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ABSTRACT OF THE THESIS

First-Principles Studies of Surface Energies of Magnetic Full-Heuslers and Machine
Learning of Hybrid Perovskites

by

Joseph Wong

Master of Science in Nanoengineering

University of California San Diego, 2019

Professor Kesong Yang, Chair

Materials design is a cornerstone of every device. Historically, the materials selection process

was characterized by a time consuming, expensive, Edisonian approach. In recent years however,

rapid advancements in computational power and materials simulation software has spawned the

field of computational materials science. Computational materials science opens a new avenue

to materials discovery called high-throughput materials design. This approach allows for rapid

prototyping of materials in a large, complex chemical space. In this work, the scope of high-

throughput materials design approach is used in the analysis of several topics: magnetic full-heuslers,

hybrid perovskites, and grain boundary structures. Using high-throughput density functional theory

(DFT), we study the surface energy of 68 magnetic full heuslers to guide the synthesis of magnetic

xii



tunnel junctions for applications in memory storage devices. We employ a high-throughput machine

learning approach to explore the chemical space of single and double perovskite materials for

applications in stable, high-performance solar cells. We also look deeper into hybrid perovskite

materials in a literature review of two-dimensional hybrid perovskites, which demonstrate greater

stability and tunable band gaps with simple fabrication routes. In addition, their strong binding

energies lead to strong light emitting properties, with potential applications in light emitting diode

devices. We also examine the configurational entropy of yttria-stabilized zirconia grain boundaries

and provide example usage and applications of AIMSGB, an open-source python library for grain

boundary structure generation.
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Chapter 1

Surface Energy of Full Heuslers

1.1 Introduction

Heusler compounds are a class of ternary semiconducting or metallic alloys that have the

X2YZ (full-Heuslers) or the XYZ (half-Heuslers) formulas, where X and Y are transition metals, and

Z is a main group element.[8] Heusler alloys exhibit a wide range of multifunctionalities including

superconductivity,[9, 10] tunable topological insulators,[11, 12, 13] and high spin polarization.[14,

15, 16, 17] In particular, the half metallic ferromagnetism property of Heusler alloys at a high Curie

temperature has attracted a lot of attention due to its ability to generate completely spin-polarized

conduction electrons which has potential applications in spintronics,[18, 19, 20, 21] including

tunnel magnetoresistance[22, 23] and spin torque transfer devices.[15, 24, 25]

Co-based full Heuslers are prominent candidates of the Heusler alloys due to their half

metallicity with a high curie temperature above room temperature and stable structure.[23, 24, 26]

Several experimental studies have demonstrated small magnetic damping constant,[23] perpendicu-

lar magnetic anisotropy,[27] and high tunnel magnetoresistance ratio[28] in thin films of Co-based

Heuslers grown epitaxially on MgO substrates. In epitaxially grown Heusler thin films, the surface

effects have been shown to influence the half-metallicity and spin polarization properties of the

material. For example, several first-principles studies have shown that the half-metallic properties

1



are often lost at the surface due to surface states pinned at the Fermi level.[29, 30, 31, 32] Fur-

thermore, surface roughness has also been shown to influence the tunneling magnetoresistance

value.[33] Because the surface properties play a strong role in the properties of full Heuslers, it is

important to control the surface composition to tune the magnetic and spin polarizing properties.

The surface composition is heavily determined by the surface energy. Several first principles studies

have examined the surface energies of Heusler compounds including Co2XSi (X = Cr, Mn, Si),[34]

Co2VGa,[35] and Mn2CoAl,[36] however the results of these studies are limited to these select few

compounds and the (100) and (111) slab orientation. To the best of our knowledge, no studies have

been done that have examined the surface energy with consideration of the composition flexibility

of Heusler compounds and the different surface orientations.

In this work, we performed a high throughput first-principles calculation of the surfaces

of 68 different full Heusler alloys in the (100), (110), and (111) direction with consideration of

all possible surface terminations at each orientation. In our analysis of the Co-based compounds,

we found that the surface energy depends heavily on the Z atom, decreasing with increasing Z

group (number of valence electrons) and period (atomic radius) number. We found that the surface

energies tend to be the lowest for terminations that contain the Z atom and tend to be the highest

with terminations containing the X atom. Compounds containing Sn as the Z atom exhibit especially

low surface energies compared to other Z atom choices. Between the different surface orientations,

the lowest surface energies are found in the (100) and (111) orientations. The surface energy is also

found to be lower in the X-poor chemical potential condition and higher in the X-rich condition.

The culmination of these trends leads to the lowest surface energy compounds in X-poor (100) YZ-

terminated Co2{Zr, Hf, Ti, Mn}Sn, Co2MnGe, and Co2{Hf, Mn, Ti}Ga, X-poor (111) Z-terminated

Co2{V, Zr, Ti, Mn}Sn, Co2{Fe, Mn}Ge, Co2{Hf, V, Cr}Ga, and X-rich (111) Z-terminated Co2{Nb,

V, Hf, Mn}Sn, and Co2FeGe. This work lays the foundation for the control of surface terminations

of epitaxially grown Heusler thin films.
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1.2 Computational Details

All density functional theory (DFT) calculations were performed using the Vienna Ab initio

Simulation Package (VASP).[37, 38] The projector augmented-wave (PAW) potentials were used

for electron-ion interactions,[39] and the Perdew-Burke-Ernzerhof (PBE) generalized gradient

approximation (GGA) is used for the exchange correlation functional.[40] A cutoff energy of 450

eV and a 9 × 9 × 1 Gamma centered k-space grid was used for the slab models. Atomic coordinate

relaxation was terminated when the interatomic forces were less than 0.01 eV Å−1. For the bulk

calculations, the automatic framework AFLOW[41] was used with a cutoff energy of 450 eV and a

10 × 10 × 10 Gamma centered k-space grid. Atomic coordinate relaxation was terminated when

the change in energy was less than 10−5 eV between two ionic steps. Electronic self-consistency

was assumed at 10−5 eV and 10−6 eV for slab and bulk models respectively.

1.2.1 Surface Structure

Figure 1.1 shows the (a) Regular and (b) Inverse cubic and (c) Regular and (d) Inverse

tetragonal full Heusler compounds. The cubic Heusler lattice contains four sites which form four

fcc sublattices shown in Figure 1.1a) and 1.1b): Z (occupied by a Z atom), X(I) (occupied by an

X atom), X(II) (occupied by X in regular cubic and Y in inverse cubic), and Y (occupied by Y

in regular cubic and X in inverse cubic). In the regular cubic structure, the Y site is octahedrally

coordinated by 6 Z atoms, and the X(I) and X(II) sites are both tetrahedrally coordinated by Y and

Z atoms. In this case, both sites occupied by X atoms experience an equivalent environment. The

inverse cubic structure can be obtained by switching the X and Y atoms in X(II) and Y, yielding

the structure in Figure (1.1b). Here, the two X atoms have different environments. The X atom

at the X(II) site is coordinated octahedrally by Z atoms and tetrahedrally by Y atoms while the

one at the X(I) site is coordinated octahedrally by Y atoms and tetrahedrally by Z atoms. The

regular and inverse tetragonal Heuslers can be obtained by stretching/compressing the cubic Heusler

counterparts along the z axis. In this work, we only studied the properties of the regular cubic

3



Figure 1.1: The four types of Heusler structures: (a) Regular Cubic, (b) Inverse Cubic, (c) Regular
Tetragonal, and (d) Inverse Tetragonal

Heusler compounds because several high performing Heusler compounds have been shown to

crystallize in this phase.[42, 43]

The Heusler compounds studied in this work belong to the regular cubic full-Heusler family.

The full-Heusler alloys adopt the formula, X2YZ, and crystallize in the L21 structure composed of

four fcc sublattices as shown in Fig. 1.2.[8] The lattice parameters for the bulk Heusler compounds

were calculated via DFT. We selected 68 compounds that demonstrate promising magnetic properties.

These bulk compounds were used as the basis for the 408 slab structures, which were generated

using the Pymatgen surface and structure modules.[44, 45, 46] Figure 1.2 shows the slabs structures

constructed for every possible surface termination in the (100), (110), and (111) directions. In

the (100) direction, there are two terminations: X2 (a) and YZ (b). In the (110) direction, there

is only one X2YZ termination (c). In the (111) direction, there are three terminations: X (d), Y

(e), and Z (f). Each slab was constructed with a 10 Åvacuum layer and with symmetric surface

terminations (i.e. X2-X2 or YZ-YZ for the (100) direction). These slab structures can be classified

into two types: stoichiometric and nonstoichiometric. A stoichiometric slab is a slab that has the

same atomic composition as the bulk (X2YZ). Of all the slabs in this work, only the (110) oriented

slab is classified as a stoichiometric slab. Conversely, a nonstoichiometric slab is one that does not
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Figure 1.2: Sample slab terminations of X2YZ: (a) X2, (b) YZ, (c) X2YZ, (d) X, (e) Y, (f) Z

have the same atomic composition as the bulk (i.e. X3YZ). Of the slabs in this work, both (100) and

(111) oriented slabs are considered nonstoichiometric.

1.2.2 Surface Energy Calculation

The calculation of the surface energy will be different for stoichiometric and nonstoichio-

metric slabs. For stoichiometric slabs, the surface energy can be calculated simply via

γ =
[Es−nEb]

2A
(1.1)

where γ is the surface energy in J/m2, Es is the total energy of the slab structure, n is the number

of formula units contained in the slab, Eb is the stoichiometrically equivalent energy of the bulk

material, and A is the surface area of the slab. For nonstoichiometric slabs, γ can be calculated

similarly with the inclusion of the chemical potential via

γ =
[Es− (nEb±mµx)]

2A
(1.2)
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where µx is the chemical potential of the bulk dopant atoms necessary to reach the stoichiometric

ratio of the slab and m is the number of atoms, x, needed to reach an equivalent stoichiometric

amount. When the chemical environment is characterized as a x-rich condition, µx is equal to the

energy of the bulk x material per atom. Because of the chemical potential term, the surface energy

will become a range of values rather than a single scalar. For example, if the slab had a formula of

X6Y2Z2 and the bulk energy was derived from one stoichiometric unit, Eq. 1.2 becomes one of the

following:

γ =
[Es− (2Eb +2µX)]

2A
(1.3)

γ =
[Es− (3Eb−µY −µZ)]

2A
(1.4)

Eq. 1.3 and Eq. 1.4 lead to two different values for the surface energy, each corresponding to either

the X-rich (Eq. 1.3) or X-poor (Eq. 1.4) condition.

Figure 1.3 summarizes the process of calculating the surface energies from the bulk Heusler

structure. First, the structures of 68 bulk Heusler compounds are optimized and their energies are

calculated. Next, these optimized structures are used as basis to generate the 408 slab structures

via the Pymatgen library. These slab structures then undergo a highthroughput DFT calculation,

yielding the slab energies. Bulk X/Y/Z calculations are used to determine the chemical potential

term in Eq. 1.2. All these raw compound energies are then used to calculate the surface energies for

each slab for all surface orientations and surface terminations.
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68 Bulk Heusler 
Compounds (Eb)

408 Slab 
Structures (Es)

Pure bulk 
elements (𝜇𝑥)

𝛾 =
[𝐸𝑠 − 𝐸𝑏 − 𝜇𝑥 ]

2𝐴

High Throughput 
DFT Calculation

Pymatgen

Surface Energy

100 110 111

X2 YZ X2YZ X Y Z

Figure 1.3: Surface energy calculation flowchart beginning with bulk Heusler compounds and
ending with Heusler surface energies.

1.3 Results and Discussion
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1.3.1 Surface Energy Data

Our calculated surface energies for 68 full-Heusler alloys are tabulated in Table 1.1 for

the X-poor condition and in Table 1.2 for the X-rich condition. In the case of the stoichiometric

(110) oriented surfaces, the surface energy values are the same in both tables since there are no

rich/poor conditions. The compound names are sorted alphabetically first by the X atom, then

by the Z atom, thereby sorting the surface energies by X-atom and further sorting each X-atom

group by the Z-atom. The columns containing the surface energies are categorized first by the

surface orientation (i.e. (100), (110), or (111)), then by the surface termination (i.e. X2, YZ, X,

Y, or Z). Compared to the inverse full-Heusler Mn2CoAl which has a calculated average surface

energy of 3.104 J/m2 for the (100) surface,[36] our results for the regular full-Heusler counterpart

are somewhat lower with surface energies of 2.03 J/m2 and 0.98 J/m2 in the X-poor condition

for the X2 and YZ terminations and 1.80 J/m2 and 1.21 J/m2 in the X-rich condition for the X2

and YZ terminations respectively. In the following discussion, we will focus our analysis on the

30 Co-based compounds because Co-based Heusler alloys have been shown to exhibit excellent

magnetic properties, including half-metallicity with a high TC, small magnetic damping constant,

and high spin polarization.[26, 23, 47]

1.3.2 (100) Surface Orientation

Fig 1.4 shows the (100) surface energies of the Co2 based compounds plotted against the Z

atom in order of increasing group number. The left and right plots show the surface energy data

under the X-poor and X-rich conditions. Our surface energy values for Co2MnSi predict the same

low energy terminations as those predicted by Khosravizadeh et al., who calculated surface energies

of 0.58 J/m2 for the X2 termination and 0.16 J/m2 for the YZ termination respectively.[34] We

calculated Co2MnSi surface energies of 3.79 J/m2 and 1.29 J/m2 for X-poor X2 and YZ terminations

and 2.40 J/m2 and 2.44 J/m2 for X-rich X2 and YZ terminations respectively.

For Co2FeSi, we calculated surface energies of 3.11 J/m2 and 1.72 J/m2 for X-poor X2 and
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Table 1.1: All surface energy data for the X-poor condition in J/m2

100 110 111 100 110 111
Name X2 YZ X2YZX Y Z Name X2 YZ X2YZX Y Z
Au2MnZn 1.03 1.34 0.91 1.19 1.33 0.83 Fe2MnAl 3.50 1.35 2.59 3.60 4.47 1.91
Co2FeAl 3.68 1.64 2.29 3.73 2.54 1.55 Ga2MnCo 0.76 1.60 0.46 0.58 1.03 0.55
Co2HfAl 3.97 1.16 2.02 3.56 1.63 1.44 Mn2CoAl 2.03 0.98 1.63 2.10 2.27 1.47
Co2MnAl 3.83 1.23 2.36 3.91 2.61 1.67 Mn2VAl 3.18 1.42 2.44 3.39 2.73 2.12
Co2CrAl 3.34 1.77 2.60 3.91 2.89 1.36 Mn2PtCo 2.09 2.02 1.96 1.77 1.83 2.45
Co2NbAl 3.53 1.81 2.10 3.69 2.36 1.21 Mn2CoCr 2.27 3.43 2.45 2.56 2.95 3.99
Co2TaAl 3.57 2.08 2.27 3.70 2.65 1.24 Mn2VGa 2.77 1.00 1.87 2.88 2.41 1.34
Co2TiAl 4.16 1.43 2.26 3.97 1.91 1.53 Mn2PtPd 2.52 1.62 2.02 2.37 1.97 2.06
Co2VAl 3.64 2.06 2.27 3.97 2.68 1.31 Mn2PtRh 2.19 1.80 1.76 1.85 1.78 2.16
Co2ZrAl 3.82 0.94 1.88 3.41 1.39 1.39 Mn2PtV 2.52 2.87 2.06 1.99 1.81 2.35
Co2CrGa 3.05 1.40 1.75 3.26 2.41 0.84 Ni2FeAl 2.64 1.70 1.76 2.90 2.35 1.20
Co2FeGa 3.31 1.28 1.79 3.27 2.30 0.97 Ni2FeGa 2.34 1.35 1.33 2.56 2.14 0.74
Co2HfGa 3.70 0.73 1.47 3.04 1.18 0.66 Ni2MnGe 2.17 0.66 0.92 2.29 1.50 0.32
Co2VGa 3.28 1.57 1.85 1.91 2.36 0.75 Pd2MnAu 2.36 1.70 2.46 2.56 1.83 1.92
Co2MnGa 3.45 0.85 1.87 3.50 2.31 1.15 Pd2MnCu 2.41 2.17 2.34 2.66 2.18 2.38
Co2TiGa 3.89 0.90 1.81 3.61 1.69 1.01 Pd2MnGe 1.92 1.53 1.63 2.36 1.88 1.17
Co2FeGe 2.59 1.08 1.18 2.71 1.90 0.23 Pd2MnSb 2.03 1.26 1.69 2.65 1.88 0.93
Co2MnGe 3.25 0.74 1.52 3.36 2.08 0.57 Pd2MnSn 2.12 1.28 1.84 2.91 2.18 1.32
Co2FeSi 3.11 1.72 1.86 3.48 2.30 1.07 Pd2MnZn 2.47 1.97 2.29 3.45 2.79 2.36
Co2MnSi 3.79 1.26 2.15 4.14 2.43 1.23 Pt2MnZn 2.36 1.18 1.24 2.12 1.40 0.90
Co2TiSi 4.02 1.04 1.95 4.03 1.85 1.21 Rh2MnAl 3.42 1.10 1.95 3.53 2.13 1.38
Co2HfSn 3.28 0.33 1.13 2.66 1.09 -0.11 Rh2MnGe 2.46 0.80 0.81 2.29 1.34 0.15
Co2MnSn 3.08 0.49 1.08 3.00 1.93 0.40 Rh2MnHf 2.72 1.84 1.79 2.90 1.91 1.49
Co2NbSn 2.43 0.87 0.96 2.30 1.72 -0.24 Rh2MnPb 2.32 0.70 1.02 2.34 1.56 0.48
Co2TiSn 3.28 0.43 1.27 3.22 1.54 0.38 Rh2MnSc 3.00 0.94 1.64 3.04 1.95 0.86
Co2VSn 2.56 0.86 1.07 2.93 2.15 0.33 Rh2CuSn 3.00 0.54 1.18 3.07 1.61 0.30
Co2ZrSn 3.31 0.11 1.16 2.97 1.19 0.34 Rh2MnSn 2.67 0.63 0.83 2.68 1.54 0.26
Co2MnTi 3.09 2.03 2.29 3.27 2.28 1.83 Rh2MnTi 2.71 1.93 2.06 2.88 2.09 1.78
Co2NbZn 3.25 1.80 2.03 3.16 2.27 1.42 Rh2FeZn 2.90 1.38 1.86 2.93 2.21 1.52
Co2TaZn 3.35 2.07 2.15 3.23 2.55 1.54 Rh2MnZn 2.86 1.01 1.71 2.74 1.92 1.34
Co2VZn 3.25 1.93 2.15 3.26 2.57 1.49 Rh2MnZr 2.60 1.70 1.70 2.77 1.86 1.37
Cu2MnAl 1.90 1.44 1.46 2.22 1.92 1.22 Ru2MnNb 2.98 2.09 2.31 3.09 2.41 2.20
Cu2MnIn 1.55 1.10 1.03 1.71 1.59 0.86 Ru2MnTa 3.12 2.23 2.39 3.25 2.47 2.33
Cu2MnSn 1.20 0.39 0.34 1.25 1.16 -0.01 Ru2MnV 2.96 2.21 2.50 3.08 2.55 2.53
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Table 1.2: All surface energy data for the X-rich condition in J/m2

100 110 111 100 110 111
Name X2 YZ X2YZX Y Z Name X2 YZ X2YZX Y Z
Au2MnZn 0.78 1.59 0.91 0.91 1.62 1.11 Fe2MnAl 3.10 1.75 2.59 3.15 4.93 2.36
Co2FeAl 2.97 2.35 2.29 2.91 3.35 2.37 Ga2MnCo 0.49 1.87 0.46 0.28 1.34 0.86
Co2HfAl 2.95 2.18 2.02 2.39 2.80 2.61 Mn2CoAl 1.80 1.21 1.63 1.83 2.53 1.73
Co2MnAl 3.10 1.96 2.36 3.07 3.45 2.51 Mn2VAl 2.53 2.07 2.44 2.64 3.48 2.87
Co2CrAl 2.87 2.23 2.60 3.37 3.43 1.89 Mn2PtCo 1.74 2.37 1.96 1.37 2.23 2.85
Co2NbAl 2.76 2.58 2.10 2.79 3.25 2.10 Mn2CoCr 2.13 3.57 2.45 2.40 3.12 4.15
Co2TaAl 2.73 2.92 2.27 2.73 3.62 2.21 Mn2VGa 2.28 1.49 1.87 2.32 2.97 1.90
Co2TiAl 2.99 2.59 2.26 2.63 3.25 2.87 Mn2PtPd 2.01 2.13 2.02 1.77 2.56 2.65
Co2VAl 2.83 2.87 2.27 3.03 3.61 2.24 Mn2PtRh 1.66 2.33 1.76 1.23 2.39 2.78
Co2ZrAl 2.93 1.83 1.88 2.39 2.42 2.42 Mn2PtV 1.96 3.44 2.06 1.33 2.46 3.00
Co2CrGa 2.82 1.63 1.75 3.00 2.67 1.10 Ni2FeAl 2.01 2.33 1.76 2.17 3.08 1.93
Co2FeGa 2.84 1.74 1.79 2.73 2.84 1.51 Ni2FeGa 1.92 1.77 1.33 2.07 2.63 1.23
Co2HfGa 2.84 1.58 1.47 2.05 2.17 1.65 Ni2MnGe 1.72 1.11 0.92 1.77 2.01 0.83
Co2VGa 2.68 2.17 1.85 1.22 3.05 1.44 Pd2MnAu 2.03 2.03 2.46 2.18 2.21 2.30
Co2MnGa 2.96 1.34 1.87 2.94 2.88 1.71 Pd2MnCu 2.01 2.57 2.34 2.20 2.64 2.84
Co2TiGa 2.90 1.89 1.81 2.47 2.83 2.15 Pd2MnGe 1.36 2.09 1.63 1.72 2.52 1.81
Co2FeGe 2.28 1.39 1.18 2.36 2.26 0.59 Pd2MnSb 1.51 1.79 1.69 2.04 2.48 1.54
Co2MnGe 2.75 1.24 1.52 2.79 2.65 1.14 Pd2MnSn 1.43 1.96 1.84 2.12 2.97 2.11
Co2FeSi 2.40 2.44 1.86 2.66 3.13 1.89 Pd2MnZn 1.79 2.65 2.29 2.66 3.57 3.15
Co2MnSi 2.88 2.17 2.15 3.09 3.47 2.28 Pt2MnZn 1.58 1.95 1.24 1.23 2.30 1.79
Co2TiSi 2.74 2.32 1.95 2.55 3.32 2.69 Rh2MnAl 2.18 2.34 1.95 2.10 3.56 2.82
Co2HfSn 2.63 0.98 1.13 1.91 1.84 0.65 Rh2MnGe 1.67 1.59 0.81 1.38 2.26 1.07
Co2MnSn 2.85 0.73 1.08 2.73 2.20 0.67 Rh2MnHf 1.63 2.94 1.79 1.64 3.17 2.75
Co2NbSn 2.20 1.09 0.96 2.04 1.98 0.02 Rh2MnPb 2.12 0.90 1.02 2.11 1.79 0.71
Co2TiSn 2.63 1.08 1.27 2.46 2.30 1.14 Rh2MnSc 1.95 1.99 1.64 1.84 3.16 2.07
Co2VSn 2.41 1.01 1.07 2.76 2.32 0.50 Rh2CuSn 2.36 1.18 1.18 2.34 2.34 1.03
Co2ZrSn 2.68 0.74 1.16 2.25 1.91 1.06 Rh2MnSn 1.90 1.39 0.83 1.79 2.43 1.14
Co2MnTi 2.54 2.57 2.29 2.64 2.91 2.46 Rh2MnTi 1.70 2.94 2.06 1.72 3.25 2.94
Co2NbZn 2.91 2.13 2.03 2.78 2.66 1.80 Rh2FeZn 2.40 1.88 1.86 2.35 2.79 2.09
Co2TaZn 2.94 2.48 2.15 2.76 3.02 2.01 Rh2MnZn 2.30 1.57 1.71 2.09 2.57 1.99
Co2VZn 2.96 2.22 2.15 2.92 2.90 1.82 Rh2MnZr 1.66 2.64 1.70 1.68 2.95 2.46
Cu2MnAl 1.64 1.70 1.46 1.91 2.22 1.53 Ru2MnNb 2.65 2.42 2.31 2.71 2.79 2.58
Cu2MnIn 1.64 1.00 1.03 1.81 1.48 0.75 Ru2MnTa 2.66 2.69 2.39 2.72 2.99 2.85
Cu2MnSn 1.30 0.28 0.34 1.37 1.04 -0.13 Ru2MnV 2.65 2.52 2.50 2.72 2.91 2.89
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YZ terminations and 2.88 J/m2 and 2.17 J/m2 for X-rich X2 and YZ terminations respectively. Like

the results of Khosravizadeh et al. who predict surface energies of 0.36 J/m2 for the X2 termination

and 0.42 J/m2 for the YZ termination respectively, our results also predict an increase in the YZ

termination and a decrease in the X2 termination surface energies of Co2FeSi in comparison to the

surface energies of Co2MnSi, however we only observe a preference for the X2 termination under

the X-rich condition. In both X-rich and X-poor conditions, it can be seen that the YZ-terminated

slabs overall have lower surface energies compared to the X2-terminated slabs. This difference

is emphasized under the X-poor (Y and Z rich) condition, where the surface energies of the YZ-

terminated slabs are minimized. As expected, the X2 terminated slabs under the X-rich condition

have surface energies similar to that of bulk Co.

Within the YZ-terminated slab surface energies, another interesting trend shown in Fig 1.4

is the decreasing surface energy with increasing group number of the Z atom. As the number of

valence electrons in the Z atom increases, the surface energy trends downward. Furthermore, within

each group, the surface energy also decreases with increasing period number and atomic radius.

When these trends culminate in the group 13 and 14 atoms with the larger atomic radii under the

X-poor condition, the surface energy falls below the (100) MgO surface energy, revealing promising

candidates able to be grown on an MgO substrate, including Co2{Zr, Hf, Ti, Mn}Sn, Co2MnGe,

and Co2{Hf, Mn, Ti}Ga.

1.3.3 (110) Surface Orientation

Fig 1.5 shows the (110) surface energies of the Co2 based compounds plotted against the Z

atom in order of increasing group number. Since the (110) oriented slabs are stoichiometric, the

surface energy does not depend on the chemical potential and hence only has one value for the

surface energy. The (110) surface energies follow a trend similar to that in the (100) orientation.

Namely, there is also a trend of decreasing surface energy with increasing group and period number
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Figure 1.4: Surface energy plotted against Z atom for all Co2YZ compounds at the (100) surface
for both X rich (right) and X poor (left) conditions. The Y atom is listed next to each data point.
The dashed lines separates the Z atoms by group number. The magenta and cyan lines represent the
surface energy of (100) MgO[48] and bulk Co[49] respectively.

and atomic radius of the Z atom. Overall, the surface energies in the (110) direction are higher than

those of the (100) direction due to the higher number of bonds cleaved at the surface. Because of

this, only some of the Sn-containing compounds fall below the (100) MgO surface energy.

1.3.4 (111) Surface Orientation

Fig 1.6 shows the (111) surface energies of the Co2 based compounds plotted against the Z

atom in order of increasing group number. The left and right plots show the surface energy values

under the X-poor and X-rich conditions. Our results for Co2VGa predict the same termination

preference as that predicted by Han et al. who calculated surface energy values of 1.63 J/m2, 4.58

J/m2, and -0.22 J/m2 for the X, Y, and Z terminations in the X-poor condition and 1.64 J/m2, 4.58

J/m2, and 1.09 J/m2 for the X, Y, and Z terminations in the X-rich condition respectively.[35]

We calculated surface energy values of 1.91 J/m2, 2.36 J/m2, and 0.75 J/m2 for X-poor X, Y,

and Z terminations and 1.22 J/m2, 3.05 J/m2, and 1.44 J/m2 for X-rich X, Y, and Z terminations

respectively. However, unlike the results of Han et al., we find that the X termination can become
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Figure 1.5: Surface energy plotted against Z atom for all Co2YZ compounds at the (110) surface.
Since the slabs are stoichiometric, there is no rich/poor condition. The Y atom is listed next to each
data point. The dashed lines separates the Z atoms by group number. The magenta and cyan lines
represent the surface energy of (100) MgO[48] and bulk Co[49] respectively.

the preferred surface termination under the X-rich condition. In both X-poor and X-rich conditions,

the Z-terminated slabs have the lowest surface energies of the three terminations. As in the (100)

direction, the Heusler compound surfaces show a preference for terminations containing the Z atom

and a disfavor for terminations containing the X atom. The X-terminated slab surface energies

are also comparable to bulk Co and all the slabs approach the bulk Co surface energy value in the

X-rich condition.

Within the Z-terminated slab surface energies, the surface energies demonstrate a similar

trend to that in the (100) and (110) orientation. As the group and period number and atomic radii

increase, the surface energy decreases. In the X-poor condition, this trend leads to the several group

13 and 14 Z atom containing slabs that have surface energies lower than (100) MgO, including

Co2{Zr, V, Ti, Mn}Sn, Co2{Fe, Mn}Ge, and Co2{Hf, V, Cr, Fe, Ti}Ga. Interestingly, the Ge and

Sn containing slabs still demonstrate low surface energies in the X-rich condition, continuing to

stay under the (100) MgO surface energy.
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Figure 1.6: Surface energy plotted against Z atom for all Co2YZ compounds at the (111) surface
for both X rich (right) and X poor (left) conditions. The Y atom is listed next to each data point.
The dashed lines separates the Z atoms by group number. The magenta and cyan lines represent the
surface energy of (100) MgO[48] and bulk Co[49] respectively.

1.4 Conclusion

In this work, we use high-throughput first-princples DFT calculations to study the surface

energies of magnetic full Heusler alloys. We find a trend of decreasing surface energy with increasing

number of valence electrons and atomic radius of the Z atom. We find that terminations containing

a Z atom in the X-poor condition in both (100) and (111) tend to have the lowest surface energies

of all terminations. The culmination of this trend allows us to identify 22 Heusler compounds

with surface energies lower than that of (100) MgO, corresponding to X-poor (100) YZ-terminated

Co2{Zr, Hf, Ti, Mn}Sn, Co2MnGe, and Co2{Hf, Mn, Ti}Ga, X-poor (111) Z-terminated Co2{V,

Zr, Ti, Mn}Sn, Co2{Fe, Mn}Ge, Co2{Hf, V, Cr}Ga, and X-rich (111) Z-terminated Co2{Nb, V,

Hf, Mn}Sn, and Co2FeGe. In future works, the magnetic anisotropy of each termination could be

studied to explore any relationship between the magnetic properties and surface energies.

Chapter 1, in full, is currently being prepared for submission for publication of the material.

Wong, Joseph; Nazir, Safdar; Yang, Kesong. The thesis author was the primary investigator and

author of this material.
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Chapter 2

Machine Learning Analysis of Hybrid

Perovskites

2.1 Introduction

High throughput computational materials design has experienced a surge of research atten-

tion in recent years due to rapid expansion of computing resources and development of materials

modeling software tools.[50, 51] Such developments include high-throughput density functional

theory (DFT) calculations,[41, 52] materials properties repositories,[53] and the materials genome

initiative.[44, 54] More recently, machine learning (ML) techniques have been used to further

accelerate materials properties prediction and materials discovery.[55] ML techniques reduce the

computational costs associated with quantum mechanical modeling methods in exchange for small

losses in accuracy by extrapolating from the descriptors of previously generated data. ML tech-

nology has been used in a variety of materials design applications, including polymer chains,[55]

vanadium selenites,[56] and ternary compounds.[57]

ML has also been applied in the design of hybrid organic-inorganic perovskites (HOIP) of the

form ABX3 or A2B’B”X6, where A is an organic cation such as methylammonium (MA: CH3NH+
3 ),

B is a transition metal cation such as Pb2+ and Sn2+, and X is a monovalent anion such as Cl−,
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Br−, and I−.[58] HOIP have demonstrated strong promise as light absorbing materials in solar cell

applications due to high power conversion efficiencies (PCE) with records reaching up to 22.1%,[59]

low cost fabrication requirements, and tunable band gaps.[60, 61, 62, 63] Despite tremendous

research progress over the past decade, HOIP still face large obstacles inhibiting implementation in

industry. These obstacles include the toxicity of the lead atom in the best performing HOIP[64] and

low stability exacerbated in ambient conditions.[65, 66, 67] High throughput DFT screening of HOIP

materials is one route to exploring the complex and diverse space of HOIP compositions,[68, 69]

however the computational resources required to explore the desired chemical search space can

easily become prohibitive when considering the many structural types of HOIP. In light of these

challenges, ML presents tremendous opportunity in the discovery of stable, lead-free HOIP with

its ability to explore a complex and diverse space of HOIP structures and compositions while

remaining computationally feasible. Several studies applying the ML approach in this regard

have been performed, but have relied heavily on structural features of the perovskite material,

either limiting the study to one space group, employing features that require explicit information

regarding atomic coordinates, or creating structural templates to artificially produce structural

features.[58, 70, 71, 72]

In this work, we train a ML model to predict the band gaps (Eg), formation energies (EF ),

and charge carrier effective mass (m∗e , m∗h) of both single and double HOIP belonging to 24 different

structural types using primarily features derived from elemental composition. From an analysis of

87 compositional features, 208 single perovskites, and 1694 double perovskites, we identify several

key features in the prediction of m∗e /m∗h, Eg, and EF , including transition metal fraction, number of

valence electrons, ionic character, and electronegativity. Using a meta ensembling technique, we

achieve root mean squared errors (RMSE) of 0.09, 0.49, 0.64, 0.74, and 0.63 for PBE Eg, HSE Eg,

EF , m∗e , and m∗h respectively for single perovskites, and 0.05, 0.32, 0.48, 0.60, and 0.73 for EF , PBE

Eg, HSE Eg, m∗e , and m∗h respectively for double perovskites.

16



1902 data points:
208 single perovskites

1694 double perovskites

Extract descriptors

Train machine learning model

Target variable 
predictions

Figure 2.1: Overall workflow schematic from raw data to ML prediction.

2.2 Computational Details

Our workflow for converting the input data to ML predictions is shown in Figure 2.1. The

HOIP m∗e , m∗h, HSE Eg, PBE Eg, and EF target data are obtained from previous DFT calculations.

We sorted the data into 208 single perovskite and 1694 double perovskite data points. We manually

selected 55 features and extracted 32 compositional features using the matminer tool as shown in

table 2.1.[73] A normalized two dimensional array containing the feature values for each data point

is used as the input to our ML model. To determine feature importance values, we take the average

of the feature importances calculated from decision tree, bagging, random forest, and extreme

gradient boosting.[74, 75]

We employ a meta ensembling technique to make ML predictions as shown in Figure 2.2.

Meta ensambling, or stacking, is a technique that takes the predictions of base learners as features

for the meta models to improve the overall predictive capabilities. The initial 87 input features are

passed to a series of base models which each make their own individual predictions of the target

variables. In our base layer, we use several models implemented in scikit-learn, including SVR,

ridge regression, lasso, linear regression, k-nearest neighbors regression, decision tree regression,

bagging, and random forest.[74] The predictions from the base layer are then passed to models in

the meta layer which likewise make their own predictions of the target variables. In our meta layer,

we use also use several models from scikit-learn, including bagging, adaboost, and random forest

in addition to extreme gradient boosting implemented in XGBoost.[74, 75] Finally, the meta layer

predictions are averaged to yield a final predicted value for the target variable.
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Figure 2.2: Schematic of our machine learning model used in the prediction of target variables.

Table 2.1: List of all 87 descriptors considered in the ML model

Tolerance factor group num B’ radius A sval B’
Octahedral factor group num B” radius B’ sval B”
minimum oxidation state period num B’ radius B” pval B’
maximum oxidation state period num B” radius X pval B”
range oxidation state period num X radius ratio A/B’ dval B’
std dev oxidation state valence num B’ radius ratio A/B” dval B”
isolated chem pot B’ valence num B” radius ratio A/X dval X
isolated chem pot B” valence num X radius ratio B’/X fval B’
isolated chem pot X atomic num B’ radius ratio B’/B” fval B”
avg anion electron affinity atomic num B” radius ratio B”/X mass A
minimum EN difference atomic num X Mulliken EN B’ mass B’
maximum EN difference avg s valence electrons Mulliken EN B” mass B”
range EN difference avg p valence electrons Mulliken EN X mass X
mean EN difference avg d valence electrons Pauling EN B’ 0-norm
std dev EN difference avg f valence electrons Pauling EN B” 2-norm
compound possible frac s valence electrons Pauling EN X 3-norm
max ionic char frac p valence electrons Ionization Potential B’ 5-norm
avg ionic char frac d valence electrons Ionization Potential B” 7-norm
transition metal fraction frac f valence electrons Ionization Potential X 10-norm
bulk chem pot B’ HOMO energy Electron Affinity B’ gap AO
bulk chem pot B” LUMO energy Electron Affinity B”
bulk chem pot X band center Electron Affinity X
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Figure 2.3: A flow diagram of our ML model training process.

To evaluate the performance of our ML model, we calculate the root mean squared error

(RMSE) between ML prediction and DFT calculated values of a validation set containing 20% of

the total data. The equation for RMSE is given as

RMSE =

√
∑

N
i (yp− yo)2

N
, (2.1)

where N is the total number of data points, yp is the predicted target value, and yo is the observed,

or true target value. A lower RMSE value indicates a higher accuracy ML model and a RMSE

value of 0 indicates a perfect ML model. To avoid overfitting our model to the data, we divide the

initial data into 80% training and 20% test data and measure the RMSE of the training data using

k-folds cross validation as shown in Figure 2.3. In this technique, the data is divided into k number

of folds, where each fold contains a set of test data and a set of training data. The test indices of

each fold do not overlap with each other. The ML model is trained on each fold and its RMSE is

measured according to predictions on the test data of each fold. In this work, we use the iteration

with the lowest RMSE of 8 folds to make predictions on the validation set consisting of 20% of the

initial input data. We consider the RMSE calculated from the predictions on this validation set as an

accurate representation of how the model will perform on unseen data.
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Figure 2.4: Relative feature importances for EF for a) single and b) double perovskites.

2.3 Results

2.3.1 Formation Energy Feature Importances and Model Accuracy

A list of relative feature importances for EF for single and double perovskites are shown

in Figure 2.4. For both single and double perovskites, the ionic character is the one feature that

stands above the rest as the most important descriptor in the prediction of EF . For single perovskites,

this descriptor is more specifically the max ionic character, while for double perovskites, it is the

average ionic character. This suggests that the degree of ionic bonding within a perovskite material

is the dominant factor that leads to highly stable structures.

Figure 2.5 shows a plot of predicted EF values against observed EF values. We obtain a

RMSE value of 0.09 for single perovskites and 0.05 for double perovskites, corresponding to a

mean absolute error (MAE) of 0.3 eV/atom and 0.22 eV/atom respectively. Compared to the EF

results of Meredig et al. and Askerka et al. who obtained MAE values of 0.12 eV/atom and 0.11

eV/atom respectively, the error for EF is relatively high.[57, 71] The low RMSE value compared
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Figure 2.5: Predicted values plotted against observed values for a) single perovskite and b) double
perovskite EF . The dashed line corresponds to 0 error between the predicted and observed values.

to Eg and m∗ suggests that the ionic character of hybrid perovskites is a very strong predictor of

EF . The RMSE of single perovskites is slightly higher than double perovskites likely due to fewer

available training data points. Nonetheless, our results suggest that even with a small dataset, the

EF can be predicted with a some degree of accuracy.

2.3.2 Band Gap Feature Importances and Model Accuracy

A list of relative feature importances for Eg PBE and Eg HSE for single and double per-

ovskites are shown in Figure 2.6. Unlike Figure 2.4, there is no one distinct feature that dominates

the rest. Instead, there are a few descriptors that are considerably important with a variety of others

that are slightly important in determining the band gap. Ionic character descriptors are seen to rank

highly for HSE and PBE Eg in double and single perovskites, especially for double perovskites.

Like the case for EF , this suggests the degree of ionic bonding influences the perovskite band gap.

The transition metal fraction and the fraction of d valence electrons are found to rank highly in the

feature importances of double perovskites, but not very highly in single perovskites. This difference

likely arises because the two B atoms in double perovskites leave one more degree of freedom

for transition metal selection allowing for a higher information resolution regarding the transition
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Figure 2.6: Relative feature importances for a) PBE and b) HSE Eg for single perovskites and c)
PBE and d) HSE Eg for double perovskites.

metal content compared to single perovskites. The high ranking of these d valence electron descrip-

tors suggests that the d valence electrons influence the band gap with contributions to band edge

states in agreement with previous work by Deng et al.[76] In both double and single perovskites,

electronegativity-derived features rank highly. These features are likely good indicators of which

halide atom is in the material, which has been shown to be an important factor in determining the

band gap by Deng et al.[76]

Figure 2.7 shows a plot of predicted Eg values against observed Eg values for HSE and PBE

band gaps. The results are less accurate than EF , but still somewhat accurate despite total reliance

on compositional features in the training data. The RMSE values are lower in double perovskites

likely due to more available training data.

2.3.3 Effective Mass Feature Importances and Model Accuracy

A list of relative feature importances for m∗h and m∗e for single and double perovskites are

shown in Figure 2.8. Unlike the case for Eg and EF , the Figure 2.8 does not distinguish any
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Figure 2.7: Predicted values plotted against observed values for a) PBE and b) HSE for single
perovskite Eg and c) PBE and d) HSE for double perovskite Eg. The dashed line corresponds to 0
error between the predicted and observed values.
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Figure 2.8: Relative feature importances for a) m∗e and b) m∗h for single perovskites and c) m∗e and
d) m∗e for double perovskites.

particular features that stand out from the rest. For both m∗h and m∗e in single and double perovskites,

electronegativity-derived features are ranked above the rest. In addition, the standard deviation of the

oxidation states are also ranked highly. These features suggest that the halide and transition metal

choice play an important role in the determination of effective masses. This is in agreement with

previous work which has shown that only the inorganic perovskite components contribute to band

edge states.[76] The high importance of s, p, and d valence electron fraction in single and double

perovskites supports this idea, suggesting that band edge states influence charge carrier mobility.

Some structure-related features are also shown to influence the charge carrier mobility, including

the tolerance factor and atomic radius ratios. These features could be giving some indication of the

bonding environment, which can influence the movement of charge carriers between ions.

Figure 2.9 shows a plot of predicted m∗e and m∗h values against observed values. The results

show a high RMSE value with a poor alignment of data points to the dashed line, indicating poor

model performance and low correlation of the features with the effective mass target values. The

low accuracy could originate from the data used to train the model. The effective mass values are
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Figure 2.9: Predicted values plotted against observed values for a) m∗e and b) m∗h for single
perovskites and c) m∗e and d) m∗h for double perovskites. The dashed line corresponds to 0 error
between the predicted and observed values.

calculated from fits to the band edges, which may not be entirely reliable in calculating accurate

effective mass values. Nonetheless, Figure 2.9 shows that the data points follow an upward trend,

indicating the model can provide very rough estimates of the effective mass.

2.4 Conclusion

We have demonstrated the ability of a meta ensemble ML model in the prediction of EF , Eg

and m∗ using solely compositional features. We achieve RMSE values of 0.09, 0.49, 0.64, 0.74, and

0.63 for PBE Eg, HSE Eg, EF , m∗e , and m∗h respectively for single perovskites, and 0.05, 0.32, 0.48,
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0.60, and 0.73 for EF , PBE Eg, HSE Eg, m∗e , and m∗h respectively for double perovskites. We show

that the the ionic character of the material is strongly correlated with the EF , but less so with the

Eg of single and double perovskites. The d valence electron-related descriptors are also found to

be correlated with Eg, but only in double perovskites. This ML model is one step towards a more

generalized approach to high-throughput prediction of hybrid perovskite materials for applications

in stable, high performing solar cells. Future directions of this work include implementation of

the model in software for rapid prediction of materials of any composition and an exploration of

additional structural features extracted or extrapolated from the material composition.

Chapter 2, in full, is currently being prepared for submission for publication of the material.

Wong, Joseph; Li, Yuheng; Jiang, Sicong; Yang, Kesong. The thesis author was the primary

investigator and author of this material.
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Chapter 3

Literature Review of 2D Hybrid Perovskites

3.1 Introduction

Hybrid organic-inorganic halide perovskites have emerged as one class of most promis-

ing light-harvesting materials for the next-generation solar cells because of their exceptional op-

toelectronic properties and low-temperature solution processability that allows for large-scale

fabrication. [77, 78, 79, 80, 81, 61, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 97, 98, 99, 100, 101, 102, 59, 103, 104, 105, 106, 107, 108, 109] The hybrid halide per-

ovskites are one class of semiconductors in a formula of ABX3 that comprises a network of

corner-sharing BX6 octahedron. In this structure, A is an organic cation such as methylam-

monium (MA: CH3NH+
3 ); B is a divalent metal cation such as Pb2+ and Sn2+, located in the

center; and X is a monovalent anion such as Cl−, Br−, and I−. These structural and com-

positional features determine their exceptional optoelectronic properties such as tunable band

gaps,[87, 86, 61, 84, 91, 85, 104] high absorption coefficient,[83, 89, 84, 86, 91, 102] long car-

rier diffusion length[88, 89, 95, 110] and lifetime,[87, 93, 94, 95, 59, 103, 105, 106] low trap

density,[95, 110] and high carrier mobility.[89, 90, 91, 86, 95, 97, 104] Just in the past few years,

the power conversion efficiency (PCE) of these halide perovskites solar cells at lab-scale testing has

increased from 3.8% to 22.1%.[111]
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Despite promising applications of halide perovskites in the photovoltaic industry, three are

still several major challenges that inhibit their large-scale industrial applications.[112, 98] These

challenges include poor stability in ambient conditions, particularly in the moisture environment,

and the demand for lead-free perovskites. For instance, (MA)PbI3 will degrade into MAI and

PbI2 in ambient conditions in which the water molecules will facilitate the degradation process,

sharply dropping perovskite thin film absorption in a matter of days.[65] Although encapsulation

can mitigate the degradation from water molecules,[113] the hybrid perovskites were considered as

intrinsically unstable in the long term due to unfavorable formation enthalpies.[66, 67]

Two-dimensional (2D) layered hybrid perovskites offer a promising solution to overcome

this unstability issue.[112, 4, 114, 115] The 2D hybrid perovskites are composed of inorganic

metal halide layers interdigitated between bulky organic molecules such as butylammonium (BA:

CH3(CH2)3NH+
3 ). They have demonstrated high materials stability and robustness in the presence

of water[115, 116] and reasonable performance and cheap solution processability.[4, 117, 118,

119, 120] Moreover, the interchangability of the large organic cation and the control of layer

dimensionality allows for greater tunability and flexibility of the physical and optoelectronic

properties.[121, 119] For instance, compared to three-dimensional (3D) hybrid perovskites, the 2D

hybrid perovskites show more expandable optoelectronic properties such as larger exciton binding

energies, enabling enhanced photoluminescence properties for room-temperature ligh-temitting-

diode (LED) applications.[122, 117, 123]

In this review article, we provide an overview of current experimental and theoretical

research progress of the 2D hybrid halide perovskites, including their fabrication, characterization,

and device performance, as well as the theoretical and computational understanding and design

particularly from first-principles density functional theory (DFT) calculations. The challenges and

future research directions of this class of materials are also discussed.

28



Figure 3.1: Schematic illustration of 2D and 3D perovskites. The yellow and blue balls indicate
halide anions (X=I, Br) and Pb cations, respectively. The blue chain indicates organic molecules.
Reproduced and adapted with permission from Ref [1].

3.2 Experimental Research

3.2.1 Preparation

Thin films are one critical component of high-performance devices including solar cells

and LEDs. The quality of a thin film is mainly determined by its fabrication approach that

could significantly influence its optoelectronic properties.[80, 84, 120] Compared to the 3D halide

perovskites such as (MA)PbI3 that often requires more complex fabrication methods to achieve

high-quality films,[80, 79, 124] the 2D perovskites can form ultra-smooth thin films with high-

surface-coverage, fine texture, and few grain boundaries from a simple one-step spin-coating

approach mainly due to their 2D nature.[4] To have a clear understanding of the structural difference

between the 2D and 3D hybrid perovskites, their structural representations are shown in Figure 3.1.

Here we review several common approaches to fabricate thin films of 2D hybrid halide perovskites,

including spin coating, mechanical exfoliation, solution-based processing, sonication-assisted

synthesis approach, and self-doping based on the template of 2D hybrid perovskites. The schematic

illustrations of these approaches are shown in Figure 3.2, and the details of each deposition technique

are discussed below.
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Figure 3.2: Schematic representation of the synthesis of hybrid perovskites. (a) Two-step spin-
coating procedure for MAPbI3. PbI2 solution is firstly spin-coated on the mesoporous TiO2 film, and
then MAI solution is spin-coated on PbI2. (b) A self-doping approach to prepare two-dimensional
hybrid perovskite (BA)2(MA)n−1PbnBr3n+1. It contains two sequential steps: (1) synthesis of
two-dimensional (BA)2PbBr4 perovskite via a ternary solvent approach and (2) transformation of
(BA)2PbBr4 into (BA)2(MA)n−1PbnBr3n+1 perovskites via chemical vapor deposition of MABr.
The illustration of the structural transformation in the second step is shown in (3). Reproduced and
adapted with permission from Refs [83] and [125].
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Spin Coating

The spin-coating technique is the most common approach to fabricate thin films of 2D halide

perovskites through depositing perovskite solutions on a substrate.[4, 114, 83, 126, 127, 128, 129,

130, 120, 131, 121, 132] The halide perovskite solutions are typically prepared by dissolving organic

and inorganic precursors in a dimethylformamide (DMF) solvent.[4, 117, 130, 132, 133, 121, 134]

For example, Kanatzidis’ research team synthesized 2D Ruddlesden–Popper layered perovskites,

(BA)2(MA)n−1PbnI3n+1 (n=1-4), from a stoichiometric reaction between PbI2, MAI, and BA, and

fabricated high-quality thin films through spin-coating perovskite solutions on mesoporous TiO2

substrates.[4] The 2D films were formed immediately after spin-coating at room temperature, and

the inorganic [PbnI3n+1]− layers were found perpendicular to the substrate, which is likely beneficial

for efficient hole diffusion. The perovskite solutions were prepared by dissolving perovskite powders

in the DMF solvent. The synthesis of perovskite powers can be summarized as following several

steps: i) dissolve PbO powder in a mixture of aqueous HI and an H3PO2, forming a bright-yellow

solution; ii) add solid MAI to the hot solution, which initially causes a precipitation of a black

powder and the powder rapidly redissolves under stirring; iii) add n-CH3(CH2)3NH2 and left the

solution to cool to room temperature, allowing for a crystallization of perovskite. By using a similar

fabrication route, Kanatzidis’ research group also synthesized 2D Sn-based Ruddlesden–Popper

perovskite (BA)2(MA)n−1SnnI3n+1 (n=1-5).[114] This series of compounds were synthesized from

a stoichiometric reaction of SnCl2·2H2O, MAI, and BAI in an excess of aqueous HI and H3PO2

solutions. In this work, H3PO2 was used to suppress the oxidation of I− to I2 or I−3 , as well as the

oxidation of Sn2+ to Sn4+; and a careful weighing of these starting materials in a ratio of 2:(n-1):n of

BAI:MAI:SnCl2 was required to avoid the formation of a mixture of different multilayered products.

Moreover, a stoichiometric amount of BAI is found to be necessary to obtain pure compounds,

unlike the half-stoichiometric amount of BA in their 2D Pb-based perovskites.[123]

By using the similar spin-coating approach, other 2D perovskite thin films have also been

fabricated, including the quasi-2D perovskite (PEA)2(MA)n−1PbnBr3n+1 (n=1-4) using phenylethy-
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lammonium (PEA: C6H5C2H4NH3) cations,[117, 118, 119, 135, 120] (MA)2Pb(SCN)2I2,[130]

(C6H11NH3)2PbBr4 and (C6H11NH3)2PbI4,[132, 132] (PEA)2PbZ4(1−x)Y4x (Z, Y = Cl, Br, or

I),[133] and (R-(CH2)nNH3)2PbX4.[121] Using a spin-coating approach, Cortecchia et al. fabri-

cated (PEA)2(MA)n−1PbnI3n+1 films and found that these 2D perovskite films exhibit heterogeneous

dimensionality phases using cathodoluminescence microscopy.[136] Specifically, n = 1 perovskites

preferentially self-assembles near edges of n = 2 grains while higher dimensionality phases crystal-

lize in the intergrain regions.

In addition to the simplicity, the spin-coating method also allows for some flexibility to the

growth of 2D perovskite, enabling a control of crystal and grain morphology, which includes (i) layer

orientation,[137] (ii) grain size,[115] (iii) composition,[138] and (iv) dimensionality,[139, 140]

which are discussed as below.

(i) The first feature is that the layer orientation of 2D perovskite thin films can be controlled

by varying the deposition solvent or spin speed. For instance, Cao et al. demonstrates that

thin films of (BA)2(MA)n−1SnnI3n+1 (n=1-5) orient the {(CH3NH3)n−1SnnI3n+1}2− slabs parallel

to the substrate when using dimethyl sulfoxide (DMSO) solvent, while this orientation can be

perpendicular to the substrate when N,N-dimethylformamide (DMF) solvent is used.[114] In the

case of (BA)2(MA)n−1PbnI3n+1 (n=1-4), the DMF solvent was used,[4] and the [PbnI3n+1] slabs

of thin films were also found perpendicular to the substrate, favoring charge transport, which

is beneficial for the solar cell applications. In another study, Hamaguchi et al. synthesized (n-

C6H13NH3)2(MA)Pb2I7 and (n-C6H13NH3)2(FA)Pb2I7 (FA = formamidine) thin films using the

standard spin-coating method, and by increasing the spin speed, they found the proportion of

perpendicularly orientated layers increases.[137] Venkatesan et al. demonstrated that the orientation

of (BA)2(MA)n−1PbnI3n+1 layers could be gradually changed from parallel to perpendicular to the

substrate with increasing dimensionality n.[141]

(ii) Crystal size and grain morphology have been demonstrated to be controllable via the sol-

vent evaporation temperature. The hot casting technique involves spin-coating on a heated substrate,

leading to perovskites of near-single-crystalline quality. The high quality of perovskites provides
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channels with fast charge transport, allowing charge carriers to travel across electrodes without

inhibition of insulating spacer layers.[115] Sun et al. found that longer annealing times facilitate

the decomposition of small-n quantum wells and the formation of large-n quantum wells in mixed

dimensionality perovskite films.[131] Raghavan et al. showed that high-quality millimeter-sized

crystals of (BA)2(MA)n−1PbnI3n+1 can be synthesized via a slow evaporation at a constant temper-

ature. These crystals demonstrated high crystallinity, phase purity, and spectral uniformity.[142]

Yangui et al. also used a similar approach to synthesize crystals of (CHA)2CdBr4.[143]

(iii) The chemical composition of 2D perovskites can be varied by changing the precursor

components during the perovskite crystal synthesis. For example, Cortecchia et al. fabricated

2D Cu-based, Cl/Br mixed halide perovskites by stoichiometrically mixing, then crystallizing

perovskite powders in ethanol.[138] Zhou et al. introduced a ternary organic cation to form

(BA)2(MA,FA)3Pb4I13 perovskite films by replacing MAI with FAI in the stoichiometric reaction

between PbO, MAI, and BAI. At 20% FA, crystal grains increased from several hundred nanometers

to several micrometers. At 40% and higher amounts of FA, grain size increased in the films, but the

density decreased and more pinholes and cracks formed. At 60% FA, microparticles appeared on

the surface and the film roughness increased three fold compared to 40% FA. These results suggest

that the quasi-2D orientation does not change below 40%, but beyond 40%, the MA cannot be

stoichiometrically replaced by FA.[144]

(iv) The dimensionality can be controlled with the addition of an MAI immersion step. The

quasi-2D perovskite, (IC2H4NH3)2(MA)n−1PbnI3n+1, was synthesized by by Koh et al. using the

standard spin-coating method for the pure 2D components followed by immersion in a CH3NH3I

dipping solution for 1-5 minutes to increase the dimensionality.[140] Alongside dimensionality con-

trol, 2D/3D junctions can also be formed by a slow drying process of a 2D/3D perovskite precursor

mixture. Grancini et al. used this method to synthesize 2D/3D (HOOC(CH2)4NH3)2PbI4/(MA)PbI3

perovskite junctions by mixing the precursors at different molar ratios (0-3-5-10-20-50%). The

mixed solution was deposited on and infiltrated in an inert ZrO2 scaffold followed by a slow

drying-process, allowing the components to be reorganized before solidification. Similarly, Lin et al.
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created 2D/3D stacking structures by spin-coating solutions of BA and BAI on top of 3D perovskite

layers; and the BA treatment led to a smoother 2D layer with better coverage compared to BAI

treatment.[126] Vassilakopoulou et al. were able to create blends of quasi-2D and 3D perovskites

by dissolving weight ratios of perovskites solutions in DMF then spin-coating.[145]

Other Methods

Besides the mainstream spin-coating approach, other techniques have also been used to

synthesize 2D perovskites flakes, crystals, and thin films. These techniques include i) mechanical

exfoliation, ii) solution-based processing, iii) sonication-assisted synthesis approach, and iv) self-

doping based on the template of 2D hybrid perovskites, as discussed below.

(i) The mechanical exfoliation method was used to produce the thin films of 2D perovskites.

For instance, Yang’s research team tried to produce the thin sheets of (BA)2PbBr4 from its large

single crystal using mechanical exfoliation via tape and solvent exfoliation methods.[146] Unfor-

tunately, most of the products were very thick flakes from the mechanical exfoliation and were

randomly shaped particles from solvent exfoliation. They also found that the monolayer-thick parti-

cles were very small (less than 1µm), suggesting that the hybrid perovskite layers are mechanically

brittle. The mechanical exfoliation method was also used to produce ultrathin crystalline layers of

(BA)2PbI4,[147] (PEA)2PbI4,[148] and (BA)2(MA)n−1PbnI3n+1.[149]

(ii) The solution-based processing method was used to prepare the thin 2D hybrid perovskite

(BA)2PbBr4 and its derivatives.[146] In this work, uniform square-shaped 2D crystals were prepared

on a flat Si/SiO2 substrate using a ternary co-solvent that contains dimethylformamide (DMF),

chlorobenzene (CB), and acetonitrile. The three solvents have their own roles: the polar organic

DMF was used to dissolve the PbBr4-based inorganic materials; the CB reduces the solubility

of (BA)2PbBr4 in DMF and promotes crystallization; and acetonitrile facilitates the formation of

the ultrathin 2D hybrid perovskite sheets. Interestingly, unlike other 2D materials, a structural

relaxation (lattice constant expansion) was found in the 2D hybrid perovskite sheets, which might be

responsible for some emergent features such as the shift of band edge emission.[146] Chen et al. also
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made ultrathin (BA)2PbBr4 perovskites using the same technique based on the dimethylformamide-

chlorobenzene-acetonitrile ternary solvent.[150] It is noted that, by using chlorobenzene (CB) as

co-solvent, thin films of (MA)2Pb(SCN)2I2[151] and (TFA)2(MA)n−1PbnBr3n+1 (TFA = 3,4,5-

trifluoroanline)[152] were also synthesized via spin-coating approach.

(iii) The sonication-assisted synthesis approach was used by Xiong et al. to prepare crystals

of (H2BDA)PbI4 (H2BDA=1,4-butanediammonium dication) and (HNPEIM)PbI3 (HNPEIM=N-

phenyl-ethanimidamidine cation).[153] They mixed the precursors, sonicated the mixture for 5

minutes, and then froze the mixture in liquid nitrogen for 10 minutes. The mixture was then vacuum

sealed, then placed in an oven at 120 °C for 7 days.[153] Neogi et al. also used a sonication

technique to dissolve the precursors of (CyBMA)PbBr4 prior to perovskite crystallization.[154] Yu

et al. prepared 2D hybrid perovskite (OA)2PbBr4 via an ultrasonic-assisted postsynthetic refinement

technique, and these refined 2D nanosheets can subsequently be used as a template for the formation

of low-dimensional CsPbBr3 with inherited size and morphology and enhanced optoelectronic

properties.[155]

(iv) A generalized self-doping directed synthesis approach was also employed to prepare

ultrathin 2D homologous (BA)2(MA)n−1PbnBr3n+1 perovskites, in which the 2D (BA)2PbBr4

perovskites were used as templates and (MA)+ as dopant.[125]

3.2.2 Characterization

Structures

The 2DHP have a general form (R)2(MA)n−1MX3n+1, where R is an aliphatic or aromatic

alkylammonium cation, MA is methylammonium (CH3NH+
3 ), M is a metal cation with a 2+

oxidation state (such as Pb, Sn, and Ge), X is a halide anion (such as I, Br, and Cl), and n is the

dimensionality. One special case is so-called Dion–Jacobson perovskites, where the large organic

cation has a 2+ charge leading to only one organic cation between each inorganic layer, following

the formula (R’)(MA)n−1MX3n+1.[2] Figure 3.3 illustrates the structural differences between the
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Figure 3.3: A structural comparison between Dion–Jacobson and Ruddlesden–Popper perovskite
phases. Reproduced and adapted with permission from [2].

Dion–Jacobson perovskites and the well-known Ruddlesden–Popper perovskites. Unlike the case

of Ruddlesden–Popper perovskites, in the Dion–Jacobson perovskites, inorganic octahedra corners

of inorganic layers lay exactly above adjacent inorganic layers.[2]

The dimensionality, n, dictates the number of inorganic sheets placed between each organic

layer. A schematic illustration of the 2D framework for n = 2-4 is given in Figure 3.4. At n = 1, the

formula can be simplified as (R)2MX4, a strictly 2D perovskite material such as (BA)2PbBr4.[146]

At n > 1, the formula includes the MA cation, describing a quasi-2D perovskite material where the

MA cation is intercalated between inorganic layers such as in (PEA)2(MA)2Pb3Br10.[120] At n =

∞, the formula can be rewritten as (MA)MX3, a 3D perovskite such as (MA)PbI3.[84] A schematic

progression of the dimensionality is shown in Figure 3.5.

The 2DHP is composed of distorted inorganic layers of [MX6]4− interdigitated with organic

cation bilayers. Several guidelines have been proposed for selecting suitable organic cations for

incorporation within the layered perovskite frameworks:[90] i) the organic molecule must contain

one or more terminal cation groups such as NH+
3 that can interact with and hydrogen bond to

the inorganic anion; ii) the organic cation must have appropriate width and shape (or the cross
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Figure 3.4: Structural characterization of thin films and bulk materials of hybrid perovskites from
X-ray diffraction. (a) (BA)2(MA)Pb2I7 (n = 2, m = 4), (b) (BA)2(MA)2Pb3I10 (n = 3, m = 4), and (c)
(BA)2(MA)3Pb4I13 (n = 4, m = 4). The corresponding X-ray diffraction patterns of three systems
are shown in (a’), (b’), and (c’), respectively. Reproduced and adapted with permission from [4].
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Figure 3.5: Scheme of the different structural dimensions of the hybrid perovskite
(BA)2(MA)n−1GenBr3n+1. The butylammonium (BA) are barrier cations. Reproduced and adapted
from [156].

sectional area of the molecule) that can fit into an area defined by the terminal halides from four

adjacent corner-sharing octahedra; iii) the length of organic molecule can take a wide range of

values compared to the width. The organic cation and the inorganic octahedra can each template

the structural conformation of the other and consequently change materials properties. To provide

an informative review of organic cations and inorganic frameworks, herein, we summarized the

commonly used organic cations including their full names, abbreviations, and chemical formulas in

Table 3.1, and the experimentally synthesized hybrid perovskites including their crystal lattice type,

space groups, and lattice parameters in Table 3.2.

Table 3.1: List of organic cations in 2DHP: abbreviations, full
name, and chemical formulas.

Abbreviation Full Name Chemical Formula Ref
3AMP 3-(Aminomethyl)-

piperidinium
C6H9NH2CH2NH2+

3 [2]
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Table 3.1: (continued):

Abbreviation Full Name Chemical Formula Ref
4FA 4-Fluoroanillinium C6H4FNH+

3 [157]
4CA 4-Chloroanilinium C6H4ClNH+

3 [157]
4AMP 4-(Aminomethyl)-

piperidinium
C6H9NH2CH2NH2+

3 [2]

AVA Aminovaleric Acid HOOC(CH2)4NH+
3 [139]

BZA Benzylammonium C6H5CH2NH+
3 [158]

BA Butylammonium C4H9NH+
3 [123]

C6 Hexylammonium C6H13NH+
3 [159]

C12 Dodecylammonium C12H25NH+
3 [159]

C16 Hexadecylammonium C16H33NH+
3 [159]

C18 Octadecylammonium C18H37NH+
3 [159]

CA 4-Chloroanilinium ClC6H4NH+
3 [159]

CB Cyclobutylammonium C4H7NH3 [159]
CHA Cyclohexylammonium C6H11NH+

3 [143]
CHE 2-Cyclo-

hexenylethanamine
C6H9(CH2)2NH+

3 [121]

CM Cyclohexyl-
methanammmonium

C6H11CH2NH+
3 [121]

CP Cyclopropylammonium C3H5NH+
3 [159]

CPe Cyclopentylammonium C5H9NH+
3 [159]

CyBMA Cis-1,3-bis-
(methylaminohydrobromide)-
cyclohexane

C6H10(NH3Br)2+
2 [154]

DD Dodecylammonium NH3(CH2)12NH2+
3 [159]

DMA Dimethylammonium (CH3)2NH+
2 [160]

DMABA 4-Dimethylamino-
butylammonium

(CH3)2NH(CH2)4NH+
3 [161]

DMAPA 3-(Dimethylamino)-1-
propylammonium

(CH3)2NHCH2NH+
3 [161]

DMEN 2-(Dimethylamino)-
ethylammonium

(CH3)2NH(CH2)2NH+
3 [161]

EDBE 2,2’- (Ethylenedioxy)-
bis(ethylammonium)

NH3(CH2)2O(CH2)2O(CH2)NH2+
3 [162]

FA Formamidinium CH(NH2)+2 [3]
G Guanidinium C(NH2)+3 [3]
HA Histammonium C3N2H4(CH2)2NH2+

2 [127]
H2BDA 1,4-Butanediammonium NH3(CH2)4NH+

3 [153]
HNPEIM N-phenyl-

ethanimidamidine
C6H5NHCNH2CH+

3 [153]

IMI 2,2’-Biimidazolium C3H2(NH)2C3H2(NH)2+
2 [163]

MA Methylammonium CH3NH+
3 [66]

MFM 5-Methyl-2-
furanmethanamine

CH3OC4H2CH2NH+
3 [121]
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Table 3.1: (continued):

Abbreviation Full Name Chemical Formula Ref
N-MEDA N1-Methylethane-1,2-

diammonium
CH3NH2(CH2)2NH+

3 [164]

N-MPDA N1-Methylpropane-1,3-
diammonium

CH3NH2(CH2)3NH+
3 [164]

Ni(opd)2(acn)2 Di(o-phenylenediamine)-
di(acetonitrile)nickelate

Ni(C6H4(NH2)2)2(CH3CN)2+
2 [165]

OL Oleylammonium CH3(CH2)7(CH)2(CH2)8NH+
3 [145]

PEA Phenylethylammonium C6H5C2H4NH+
3 [120]

PMA Phenylmethanammonium C6H5CH2NH+
3 [166]

PYR 4,4’-Bipyridinium C5H4NHC5H4NH2+ [163]
TFA 3,4,5-Trifluoroaniline C6H2F3NH+

3 [152]
TFM (Tetrahydrofuran-2-

yl)methanamine
OC4H7CH2NH3 [121]

TPM 2-Thiophenemethylamine SC4H4CH2NH+
3 [121]

Table 3.2: List of 2DHP: chemical formula, crystal system, space
group, and lattice parameters at the measured temperature.

compound T (K) crystal system space
group

a (Å) b (Å) c (Å) β Ref

(BA)2GeI4 293 Orthorhombic Pcmn 8.722 8.272 28.014 90° [62]
(BA)2SnI4 293 Orthorhombic Pbca 8.837 8.619 27.562 90° [62]
(BA)2PbI4 293 Orthorhombic Pbca 8.863 8.682 27.57 90° [62]
(BA)2(MA)-
Pb2I7

293 Orthorhombic Cc2m 8.947 8.859 39.347 90° [123]

(BA)2(MA)2-
Pb3I10

293 Orthorhombic C2cb 8.928 8.878 51.959 90° [123]

(BA)2(MA)3-
Pb4I13

293 Orthorhombic Cc2m 8.927 8.882 64.383 90° [123]

(BA)2(MA)4-
Pb5I16

293 Orthorhombic C2cb 8.905 77.013 8.931 90° [167]

(MA)2CuCl4 Monoclinic P121/a1 7.257 7.35 9.69 111.2° [138]
(MA)2CuCl2Br2 Orthorhombic Acam 7.319 7.328 19.134 90° [138]
(MA)2CuClBr3 Orthorhombic Acam 7.397 7.369 19.322 90° [138]
(MA)2CuCl0.5Br3.5 Orthorhombic Acam 7.428 7.469 19.308 90° [138]
(MA)2CuBr4 7.801 7.624 19.129 [138]
(MA)2FeCl4 273 Tetragonal I4/mmm7.203 7.203 19.126 90° [168]
(MA)2FeCl4 383 Orthorhombic Pccn 5.12 5.12 19.272 90° [168]
(MA)Pb-
(SCN)2I2

298 Orthorhombic Pnm21 18.58 6.267 6.466 90° [169]
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Table 3.2: (continued):

compound T (K) crystal system space
group

a (Å) b (Å) c (Å) β Ref

(PEA)2(MA)2-
Pb3I10

100 Triclinic P1 8.728 8.733 28.803 95.878° [120]

(PEA)2CuCl4 100 Orthorhombic Pbca 7.21 7.266 38.238 90° [170]
(PEA)2CuCl4 370 Orthorhombic Cmca 39.021 7.343 7.394 90° [170]
(4FA)2CuCl4 150 Monoclinic P21/c 15.511 7.379 7.093 99.004° [157]
(CA)2CuCl4 150 Orthorhombic Pccn 7.374 32.069 7.161 90° [157]
(CA)2CuCl4 298 Monoclinic P21/c 16.434 7.391 7.263 101.576° [157]
(CHA)2CdBr4 300 Orthorhombic Cmc21 26.641 8.673 8.605 90° [143]
(BZA)2PbCl4 293 Orthorhombic Cmc21 33.64 7.817 7.737 90° [158]
(BZA)2PbBr4 293 Orthorhombic Cmca 33.394 8.153 8.131 90° [158]
(BZA)2PbI4 293 Orthorhombic Pbca 9.156 8.689 28.776 90° [127]
(BZA)2SnI4 293 Orthorhombic Pbca 9.094 8.661 28.764 90° [127]
(HA)PbI4 293 Monoclinic P21/n 8.916 20.034 8.993 91.875° [127]
(HA)SnI4 293 Monoclinic P21/n 8.741 20.045 8.984 91.571° [127]
(CyBMA)-
PbBr4

298 Orthorhombic Pnma 8.5661 24.457 7.979 90° [154]

(3AMP)PbI4 293 Monoclinic P21/c 8.673 18.4268 20.452 99.306° [2]
(3AMP)(MA)3-
Pb4I13

293 Cubic Ia 8.863 8.869 58.842 90° [2]

(4AMP)PbI4 293 Monoclinic Pc 10.5 12.543 12.529 89.984° [2]
(4AMP)(MA)3-
Pb4I13

293 Cubic Ia 8.859 8.857 58.915 90° [2]

α-(DMEN)-
PbBr4

293 Orthorhombic Pbca 18.901 11.782 23.680 90° [161]

β-(DMEN)-
PbBr4

293 Monoclinic P21/c 17.625 11.982 18.724 90.44° [161]

(DMAPA)-
PbBr4

293 Monoclinic P21/c 10.717 11.735 12.127 111.53° [161]

(DMABA)-
PbBr4

293 Orthorhombic Aba2 41.685 23.962 12 90° [161]

(N-MEDA)-
PbBr4

100 Orthorhombic P212121 6.076 8.393 23.743 90° [164]

(N-MPDA)-
PbBr4

100 Monoclinic P21/c 8.316 8.316 20.118 101.695° [164]

(EDBE)-
PbCl4

100 Monoclinic C2 7.732 7.542 13.293 102.481° [162]

(EDBE)-
PbBr4

100 Monoclinic P21/c 6.092 28.78 8.886 91.852° [162]

(EDBE)-PbI4 100 Monoclinic Aba2 6.494 29.461 9.267 91.777° [162]
[Ni(opd)2-
(acn)2]n-
[Pb4I10]n

293 Monoclinic P21/c 13.981 7.888 19.746 95.303° [165]
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Table 3.2: (continued):

compound T (K) crystal system space
group

a (Å) b (Å) c (Å) β Ref

(FA,G)PbI4 298 Monoclinic C2/m 26.948 12.819 14.408 109.941° [3]

The geometrical structures of 2D hybrid perovskite materials are often characterized by X-ray

diffraction (XRD) and atomic force microscopy (AFM).[138, 4, 146, 148] Below, we review recent

experimental characterization on four types of 2D and quasi-2D perovskites: (i) perovskites contain-

ing long chain organic molecules and MA, (ii) perovskites containing aromatic ring molecules, (iii)

perovskites containing MA only, and (iv) perovskites containing dimethylammonium (DMA).

(i) The first class is perovskites containing long chain organic molecules with a chemical

formula R2(MA)n−1PbnI3n+1, in which the large organic cation, R, refers to an aliphatic alkylam-

monium chain (CmH2m+1NH3) with a length of m, such as the butylammonium cation (C4H9NH3,

BA), where m = 4. For the compounds (BA)2MI4 (n = 1, m = 4, M = Ge, Sn, and Pb), their in-plane

lattice constants increased as a function of the ionic radius of M cations, i.e., from Ge to Sn and Pb.

Mitzi found that (BA)2GeI4 crystallizes in a space group of Pcmn with a higher degree of inorganic

octahedra distortion due to stereochemical activity of the Ge(II) nonbonding electrons.[62] Mitzi

also found that (BA)2SnI4 and (BA)2PbI4 crystallize in a space group of Pbca with weaker lone-pair

stereoactivity. The lattice constants of (BA)2PbBr4 (n = 1, m = 4) 2D perovskite sheets were found to

be a = 8.41 Å, b = 8.6 Å, and c = 14.2 Å.[146] Stoumpos et al. also found (BA)2(MA)n−1PbnI3n+1

(n = 1-4, m = 4) crystallizes in an orthorhombic lattice for all n values, but in centrosymmetric for n

= 1 and noncentrosymmetric for n = 2-4. Compounds with an odd n value adopt a higher symmetry

configuration compared to even n value compounds.[123] In this work, they found that the large

BA cation requires a 7.8 Å gap between the perovskite layers and its CH3CH2-tail has a large

degree of distortion than the NH3CH2CH2-head. In addition, they showed that the ratio between the

spacer cation and the smaller organic cation during crystal synthesis can be adjusted to control the

perovskite dimensionality. Billing and Lemmerer found that the two reversible phase transitions in
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(CmH2m+1NH3)2PbI4 (n = 1, m = 12, 14, 16, and 18) occurring above room temperature correspond

to changes in the packing of the inorganic layers, the positioning of the ammonium group relative to

the inorganic layers, and the conformation of the hydrocarbon chains.[171]

(ii) The second class of 2D hybrid perovskites contain aromatic or cyclic ring cations such

as (PEA)2(MA)n−1PbnBr3n+1 (PEA = phenylethylammonium). The lattice parameters in triclinic

(PEA)2(MA)2Pb3Br10 (n = 3) were measured to be: a = 8.728 Å, b = 8.733 Å, c = 28.803 Å, α

= 92.734°, β = 95.878°, and γ = 90.254°.[120] (PEA)2(MA)n−1PbnBr3n+1 (n = 1-4) perovskite

crystals have distorted octahedral inorganic structures with a size of 6.3 Å.[117] Thin films of

this material were found to be a collection of their grains with a variety of n values instead of a

single-phase.[119] (PEA)2CuCl4 crystallizes in an orthorhombic phase with a space group number

Pbca with lattice constants of a = 7.21 Å, b = 7.266 Å, and c = 38.238 Å below 340 K, and

with a space group number Cmca and lattice constants a = 39.021 Å, b = 7.343 Å, and c = 7.394

Å above 340 K.[170] The Cd-based 2D perovskite, (CA)2CdBr4 (CA = cyclohexylammonium)

crystallizes in a noncentrosymmetric and polar orthorhombic space group Cmc21 and has lattice

constants a = 26.64 Å, b = 8.673 Å, and c = 8.605 Å.[143] The crystals of (4FA)2CuCl4 (4FA =

4-fluoroanilinium) were found to crystallize in a moniclinic phase at 150K.[157] This work also

showed that (CA)2CuCl4 (CA = 4-chloroanilinium) crystallizes at 298K in the monoclinic phase,

but undergoes a reversible phase transition at 150K from monoclinic to orthorhombic. (BZA)2PbCl4

(BZA = benzylammonium) crystallizes in an orthorhombic phase with a space group Cmc21 and has

lattice constants a = 33.64 Å, b = 7.817 Å, and c = 7.734 Å at 293 K.[158] Similarly, (BZA)2PbBr4

also crystallizes in an orthorhombic phase with a space group Cmca and lattice constants a = 33.394

Å, b = 8.153 Å, c = 8.131 Å.[158] (HA)PbI4 and (HA)SnI4 (HA = histammonium) crystallizes in a

monoclinic phase with a space group P21/n, in which the divalent HA cation was observed to bring

layers close together, giving a certain 3D character to the structure; (BZA)2PbI4 and (BZA)2SnI4

crystallizes in an orthorhombic phase with a space group Pbca.[127] In these two materials, the

inorganic octahedra are relatively undistorted, leading to slightly lower bandgaps,[127] unlike most

2D perovskites. (CyBMA)PbBr4 crystallizes in an orthorhombic phase with a space group Pnma
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and lattice constants a = 8.513 Å, b = 24.424 Å, and c = 7.937 Å. The Pb–Br–Pb bond angles

were found to strongly deviate from planar geometry due to hydrogen bonding between the organic

ligands and the PbBr4 octahedra.[154] The structures of several divalent aromatic ring contained

perovskites have also been studied from DFT calculations, in which distorted structures were found

in a staggered arrangement and the interlayer distances were found small due to the strongly charged

cations between organic layers.[163]

(iii) The third class of 2D hybrid perovskites contain MA organic cation only, in which

the separation between inorganic layers is not caused by the large organic cation. For example,

Cortecchia et al. showed that in (MA)2CuX4 (n = 1, X = Cl and Br), the lead-free 2D perovskite,

interlayer separation is achieved by steric hinderance caused by the smaller ionic radii of the Cu2+

atoms.[138] It was found that (MA)2CuCl0.5Br3.5 crystallizes in orthorhombic with a space group

Acam and lattice constants of a = 7.428 Å, b = 7.468 Å, and c = 19.308 Å, in which a layered

structure with a spacing of 10 Åwas confirmed from XRD. (MA)2CuCl4 crystallizes in a monoclinic

phase with a space group P121/a1 and lattice constants of a = 7.257 Å, b = 7.35 Å, and c = 9.969 Å.

The Cu2+ inorganic layers in (MA)2CuCl4 and (MA)2CuBr4 were found to have a highly distorted

octahedral coordination due to Jahn-Teller distortion. The lattice parameters of these intermediate

mixed-halide Cu-based perovskites are summarized in Table 3.2.

(MA)2FeCl4 crystallizes in a high-symmetry tetragonal phase above 335 K with a space

group I4/mmm and in the low-symmetry orthorhombic phase below 335 K with a space group Pccn.

The lattice constants were measured to be a = 7.203 Å, b = 7.203 Å, and c = 19.126 Å below 335 K

and a = 5.12 Å, b = 5.12 Å, and c = 19.272 Å above 335 K.[168] In (MA)Pb(SCN)2I2, S-bonded

SCN− ligands in the trans position on the Pb octahedra separate the inorganic layers in a manner

similar to that of a large organic cation in other 2D perovskites. (MA)Pb(SCN)2I2 crystallizes in

an orthorhombic lattice with a space group Pnm21 and lattice constants of a = 18.58 Å, b = 6.267

Å, and c = 6.466 Å.[169] The first-principles calculations by Tang et al. suggest that the SCN−

ion shortens the Pb–S bond lengths and increases the octahedra distortion, hydrogen bonds, and

stability relative to undoped systems. The SCN− ion was also found to strengthen Young’s modulus
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and enhances the piezoelectric properties.[172]

Figure 3.6: Schematic illustration of three types of derivation of 2DHP by cutting their parental
cubic perovskite lattice along the planes a) (100), b) (110), and c) (111). Reproduced and adapted
with permission from [3].

(iv) The fourth class of 2D perovskites are dimethyl- or diammonium-based materials. In this

class of hybrid perovskite materials, the inorganic monolayers are oriented in the (110) direction of

their parental cubic perovskite lattice, which is different from the case of the former three classes of

perovskite materials. Figure 3.6 shows the three types of derivation of 2DHP by cutting their parental

cubic perovskite lattice along the crystallographic planes (100), (110), and (111). For instance, in

the 2D perovskite α-(DMEN)PbBr4 (DMEN = 2-(dimethylamino)ethylamine), its organic layers are

composed of highly corrugated (110)-oriented layers,[161] see Figure 3.7a. Figure 3.7b and 3.7c

show the structures of monoclinic (DMAPA)PbBr4 (DMAPA = 3-(dimethylamino)-1-propylamine)

and orthorhombic (DMABA)PbBr4 (DMABA = 4-dimethylaminobutylamine) which belong to

conventional (100)-oriented family, respectively.[161] In addition to dimethyl cations, diammonium

cations can also form similar structures, such as the (001) monoclinic perovskite (N-MPDA)PbBr4 (1,

N-MPDA = N1-methylpropane-1,3-diammonium), the corrugated (110) orthorhombic perovskite (N-

MEDA)PbBr4 (2, N-MEDA = N1-methylethane-1,2-diammonium), and monoclinic (EDBE)PbX4

(EDBE = 2,2’-(ethylenedioxy)bis(ethylammonium), X = Cl, Br, I).[164, 162, 173] The corrugated

perovskite (FA,G)PbI4 (FA = formamidinium, G = guanidinium) contains two large diammonium

cations that alternate between interlayer spaces. (FA,G)PbI4 crystallizes in a monoclinic phase with

a space group C2/m and lattice constants a = 26.948 Å, b = 12.819 Å, and c = 14.408 Å.[3] In
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(DMA)7Pb4X15 (X = Cl− or Br−, DMA = dimethylammonium), linear Pb4X7−
15 chains are linked

together to form somewhat corrugated layers. The DMA cations were also found to be ordered

under 100 K, but disordered at higher temperatures around 275 K.[160]

Figure 3.7: (Left) Crystal structures of 2DHPs a) α-(DMEN)PbBr4 with (001) orientation, b)
(DMAPA)PbBr4 with (100) orientation, and c) (DMABA)PbBr4 with (100) orientation and (Right)
their respective organic barrier cations. Herein the orientation refers to that the 2D perovskites
derives from their parental 3D structures by cutting the inorganic lattice along the crystallographic
planes. Reproduced and adapted with permission from Ref [161].

In addition, it is worth mentioning that 2D perovskites can also be considered as multiple-

quantum-well structures where the wells are the semiconducting inorganic layers and the barriers are

the insulating organic layers.[174, 135] The quantum well thickness of the 2D hybrid perovskties
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Table 3.3: Band gaps (eV) of several 2DHPs as a function of dimensionality, n.
n

Compound 1 2 3 4 5 ∞ Ref
Experimental

(BA)2(MA)n−1PbnI3n+1 2.39 2.14 2.02 [134]
(BA)2(MA)n−1PbnI3n+1 2.24 1.99 1.85 1.6 1.52 [4]
(BA)2(MA)n−1PbnI3n+1 2.42 2.15 2.04 1.92 1.85 [5]
(BA)2(MA)n−1PbnI3n+1 2.43 2.17 2.03 1.91 1.5 [123]
(BA)2(MA)n−1SnnI3n+1 1.83 1.64 1.5 1.42 1.37 1.2 [114]
(PEA)2(MA)n−1PbnI3n+1 2.4 2.2 2 [175]
(PEA)2(MA)n−1PbnI3n+1 2.41 2.21 2.18 1.88 1.82 1.68 [119]
(PEA)2(MA)2Pb3I10 2.1 [120]
(3AMP)(MA)n−1PbnI3n+1 2.23 2.02 1.92 1.87 1.8 1.59 [2]
(4AMP)(MA)n−1PbnI3n+1 2.38 2.17 1.99 1.89 1.8 1.59 [2]

DFT
(PEA)2(MA)n−1PbII3n+1 2.31 2.17 1.95 [175]

(no SOC)
(PEA)2(MA)n−1PbII3n+1 1.43 1.2 0.91 [175]

(with SOC)
(BA)2(MA)n−1PbnI3n+1 1.99 1.78 0.96 [123]
(BA)2(MA)n−1PbnI3n+1 2.0 1.7 1.2 [115]

was found to range between a few to tens of nanometers.[146] For instance, the thickness of

(BA)2(MA)n−1PbnI3n+1 (n = 1-4, m = 4) ranges from 0.641 nm to 3.139 nm for n = 1 to 4

respectively.[5] The thickness of (C6H9C2H4NH3)2PbI4 (n = 1-3, m = 8) layers was determined

to be 2.5, 4.1, and 5.7 nm for n = 1, 2, and 3 respectively.[148] Yaffe et al. measured the n = 1

nanosheet thickness to be 2.4 nm.[147]

Band Gaps

Band gaps of 2DHPs are one of the most important materials parameters in their optoelec-

tronic applications and have been extensively studied via light absorption and photoluminescence

spectra. Herein we summarized the bandgaps of 2DHPs in Tables 3.3, 3.4, and 3.5, and discussed
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Table 3.4: Experimental band gaps (eV) of several 2DHPs as a function of composition, x.
x

Compound 0 0.125 0.25 0.5 0.75 0.875 1 Ref
(PEA)2Gex−1SnxI4 2.13 2.09 2.04 1.95 [176]
(PEA)2SnI4xBr4(x−1) 2.66 2.47 2.28 2.13 1.97 [177]
(HA)2Pbx−1SnxI4 2.05 1.78 1.76 1.74 1.67 [127]
(BZA)2Pbx−1SnxI4 2.18 1.86 1.84 1.82 1.89 [127]
(MA)2CuCl4(x−1)Br4x 2.48 2.12 1.9 1.8 [138]

their trends as the function of structural dimensionality and compositions.

Figure 3.8: Optical band gaps of (BA)2(MA)n−1PbnI3n+1 with n=1, 2, 3, 4, and ∞ determined from
light absorption spectra. Reproduced and adapted with permission from Ref [4].
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Table 3.5: Band gaps (eV) of several single layer 2DHPs.
Compound Bandgap

(eV)
Ref Compound Bandgap

(eV)
Ref

Experimental
(C12)PbI4 2.75 [159] (CHE)PbCl4 3.64 [121]
(C16)PbI4 2.98 [159] (BZA)2PbCl4 3.65 [158]
(C18)PbI4 2.98 [159] (PEA)2PbCl4 3.64 [133, 121]
(CA)PbI4 3.25 [159] (PEA)2PbBr4 3.07 [133]
(CHE)PbI4 2.87 [159] (PEA)2PbI4 2.4 [133, 129]
(CP)PbI4 3.04 [159] (PEA)2PbI4 2.49 [159]
(CB)PbI4 2.88 [159] (MA)2Pb(SCN)2I2 2.04 [130]
(CPe)PbI4 2.86 [159] (MA)2Pb(SCN)2I2 1.77 [169]
(DD)PbI4 2.99 [159] [Ni(opd)2(acn)2]n-[Pb4I10]n 2.67 [165]
(CM)PbCl4 3.7 [121] (H2BDA)PbI4 2.64 [153]
(PMA)PbCl4 3.7 [121] (HNPEIM)PbI3 2.73 [153]
(TPM)PbCl4 3.7 [121] α-(DMEN)PbBr4 3 [161]
(TFM)PbCl4 3.77 [121] (DMAPA)PbBr4 2.88 [161]
(MFM)PbCl4 3.79 [121] (DMABA)PbBr4 2.85 [161]

DFT
(MA)2Pb(SCN)2I2 1.53 [116] (BZA)2PbCl4 3.34 [158]
(MA)2Pb(SCN)2I2 2.06 [130] (BZA)2PbI4 1.42 [127]
(H2BDA)PbI4 2.01 [153] (BZA)2SnI4 1.33 [127]
(HNPEIM)PbI3 2.91 [153] (HA)PbI4 1.34 [127]
(EDBE)PbI4 2.83 [178] (HA)SnI4 1.14 [127]

49



The first trend is that the band gaps of 2DHPs generally increase as the dimensionality

decreases.[4, 123, 114, 5] The band gaps of (BA)2(MA)n−1PbnI3n+1 were found to range from 1.52

(n = ∞) to 2.24 eV (n = 1) from photoluminescence spectra, as shown in Fig. 3.8.[4] Similarly,

Stoumpos et al. found these values to range from 1.5 (n = ∞) to 2.43 eV (n = 1) with intermediate

values of 1.91 (n = 4), 2.03 (n = 3), and 2.17 eV (n = 2); [123] Blancon et al. measured the band gaps

to range from 1.85 (n = 5) to 2.42 eV (n = 1)[5] and Wu et al. found the band gaps to range from

2.02 (n = 3) to 2.39 eV (n = 1).[134] Lanty et al. measured the band gaps of (PEA)2(MA)n−1PbI3n+1

to range from 2.41 (n = 1) to 1.68 eV (n = ∞) using time- and wavelength-dependent transient

absorption.[119] The band gaps of (3AMP)(MA)n−1PbnI3n+1 and (4AMP)(MA)n−1PbnI3n+1 varied

from 2.23 (n=1) to 1.87 eV (n=4) and 2.38 (n=1) to 1.89 eV (n=4) respectively.[2] Sn-based

Ruddlesden–Popper perovskites demonstrate a similar trend, with band gaps ranging from 1.20 eV

(n = ∞) to 1.83 eV (n = 1).[114]

In addition to dimensionality variation, the band gap can also be tuned through selection

of the halide anions, large organic cations, and metal cations. A more electronegative halide

anion generally leads to a larger band gap. For example, band gaps of Cu-based perovskites,

(MA)2CuX4 (n = 1, X = Cl and Br), were found decrease from 2.48 eV to 1.8 eV, as increasing

Br concentration in the molecular formula.[138] For (PEA)2PbX3n+1 (X = Cl, Br, I), their band

gaps were measured to be 3.64 eV, 3.07 eV, and 2.4 eV for X = Cl, Br, and I, respectively.[133]

A similar trend was measured in (PEA)2SnIxBr4−1 with band gaps decreasing from 2.66 eV to

1.97 eV with increasing I concentrations.[177] Zhang et al. tuned the band gap of PbCl4-based

perovskites from 3.76 eV to 3.64 eV by using different large organic cations such as cyclohexyl-

methanamine (CM, 3.7 eV), phenylmethanamine (PM, 3.7 eV), 2-thiophenemethylamine (TPM, 3.7

eV), (tetrahydrofuran-2-yl)methanamine (TFM, 3.77 eV), 5-methyl-2-furanmethanamine (MFM,

3.79 eV), 2-cyclohexenylethanamine (CHE, 3.64 eV), and PEA (3.64 eV).[121] It is noted that

while the band gap can be varied via the choice of large organic cation, the band gaps do not involve

the organic orbitals directly, as shown in a prior computational study.[179] Instead, Fraccarollo et al.

show that the large organic cation indirectly influences the bandgap via the geometric distortions of
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the inorganic octahedra using DFT calculations.[180] For (HA)Pb1−xSnxI4 and (BZA)2Pb1−xSnxI4,

the band gaps in both materials were found to decrease with increasing Sn concentration, with the

lowest band gap of 1.74 eV at an intermediate value of x = 0.75 for (BZA)2Pb1−xSnxI4.[127] The

authors also found that the band gap decreases as the M–I–M angle approached 180°, ranging from

2.18 eV for (BZA)2PbI4 to 2.05 eV for (HA)PbI4. Similarly, the bandgap of (PEA)2Ge1−xSnxI4 (x

= 0-0.5) decreases almost linearly from 2.13 to 1.95 eV with increasing Sn concentrations.[176]

There are two types of band gaps: direct and indirect. A direct band gap semiconductor has

the conduction band minimum (CBM) and the valence band maximum (VBM) located at the same

k-vector in the Brillouin zone, allowing for photon absorption and emission without a change in

the momentum. Conversely, an indirect band gap requires a change in the momentum for photon

emission and absorption.[181] Semiconductors with direct band gaps are often preferred because

they have higher photon absorption rate.[182, 109] Many 2D perovskite materials are characterized

to have a direct band gap.[147, 153, 130] For example, (BA)2PbI4 has a direct band gap of 2.4

eV;[147] [Ni(opd)2(acn)2]n-[Pb4I10]n (opd = o-phenylenediamine; acn = acetonitrile) has a direct

band gap of 2.67 eV (0.4 eV greater than PbI2), meaning that the organic cation leads to a blue

shift of the band gap with respect to PbI2;[165] the single layered perovskites (H2BDA)PbI4 and

(HNPEIM)PbI3 have a direct band gap of 2.64 and 2.73 eV, respectively.[153]

The bandgap type can be predicted from Tauc plots.[183] As shown in Figure 3.9b and 3.9c,

Xiao et al. found the (MA)2Pb(SCN)2I2 material to be an indirect bandgap semiconductor with an

indirect bandgap of 2.04 eV and direct bandgap of 2.11 eV.[130] However, the authors state that

Tauc plots are often mistakenly used to predict the transition mode.[184] He states that both direct

and indirect Tauc plots have linear parts which give different bandgap values, meaning it is difficult

to determine the mode of transition by comparison of the plots given that the transition mode is an

assumption to begin with. Because of this, it is hard to say if (MA)2Pb(SCN)2I2 is truly an indirect

semiconductor, and in this case, first-principles electronic structure calculations are effective tools

to reveal the nature of the band gap type.

Besides the light harvestation for solar cells, the light absorption of 2D perovskites has also
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Figure 3.9: (a) Absorbance (A) spectrum of a (MA)2Pb(SCN)2I2 thin film. (b,c) Tauc plots of the
A spectrum corresponding to (b) a direct and (c) an indirect optical bandgap of (MA)2Pb(SCN)2I2.
(d) Diffuse reflectance (R∞) spectrum of (MA)2Pb(SCN)2I2 powders. (e,f) Tauc plots of the R∞

spectrum corresponding to (e) a direct and (f) an indirect optical bandgap of (MA)2Pb(SCN)2I2.
Reproduced and adapted with permission from Ref [130]. Copyright 2016 American Chemical
Society.

been studied for other optoelectronic applications including laser cooling, spin-state manipulation,

and photodetection.[122, 185, 125] Liu et al. found a large two-photon absorption coefficient of

211.5 cm MW−1 in (PEA)2PbI4, about one order of magnitude larger than 3D perovskites, and

a saturation effect excited by a 800 nm femtosecond laser.[1] These properties are attributed to

quantum and dielectric confinement effects. Ha et al. achieved a maximum laser cooling of 58.7 K

from room temperature for (PEA)2PbI4, demonstrating the potential use of 2D perovskites in optical

cooling devices.[122] This optical refrigeration effect was considered to be caused by a strong

photoluminescence upconversion and near unity external quantum efficiency. In addition, the optical
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properties of 2D perovskites were also found to meet the criteria necessary for the ultrafast optical

implementations in quantum information applications.[186] For example, Giovanni et al. observed

a spin-selective optical Stark effect in (PEA)2PbBr4, (PEA)2PbI4, and (PEA)2PbI4, demonstrating

a light-based method for room-temperature spin manipulation.[185] 2D perovskites also have

potential applications in the photodetector devices. For example, Tan et al. built a photodetector

using (BA)2PbBr4 with graphene as an electric contact, which shows a high responsivity (∼2100

A/W), low dark current (∼10−10 A), and high on/off current ratio (∼103).[187] Chen et al. produced

a photodetector using the quasi 2D perovskite, (BA)2(MA)n−1PbnBr3n+1, and their device achieved

a photoresponsivity of 190 mA/W and an on/off current ratio of 2.3×103.[125]

Light Emission

Light emission of semiconductors have several major applications such as large-area dis-

play, indicator lights, and energy-efficient light sources.[188] c The organic-inorganic hybrid

perovskites offer a high color purity regardless of crystal size because of their multiple quantum

well structure.[189, 190, 135] In particular, the 2D hybrid perovskites are promising alternative

light-emitters to organic light-emitting diodes and inorganic quantum dot LEDs because of their

bandgap tunability and solution processability,[4, 123, 114, 5, 117, 130, 132, 133, 121, 134] Herein

we summarized several typical features of light emission in the 2D hybrid perovskites, including

the broadband emission, quantum efficiency, exciton binding energy, and exciton states.

Broadband Emission. 2D hybrid perovskites have been found to emit radiation across the

entire visible spectrum upon UV excitation, generating white light.[164, 162, 132, 117, 123] This

phenomenon is known as broadband emission, and it demonstrates the potential use of layered

hybrid perovskites as single-source white-light phosphors. The first instance of broadband emission

in layered hybrid perovskites was observed in 2014 by Dohner et al. in (EDBE)PbX4 (X = Cl,

Br, I), (N-MPDA)PbBr4, and (N-MEDA)PbBr4.[162, 164] Neogi et al. observed a broadband

white-light emission in (CyBMA)PbBr4, and attributed this broad emission to self-trapped states

that are favored by deformations of the inorganic layers.[154] Mao et al. examined three 2D lead
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bromide perovskite materials that exhibit similar features: α-(DMEN)PbBr4, (DMAPA)PbBr4, and

(DMABA)PbBr4. They found a direct relationship between increasing distortion of the inorganic

layers and the broadening of photoluminescence (PL) emission, with the most distorted structure

having the broadest emission and longest lifetime.[161] Cortecchia et al. compared the highly

distorted perovskite (EDBE)PbI4 with the less distorted perovskite (BA)2PbI4 and found that only

(EDBE)PbI4 can form lead vacancies that lead to the formation of I−3 and thus a broadened PL,

implying an important role of structural distortion in the broadband emission.[178]

Yangui et al. studied the relationship between inorganic layer distortion and broadband

PL emission in (C6H11NH3)2PbBr4 and (CHA)2CdBr4, and explained this phenomenon from

the perspective of self-trapped states.[191, 143] To be specific, they found two emission peaks

at 2.94 eV corresponding to excitons confined in the inorganic layers and another peak at 2.53

eV corresponding to emission of the organic moiety in (CHA)2CdBr4.[143] They also found that

the photoluminescence spectra varies with temperature due to phase transitions and changes in

interlayer spacing, with a peak emission at 90K, and the white-light emission coexists with an

excitonic edge emission at lower temperatures.[191, 143] A very recent study by García-Fernandez

et al. also showed that (DMA)7Pb4X15 exhibits a broadband PL related to the structural distortions

of the inorganic octahedra.[160]

Hu et al. explored the mechanism of broadband white-light emission in the (110) 2D

hybrid perovskite (N-MEDA)[PbBr4] (N-MEDA = N1-methylethane-1,2-diammonium) using a

suite of ultrafst spectroscopic probes and concluded that the broadband emission is associated

with a distribution of local minima in the excited-state potential energy surface with additional

contributions from material defects and correlated self-trapped sites from ultrafast spectroscopic

measurement.[173] In (EDBE)PbX4 (X = Cl, Br, and I), Dohner et al. found an emission that

originates from the bulk material rather than surface defect sites, along with contributions from

strong electron-phonon coupling in a deformable lattice, with an inhomogeneous broadening due to

a distribution of intrinsic trap states.[162]

In addition, it was also found that the photoluminescence (PL) of 2D hybrid perovskites
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could be tuned. For instance, Dou et al. found a PL emission peak at 411 nm in the bulk crystal

of (BA)2PbBr4 and a slightly shifted peak at 406 nm in its 2D sheets, and verified that this shift is

caused by lattice expansions in the 2D sheets from DFT calculations.[146] Mitzi et al. observed

a blue-shift in the emission peak from (BA)2GeI4 (690 nm) to (BA)2SnI4 (625 nm) to (BA)2PbI4

(525 nm) with a progressive increase in the peak sharpness.[62] Booker et al. found a red-shifted

and broadband emission below 200 K in addition to excitonic photoluminescence in (C6)2PbI4 and

(C12)2PbI4.[128] White light emission was also observed in the (001) perovskite (N-MPDA)PbBr4

and the corrugated (110) perovskite (N-MEDA)PbBr4, and the emission chromaticity can be tuned

through halide substitution.[164]

Some other factors that influence the photoluminescence of 2D hybrid perovskites were also

explored. For instance, Jia et al. observed an increased radiative electron-hole recombination in

the 2D (TFA)2(MA)n−1PbnBr3n+1 as compared to that in the 3D perovskites, and attributed this

phenomenon to the reduced grain size in the quasi-2D perovskite films.[152] Sun et al. found that

the optimal dimensionality constitution in films of quasi-2D perovskite lies between a low and high

n value, where the film has the highest PLQE while still maintaining uniform film morphology.[131]

Vassilakopoulou et al. found that mixtures of quasi-2D (PEA)2PbnBr3n+1 and 1D (MA)CdBr3

entrapped in a polystyrene film led to green luminescence.[192] Daub and Hillebrecht measured a

strong emission peak at 702 nm and a shoulder at 760 nm in (MA)2Pb(SCN)2I2 via fluorescence

spectroscopy.[169]

Quantum Efficiency. The performance metrics for light-emitting semiconductors include

the internal and external quantum efficiency—the number of photons emitted by the active region and

in total respectively per unit time divided by the number of injected electrons per unit time and the

photoluminescence quantum efficiencies.[188] The 2D hybrid perovskites are found to have a much

higher quantum efficiency than 3D hybrid perovskites. For example, Yuan et al. reported high photo-

luminescence quantum yield (PLQY) values of 10.1% and 10.6% in (PEA)2(CH3NH3)n−1PbnI3n+1

for n = 3 and n = 4, respectively, in contrast to a nearly negligible PLQY for 3D perovskites at

the same excitation intensity. Using this material, they designed an LED device with a record
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external quantum efficiency of 8.8% with a corresponding radiance of 80 W sr−1m−2 operating at

near-infrared wavelengths.[119]

Byun et al. fabricated a LED device using 2D (PEA)2PbBr4 that shows a higher current

efficiency and luminance thatn (MA)PbBr3.[117] In this work, it was found that a mixture of the 2D

(PEA)2PbBr4 with (MA)PbBr3 forms a quasi-2D perovskite film that yields the highest luminescence

(2935 cd m−2) and current efficiency (4.9 cd A−1) with a PLQE of 34%. The authors attributed this

to fully homogeneous perovskite films that have a small particle size, low trap density, and decent

charge transport properties. The optimal n values for PLQY in (PEA)2(CH3NH3)n−1PbnI3n+1 are

summarized in Figure 3.10. Lanzetta et al. found that the PLQE of thin films of (PEA)2SnIxBr4−x

ranges from 0.24% to 0.04% and decreases as Br concentration increases, but remained consistently

higher than that of the 3D perovskite, MASnI3 (PLQE = 0.01%).[177] Using this material, they

constructed an electroluminescent device reaching a luminance of 0.15 cd/m2 at 4.7 mA/cm2 and

an efficacy of 0.029 cd/A at 3.6 V. The (TFA)2(MA)n−1PbnBr3n-based LED prepared by Jia et al.

demonstrated a maximum luminance of 1.2×103 cd/m2 and current efficiency up to 0.4 cd/A, a

twenty fold enhancement compared to that of (MA)PbBr3.[152] The PLQE of (CyBMA)PbBr4

was measured to be 1.5%,[154] and the room-temperature PLQE of (FA,G)PbI4 was found to be

3.5%.[3]

Exciton Binding Energy. The excitonic properties including the exciton formation, diffu-

sion, binding energy, and thermal quenching significantly influence the light-emission efficiency

of an electroluminescent material.[193, 194, 195, 196, 197, 198] A high exciton binding energy

strengthens the stability of excitons against thermal dissociation, allowing for potential applications

in room temperature LED devices. Compared to their 3D counterparts, 2D perovskites have a

much higher exciton binding energy due to sharp dielectric contrast between the high and low

dielectric constants of the inorganic and organic layers respectively.[132, 135] The high frequency

limit (ε∞)—the dielectric constant—decreases with decreasing layer thickness, but its value is not

affected by the size of aliphatic chains.[199] For example, Yangui et al. measured a large exciton

binding energy (356 meV) in (C6H11NH3)2PbI4 that was attributed to a large dielectric contrast
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Figure 3.10: Unit cell structure, electronic bandstructure and photoluminescent properties of quasi-
2D perovskites. a, Unit cell structure of (C8H9NH3)2(MA)n−1PbnI3n+1 perovskites with different
<n> values, showing the evolution of dimensionality from 2D (n = 1) to 3D (n = ∞). b, Electronic
band structure of perovskites with different <n> values, combined with the band structure of ITO,
TiO2, F8, MoO3 and the Au electrode. φ, electric potential. c, Summary of the PLQY for perovskite
films with different <n> values at a low excitation intensity (6 mW cm-2). d, Evolution of the
PLQY with increasing excitation intensity for perovskites with different <n> values. The data show
a steeper and earlier (lower threshold intensity) rise in PLQY for quasi-2D perovskites compared
with 2D and 3D perovskites. Reproduced and adapted with permission from Ref [119]. Copyright
2016 Springer Nature.
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between organic and inorganic layers.[132] An exciton binding energy of 377 meV and a sharp

excitonic peak at 3.24 eV were reported in (CHA)2CdBr4.[143] Yaffe et al. found that the excitons

of (BA)2PbI4 are stable at room temperature with binding energies of 490 meV and have properties

that are strongly influenced by changes in the dielectric environment.[147] Blancon et al. reported

exciton binding energies of (BA)2(MA)n−1PbnI3n+1 to range from an average value of 220 meV,

270 meV, and to 380 meV for n > 2, n = 2 and n = 1, respectively, approximately one order of

magnitude greater than in 3D lead halide perovskites.[5] Neogi et. al. measured an exciton binding

energy of 340 meV in (CyBMA)PbBr4.[154]

The exciton binding energy of 2D hybrid perovskite was also studied from first-principles

calculations. For instance, in our previous work on (BA)2(MA)n−1GenI3n+1, the calculated exciton

binding energies range from 202 meV to 190 meV to 150 meV to 34 meV for n = 1, 2, 3, and ∞

respectively.[156] Tsai et al. calculated the exciton binding energy of (BA)2(MA)n−1PbnI3n+1 at n

= 3 and 4 to be close to that of (MA)PbI3, in agreement with the absence of excitonic signatures

in their optical absorption spectra.[115] This suggests that the excitons in (BA)2(MA)n−1PbnI3n+1

at n = 3 and 4 are nearly ionized at room-temperature, leading to free carrier-dominated charge

transport.

Triplet Exciton State. A triplet exciton state is a bound electron-hole pair that has a

total spin angular momentumof 1, allowing for three values of spin component ms (-1, 0, 1).

These triplet exciton states constitute 75% of excitons that are generated during charge injection.

Harnessing these triplet excitons in phosphorescent molecules enables the potential of attaining 100%

internal quantum efficiency in phosphor-doped LEDs.[200, 201] The triplet exciton properties of 2D

perovskites demonstrate their potential for thin film triplet photosensitizers applications including

desulfurization of light oil,[202] photooxidation,[203] and photodynamic therapy.[204] Younts et

al. demonstrated efficient generation of triplet exciton states in the solid 2D (MA)2Pb(SCN)2I2

perovskite films, with a corresponding photoluminescence quantum efficiency of 11.7% at 160K

and extremely long diffusion lengths of about 152 nm for the generated triplet excitions, which

allows an efficient transport across the entire thin film. Accordingly, due to the efficient exciton
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formation and extraction at the material/molecule interface, a viable thin film triplet photosensitizer

can be realized in (MA)2Pb(SCN)2I2.[151]

Other Excitonic Properties. Other properties including excitonic band gap, excitonic

peak, and exciton-phonon scattering are discussed here. Smith et al. found the exciton band of

(PEA)2(MA)2Pb3I10 (n = 3) to be 2.06 eV,[120] close to the ideal value (1.9 eV) for the higher

band-gap absorber in a dual-absorber tandem device,[205] which can surpass the Shockley-Queisser

limit.[206] Abdel-Baki et al. measured an excitonic peak at 2.397 eV in (PEA)2(MA)PbI4, and

found that the exciton relaxation fits to a bi-exponential decay with a free exciton lifetime of 1̃00

ps and intraband lifetime of < 140 fs.[135] They suggested that the excitons are delocalized in

(PEA)2(MA)PbI4 (n = 1), pointing to the importance of the organic layer in the optoelectronic

properties of 2D perovskites.[135]

Cao et al. reported that for Sn-based Ruddlesden–Popper perovskites, (BA)2(MA)n−1SnnI3n+1,

excitonic peaks only exist in the single-layered compounds, suggesting that they have lower exciton

binding energy due to higher dielectric constants.[114] Vassilakopoulou et al. found that the exci-

tonic band gap depends on the organic molecule in addition to the crystal structure.[145] Guo et al.

investigated the intrinsic exciton relaxation pathways in the layered (C4H9NH3)2(CH3NH3)n−1PbnI3n+1

(n = 1, 2, and 3) structures from time-resolved and temperature-dependent PL studies.[149] They

found that the PL decay rate increases with temperature, implying an exciton–phonon scattering.

Their results also indicate that scattering via deformation potential by acoustic and homopolar

phonons is the main scattering mechanism, which suggests that exciton decay is protected from

scattering by charge defects and polar optical phonons, leading to the efficient screening of Coulomb

potential as in 3D perovskites..

Tunning Excitonic Properties. The excitonic properties can be tuned by modifying the

number of inorganic layers, halide composition, or large organic cation selection. DFT calculations

by sapori et al. verify that the high frequency limit (ε∞), or the dieletric constant, decreases with

decreasing layer thickness, but that its value is not affected by the size of aliphatic chains.[199] Niu

et al. found that exciton amplitude scales linearly with increasing number of layers due to disorder
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causing inhomogeneous broadening of the exciton resonance.[148] Lanty et al. found that exciton

absorption peaks show a parabolic relationship with increasing composition of larger halide anions,

reaching a maximum at a 50-50 composition of large and small anions.[133]

Figure 3.11: A schematic of a generated exciton state and a possible decay mechanism via trap states.
Reproduced and adapted with permission from Ref [5]. Copyright 2017 American Association for
the Advancement of Science

Trap States

Trap states refer to deep states in the band gap of a semiconductor that immobilize charge

carriers and inhibit charge transport, which is detrimental to the solar cell performance. To maximize
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solar cell efficiency, the density of trap states should be minimized to reduce competing electron-

hole recombination channels.[207, 208] Wu et al. studied excitonic trap states in (BA)2Pbn−1I3n+1

and a trend of increasing trap states with decreasing layer thickness and increasing relative surface

area, and attributed this to the localization of the trap states at the crystallite surface.[134] They

concluded that the trap states are likely caused by the electron-phonon coupling and are enhanced at

surfaces/interfaces. In contrast, Blancon et al. found that edge states in the layered 2D perovskites

(BA)2(MA)n−1PbnI3n+1 (n > 2) extended the optical absorption from visible to near infrared and

more importantly provided a direct pathway to dissociate excitons into free charge carriers, which

substantially improved the performance of optoelectronic deivces.[5]

Byun et. al. found that a higher proportion of 2D material in (PEA)2(MA)n−1PbnBr3n+1

reduces deep traps, thereby reducing non-radiative recombination.[117] The quasi-2D perovskite,

(PEA)2(MA)n−1PbnBr3n+1, by Yuan et. al. was found to concentrate carriers on small bandgap

grains, resulting in increased local excitation intensity and high PLQY by outcompeting non-

radiative recombination sites.[119] Zhou et al. found that appropriate FA+ incorporation into

(BA)2(MA,FA)3Pb4I13 produces high-quality films that can reduce nonradiative recombination

centers.[144] Peng et al. found low self-doping in single crystals of (PEA)2(MA)n−1PbnI3n+1 (n =

1, 2, 3), over 3 orders of magnitude lower than that of typical 3D hybrid perovskites. They proposed

that the self-doping concentration difference results from the large organic cations which effect a

defect-suppressing crystallization process. This low self-doping property of 2D perovskites reduces

the electronic noise in photodetectors, allowing for potential applications in optoelectronic devices

that measure weak signals.[175]

Multiferroic Properties

Ferroelectricity and ferromagnetism refer to the stable and switchable electrical polarization

and magnetization in a material, respectively. Some layered organic-inorganic hybrid compounds

have demonstrated ferromagnetic or ferroelectric properties. For instance, the compounds A2CuCl4

(where A = 4-fluoroanilinium and 4-chloroanilinium) were found to exhibit long-range ferromag-
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netic ordering.[157] Liao et al. reported a high-temperature molecular ferroelectric behavior in

(BZA)2PbCl4 with a curie temperature Tc = 438 K and ferroelectric polarization Ps = 13 µ C

cm−2.[158] Han et al. synthesized the layered perovskite-like (MA)2[FeIICl4] and studied its struc-

tural and magnetic phase transitions.[168] The authors reported a structural phase transition from

high-symmetry I4/mmm (T > 335 K) to the low-symmetry Pccn (T < 335 K), and found a hidden-

canted antiferromagnetic ground state that can be transformed into a canted antiferromagnet with a

metamagnetic critical field greater than 200 Oe. The inorganic-organic hybrid (PEA)2CuCl4 is a fer-

romagnetic insulator and its inorganic component consisting of 2D perovskite-like sheets exhibit a

long-range ferromagnetic order below 13 K.[209, 210] Arkenbout et al. reported that the cooperative

distortion of the inorganic octahedra caused by Jahn-Teller distortion introduces an antiferrodis-

tortive arrangement of the octahedra, thus leading to the ferromagnetic interactions.[211] Polyakov

et al. observed a coexistence of ferromagnetic and ferroelectric ordering in the (PEA)2CuCl4 with

an improper ferroelectric order below 340 K and a ferromagnetic order below 13 K.[170] By using

XRD measurement, they showed that the electric polarization arises from the spatial ordering of

hydrogen bonds that link PEA cations to the inorganic CuCl6 octahedra. The buckling of the

corner-linked CuCl6 octahedra induces the hydrogen bond ordering that is also coupled to magnetic

superexchange, suggesting that the material has potentially large magnetoelectric coupling.

High Water Stability

One of the major challenges preventing 3D perovskites from industrial application is low

stability, especially in the presence of ambient water vapor. 2D perovskites serve as a promising

solution to this challenge, demonstrating higher stability in the presence of water vapor compared

to the 3D material.[112] According to XRD analysis, (BA)2(MA)2Pb3I10 exposed to 40% humidity

for 2 months did not reveal a PbI2 peak, demonstrating high moisture resistance.[4] In the Sn-

based perovskites, unencapsulated MASnI3 exposed to air degraded to zero in 3 minutes while

(BA)2(MA)3Sn4I13 under similar conditions only gradually degraded after 30 minutes. When

encapsulated, (BA)2(MA)3Sn4I13 was found to retain 90% of its original efficiency after one
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month.[114] The near-single-crystalline-quality device by Tsai et al. placed under 65% humidity

yielded similar results, retaining 70% of its original PCE after 94 days while the traditional 3D

device falls to < 10% after the same amount of time.[115] Their results are summarized in Figure

3.12. The unencapsulated 2D/3D stacking structures by Lin et al. exposed to heating at 95 °C for

100 h maintained 96.5% and 88.2% efficiency for BA and BAI treatments respectively while their

control device degraded to 69.6%.[126]

Vassilakopoulou et al. fabricated stable, single layer LED devices composed of mix-

tures of quasi-2D (OL)2(MA)n−1PbnX3n+1 (OL = Oleylamine), (PEA)2(MA)n−1PbnX3n+1, or

(C12)2(MA)n−1PbnX3n+1. They exposed the devices to air and light in an unheated and humid

environment and found that they continued to show stable light emission after four months via PL

and PL excitation spectra.[145] Cheng et al. demonstrated that unlike MAGeI3, (PEA)2Ge0.5Sn0.5I4

did not show any diffraction peaks of GeI4 after being exposed to ambient air at 50% relative

humidity for 15 h.[176] The 2D/3D perovskite junction device composed of (AVA)2PbI4/(MA)PbI3

(AVA = Aminovaleric acid) fabricated by Grancini et al. showed no loss in performance after

> 10,000 hours.[139] Iagher et al. found that incorporating Cs into n = 40 quasi-2D perovskites

of (R)2(A)n−1PbnI3n+1 (R = PEA, BA, or CHA, A = MA and/or Cs) led to traces of PbI2 in the

XRD spectra that were not present in the pure quasi-2D perovskite devices after exposure to 205

h of 1 sun illumination and 50% humidity. They attributed this lower stability to the mixture of

cations of different ionic radii, leading to strains in the perovskite structure. They also found that the

aromatic ring-containing perovskites demonstrate better stability than their cyclic ring-containing

counterparts.[212] The LED devices of Jia et al. composed of (TFA)2(MA)n−1PbnBr3n+1 showed

no changes in the XRD pattern after exposure to 2688 h in air. The high stability is attributed to the

hydrophobicity of the F atoms and the stabilizing intermolecular hydrogen bonds.[152]
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Figure 3.12: a, c, Photostability tests under constant AM1.5G illumination for 2D
((BA)2(MA)3Pb4I13; red) and 3D ((MA)PbI3; blue) perovskite devices without (a) and with (c)
encapsulation. b, d, Humidity stability tests under 65% relative humidity at in a humidity chamber
for 2D ((BA)2(MA)3Pb4I13; red) and 3D ((MA)PbI3; blue) perovskite devices without (b) and with
(d) encapsulation. PCE, power conversion efficiency; a.u., arbitrary units. Reproduced and adapted
with permission from Ref [115]. Copyright 2016 Springer Nature.
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Table 3.6: The photovoltaic performances of several 2D perovskite-based solar cells.
Compound PCE (%) VOC(V ) Jsc

(mA/cm2)
FF (%) Ref

(BA)2(MA)2Pb3I10 4.02 0.929 9.43 46 [4]
(BA)2(MA)3Pb4I13 12.51 1.01 16.76 74.13 [115]
(BA)2(MA)4Pb5I16 8.71 1 11.44 75.79 [167]
(BA)2(MA)3Sn4I13 2.53 0.376 8.7 45.7 [114]
(PEA)2(MA)2Pb3I10 4.73 1.18 6.72 60 [120]
(PEA)2(MA)49Pb50I151 8.5 1.46 9.0 65 [118]
(MA)2CuCl2Br2 0.017 0.256 0.216 32 [138]
(HOOC(CH2)4NH3)2PbI4/(MA)PbI3 14.6 1.025 18.84 75.5 [139]
(C6)2(MA)Pb2I7 0.336 0.71 1.33 35.5 [137]
(C6)2(FA)Pb2I7 1.26 0.733 2.98 57.4 [137]
(C6)2(Cs)Pb2I7 0.103 0.327 0.682 46.2 [137]
(IC2H4NH3)2(MA)n−1PbnI3n+1 8 0.893 14.33 63 [140]
(IC2H4NH3)2(MA,FA)n−1PbnI3n+1 9.03 0.883 14.88 69 [140]
(HA)PbI4 1.13 0.91 2.65 46.7 [127]
(PEA)2(MA)39Pb40I121 + 10% Cs 12.6 0.9 24 59 [212]
(BA)2(MA)39Pb40I121 + 10% Cs 10.2 0.86 21.4 55 [212]
(CHA)2(MA)39Pb40I121 + 10% Cs 10.6 0.86 21.9 56 [212]
(3AMP)(MA)3Pb4I13 7.32 1.06 10.17 67.6 [2]
(4AMP)(MA)2Pb3I10 2.02 0.99 3.05 66.4 [2]
(BA)2PbI4/(MA)PbI3 19.56 1.11 22.49 78 [126]
(BA)2(MA)n−1PbnI3n+1/(MA)PbI3 18.85 1.09 22.59 77 [126]
(BA)2(MA)0.8FA0.2)3Pb4I13 12.81 0.999 18.12 70.79 [144]
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3.2.3 Device Performance

There have been several groups that have fabricated solar cells incorporating 2D perovskites,

however these devices do not yet show efficiencies comparable to those of the 3D perovskite

(MA)PbI3. The device performances of 2D perovskite based solar cells have been summarized in

Table 3.6. There are four criteria used to evaluate solar cell performance: (1) PCE, (2) open circuit

voltage (VOC), (3) short circuit current density (Jsc), and (4) fill factor (FF). These four parameters

are different measurements of the useful energy output of a solar cell device. An ideal solar cell

should demonstrate high values for each of these four parameters. (1) The PCE is the ratio between

useful energy output and energy input in percentage. (2) The VOC is the maximum voltage a solar

cell will provide at zero current in volts. (3) The Jsc is the current across the solar cell in amperes

per unit area when the solar cell is short circuited, where the voltage is zero. (4) The FF is the power

at the maximum power point (Pm) divided by VOC and the short circuit current (Isc) in percentage

as shown below:

FF =
Pm

Voc× Isc
(3.1)

A 2D perovskite solar cell device composed of (BA)2(MA)2Pb3I10 fabricated by Cao et

al. has shown a photogenerated VOC of 929 mV, Jsc of 9.43 mA/cm2, FF of 46% and a PCE

of 4.02% under AM 1.5G solar illumination.[4] By raising the dimensionality by two to yield

(BA)2(MA)4Pb5I16, Stoumpos et al. achieved a PCE of 8.71%, VOC of 1.0 V, JSC of 11.44

mA/cm2, and a FF of 75.79%.[167] Their Sn-based 2D perovskite device by Cao et al. has shown

a photogenerated VOC of 376 mV, Jsc of 8.7 mA/cm2, FF of 45.7 % and conversion efficiencies

around 2%.[114] The near-single-crystalline-quality perovskite thin film solar cell fabricated by

Tsai et al. showed a peak PCE of 12.51%, VOC of 1.01 V, Jsc of 16.76 mA cm−2, and FF of

74.13%. They attributed this superior performance to enhanced charge transport and mobility due to

near-perfect vertical orientation of the 2D layers relative to the substrate. Figure 3.13 summarizes

their device architecture and characterization.[115] A device composed purely of the quasi-2D
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perovskite (PEA)2(MA)n−1PbnBr3n+1 (n = 40, 50, and 60) demonstrated a PCE of 6.3%, VOC

of 1.3 V, Jsc of 8.4 mA/cm2, and FF of 50% without hole transport material (HTM) and VOC

of PCE of 8.5%, 1.46 V, Jsc of 9.0 mA/cm2, and FF of 65% with HTM. They found VOC and

efficiency to peak at n = 40-50, attributing this result to reduced mobility and transport.[118] Smith

et al. have shown that a device employing (PEA)2(MA)2Pb3I10 as the absorber can demonstrate

a PCE up to 4.73% with a VOC of 1.18 V, Jsc of 6.72 mA/cm2, and FF of 60%.[120] The solar

cell composed of (MA)2CuCl2Br2 by Cortecchia et al. yielded a PCE of 0.017%, with a VOC of

256 mV, Jsc of 216 µA/cm2, and FF of 32%.[138] Grancini et al. combined the 2D perovskite,

(HOOC(CH2)4NH3)2PbI4, with the high efficiencies of the 3D perovskite, (MA)PbI3, to design a

highly stable 2D/3D perovskite junction with 14.6% PCE, VOC of 1.025 V, Jsc of 18.84 mA/cm2,

and FF of 75.5%.[139] The solar cell devices by Hamaguchi et al. composed of (C6)2(FA)Pb2I7

demonstrated a maximum PCE of 1.26%, Jsc of 2.98 mA/cm2, VOC of 0.733 V, and FF of 57.4%.

They attributed these low PCE values to a lack of light absorption in a narrow wavelength range (550-

600 nm). They also found a higher short-circuit photocurrent density with a higher proportion of

perpendicular orientation growth relative to the substrate.[137] The device by Koh et al. composed

of the quasi-2D perovskite, (IC2H4NH3)2(MA)n−1PbnI3n+1, demonstrated a conversion efficiency

over 9%. They found efficiency to increase with prolonged dipping in the MAI solution up to 4

minutes, after which it began decreasing. The efficiency was also found to improve with preferential

crystal orientation and with the addition of the FA cation.[140] Mao et al. reached a PCE of 1.13%,

VOC of 0.91 V, Jsc of 2.65 mA/cm2, and FF of 46.7% in their device containing (HA)PbI4.[127]

In n = 40 quasi-2D perovskites, the performance improved with the addition of 10% Cs across

devices containing PEA, BA, and CHA based perovskites.[212] The Dion–Jacobson perovskite

devices by Mao et al. obtained a PCE of 7.32% and 2.02%, a Jsc of 10.17 mA cm−2 and 3.05 mA

cm−2, a VOC of 1.06 V and 0.99 V, and a FF of 67.6% and 66.4% for (3AMP)(MA)3Pb4I13 and

(4AMP)(MA)2Pb3I10 respectively.[2] In the 2D/3D stacking structures by Lin et al., BA treated

devices reached a PCE of 19.56%, Jsc of 22.49 mA/cm2, VOC of 1.11 V, and FF of 0.78 while their

BAI-treated devices obtained a PCE of 18.85%, Jsc of 22.59 mA/cm2, VOC of 1.09 V, and FF of
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0.77. They attributed the enhanced efficiency to the healing of the surface defects due to the 2D

perovskite formation.[126] The quasi-2D perovskite (BA)2(MA)0.8FA0.2)3Pb4I13 by Zhou et al.

obtained a PCE of 12.81%, VOC of 0.999 V, Jsc of 18.12 mA/cm2, and FF of 70.79%.[144]

3.3 Theoretical Research

In this section, we discussed recent first-principles computational and theoretical studies of

2DHPs. The calculated band structures of semiconductors from first-principles calculations often

provide useful insights into the electronic properties of materials including the type of band gap,

charge carrier mobility, and orbital-resolved contributions to the valence band and conduction band.

The layered structural characteristics of 2D materials strongly affect their stability and electronic

properties including charge carrier transport and band gap. Some common findings of 2DHPs

include bandgap tunability through adjusting layer thickness or compositions,charge carrier mobility

anisotropy, and high chemical stability.

3.3.1 Tunable Band Gaps

2DHPs typically have a tunable band gap as a function of the thickness of inorganic layers

and exhibit wider band gaps compared to 3D hybrid perovskites. [120, 213, 214] For instance, in our

previous first-principles computational studies of (BA)2(MA)n−1GenI3n+1,[156] we found that band

gap decreases with increasing n values, ranging from 1.88, 1.83, 1.69 to 1.57 eV for n = 1, 2, 3, and ∞,

as shown in Figure 3.14. Moreover, the conduction band is mainly composed of Ge 4p states while

the valence band is mainly composed of I 5p states, neither having any contribution from the organic

molecules near the band edges. Peng et al. calculated the band gaps of (PEA)2(MA)n−1PbnI3n+1 to

be 2.31 (n = 1), 2.17 (n = 2), and 1.95 eV (n = 3) without spin-orbit coupling, in good agreement

with their experimental findings, while 1.43 (n = 1), 1.20 (n = 2), and 0.91 eV (n = 3) with

spin-orbit-coupling.[175] The calculated band gaps of (BA)2(MA)n−1PbnI3n+1 were found to

range from 1.2 (bulk) to 2.0 eV (monolayer),[115] comparable to the experimental values of
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Figure 3.13: a, Experimental (red) and simulated (black) current-density-voltage (J–V) curves using
2D (BA)2(MA)3Pb4I13 perovskites as the absorbing layer with a schematic of the device architecture.
b, External quantum efficiency (EQE; red) and integrated short- circuit current density (JSC; blue)
as a function of wavelength. c, d, J–V curves for hysteresis tests under AM1.5G illumination
measured with the voltage scanned in opposite directions (c) and with varying voltage delay times
(d). e, Histogram of device PCE over 50 measured devices, fitted with a Gaussian distribution
(red). f, Capacitance-d.c. bias (C–V) curves (red) for a typical device and the corresponding charge
density profile (blue). Reproduced and adapted with permission from Ref [115]. Copyright Springer
Nature.
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Figure 3.14: Calculated HSE06 projected-band structures of 2D (BA)2(MA)n−1GenI3n+1 and 3D
MAGeI3 perovskites, (a) n=1, (b) n=2, (c) (a) n=3, and (d) n=∞, along the Γ(0,0,0)-X(0.5,0,0)-
S(0.5,0.5,0)-Y(0,0.5,0)-Γ(0,0,0)-Z(0,0,0.5)-R(0.5,0.5,0.5) path through the first Brillouin zone. The
Fermi level is set to be zero and indicated by the red horizontal dash line. The relative contribution
of Ge and I are marked by color, in which green (red) corresponds to the state originating from Ge
(I). Reproduced and adapted from [156]. with permission from The Royal Society of Chemistry.

1.52 (bulk) to 2.24 eV (monolayer).[4] Grancini et al. carried out first-principles calculations

for the 2D/3D perovskite interface, (HOOC(CH2)4NH3)2PbI4/(MA)PbI3, and found that at the

(HOOC(CH2)4NH3)2PbI4/(MA)PbI3 junction, there is a 0.14 eV CB upshift which induces a 0.09

eV larger interface gap compared to the 3D bulk, consistent with their experimentally observed 0.13

eV PL blue shift.[139]

In addition to tuning band gaps of 2DHPs through quantum size effects, another common

approach is to adjust compositions of materials. For instance, Lanty et al. found that the band gaps

of mixed halide perovskites, (PEA)2PbZ4(1−x)Y4x (Z, Y = Cl, Br, or I), can be tuned from 2.4 to

3.1 and 3.7 eV through changing compositions of anions. The authors also demonstrated that these

mixed halide perovskites can be considered as psuedobinary alloys like Ga1−xAlxAs, Cd1−xHgxTe

inorganic semiconductors in which the Y and Z atoms are distributed randomly and uniformly

rather than being grouped into some aggregates in the crystal, allowing for a similar model to be

applied to describe the crystal’s excitons.[133] Cortecchia et al. demonstrated bandgap tunability
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of Cu-based perovskites, (MA)2CuClxBr4−x, through Cl/Br ratio modification using ab initio DFT

calculations.[138] The calculated band gaps range from 3.09 to 3.00, to 2.88, and to 2.86 eV for x =

4, 2, 1, and 0.5 respectively. Fraccarollo et al. calculated band gaps of (IMI)SnI4 and (PYR)SnI4

with values around 1.34-1.78 eV using first-principles DFT calculations by including SOC and GW

effects, and attributed the low band gap to the degenerate levels at the bottom of the conduction

bands that are strongly localized in the interlayer space.[215]

3.3.2 Mobility Anisotropy

The behavior of charge carriers in semiconducting materials plays an important role in the

functionality of optoelectronic devices. To ensure efficient charge transfer, the charge carriers should

have high mobility, long lifetimes, and low effective masses. One important character of 2DHPs

is the conductivity anisotropy similar to that of two-dimensional electron gases in semiconductor

heterostructures.[216] This characteristic means that the charge carriers are highly mobile parallel

to the inorganic layers, but immobile in the perpendicular direction across the insulating organic

layers.[130, 123, 116, 138] In the side of theoretical and computational studies, the conductivity

anisotropy is often indicated by the electron and hole effective masses from the first-principles

electronic structure calculations. For instance, in our prior work on (BA)2(MA)n−1PbnI3n+1, our

calculations show low charge carrier effective masses within the 2D plane but extremely large

effective masses in the out-of-plane direction, implying a strong moiblity anistropy.[156] Similar

phenomena also occur in other 2DHPs, such as (BA)2PbnI3n+1,[123] (MA)2Pb(SCN)2I2,[116]

and (MA)2CuClxBr4−x.[217] Figure 3.15 shows crystal structure, Brillouin zone, electronic band

structure, and density of states of the 2DHP (MA)2Pb(SCN)2I2.[130] The flat bottom conduction

band and top valence band along the k-path T-R and Γ-X suggest that the calculated effective

masses for holes and electrons approach infinity, and these two reciprocal paths correspond to the a

direction of the crystal structure in the real space, see Figure 3.15a-c. This implies that the charge

carriers do not travel between the inorganic layers and thus are tightly confined to the 2D inorganic
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Figure 3.15: Structural and electronic properties of orthorhombic (MA)2Pb(SCN)2I2. (a) Crystal
structure viewed along the [001] direction, (b) first Brillouin zone and the k-path used to calculate
electronic band structure, (c) calculated electronic band structure and (d) density of states with the
HSEα=43%+SOC method. Reproduced and adapted with permission from Ref [130]. Copyright
2016 American Chemical Society.

plane, indicating a strong mobility anisotropy. The calculated density of states (DOS) shows that

valence band mostly consists of I 5p and S 3p states while the conduction band mainly consists of
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Pb 6p states, see Figure 3.15d. The calculated effective masses for several 2D perovskite materials

are summarized in Table 3.7.

3.3.3 Defect States

Defects and self-doping can significantly influence the electronic and optical properties

of a semiconductor, including the charge carrier recombination rate, charge transport, and light

absoprtion and emitting.[218, 219] Therefore, the effects of defects and self-doping must be

accounted for to optimize device performance and reproducibility. Liu et al. investigated electronic

activities of defects in 2D perovskite Rb2PbI4 using first-principles calculations.[220] They found

that deep-level defects can form easily at high µI (chemical potential of I) conditions, and this

is significantly different from the case of 3D perovskites in which the deep-level defects are

difficult to form and the dominating defects all have shallow states.[221, 222] Figure 3.16 shows

the calculated electronic levels of point defects. Accordingly, they conclude that defects in 2D

perovskites can be tuned to be less harmful to the electronic properties by adjusting the crystal

synthesis conditions to be Pb-rich and I-poor. In addition, they also found that defects (point

defects, grain boundaries, and edges) are unlikely to cause n-doping as in the 3D system. Booker

et al.’s first-principles calculations indicate that iodide vacancies do not form gap states while

interstitial iodide introduce deep gap states around 0.65 eV above the valence band in the 2DHP

(C6H16N)2PbI4 and (C12H28N)2PbI4.[128] The authors’ results show that the electron transition

energy from the conduction band edge to these localized levels is around 2.1 eV, which is in good

agreement with the white emission at 2.0 eV (625 nm).

3.3.4 Stability

2DHP and quasi-2DHP have demonstrated higher chemical stability than the 3D hybrid

perovskites according to several theoretical studies. In our previous work, we have calculated
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Table 3.7: Calculated effective masses parallel and perpendicular to 2D layer planes in units of the
free electron rest mass, m0.
Compound Type Parallel Perpendicular Ref
(BA)2PbI4 e− 0.082 ∞ [123]
(BA)2(MA)2Pb3I10 e− 0.097 ∞ [123]
(BA)2(MA)3Pb4I13 e− 0.094 ∞ [123]
(BA)2PbI4 h+ 0.144 ∞ [123]
(BA)2(MA)2Pb3I10 h+ 0.141 ∞ [123]
(BA)2(MA)3Pb4I13 h+ 0.153 ∞ [123]
(MA)2CuCl4 e− 0.31 0.58 [138]
(MA)2CuCl2Br2 e− 0.51 1.86 [138]
(MA)2CuClBr3 e− 0.57 2.39 [138]
(MA)2CuCl0.5Br3.5 e− 0.52 4.04 [138]
(MA)2CuCl4 h+ 1.71 ∞ [138]
(MA)2CuCl2Br2 h+ 2.67 ∞ [138]
(MA)2CuClBr3 h+ 1.51 ∞ [138]
(MA)2CuCl0.5Br3.5 h+ 1.55 ∞ [138]
(PEA)2PbI4 e− 0.278 [175]
(PEA)2(MA)Pb2I7 e− 0.198 [175]
(PEA)2(MA)2Pb3I10 e− 0.214 [175]
(PEA)2PbI4 h+ 0.604 [175]
(PEA)2(MA)Pb2I7 h+ 0.391 [175]
(PEA)2(MA)2Pb3I10 h+ 0.232 [175]
(MA)2Pb(SCN)2I2 VBM 0.2 [116]
(MA)2Pb(SCN)2I2 CBM 0.14 [116]

T-Z [010] T-Y [001]
(MA)2Pb(SCN)2I2 e− 0.88 0.34 ∞ [130]
(MA)2Pb(SCN)2I2 e− 0.37 0.58 ∞ [172]
(MA)2Pb(SCN)2I2 e−(SOC) 0.17 0.2 ∞ [172]
(MA)2Pb(SCN)2I2 h+ 0.99 2.36 ∞ [130]
(MA)2Pb(SCN)2I2 h+ 1.61 1.43 ∞ [172]
(MA)2Pb(SCN)2I2 h+(SOC) 0.36 0.45 ∞ [172]
(BA)2GeI4 e− 0.19 0.18 [156]
(BA)2(MA)Ge2I7 e− 0.23 0.14 [156]
(BA)2(MA)2Ge3I10 e− 0.22 0.13 [156]
(MA)GeI3 e− 0.22 0.20 [156]
(BA)2GeI4 h+ 0.28 0.27 [156]
(BA)2(MA)Ge2I7 h+ 0.34 0.31 [156]
(BA)2(MA)2Ge3I10 h+ 0.27 0.26 [156]
(MA)GeI3 h+ 0.28 0.31 [156]
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Figure 3.16: Calculated electronic levels of point defects in 2D perovskite Rb2Pb2I4. The long and
short bars denote two degenerate states and a single state, respectively. The blue and red colors
indicate spin polarized states; and the occupied states are marked by arrows. Reproduced and
adapted with permission from Ref [220]. Copyright 2016 American Chemical Society.

decomposition energies of (BA)2(MA)n−1PbnI3n+1 ranging from 1.13 eV to 0.69 eV to 0.62 eV to

0.23 eV for n = 1, 2, 3, and ∞ respectively, demonstrating much higher decomposition energies and

stability at lower n values.[156] Ganose et al.’s first-principles calculations show that the 2D layered

compound (MA)2Pb(SCN)2I2 is thermodynamically stable with respect to phase separation.[116]

Quan et al. reported that the quasi-2DHP films exhibit improved stability while retaining the high

performance of the conventional 3D perovskites using DFT calculations.[223] Figure 3.17 shows

the evolution of materials stability and formation energy of (C8H9NH3)2(CH3NH3)n−1PbnI3n+1 as

a function of n. Stoumpos et al. reported the large-scale synthesis, crystal structure, and optical

characterization of layered perovskite (BA)2(MA)n−1PbnI3n+1, and found that the noncentrosym-

metric structures of these compounds are energetically more favorable than the centrosymmetric

structures from first-principles density functional theory calculations.[123]
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Figure 3.17: Evolution of materials stability as a function of n for the 2DHP
(C8H9NH3)2(CH3NH3)n−1PbnI3n+1. Reproduced and adapted with permission from Ref [223].
Copyright 2016 American Chemical Society.

3.4 Summary and Outlook

This review covered the main themes of current research in the area of 2D hybrid perovskites.

Although these materials have a variety of chemical compositions, they all demonstrate similar

properties and synthesis routes. The most common synthesis route involves dissolving the perovskite

precursors in DMF then spin-coating the solution onto a substrate. Their structure consists of

distorted inorganic layers separated by large organic molecules and kept together by van der waals

forces. This structure influences the perovskite’s electronic properties and improves stability, even

in the presence of water. The bandgap energies tend to be larger in fewer layer systems than in the

3D perovskite. The dielectric constant and charge carrier mobility are confined to the inorganic

layers. Device performance is not yet comparable to that of the 3D perovskite. Theoretical studies

are in good agreement with the experimental results and also provide insight into the anisotropic

behavior of excitons, the dielectric constant, and charge carrier mobility in the material.

2D perovskites offer a promising solution to the stability issue in their 3D counterparts,

however there is still much more work needed to improve the efficiency to allow them to be viable

alternatives to 3D perovskite solar cells. There are some topics that could use greater clarity in the

literature. Some possible work could include developing methods to shift the bandgap from indirect

to direct in certain types of 2D perovskites or performing further study on how the distortion of the
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Figure 3.18: (Left) Electronic band structure of the layered HOP ([pFC6H5C2H4NH3]2PbI4), (a)
without and (b) with SOC at the GGA level of theory with the ABINIT code.[231] Energy levels are
referenced to the valence band maximum. (Right) General schematic representations of a layered
HOP electronic band diagram without and with SOC (∆SO). ∆cr represents the anisotropy of the
crystal field. This panel includes the (a) real and (b) imaginary parts of the complex spinorial
components of the first and second CBM states with spin-up component on top of the spin-down
component. Reproduced and adapted from Refs [231], and [232]. Copyright 2015 American
Chemical Society.

inorganic layers affects electronic properties. Some more clarity could also be provided regarding

the origin of trap states in low dimensionality perovskites. Due to the availability of low-temperature

thin film deposition methods,[224, 225, 4] hybrid perovskites can be applied in flexible electronic

devices.[226, 227, 90, 228, 229] Vassilakopoulou et al. embedded a mix of 2D and 3D perovskites

into porous silica matrices to form flexible photoluminescent films, whose photoluminescence was

not affected after prolonged exposure to water.[230] Aside from this example, reports of flexible 2D

perovskite devices are sparse in the literature and remain an open area for exploration.

Beyond the DFT studies performed thus far, a semi-empirical solid state physics approach

can overcome the limitations of DFT techniques in providing predictions and comparisons with

experimentally derived physical parameters. From a solid state physics approach to DFT modeling,

Even et al. suggest a treatment of layered perovskites as composite materials with very weak

interactions between the inorganic layers, with a reconstruction of the whole Hartree potential

profile by pieces. This allows complete conduction and valence band alignments of the organic
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and inorganic layers and leads to a confinement potential for charge carriers in the inorganic layer.

They also found that SOC leads to a nondegenerate state at the CBM and band dispersion at the

CBM and VBM, which corresponds to a favorable configuration for optical activity. A comparison

of electronic structures with and without SOC in DFT calculations is shown in Figure 3.18. They

found that the optical process is governed by three active Bloch states at the Γ point of the reduced

BZ (two Bloch states for the CBM and one for the VBM) with a reverse ordering compared

to anisotropically bonded semiconductors. They propose that transverse electric optical activity

indicates that light is absorbed at the bandgap energy only for an electrical polarization parallel

to the layer.[232] Pedesseau et al. use solid state physics concepts and DFT simulation tools to

perform a comparison between 3D and 2D hybrid perovskites. They also introduce the tetragonal

D4h symmetry for 2D perovskites, allowing for an analysis of the effects of brillouin zone folding

on spin orbit coupling (SOC), electronic band structures, and loss of inversion symmetry.[233]

Traore et al. provide an computationally affordable first-principles method to calculate charge

carrier confinement potentials by conceptualizing 2D perovskites as composite materials consisting

of pseudoinorganic and -organic components.[234]

Chapter 3, in full, is currently being prepared for submission for publication of the material.

Wong, Joseph; Yang, Kesong. The thesis author was the primary investigator and author of this

material.
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Chapter 4

Configurational Entropy Analysis of

Y-Stabilized Zirconia Grain Boundaries

4.1 Introduction

Yttria-stabilized zirconia (YSZ) is widely used as a thermal barrier coating (TBC) in gas

turbine engines because of its exceptional material properties such as low thermal conductivity,[235,

236] chemical inertness,[237] phase stability at room and operational temperature,[238, 239] and a

close thermal expansion match with the typical nickel-base superalloy substrate.[240] In recent years,

however, the YSZ-based TBC in gas turbine engines has been exposed to a new challenge in the form

of dust and sand ingestion. It is believed that the sand enters the combustion chamber and attacks the

integrity of the TBC through a combination of physical and chemical effects.[241] The mechanisms

behind the chemical infiltration may involve impurity segregation to grain boundaries (GBs) and

the formation of siliceous phases,[242] impurity-silicates,[241] and oxide-silicon interfaces.[243]

These combined effects degrade and ultimately destroy the capacity of the TBC to protect the

turbine blades from the heat of the combustion chamber.[244] Closely involved in this process is

the formation of calcium–magnesium–alumino silicate (CMAS). It is generally believed that the

molten CMAS infiltrates the TBC upon contact at GBs,[245, 246, 247] absorbing both ziconia
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and yttira and later diffusing away from GBs, and subsequently attacks the platinum-modified

nickel aluminide bond coat at high temperature (over 1250° C).[244, 248, 249, 250] The CMAS

infiltration through GBs implies that the impurities tend to aggregate at grain boundaries rather than

internal bulk region. [251, 252, 253] Therefore, to understand the failure mechanism and damage

propagation of TBCs, it is essential to investigate the impurity segregation behavior at YSZ GBs.

Significant efforts have been made to study impurity segregation in zirconia grain boundaries.

Matsuda et al. used secondary ion mass spectrometry (SIMS) to study Ca diffusion in polycrystalline

10 mol% cubic YSZ (c–10YSZ), and observed no segregation of Ca to GBs.[254] However, a

subsequent SIMS analysis by Kowalski et al. in c–8YSZ found a strong segregation tendency, in

which Ca was almost exclusively observed at GBs. [255] Guo et al. studied the segregation behavior

of trace SiO2 in Al2O3-doped c–9YSZ samples containing both amorphous and crystalline GBs

using electron probe microanalysis (EPMA) and energy-dispersive X-ray spectroscopy (EDS).[256]

Interestingly, despite the presence of trace SiO2 in their reaction powders, the authors could detect

Si only within amorphous GBs rather than crystalline GBs. In 15 mol% CaO-stabilized cubic

zirconia, Aoki et al. found that the segregation behavior of Si impurities depends on the grain

size, with nearly zero segregation in the samples with the smallest grain sizes of 0.14 Âţm.[257]

These results are surprising in light of the fact that the bulk solubility of SiO2 in stabilized zirconia,

roughly 0.0025 mol%, [257] is exceedingly low compared to that of CaO ( 19 mol%).[258] This

is because, in principle, the segregation tendency is greater for the impurity with lower bulk

solubility.[259, 260, 261] In short, these experimental results suggest that grain size and GB

crystallinity have significant effects on the segregation tendencies of impurities, even those with

low bulk solubility.

Despite substantial experimental study, a complete understanding of impurity segregation

in YSZ remains elusive. This is primarily due to a lot of variations in experimental setup such as

grain size, impurity concentration, and stabilizing oxides, which adds a certain level of complexity

to the computational and theoretical studies. In fact, prior theoretical studies have generally been

limited to studying the distribution of intrinsic defects in YSZ, such as yttrium substitutions (YZr)
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or oxygen vacancies (VO). For example, Lee et al. reported that both YZr and VO show a modest

segregation tendency to the Σ 5 (310)/[001] GB of c–10YSZ using a hybrid Monte CarloMolecular

Dynamics simulation. [262] A later experimental and theoretical work found that both YZr and

VO segregate to the Σ 13 (510)/[001] GB, but that VO segregates more strongly.[263] Nevertheless,

few theoretical studies particularly at the quantum mechanics level have examined the distribution

of extrinsic substitutional impurities in zirconia or YSZ systems. Therefore, a comprehensive

theoretical study of impurity segregation is essential to fundamental understanding of impurity

segregation in YSZ and to the further development of hot-corrosion-resistant YSZ-based TBCs.

While density functional theory (DFT) is currently the most successful approach to compute

the total energy and electronic structure of matter, no DFT study of the YSZ GB yet exists. This is

because YSZ is a chemically-disordered material with respect to the distribution of oxygen vacancies

(VO) and yttrium dopants (YZr).[264] This disorder, combined with high doping concentrations of

about 6-10 mol%, complicates first-principles calculations via DFT, and thus prior DFT calculations

of YSZ have generally been limited to relatively simple bulk structures. For example, thanks to

the use of a 96-atom bulk supercell model of YSZ, it was possible to evaluate the stability of 453

unique structures from first-principles DFT calculations. [265]

In this work, we used first-principles DFT calculations to examine Σ 5 (310)/[001] symmetric

tilt YSZ GBs, as well as two closely related GBs of pristine zirconia and hafnia, and carried out

a comprehensive analysis of impurity segregation in these systems. To perform the impurity

segregation analysis, we first examined all microstate configurations of the YSZ GBs to determine

possible ground state GB structures. We then calculate the configurational entropy to determine

which of these possible ground states are statistically probably to exist. Below we discuss the thesis

author’s contribution to this work, namely the determination of ground state configurations and

the calculation of configurational entropy of the YSZ system. The primary author of this work, Dr.

Mazier Behtash, contributed a majority of the remaining work on impurity segregation in YSZ and

GBs of zirconia and hafnia.
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4.2 Computational Details and Structural Models

DFT calculations were carried out using the Vienna ab initio Simulation Package (VASP).

[266] The projector augmented wave (PAW)[39] pseudopotentials were employed for electron-ion

interactions. The generalized gradient approximation (GGA) parametrized by Perdew-Burke-

Ernzerhof (PBE) [40] was used to describe the electron exchange-correlation potentials. A 400 eV

cut-off energy for the plane wave basis set was used during structural relaxation, and a 2 x 2 x 1

Γ-centered k-point mesh is well-converged for self-consistent calculations. Subsequent single-point

total energy calculations were carried out using the Gaussian method with a 4 x 4 x 1 Γ-centered

k-point mesh, with a 480 eV cut-off energy for the plane wave basis set. All the atomic positions

were relaxed until all components of the residual forces were smaller than 0.03 eV/Å, and the

convergence threshold for self-consistent-field iteration was set to 10−5 eV. The Σ 5 (310)/[001]

GB was selected for this study due to its relatively low energy and high symmetry, enabling the

construction of large GB models suitable for impurity segregation analysis via DFT. Several prior

MD studies have considered the Σ 5 (310)/[001] for these reasons. [262, 267] The lattice constants

of our 240 atom ZrO2 GB model are 5.14 Å, 8.13 Å, and 65.02 Åfor a, b, and c respectively.

We generated Σ 5 (310)/[001] symmetric tilt GBs of cubic ZrO2 from an optimized unit cell.

he optimized lattice parameter of the ZrO2 unit cell is 5.14 Å, consistent with the bulk experimental

value of 5.10 Å.[268] We build c–YSZ Gs from this pristine ZrO2 GB and introduce a suitable

number of VO and YZr, making the composition comparable with the experimental case. Considering

the intrinsic symmetry of the periodic ZrO2 GB model, we introduced two Y atoms and one oxygen

vacancy in one half region of one ZrO2 grain, and then applied mirror symmetry operation to get

the same distribution of Y atoms and oxygen vacancy in the other grain. That is, substituting two Zr

atoms with two Y atoms from 20 cation sites and removing one O atom from 40 anion sites leads to

a total number of all the possible structural configurations of C2
20 x C1

40 =7600, which corresponds

to a 5 mol% Y2O3, or 5YSZ.

To have a statistical analysis of the energetics of the 7600 configurations, we carried out
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Figure 4.1: Energy distribution of 7600 structural configurations of 5YSZ GB model. All these
structures are relaxed by empirical potential calculations.

empirical-potential calculations to relax all the 7600 structures using General Utility Lattice Program

(GULP).[269] The related force field parameters were adopted from Ref.[270] The calculated

energies are shown in Figure 4.1, which follows a Gaussian distribution with a spanning of about

13 eV. This result is in good agreement with prior empirical-potential calculations on the supercell

model of 8YSZ bulk material.[271]

Next, we analyzed the contributions of vibrational and configurational entropies of the

7600 configurations. The vibrational entropy at 1000K was estimated from the phonon spectra

calculated in GULP. As discussed below, the vibrational entropy will be considered by adding their

contributions in the total energy of each configuration for estimating the configurational entropy,

following the same approach in Dong’s et al. simulation work.[271] The configurational entropy

term, ST, can be calculated with the Boltzmann entropy formula,

S =−kB

W

∑
i=1

Pi lnPi, (4.1)

where kB is the boltzmann constant, W is the number of configurations, and Pi is the probability of
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the system existing in microstate i. We consider our system to be a canonical ensemble, where the

system is in thermal equilibrium with a heat bath at a constant temperature. In a canonical ensemble,

Pi can be calculated from

Pi =
gie−∆E/kBT

∑
W
i=1 gie−∆E/kBT

, (4.2)

where gi is the degeneracy of microstate i according to structural symmetry, ∆E is the microstate

energy difference relative to the lowest energy configuration, and T is the temperature.[272] ∆E is

obtained directly from optimized structures, and T is set to 1000K (about 1/3 of the melting point of

ZrO2).[271]

4.3 Results and Discussion

From 4.1 and 4.2, we calculated the configurational entropy term of our 7600 YSZ grain-

boundary structures to be 0.0165 eV. This value is less than the results of Dong et al. who calculated

a configurational entropy term of 0.08 eV because our 5YSZ system has far fewer possible con-

figurations compared to their 100,000 randomly sampled 8YSZ configurations. By adding the

contributions of vibration entropy to the total energy, we re-calculated the configurational entropy to

be 0.02 eV. This indicates that only states within about 0.02 eV above the lowest energy are present

at 1000K. In other words, only few structures with total energy lying at the very left end of the

distribution in Figure 4.1 can be formed, and interestingly, the Y atoms are near the GB core in all

these structures. Therefore, the YSZ GB structure with the lowest energy was selected for studying

the impurity segregation behavior using DFT calculations, see its local structures from different

view angles in Figure 4.2
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Figure 4.2: Schematic illustrations of local structures of YSZ GB from different view angles.

4.4 Conclusion

In summary, we have performed a statistical analysis of 7600 YSZ GB configurations from

empirical-potential calculations. From vibrational and configurational antropy calculations of these

microstates at 1000K, we determined that only states within about 0.02 eV above the lowest energy

are present at 1000K. These states correspond to only a few structures with total energy lying at

the lowest energy point of the total energy distribution. We found that these states contain Y atoms

near the GB core. Knowing only these states are probably to exist, we were able to study the defect

segregation tendencies in Σ 5 (310)/[001] YSZ GB structures.

Chapter 4, in part, is a reprint of the material as it appears in the Journal of the European

Ceramic Society, 2019. Behtash, Mazier; Wong, Joseph; Jiang, Sicong; Luo, Jian; Yang, Kesong.

Dr. Mazier Behtash was the primary investigator of this material.
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Chapter 5

AIMSGB: Usage Introduction

5.1 Introduction

Grain boundaries are a type of interface that has importance in material properties. Of all

possible grain boundaries, the coincidence site lattice (CSL) grain boundary has been the focus of

research attention. The CSL grain boundary contains some atomic sites that coincide with sites of

another grain, forming coincidence sites. These coincidence sites form a supercell called the CSL.

Given the rapid progress of high-throughput computational techniques and materials infor-

matics, an algorithm to produce such CSL grain boundaries in a high-throughput fashion would be

an invaluable asset to grain boundary research. In a previous paper, we provide such an algorithm to

efficiently build a CSL grain boundary called aimsgb.[273] However, we did not provide practical

instructions to apply aimsgb to real use cases. In this work, we strive to fill this gap by providing

detailed documentation on the usage of the aimsgb algorithm.

5.2 Building Procedures

There are five macroscopic degrees of freedom (DOF) required to describe a grain boundary

from crystallography. Three of them are represented by the rotation axis o (two DOFs) and the
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rotation angle θ (one DOF). The remaining two describe the normal n to the grain boundary plane.

The relative orientation between o and n determines the grain boundary type: tilt (o ⊥ n), twist (o ‖

n), and mixed grain boundaries. For our purposes, the necessary parameters can simply be extracted

using aimsgb list or the GBInformation object in the aimsgb python module.

Aimsgb builds grain boundaries according to the following algorithm outline:

(1) Derive the rotation angle from a given rotation axis and Σ value.

(2) Create a rotation matrix from the rotation angle and rotation axis.

(3) Calculate the CSL matrix from the rotation matrix and Σ value.

(4) Use the CSL matrix to generate two grains, and combine them according to a given grain

boundary plane, creating the grain boundary.

The theory behind this algorithm is discussed in greater depth in our previous paper.[273]

The execution of this algorithm for grain boundary modeling can be performed via two approaches:

(1) the command-line and (2) the aimsgb python module.

5.2.1 Command-line

The command-line is advantageous for quick and simple construction of a small number

of grain boundary structures. Grain boundary structures can created following the general syntax:

aimsgb argument [-options]. The argument that must be passed to aimsgb can be one of the

following: (1) list and (2) gb

The list argument is used to generate a table of possible grain boundary parameters for a

particular rotation axis, uvw. These parameters can be passed following the syntax: aimsgb list

rotation-axis [max_sigma]. Figure 5.1 illustrates an example output table of aimsgb list

which contains information regarding rotation angles, θ, grain boundary planes, and the CSL for

each possible sigma value up to max_sigma. By default, max_sigma is set to 30, however a larger

number can be specified to generate information for larger sigma values.

The gb argument is used to generate a file containing the lattice parameters and atomic coor-
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Figure 5.1: Grain boundary information table generated via aimsgb list 001.
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dinates of a grain boundary structure. To generate the grain boundary structure, the rotation axis,

sigma, grain boundary plane, and initial structure file must be passed to aimsgb following the

form: aimsgb gb rotation-axis sigma plane_h plane_k plane_l initial_structure

[-options] [out]. The grain boundary parameters can be obtained from the output of aimsgb

list as shown in Figure 5.1. There are also optional arguments that can be passed to modify the

grain boundary object, such as: (1) ua and ub, (2) dl, (3) t, (4) ad, and (5) fmt.

1. ua and ub specify the size in number of units of grain A and grain B respectively. Figure 5.2

illustrates the differences in a resulting structure when specifying ua and ub.

2. dl enables the deletion of grain A or B’s top or bottom layers. The top and bottom layer

of each grain can be removed following the format, #b#t#b#t, where the first b and t pair

correspond to bottom and top layers of grain A respectively and the second pair to grain B.

Figure 5.3 illustrates resulting structures when specifying varying values for dl.

3. t specifies the tolerance factor used to assign a structure’s layers. Each layer corresponds to a

unique plane along the grain boundary that is parallel to the grain boundary plane. Each of

these layers contains all the atoms in the structure that are within a certain distance specified by

the tolerance factor. By default, t is set to 0.25 Å. In most cases, the default value will suffice,

however there are some cases when changing the tolerance is necessary as shown in Figure

5.4. In this structure, the atoms are slightly distorted from their original positions. When

no layer-wise manipulations are performed, there is no difference in the resulting structure

when the tolerance is changed (Figure 5.4a). However, when layer-wise manipulations are

performed, such as layer deletion, a tolerance value that is too low will assign the distorted

atoms to separate layers, resulting in the structure in Figure 5.4b. Increasing the tolerance to

encompass the nearby atoms will assign the atoms to the correct layers as intended (Figure

5.4c). On the other hand, a tolerance value that is too large can yield unexpected results as in

Figure 5.4d.
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Figure 5.2: Grain boundaries generated using aimsgb gb 001 5 1 2 0 POSCAR_mgo a) -ua 1
-ub 1, b) -ua 1 -ub 2, and c) -ua 2 -ub 1.
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Figure 5.3: Grain boundaries with top or bottom layers removed using aimsgb gb 001 5 1
2 0 POSCAR_mgo -dl a) 0b0t0b0t (default), b) 0b0t0b1t, c) 0b0t1b0t, d) 0b1t0b0t, and e)
1b0t0b0t.
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Figure 5.4: Slightly distorted grain boundaries with one top layer removed using various tolerance
values. a) -t 0.25 (no layer deletion performed), b) -t 0.25 -dl 0b0t0b1t, c) -t 0.5 -dl
0b0t0b1t, d) -t 1.5 -dl 0b0t0b1t

4. ad sets a vacuum thickness in angstroms between the grains at each interface as shown in

Figure 5.5.

5. fmt sets the format for the output file. Possible formats include: poscar (default), cif, cssr,

and json.

5.2.2 Python Module

The python module is useful if constructing a large number of grains or if integrating aimsgb

with another software package. There are three classes defined by aimsgb: (1) the Grain class, (2)

the GrainBoundary class, and (3) the GBInformation class.

The Grain class defines grain objects which inherit methods and properties of the Structure

class from pymatgen. Grain objects can be created via several methods: from_dict, from_file,

from_magnetic_spacegroup, from_sites, from_spacegroup, and from_str. These methods

are documented in detail in pymatgen’s Structure module. Grain objects also contain sev-

eral additional methods which facilitate grain boundary construction: (1) make_supercell, (2)

delete_bt_layer, (3) sort_sites_in_layers, and (4) build_grains.

1. The make_supercell method is similar to pymatgen’s Structure.make_supercell, how-
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Figure 5.5: Grain boundaries generated while specifying the interface distance according to aimsgb
gb 001 5 1 2 0 POSCAR_mgo. a) -ad 0 (default) and b) -ad 0.75

ever the aimsgb version takes extra precaution to ensure the fractional coordinates and lattice

parameters are compatible for grain boundary construction. Like the pymatgen version, it

takes one argument, a scaling matrix in the form of a) a 3x3 scaling matrix defining linear

combinations of the original lattice vectors, (b) a list of 3 scaling factors, or (c) a number by

which to scale all lattice vectors.

2. The delete_bt_layer method deletes the bottom or top layer of the grain. delete_bt_layer

takes one required and two optional arguments: bt, tol, and axis. bt can be the character,

“t” or “b”, referring to the top or bottom layer of the grain. tol refers to the tolerance used

to assign layers (default = 0.25 angstroms). axis refers to the direction along which to count

the layers. The direction can be set to 0 (x), 1 (y), or 2 (z, default). Typically, the normal to

the grain boundary is passed for the axis. The normal to the grain boundary can be obtained

from a grain boundary object’s gb_direction attribute.

3. The sort_sites_in_layers method takes two optional arguments: tol and axis. tol is

the tolerance used to assign layers (default = 0.25 angstroms). axis refers to the direction

along which to count the layers. Generally, the normal to the grain boundary is passed for
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the axis. The normal to the grain boundary can be obtained from a grain boundary object’s

gb_direction attribute.

4. The build_grains method constructs and returns the two grains of a grain boundary by

using the given CSL and the object as an initial structure. build_grains takes two required

arguments and two optional arguments: csl, gb_direction, uc_a, and uc_b. The csl

can be obtained manually from aimsgb list or from the GBInformation.get_gb_info

method.

The GrainBoundary class defines an object containing all the grain boundary parameters

and Grain objects necessary for grain boundary construction. GrainBoundary objects can be

created following the format, GrainBoundary(axis, sigma, plane, initial_structure).

Once a GrainBoundary is created, the grain boundary parameters can be extracted following the

format, GrainBoundary_object.property, where property can be one of the following: (1)

rot_matrix, (2) theta, (3) csl, (4) grain_a, or grain_b. Besides the grain boundary properties,

the GrainBoundary class defines one method: (5) build_gb.

1. The rot_matrix refers to the rotation matrix used to calculate the coincidence site matrix.

2. The theta refers to the rotation angle used to determine the rotation matrix.

3. The csl refers to the CSL matrix.

4. The grain_a and grain_b attributes correspond to the two grain objects used to construct

the grain boundary structure.

5. The build_gb method constructs and returns the grain boundary structure as a grain object. It

takes several optional arguments which perform additional operations on the grain boundary

structure, including: add_if_dist, delete_layer, and tol. These arguments are passed in

the same format as their counterparts in the command-line version of aimsgb.
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Figure 5.6: The simplest example of building a grain boundary from a poscar file.

5.2.3 The GBInformation class

The GBInformation class is useful for extracting grain boundary information automat-

ically, with minimal intervention by the user. GBInformation objects can be instantiated by

passing the rotation axis and max sigma value following the form, GBInformation(axis, sigma,

specific=bool). A bool for specific can be passed to specify if the grain boundary informa-

tion generated is for one specific sigma value or all sigma values up to max_sigma. By default,

specific is set to False. There is one primary method that is defined by the GBInformation class

that is used to extract grain boundary information: (1) get_gb_info.

1. The get_gb_info returns all the information on sigma, rotation angle, grain boundary planes,

and CSL matrix in the form of a dictionary of dictionaries, where each key corresponds to

a sigma value and each value corresponds to the rotation angle, grain boundary planes, and

CSL for a particular sigma value.

All the classes defined by aimsgb can be imported via from aimsgb import ∗. The Lattice

module from pymatgen will also be used to modify lattice parameters in some examples. Figure 5.6

shows the simplest method to build a grain boundary structure. The grain boundary parameters are

used to instantiate a GrainBoundary object. The build_gb method constructs the grain boundary

and returns it as a Grain object and the to method of the Grain object writes the grain object to a

file named “POSCAR”.
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Figure 5.7: Build grain boundaries in order of increasing θ using the GBInformation class: a)
16.26°, b) 22.62°, c) 28.07°, d) 36.87°, and e) 43.6°

Figure 5.7 demonstrates the usage of the GBInformation class to generate grain boundaries

in the order of increasing θ. GBInformation objects are created for Σ values 3-30 and stored in a

dictionary. This dictionary is looped through in order of the smaller θ value for each Σ. In each

loop, the grain boundary parameters are extracted and used to construct a grain boundary object

which is then written to a file.

Figure 5.8 demonstrates a method to progressively increase the number of layer deletions

performed on a grain boundary structure. The string for the delete_layer argument in build_gb

is updated with a larger number with each loop. A GrainBoundary object is created and the

interlayer distance is stored to keep the two grains from moving closer together with each layer
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Figure 5.8: Generate grain boundaries with an increasing number of layer deletions to remove
atoms that are too close together: a) 0b0t0b0t, b) 0b1t0b1t, c) 0b2t0b2t, d) 0b3t0b3t, e) 0b4t0b4t.

deletion. The delete string and the interlayer distance are passed to the build_gb method to

construct the grain boundary and write it to a file. This method is particularly useful for comparing

the results of different layer deletions if the number of layer deletions required is not immediately

obvious.

Figure 5.9 demonstrates the construction of a mixed grain boundary. First, supercells of

tilt and twist grain boundaries are created in preparation for their combination. Next, the lattice

parameters of both supercell Grain objects and their fractional coordinates are updated. Once the

lattice parameters and fractional coordinates are compatible, the two grains are combined to form a

new Grain object containing the mixed grain boundary structure which is then written to a file.

97



Figure 5.9: Building a mixed grain boundary by combining two grain boundary structures.
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5.3 Example Applications

5.3.1 Asymmetric MgO grain boundary

McKenna and Shluger performed first principles calculations of defects near a grain boundary

in MgO.[6] Their initial grain boundary structure is shown in Figure 5.10a. This structure can

easily be replicated using aimsgb. As an initial starting point, a structure can be generated from the

command line, via aimsgb gb 001 5 3 -1 0 POSCAR_mgo. From this initial structure shown in

Figure 5.10b, it can be seen that the interface does not match that of Figure 5.10a. Upon inspection

of the starting structure, it can be seen that 9 layers must be removed to create the correct interface

termination. In addition to the layer deletion, further operations must be performed to obtain the

asymmetric Mg/O interface. Namely, the Mg and O atoms must be switched in one of the grains

to create the asymmetric interface. These operations can be performed via the aimsgb python

module as shown in Figure 5.10 (top). The species are switched by reassigning the specie name

for each atom. The indexes for the Mg and O atoms can be seen by printing the grain_b attribute

of the GrainBoundary object. By performing these operations and adding an interface separation

distance, a structure identical to that of McKenna and Shluger is generated as shown in Figure

5.10c.

5.3.2 Dopants at hybrid perovskite grain boundary

Long et al. performed time-domain atomistic simulations of grain boundaries in the hybrid

perovskite, CH3NH3PbI3 (MAPbI3).[7] Their initial grain boundary structures after relaxation are

shown in Figure 5.11. These structures can be replicated using aimsgb. A starting structure can be

generated via aimsgb 001 5 1 2 0 POSCAR_MAPbI3. From this structure (Figure 5.12a), it can

be seen that the interface does not match that of Figure 5.11b. Because the number of layer deletions

required to replicate the interface is not immediately obvious, a series of structures with varying

layer deletions must be compared. This can be accomplished with the aimsgb python script shown
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Figure 5.10: a) The (310)[001] tilt grain boundary by McKenna and Shluger, b) structure generated
from aimsgb gb 001 5 3 -1 0 POSCAR_mgo, c) identical grain boundary structure generated
from aimsgb script. Adapted and reproduced with permission from [6].
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Figure 5.11: a) bulk MAPbI3, b) Σ5 (012) grain boundary, c) Cl-doped grain boundary. Reproduced
and adapted with permission from [7].

in Figure 5.12 (top). A comparison of these structures identifies 3 top and bottom layer deletions

of both grains is necessary to obtain an interface similar to that of Long et al. as shown in Figure

5.12b. However, this structure has incorrect positions for the atoms in the MA molecule at the

interface. To correct this molecule, the molecule at the interface is deleted and the atoms belonging

to a molecule within the grain containing the same xy coordinates are copied to the interface. This

operation yields the structure shown in Figure 5.10c, an analogous replica of the grain boundary

structure by Long et al.. In addition, two I atoms at the interface can be replaced with Cl to recreate

the Cl-doped structure shown in Figure 5.11c.
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Figure 5.12: Hybrid perovskite grain boundaries generated using aimsgb: a) aimsgb gb 001 5 1
2 0 POSCAR_MAPbI3 b) -dl 3b3t3b3t c) MA cation deleted at the interface and replaced with a
MA cation translated from grain_b d) 2 I atoms replaced with Cl at the interface.
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5.4 Conclusion

Aimsgb is an open-source python package that enables quick and facile construction of grain

boundary structures for first principles calculations via the command-line or through the python

module. Its basis in the pymatgen Structure module enables total control of atomic coordinates and

lattice parameters, allowing the construction of virtually any grain boundary structure. The source

code, additional examples, and a web application are publically available at aimsgb.org.

Chapter 5, in full, is currently being prepared for submission for publication of the material.

Wong, Joseph; Cheng, Jianli; Yang, Kesong. The thesis author was the primary investigator and

author of this material.
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Aditya D. Mohite, Jacky Even, MikaÃńl Kepenekian, and Claudine Katan. Composite nature
of layered hybrid perovskites: Assessment on quantum and dielectric confinements and band
alignment. ACS Nano, 12:3321–3332, 2018.

[235] K. W. Schlichting, N. P. Padture, and P. G. Klemens. Thermal conductivity of dense and
porous yttria-stabilized zirconia. J. Mater. Sci., 36:3003–3010, 2001.

[236] Alexandra Navrotsky. Thermochemical insights into refractory ceramic materials based on
oxides with large tetravalent cations. J. Mater. Chem., 15:1883–1890, 2005.

[237] X.Q. Cao, R. Vassen, and D. Stoever. Ceramic materials for thermal barrier coatings. J. Am.
Ceram. Soc., 24:1–10, 2004.

[238] Robert L. Jones and Derek Mess. Improved tetragonal phase stability at 1400°C with scandia,
yttria-stabilized zirconia. Surf. Coat. Technol., 86-87:94–101, 1996.

[239] R. W. Trice, Y. Jennifer Su, J. R. Mawdsley, K. T. Faber, A. R. De Arellano-López, Hsin
Wang, and W. D. Porter. Effect of heat treatment on phase stability, microstructure, and
thermal conductivity of plasma-sprayed ysz. J. Mater. Sci., 37:2359–2365, 2002.

[240] M. J. Stiger, N. M. Yanar, F. S. Pettit, and G. H. Meier. Thermal barrier coatings for the 21st
century. Z. Metall, 90:1069–1078, 1999.

[241] Smialek J. I. The chemistry of saudi arabian sand: A deposition problem on helicopter
turbine airfoils. Number 105234. NASA Technical Memorandum, 1991.

[242] Jong-Heun Lee, Toshiyuki Mori, Ji-Guang Li, Takayasu Ikegami, John Drennan, and Doh-
Yeon Kim. Scavenging of siliceous grain-boundary phase of 8-mol%-ytterbia-stabilized
zirconia without additive. J. Am. Ceram. Soc., 84:2734–2736, 2001.

[243] Giacomo Giorgi, Anatoli Korkin, and Koichi Yamashita. Zirconium and hafnium oxide
interface with silicon: Computational study of stress and strain effects. Comput. Mater. Sci.,
43:930–937, 2008.

[244] R. L. Jones. Some aspects of the hot corrosion of thermal barrier coatings. J. Therm. Spray
Technology, 6:77–84, 1997.

[245] F.H. Stott, D.J. de Wet, and R. Taylor. Degradation of thermal-barrier coatings at very high
temperatures. MRS Bulletin, 19:46–49, 1994.

[246] Stephan Krämer, James Yang, Carlos G. Levi, and Curtis A. Johnson. Thermochemical
interaction of thermal barrier coatings with molten cao–mgo–Al2O3–SiO2 (cmas) deposits. J.
Am. Ceram. Soc., 89:3167–3175, 2006.

124



[247] Jing Wu, Hong bo Guo, Yu zhi Gao, and Sheng kai Gong. Microstructure and thermo-
physical properties of yttria stabilized zirconia coatings with cmas deposits. J. Eur. Ceram.
Soc., 31:1881–1888, 2011.

[248] C. Mercer, S. Faulhaber, A.G. Evans, and R. Darolia. A delamination mechanism for thermal
barrier coatings subject to calcium–magnesium–alumino–silicate (cmas) infiltration. Acta
Mater., 53:1029–1039, 2005.

[249] Xi Chen. Calcium–magnesium–alumina–silicate (cmas) delamination mechanisms in eb-pvd
thermal barrier coatings. Surf. Coat. Technol., 200:3418–3427, 2006.

[250] R. Wellman, G. Whitman, and J.R. Nicholls. Cmas corrosion of eb pvd tbcs: Identifying the
minimum level to initiate damage. Int. J. of Refract. Met. Hard Mater., 28:124–132, 2010.

[251] R. M. Latanision and H. Opperhauser. The intergranular embrittlement of nickel by hydrogen:
The effect of grain boundary segregation. Metall. Trans., 5:483–492, 1974.

[252] H. Erhart and H. J. Grabke. Equilibrium segregation of phosphorus at grain boundaries of
fe–p, fe–c–p, fe–cr–p, and fe–cr–c–p alloys. Met. Sci., 15:401–408, 1981.

[253] Masatake Yamaguchi, Motoyuki Shiga, and Hideo Kaburaki. Grain boundary decohesion by
impurity segregation in a nickel-sulfur system. Science, 307:393–397, 2005.

[254] M Matsuda, J Nowotny, Z Zhang, and C.C Sorrell. Lattice and grain boundary diffusion of
ca in polycrystalline yttria-stabilized ZrO2 determined by employing sims technique. Solid
State Ion., 111:301–306, 1998.

[255] K. Kowalski, A. Bernasik, and A. Sadowski. Diffusion of calcium in yttria stabilized zirconia
ceramics. J. Eur. Ceram. Soc., 20:2095–2100, 2000.

[256] Xin Guo, Chao-Qun Tang, and Run-Zhang Yuan. Grain boundary ionic conduction in
zirconia-based solid electrolyte with alumina addition. J. Eur. Ceram. Soc., 15:25–32, 1995.

[257] Makoto Aoki, Yet-Ming Chiang, Igor Kosacki, L. Jong-Ren Lee, Harry Tuller, and Yaping
Liu. Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J.
Eur. Ceram. Soc., 79:1169–1180, 1996.

[258] Y. Oishi and H. Ichimura. Grain–boundary enhanced interdiffusion in polycrystalline cao–
stabilized zirconia system. J. Chem. Phys., 71:5134–5139, 1979.

[259] E.D. Hondros and M.P. Seah. Grain boundary activity measurements by auger electron
spectroscopy. Scr. Metall. Mater., 6:1007–1012, 1972.

[260] M. P. Seah, E. D. Hondros, and Anthony Kelly. Grain boundary segregation. Proc. R. Soc.
Lond. A Mater., 335:191–212, 1973.

[261] C. L. Briant. On the chemistry of grain boundary segregation and grain boundary fracture.
Metall. Trans. A, 21:2339–2354, 1990.

125



[262] Hark B. Lee, Friedrich B. Prinz, and Wei Cai. Atomistic simulations of grain boundary
segregation in nanocrystalline yttria-stabilized zirconia and gadolinia-doped ceria solid oxide
electrolytes. Acta Mater., 61:3872–3887, 2013.

[263] Jihwan An, Joong Sun Park, Ai Leen Koh, Hark B. Lee, Hee Joon Jung, Joop Schoonman,
Robert Sinclair, Turgut M. Gür, and Fritz B. Prinz. Atomic scale verification of oxide-ion
vacancy distribution near a single grain boundary in ysz. Sci. Rep., 3:2680EP–, 2013.

[264] David R. Clarke and Simon R. Phillpot. Thermal barrier coating materials. Mater. Today,
8:22–29, 2005.

[265] A. Predith, G. Ceder, C. Wolverton, K. Persson, and T. Mueller. Ab initio prediction of
ordered ground-state structures in ZrO2-Y2O3. Phys. Rev. B, 77:144104, 2008.

[266] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and
semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6:15–50, 1996.

[267] Craig A.J Fisher and Hideaki Matsubara. Molecular dynamics investigations of grain
boundary phenomena in cubic zirconia. Comput. Mater. Sci., 14:177–184, 1999.

[268] I. A. El-Shanshoury, V. A. Rudenko, and I. A. Ibrahim. Polymorphic behavior of thin
evaporated films of zirconium and hafnium oxides. J. Am. Ceram. Soc., 53:264–268, 1970.

[269] Julian D. Gale and Andrew L. Rohl. The general utility lattice program (gulp). Mol. Simul.,
29:291–341, 2003.

[270] Matthew O. Zacate, Licia Minervini, Daniel J. Bradfield, Robin W. Grimes, and Kurt E.
Sickafus. Defect cluster formation in M2O3-doped cubic ZrO2. Solid State Ion., 128:243–254,
2000.

[271] Yanhao Dong, Liang Qi, Ju Li, and I-Wei Chen. A computational study of yttria-stabilized
zirconia: I. using crystal chemistry to search for the ground state on a glassy energy landscape.
Acta Mater., 127:73–84, 2017.

[272] Kesong Yang, Corey Oses, and Stefano Curtarolo. Modeling off-stoichiometry materials
with a high-throughput ab-initio approach. Chem. Mater., 28:6484–6492, 2016.

[273] Jianli Cheng, Jian Luo, and Kesong Yang. Aimsgb: An algorithm and open-source python
library to generate periodic grain boundary structures. Comput. Mater. Sci., 155:92–103,
2018.

126


	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Thesis
	Surface Energy of Full Heuslers
	Introduction
	Computational Details
	Surface Structure
	Surface Energy Calculation

	Results and Discussion
	Surface Energy Data
	(100) Surface Orientation
	(110) Surface Orientation
	(111) Surface Orientation

	Conclusion

	Machine Learning Analysis of Hybrid Perovskites
	Introduction
	Computational Details
	Results
	Formation Energy Feature Importances and Model Accuracy
	Band Gap Feature Importances and Model Accuracy
	Effective Mass Feature Importances and Model Accuracy

	Conclusion

	Literature Review of 2D Hybrid Perovskites
	Introduction
	Experimental Research
	Preparation
	Characterization
	Device Performance

	Theoretical Research
	Tunable Band Gaps
	Mobility Anisotropy
	Defect States
	Stability

	Summary and Outlook

	Configurational Entropy Analysis of Y-Stabilized Zirconia Grain Boundaries
	Introduction
	Computational Details and Structural Models
	Results and Discussion
	Conclusion

	AIMSGB: Usage Introduction
	Introduction
	Building Procedures
	Command-line
	Python Module
	The GBInformation class

	Example Applications
	Asymmetric MgO grain boundary
	Dopants at hybrid perovskite grain boundary

	Conclusion

	Bibliography



