkamp, and S Franco. “Planning-PDBs planner in
the IPC 2018.” IPC-9 planner abstracts, pp. 63–66, 2018.

[PK89] Curt Powley and Richard E. Korf. “Single-Agent Parallel Window Search: A
Summary of Results.” In Proceedings of the 11th International Joint Conference
on Artificial Intelligence. Detroit, MI, USA, August 1989, pp. 36–41. Morgan
Kaufmann, 1989.

[RM94] Alexander Reinefeld and T. Anthony Marsland. “Enhanced Iterative-Deepening
Search.” IEEE Trans. Pattern Anal. Mach. Intell., 16(7):701–710, 1994.

[Rus92] Stuart J. Russell. “Efficient Memory-Bounded Search Methods.” In 10th Euro-
pean Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7,
1992. Proceedings, pp. 1–5. John Wiley and Sons, 1992.

[SA83] David J Slate and Lawrence R Atkin. “Chess 4.5—the Northwestern University
chess program.” In Chess skill in Man and Machine, pp. 82–118. Springer, 1983.

[SB89] Anup K. Sen and Amitava Bagchi. “Fast Recursive Formulations for Best-First
Search That Allow Controlled Use of Memory.” In Proceedings of the 11th In-
ternational Joint Conference on Artificial Intelligence. Detroit, MI, USA, August
1989, pp. 297–302. Morgan Kaufmann, 1989.

[SCG91] U. K. Sarkar, P. P. Chakrabarti, Sujoy Ghose, and S. C. De Sarkar. “Reducing
Reexpansions in Iterative-Deepening Search by Controlling Cutoff Bounds.” Artif.
Intell., 50(2):207–221, 1991.

[SDR13] Thorsten Schütt, Robert Döbbelin, and Alexander Reinefeld. “Forward Perimeter
Search with Controlled Use of Memory.” In IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013, pp. 659–665. IJCAI/AAAI, 2013.

[Sie18] Silvan Sievers. “Merge-and-Shrink Heuristics for Classical Planning: Efficient
Implementation and Partial Abstractions.” In Proceedings of the Eleventh Inter-
national Symposium on Combinatorial Search, SOCS 2018, Stockholm, Sweden -
14-15 July 2018, p. 99. AAAI Press, 2018.

[SKF10] Roni Stern, Tamar Kulberis, Ariel Felner, and Robert Holte. “Using Lookaheads
with Optimal Best-First Search.” In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010. AAAI Press, 2010.

99

[SOH12] Silvan Sievers, Manuela Ortlieb, and Malte Helmert. “Efficient Implementation of
Pattern Database Heuristics for Classical Planning.” In Proceedings of the Fifth
Annual Symposium on Combinatorial Search, SOCS 2012, Niagara Falls, Ontario,
Canada, July 19-21, 2012. AAAI Press, 2012.

[SWH14] Silvan Sievers, Martin Wehrle, and Malte Helmert. “Generalized Label Reduction
for Merge-and-Shrink Heuristics.” In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada, pp. 2358–2366. AAAI Press, 2014.

[SWH16] Silvan Sievers, Martin Wehrle, and Malte Helmert. “An Analysis of Merge Strate-
gies for Merge-and-Shrink Heuristics.” In Proceedings of the Twenty-Sixth Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2016, London,
UK, June 12-17, 2016, pp. 294–298. AAAI Press, 2016.

[ZFH06] Uzi Zahavi, Ariel Felner, Robert Holte, and Jonathan Schaeffer. “Dual Search in
Permutation State Spaces.” In Proceedings, The Twenty-First National Confer-
ence on Artificial Intelligence and the Eighteenth Innovative Applications of Arti-
ficial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pp.
1076–1081. AAAI Press, 2006.

[ZFH08] Uzi Zahavi, Ariel Felner, Robert C. Holte, and Jonathan Schaeffer. “Duality in
permutation state spaces and the dual search algorithm.” Artif. Intell., 172(4-
5):514–540, 2008.

[ZH04] Rong Zhou and Eric A. Hansen. “Breadth-First Heuristic Search.” In Proceedings
of the Fourteenth International Conference on Automated Planning and Scheduling
(ICAPS 2004), June 3-7 2004, Whistler, British Columbia, Canada, pp. 92–100.
AAAI, 2004.

100

	Title Page
	Abstract
	Committee
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita
	1 Introduction
	1.1 Heuristic Search Problems
	1.2 Dissertation Overview

	2 Foundations of Heuristic Search
	2.1 Basic Concepts
	2.2 Admissible Heuristics and Pattern Databases
	2.3 A*
	2.4 IDA*
	2.5 Disk-Based Search
	2.6 Heuristic Search in Planning

	3 A* and IDA* Variations
	4 Frontier Search
	4.1 Breadth-First Frontier Search
	4.2 Divide-and-Conquer Frontier A*
	4.3 Breadth-First Heuristic Search
	4.4 Breadth-First Iterative-Deepening A*
	4.5 Drawbacks of BFHS and BFIDA*
	4.6 Forward Perimeter Search
	4.7 Solution Reconstruction
	4.8 Frontier Search on Directed Graphs

	5 A*+IDA*: A Simple Hybrid Heuristic Search Algorithm
	5.1 Motivation
	5.2 A*+IDA*
	5.3 Comparisons to Previous Work
	5.3.1 A*+IDA* vs. MREC
	5.3.2 A*+IDA* vs. A* With Lookahead
	5.3.3 A*+IDA* vs. External IDA*

	5.4 Experimental Results and Analysis
	5.4.1 24-Puzzle
	5.4.2 Rubik's Cube

	5.5 Combining Dual Search With A*+IDA*
	5.6 Disk-based A*+IDA*
	5.7 Parallel A*+IDA* on the 27 and 29-Puzzle
	5.8 An Approximation Algorithm Based on A*+IDA*

	6 A*+BFHS: A Hybrid Heuristic Search Algorithm
	6.1 Motivation
	6.2 A*+BFHS
	6.3 Comparisons to Previous Work
	6.3.1 A*+BFHS vs. BFIDA*
	6.3.2 A*+BFHS vs. FPS

	6.4 Solution Reconstruction
	6.5 Experimental Results and Analysis
	6.5.1 A*+BFHS vs. A*
	6.5.2 A*+BFHS vs. BFIDA*
	6.5.3 Calling BFHS on Nodes at Multiple Depths
	6.5.4 Heuristic Functions and Running Time

	7 Iterative-Deepening Uniform-Cost Heuristic Search
	7.1 Motivation
	7.2 Uniform-Cost Heuristic Search
	7.2.1 Uniform-Cost Frontier Search
	7.2.2 Uniform-Cost Heuristic Search

	7.3 Iterative-Deepening UCHS (IDUCHS)
	7.3.1 Calculating the Cost Bounds of Iterations
	7.3.2 Solution Reconstruction
	7.3.3 Algorithm Evolution

	7.4 Experimental Results and Analysis
	7.4.1 A* vs. IDUCHS
	7.4.2 Cost Bounds in IDUCHS

	7.5 A*+UCHS

	8 Conclusions and Future Work
	8.1 Summary of Contributions
	8.1.1 A*+IDA*
	8.1.2 A*+BFHS
	8.1.3 IDUCHS
	8.1.4 When to Use Each Algorithm?
	8.1.5 Node Ordering Is Important
	8.1.6 A Scheme for Combing Heuristic Search Algorithms

	8.2 Ideas for Future Work
	8.2.1 When Will Node Ordering Work?
	8.2.2 Disk-based Search
	8.2.3 Delayed Closed Node Deletion
	8.2.4 Computing Cost Bounds Between Iterations
	8.2.5 A*+BFHS
	8.2.6 IDUCHS
	8.2.7 Searching on Directed Graphs

	8.3 Conclusions

	Bibliography

