
UC Irvine
UC Irvine Previously Published Works

Title
Kinetics-Based State Definitions for Discrete Binding Conformations of T4 L99A in MD via 
Markov State Modeling.

Permalink
https://escholarship.org/uc/item/0p4788g6

Journal
Journal of chemical information and computer sciences, 64(23)

Authors
Zhang, Chris
Osato, Meghan
Mobley, David

Publication Date
2024-12-09

DOI
10.1021/acs.jcim.4c01364
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0p4788g6
https://escholarship.org
http://www.cdlib.org/


Kinetics-Based State Definitions for Discrete Binding 
Conformations of T4 L99A in MD via Markov State Modeling

Chris Zhang†, Meghan Osato‡, David L. Mobley*,†,‡
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Abstract

As a model system, the binding pocket of the L99A mutant of T4 lysozyme has been the subject 

of numerous computational free energy studies. However, previous studies have failed to fully 

sample and account for the observed changes in the binding pocket of T4 L99A upon binding of 

a congeneric ligand series, limiting the accuracy of results. In this work, we resolve the closed, 

intermediate and open states for T4 L99A previously reported in experiment in MD and establish 

definitions for these states based on the dynamics of the system. From this analysis, we arrive at 

two primary conclusions. Firstly, assignment of simulation trajectories into discrete states should 

not be done simply based on RMSD to crystal structures as this can result in misassignment of 

states. Secondly, the different metastable conformations studied here need to be carefully treated, 

as we estimate the timescales for conformational interconversion to be on the order of 102 to 103 

ns – far longer than timescales for typical binding calculations. We conclude with a discussion on 

the need to develop enhanced sampling methods to generally account for significant changes in 

protein conformation due to relatively small ligand perturbations.

Graphical Abstract

We map the discrete states of the T4 L99A binding pocket onto a 2D projection using the slowest 

motions of the system.
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Introduction

Early stage drug discovery is an important and painstaking process. Identification and 

validation of compounds in pre-clinical trials span many years with thousands of potential 

candidates whittled down to a single approved drug.1,2 Modern developments to in silico 
methods seek to remedy the time and cost drain of early stage discovery, providing 

information on ligand properties without the need for time- and resource-intensive 

experiments.3 In particular, relative binding free energy (RBFE) calculations have been 

widely adopted due to their ability to provide thermodynamic information on potential 

drug candidates while only requiring simulation data generated from molecular dynamics 

(MD).4–7

The lysozyme of the T4 bacteriophage serves as an ideal test system for binding free energy 

calculations. A unique leucine to alanine mutation (L99A) creates a solvent-inaccessible 

and virtually apolar binding pocket with high binding rates for small, organic molecules. 

The properties of the binding pocket prevent motion of bulk water in and out of the 

binding pocket, decreasing computational cost and increasing the ease of performing RBFE 

calculations.7–9 However, when bound to a congeneric series of alkyl benzenes, the T4 

L99A binding pocket is experimentally observed to adopt three discrete conformations 

(Figure 1), each with increasingly more area open to bulk solvent.10 The emergence of 

several discrete binding pocket states upon binding of congeneric ligands has been observed 

in other systems as well,10 suggesting that many protein binding pockets may undergo 

significant changes for even relatively small ligand perturbations.

Prior investigations into simulating congeneric series of alkyl benzene ligands bound to 

T4 L99A have shown that choice of protein starting conformation impacts the protein 

conformations sampled in MD.11 In particular, Bradford et al. noted that high-energy 

barriers separate the distinct conformational states of the T4 L99A F-helix, requiring 

additional simulation time or enhanced sampling techniques to overcome.12 While 

RBFE calculations in principle capture protein conformational changes if the underlying 

simulations are run long enough, these conformational changes have often not been 

thoroughly assessed in prior studies on this system.11 Interconversion between binding 

pocket states is slow, requiring significant simulation time to capture even a single event. 
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Improving RBFE calculations may require knowledge of the conformational changes of a 

system and their relative timescales, which is often difficult to define and sufficiently sample 

in the course of MD timescales typically used for these calculations.5

Building Markov state models (MSMs) can lead to better understanding of the 

conformational states of a system.13–15 MSMs allow for the construction of a transition 

probability matrix for a system at equilibrium, which can be used to obtain the relative 

populations of conformational states and the transition timescales between them.16,17 This 

can be accomplished by running short MD simulations of a system in replicate, decreasing 

overall wall clock time compared to running a single long trajectory. To build an MSM, 

relevant features of the system are selected and transformed using time-lagged independent 

component analysis (TICA) to resolve coordinates corresponding to the slowest motions 

of the system.18 Features can be selected using known information of a biological system, 

using common elements such as torsional angles or pairwise distances among backbone 

atoms, or using methods which measure the quantity of kinetic variance for features.13,19,20 

From there, a set of metastable states can be identified by clustering along the TICA space. 

A transition probability matrix can be calculated by estimating the number of transitions 

between metastable states at some fixed lag time, τ.

For a transition matrix constructed under a specific set of conditions, the eigenvector 

corresponding to the largest eigenvalue of the transition matrix is equal to one and describes 

the stationary distribution of the system. Sorting the remaining eigenvalues of the transition 

matrix in descending order, the corresponding eigenvectors describe the subsequent slowest 

motions of the system.16 The timescale for each slow motion, also known as the implied 
timescale, can be calculated as:

tn = −τ
lnλn

(1)

where is tn is the nth implied timescale of the system, τ is the MSM lag time and λn is the nth 

largest eigenvalue of the transition matrix.21

Slow motions for a given system are found by evaluating plots of the implied timescales 

of a system as a function of selected lag times. Processes with timescales shorter than the 

lag time are not considered slow motions and cannot be resolved by the MSM. The number 

of metastable states for a system can be selected based on the number of slow motions in 

the system, and validated using the Chapman-Kolmogorow (CK) test to ensure the MSM is 

Markovian.19

In this study, we seek to capture transitions among the experimentally observed 

conformational states of the T4 L99A F-helix and make order of magnitude estimates for 

the timescales of these transitions, to help guide future binding studies and other research. 

We begin by defining the discrete conformational states of the T4 L99A F-helix based 

on the slow dynamics of the system. Using Markov state models (MSMs), we estimate 

the timescales for transitions between discrete states in MD. Furthermore, we show how 
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defining metastable states of a system from the slowest motions of the system results in 

more interpretable and clearly separated states compared to using RMSD to experimental 

crystal structures. Our approach demonstrates how changes in protein conformation for the 

T4 L99A system are not observed on MD timescales typical for binding studies. Thus, 

there is a need to apply Markov state modeling to identify potential changes in protein 

conformation, and potentially the need for future binding studies to employ enhanced 

sampling techniques or alternate approaches to carefully treat these conformational changes.

Methods

Different simulated systems.

In this study, we sought to better understand the closed, intermediate and open states 

originally defined by Merski et al. and use crystal structures provided in that manuscript 

as our starting structures for MD.10 The authors reported the structures for a number of 

congeneric ligands bound to T4 L99A and the proportion of observed electron density 

occupied by the closed, intermediate and open states for each system. We took the 

ligand-bound system with the highest relative population for a given discrete state as the 

representative starting structure of that state in this study. Using this methodology, we 

arrived at the structure of benzene bound to T4 L99A (PDB ID: 4w52) as our starting 

structure for the closed state, butylbenzene bound to T4 L99A (PDB ID: 4w57 using 

alternate location A for the sidechains and conformer A for the ligand) for the intermediate 

state and hexylbenzene bound to T4 L99A bound (PDB ID: 4w59 using alternate location 

A for the sidechains and conformer A for the ligand). We initialized systems for all 

combinations of these three protein structures (4w52, 4w57 and 4w59) and their three 

bound ligands (benzene, butylbenzene and hexylbenzene) to generate a total of nine different 

systems (Table 1). Additional structures extending this series of congeneric ligands bound 

to T4 L99A are available in the literature, notably from Bradford et al.12 which contains 

structures at both cryo and room temperatures. However, we found that for the purposes 

of this study – where we focus on the F-helix of the T4 L99A structure – these additional 

structures did not provide any additional insights (Figure S13).

We refer to the three systems where the bound ligand is the ligand from the crystal structure 

as native systems. The remaining six systems where the bound ligand is different from 

the ligand in the crystal structure are referred to as mixed systems. We set up simulations 

for all nine systems based on the procedure outlined in the following subsection. For 

the sake of brevity, we reference various systems throughout this work in the following 

manner: [discrete state]–[ligand name] (Table 1). This should be interpreted as “the system 

of [ligand] bound to T4 L99A started from the [discrete state] structure”. As an example, 

“closed–benzene system” should be read as “the system of benzene bound to T4 L99A 

started from the closed structure”.

Preparation and parametrization of proteins and ligands.

We prepared the T4 lysozyme protein and ligand structures as input structures for MD 

simulations. The topology and coordinate input files for GROMACS simulations22,23 can be 

found in on GitHub at https://github.com/MobleyLab/T4_MSM.
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We prepared the structure for each protein of interest (4w52 conformation A, 4w57 

conformation A, and 4w59 conformation A) using Open-Eye Spruce24 to add hydrogens 

and any missing loops. We solvated each protein with TIP3P waters and ions to achieve 

a concentration of 150 mM. We then parameterized the solvated systems using the Amber 

ff14SB force field.25

We assigned partial charges for each ligand of interest – benzene, butylbenzene and 

hexylbenzene – using OpenEye’s AM1-BCC charge engine26 and parameterized them using 

Open Force Field version 2.0.0.27

We combined the solvated protein structures and prepared ligands into native and mixed 

system complexes as described in the previous subsection to produce a total of nine starting 

structures (Table 1). We used the crystallographic ligand pose from the native structure for 

each protein-ligand complex.

Running molecular dynamics in GROMACS.

We simulated all protein-ligand complex systems using GROMACS (v.2021.2). Prior to 

production, we performed energy minimization for up to 1500 steps using steepest descents. 

We then equilibrated the systems in two phases, using a 20 ps NVT simulation followed by 

a 5 ns NPT simulation. We ran production simulations for 100 ns per replicate, with a total 

of 10 replicates per system. Although we initialized some ligands in their non-native crystal 

structures for mixed system simulations, we found that any potential clashes were resolved 

throughout minimization and equilibration steps. We note that there may be instances where 

clashes do not resolve, although this was not observed in our study. We provide plots for 

where structures fall in TICA space after each phase of equilibration for each system in the 

Supporting Information (Figure S1).

Additionally, we evaluated both protein and ligand convergence for each system (Figures 

S15–S32). To assess protein convergence, we looked at the time series of an atom on a 

residue outside of the F-helix (Tyr88). For convergence in ligand orientation, we evaluated 

the distance between the same atom and a selected atom on the ligand. We observed little 

motion in the protein and ligand time series in all benzene-/butylbenzene-bound systems 

and the hexylbenzene-bound native system (S15–S26; S31, S32). In the some repeats of 

the closed–hexylbenzene (S27, S28) and int–hexylbenzene (S29, S30) mixed systems, the 

time series were less stable. In these repeats, we saw correlation between the protein and 

ligand motions. As these are systems where we expect the protein may shift to accommodate 

a larger nonnative ligand, we conclude our simulations are largely converged. The MDP 

files for GROMACS simulations can be found on GitHub at https://github.com/MobleyLab/

T4_MSM.

Markov state model construction.

We built all MSMs in this study using the PyEMMA (v2.5.12)19 and deeptime (v.0.4.4)28 

Python packages. We started by choosing features along the F-helix region of the protein 

(residues 107–115) to characterize the changes in the T4 L99A binding pocket. Using 

MDTraj (v.1.9.9),29 we calculated the pairwise distance between all Cα − Cα and Cβ − Cβ 
pairs for all residues in the F-helix for a total of 51 distances. We used an implementation of 
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TICA from deeptime (v0.4.4), selecting a TICA lag time of 0.02 ns (10 frames) to transform 

the set of features into coordinates that described the slowest motions of the system. We then 

applied k-means clustering on the projection of the trajectory frames onto the two largest 

TICA components in order to resolve metastable states for each system. We used 1000 

cluster centers in order to adequately sample the surface, specifically targeting sampling 

regions of lower density. We selected a lag time of τ = 0.5 ns (250 frames) to construct each 

MSM; this was the shortest lag time beyond which the implied timescales for each system 

plateaued (Figure S2).

Calculating RMSD to reference crystal structures.

We calculated the root-mean-square deviation (RMSD) between each frame of our 

trajectories and the closed (PDB ID: 4w52), intermediate (PDB ID: 4w57) and open 

(PDB ID: 4w59) crystal structures using the rmsd function in MDTraj (v.1.9.9). We used 

this function to center each trajectory and calculate the distance between atoms in our 

trajectories and each reference crystal structure. We calculated RMSD for atoms in both the 

F-helix (residues 107 – 115) and for atoms in a region we defined as the protein binding 

pocket. We defined the binding pocket as all atoms 0.5nm away from the benzene ligand in 

the 4w52 structure of T4 L99A.8 For RMSD calculations in both the F-helix and binding 

pocket, we evaluated an all heavy atom variation as well as a variation only using Cα and Cβ 
atoms of the selection (Figure S3, S4).

Estimating MSM mean first passage time.

We estimated timescales among our discrete states using the mfpt function from the 

deeptime package. The mean first passage time (MFPT) is defined as the expected time 

(reported in units of number of simulation frames) to reach one state when starting in 

another.30 To calculate the mean first passage time, we provided the function with a 

transition probability matrix for our metastable states as well as the lag time used to 

construct the MSM. We obtained these coarse-grained transition probability matrices using 

the pcca function from deeptime.31

Results

Slowest motion of congeneric ligand systems corresponds to opening of the F-helix.

We combine simulation data from all three native systems together to construct a trajectory 

where the slowest motion of our system corresponds to the opening of the F-helix and/or 

any important differences between these native systems.13,14 For clarity, these three native 
systems are benzene bound to T4 L99A started from the closed structure (closed–benzene), 

butylbenzene bound to T4 L99A started from the intermediate structure (int–butylbenzene) 

and hexylbenzene bound to T4 L99A started from the open structure (open–hexylbenzene) 

(see Methods for more explanation on terminology). Specifically, we expect these native 

systems to occupy three distinct states with no or few transitions between them. Thus, a 

concatenated trajectory of these native systems would show distinct transitions between 

states at the end of each of the individual component trajectories, turning these state 

transitions into easily recognizable “slow motions”. This does not mean that the opening 

of the F-helix is a fundamental transition seen in all systems, but rather allows us to resolve 
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a consistent set of time-lagged independent components (tICs) that can be used to categorize 

the frames of each individual system into discrete states.

We find that our 2D TICA surface, constructed from Cα − Cα and Cβ − Cβ pairwise 

distances within the protein F-helix (residues 107–115), consists of three primary regions of 

density. We refer to these regions as the half-moon region on the left, an oval-shaped well on 

the right and a bridge region connecting them (Figure 2). To better understand how regions 

of the TICA space correspond to different F-helix conformations, we project the three native 

crystal structures onto our 2D TICA surface. We find that the open crystal structure is 

roughly centered in the half-moon region, the intermediate crystal structure is right of the 

bridge region and the closed crystal structure is centered in the oval-shaped well (Figure 

2). Based on the position of each crystal structure in the 2D TICA surface, we determine 

that the differences among discrete states is predominately captured by variation in the first 

independent component (Figure 2).

Time-lagged independent component analysis provides an alternative to RMSD for 
defining discrete states.

Using the tICs we previously define, we map each native system trajectory onto the 2D 

TICA surface. Frames of the closed–benzene system map around the oval-shaped well 

and are centered around the closed crystal structure, suggesting this area corresponds to 

the closed conformation of the F-helix (Figure 3A). Simulations of the int–butylbenzene 

system sample all regions of the oval-shaped well in addition to the bridge region linking 

the two wells together (Figure 3B). The overlap between the regions covered by the closed–

benzene and int–butylbenzene trajectories is expected as the int–butylbenzene system is 

reported to sample both closed and intermediate states.10 However, the bridge region is 

not sampled by the closed–benzene system, which suggests that it is the region of TICA 

space corresponding to the intermediate conformation. Lastly, simulations of the open–

hexylbenzene system exclusively sample the half-moon region on the left side of the TICA 

plot, indicating this region corresponds to the open conformation (Figure 3C). In the absence 

of tIC1, we find that separation among the closed, intermediate and open crystal structures is 

much less distinct. We observe much greater overlap between the native system simulations 

(Figure S5).

We find that using the RMSD to reference crystal structures to define states shows some 

agreement with our TICA-based approach. In the majority of cases, native system frames 

close to a reference crystal structure in TICA space also tend to also have low RMSD to that 

crystal (Figure 3D–F). This does not have to be the case as distance in TICA space does not 

necessarily correspond to structural similarity,18 since TICA is based on kinetics. However, 

here, RMSD seems to be a poor way to define the state boundaries. For example, frames in 

both the half-moon and oval shaped wells show low RMSD to the closed crystal, although 

the latter simulation is initialized from the open state (Figure 3D).

Choice of protein starting structure affects sampling of protein conformational states.

We proceed to construct Markov state models (MSMs) for each native system to resolve 

metastable states based on slow dynamics. By analyzing the eigenvectors of the estimated 
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transition probability matrix from an MSM – corresponding to the timescales of the slowest 

motions of the system – we can identify the number of macrostates for each system, and 

validate that the MSM is still Markovian. We use plots of the implied scales for each system 

to determine whether processes occur on timescales which can resolved by our MSMs. 

Processes faster than the MSM lag time are not considered to be kinetically meaningful 

transitions.19

We observe that the closed–benzene system undergoes no kinetically meaningful transitions 

in the elapsed simulation time frame. The slowest motions of the system decay faster than 

the MSM lag time and correspond to random fluctuations (Figure S6A). Based on these 

findings, we determine there is only a single state sampled in the simulations of the closed–

benzene system (Figure 4A), which is consistent with the region of TICA space we identify 

as the closed region (Figure 3A).

In simulations of the int–butylbenzene system, we find that the slowest motion of the system 

is an exchange within the oval-shaped well of the 2D TICA surface, splitting the region 

into two kinetically distinct macrostates (Figure S7B). We characterize this split macrostate 

later in the Results. Interestingly, the second slowest motion of the int–butylbenzene system 

corresponds to changes in density between the bridge and oval-shaped regions of the TICA 

space (Figure S7B), which suggests those regions correspond to the closed and intermediate 

states respectively (Figure 3B). However, this process decays faster than the MSM lag time 

and thus we do not consider the intermediate state to be a discrete state based on analysis of 

this system (Figure S2).

Lastly, we determine there is only a single state sampled in simulations of the open–

hexylbenzene system (Figure 4C). While there are motions in the system occurring on 

slow timescales (Figure S2), they correspond to fluctuations within the half-moon shaped 

well, and are primarily described by differences in the second tIC (Figure S8C). Given we 

primarily attribute the F-helix opening motion to the first tIC (Figure 2), we do not consider 

these to be states relevant to our analysis.

Simulation of mixed protein-ligand systems allows for estimation of discrete state 
transition timescales.

In attempts to observe transitions within our simulation timescales, we also simulate 

and build MSMs for a series of mixed systems. These are simulations begun from a 

crystallographic state belonging with a different ligand than the one they are simulated with, 

so we expect these simulations to transition to a different state while they are run, even if 

only once (see Methods).

For the benzene-bound mixed systems, we find that simulations of both the int–benzene 

(Figure 5A) and open–benzene (Figure 5B) systems primarily sample the closed state. In 

the int–benzene system, we observe a single slow motion (Figure S6B) corresponding to an 

exchange between two regions of the oval-shaped well (Figure 5A).

For the butylbenzene-bound mixed systems, we observe a single state for the closed–

butylbenzene system (Figure 5C, Figure S7A) and find that this system does not sample 
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the bridge region of the TICA space that is present in the native butylbenzene system (Figure 

4B). However in the open–butylbenzene system, not only is the bridge region sampled, 

but the slowest motion of the system corresponds to an exchange between the bridge and 

oval-shaped regions of the TICA space (Figure S7C). We subsequently identify two states 

for the open–butylbenzene system (Figure 5D).

Lastly, we find multiple states for both mixed systems containing the hexylbenzene ligand. 

The closed–hexylbenzene system interconverts between the closed and open states (Figure 

5E). Interestingly, the slowest motion of this closed–hexylbenzene system is an exchange 

between those two discrete states, but we do not observe any sampling of the intermediate 

state (Figure S8A). The int–hexylbenzene system samples five distinct states (Figure 

5E). Four of the five states are observed in other systems, corresponding to the closed, 

intermediate and open states as well as the state observed in the int–benzene (Figure 5A) 

system. The final discrete state falls between the closed and open states, similar to the 

intermediate state. However, it falls lower along the second tIC and is distinct from the 

previously established intermediate state.

For each system with multiple MSM-identified states, we estimated the timescales of the 

transitions between them by discretizing our trajectories to calculate a mean-first passage 

time (see Methods). A summary of which systems contain which transitions is in Table 2. 

This data allows us to estimate the transition rates shown in Tables 3–5. We note that these 

rates are highly approximate, given that we have a small number of transitions between 

states, transitions may be unidirectional, not all transitions are observed in each system and 

ligands are modeled in their non-native crystal structures. However, these estimates may 

be useful in providing a rough idea of the order of magnitude for the timescales of these 

transitions in MD.

Primarily, our timescale estimates suggest that discrete state transitions can be observed in 

MD but not on relatively short timescales. The majority of transition estimates are in the 

order of 102–103 ns (Table 3–5). Our estimates of timescales also further the idea that the 

intermediate state is a relatively short-lived state. In both mixed systems with transitions 

between the closed and intermediate states (Figure 5D, F), we estimate that going from 

intermediate to closed is an order of magnitude faster than going from closed to intermediate 

(Table 3). However, for the int–hexylbenzene system where we observe transitions between 

the intermediate and open states (Figure 5E), we instead find that going from intermediate to 

open is about an order of magnitude slower than going from open to intermediate (Table 4).

Physical Features of Different Macrostates.

In order to gain insight into the macrostates identified in this study, we evaluate distributions 

for three different features of the F-helix: H-bond distances, helix end-to-end distances 

and distances between residues that roughly approximate helix coil diameter (Figures S10–

S12). For each macrostate, we use the difference in feature distributions to identify unique 

physical feature(s) characterizing the state. We find that the closed state is characterized 

by larger values for the distance between the Gly110-Cα and Ala112-Cα atoms (Figure 

S12) and relatively shorter end-to-end helix distance (Gly107-Cα and Thr115-Cα) (Figure 

S11). For the intermediate state, we observe a much larger distance between the Gly110-O 
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and Phe114-H atoms (Figure S10), as well as larger distance between the Val111-Cα and 

Gly113-Cα atoms (Figure S12). The open state is characterized by shorter distance between 

the Val111-O and Thr115-H atoms (Figure S10), as well as slightly longer distance between 

the Gly107-O and Val111-H atoms (Figure S10).

We also observed two macrostates distinct from the closed, intermediate and open states 

surfaced in the MSMs for various systems. One of these macrostates splits the oval-shaped 

well on the right side of the TICA surface and is observed in the int–butylbenzene, int–

benzene and open–benzene systems (Figure 4B; 5A, F). It is characterized by a larger 

distance between the Gly113-Cα and Thr115-Cα atoms (Figure S12). The other macrostate 

is only observed in the int–hexylbenzene system (Figure 5F) and forms a bridge between 

the left and right wells in TICA space, further below the intermediate state. This state is 

characterized by larger end-to-end helix distance (Gly107-Cα and Thr115-Cα) (Figure S11) 

and distance between the Glu108-Cα and Gly110-Cα atoms (Figure S12).

Discussion

In this study, we use MD to resolve several discrete states of the T4 L99A binding pocket 

also observed in experiment. To aid in selection of features to guide this analysis, we 

concatenate parallel trajectories of benzene, butylbenzene and hexylbenzene bound to their 

native crystal structures so that the slowest motion of the resulting combined trajectory 

corresponds to the transition from the closed to intermediate to open states of the T4 L99A 

binding pocket.10 In doing so, we are able map simulations of both native and mixed ligand 

systems onto a two-dimensional TICA surface. We find based on the relative positions of 

the crystal structures in TICA space that the closed and intermediate structures are more 

kinetically similar states, whereas the open conformation is more kinetically distinct from 

the two.

Evidence of the intermediate observed in MD.

Firstly, we find evidence that the intermediate state is a kinetically distinct state. The 

trajectory of the native int–butylbenzene system samples the bridge region of the TICA 

surface (Figure 3B), but this bridge region is not identified as a discrete state in the 

MSM for the system (Figure 4B). However, the MSM built from simulations of the open–

butylbenzene system (Figure 5D) does identify the bridge region of the TICA space as 

a kinetically distinct macrostate. This suggests that while the intermediate state may be 

observed in our MD simulations of the int–butylbenzene system, transitions to and from the 

state are too transient for it to be considered a kinetically distinct state. The intermediate 

state is identified as a kinetically distinct state when we attempt to force the transition in 

simulations of the open–butylbenzene mixed system.

TICA-based state definitions may be preferable to RMSD-based definitions.

Secondly, we observe that using TICA and slow motions yield clearer state definitions than 

RMSD. This is in line with previous reports in the literature of using transition rates to 

define macrostates.32 RMSD-based state definitions lead to fuzzy boundaries between states. 

For example, we observe that trajectory frames close to the open crystal structure in TICA 
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space generally have low RMSD to that structure (Figure 3F). However, some of these same 

frames also have low RMSD to the int crystal (Figure 3E), which would complicate any 

analysis which attempted to assign states based on RMSD cutoffs alone. Given the int and 

open structures are considered distinct in experiment, considering a structure to be similar 

to both states is confusing. We additionally test several variations of our RMSD analysis, 

calculating the RMSD by looking at all heavy atom and Cα atoms, as well as Cβ atom-only 

variations both in the F-helix and a region we defined as the binding pocket (see Methods). 

By including atoms outside of the F-helix for our binding pocket RMSD calculations, we 

account for any potential biases due to limited atom selection. We find that our conclusions 

hold true regardless of which atoms are selected for the RMSD calculation (Figure S3, S4).

Additionally, structures with similar RMSD to the same reference structure are not 

necessarily similar to each other. As an example, we observe that frames in the top left 

corner of the half-moon shaped well and frames in the right side of the oval-shaped well 

are similarly distant to the open structure based on RMSD (Figure 3F). However, we 

instead find with our kinetics-based definition that the entirety of the half-moon shaped well 

describes the open state (Figure 4C). While the top and bottom portions of the half-moon 

shaped well can be further separated into kinetically distinct states (Figure S8C), this 

separation is entirely along the second tIC, which does not primarily correspond to opening 

of the F-helix.

One implication of this finding is that previous work looking at the transitions between 

states for this system may have used incorrect state definitions and potentially miscounted 

transitions11 and misdiagnosed the extent to which protein conformational transitions are 

adequately sampled on simulation timescales. It may be worth revisiting this work and 

applying these TICA-based state definitions to evaluate how much enhanced sampling 

methods are able to accelerate transitions. Furthermore, using slow system dynamics 

to define individual states could be extended to other systems where there are known 

conformational changes in response to a congeneric series of ligands. Examples of known 

systems with such behavior include the heat shock protein 90 (HSP90)33,34 and the human 

estrogen receptor alpha (ERα).10 This approach could especially be useful in systems where 

there may not necessarily be reference crystal structures for each discrete state, since in such 

cases an RMSD-based analysis is not possible.

Other Structures.

As outlined in the Methods section, the structures we use for the closed, intermediate 

and open states in this study are taken from the conformation with the highest electron 

density with each selected ligand from Merski et al.10 However, these structures are by no 

means a comprehensive set of all available structures or all possible protein conformations. 

Particularly, Bradford et al.12 pointed out the existence of temperature effects for cryo 

structures for this same protein mutant, providing a number of different protein-ligand 

structures obtained at different temperatures which differed in various ways. We were 

interested in assessing how the structures from Bradford et al.’s work interface with the 

present study, so we projected both room temperature and cryo crystal structures for an 

extended series of alkyl benzene ligands from this work onto our TICA surface (Figure 
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S13). We observe two distinct groupings for all structures, indicating that these structures 

are similar to the structures from Merski et al. along the primary tICs we use for this study. 

Thus, we exclude these additional structures from our analysis because for the purposes 

of this study, which seeks to identify the larger kinetic differences between the closed, 

intermediate and open states, more granular differences among structures within the same 

discrete state are not as important.

Implications for future binding studies.

One caveat of this study is that the procedure presented may not be suitable for some 

biological systems. For the T4 L99A system, we have access to crystal structures for all 

discrete states, allowing us to effectively reverse engineer a trajectory in which the slowest 

motion of the system corresponds to the opening of the F-helix observed in experiment. 

In many cases, it may not be known what prompts conformational changes or whether 

the system undergoes any conformational change at all on binding different ligands. We 

caution readers that TICA may not always be a suitable approach, as particularly for 

larger proteins, TICA coordinates have been found to contain little information about actual 

protein dynamics.35

Furthermore, we find in this study that even when running MD for timescales much longer 

than those run for typical binding studies, our native system trajectories typically remain in 

their starting conformations. This point is further reinforced by a test we run using only the 

first versus last 50 ns of each simulation replicate. Generally, conclusions from analysis of 

the two halves of our data are similar. While the TICA components do not change depending 

on which portion of the data we analyze, we find that with less simulation time, we fail to 

sample the bridge-like region corresponding to the intermediate state (Figure S14). This is 

not surprising, as conformational changes here have been previously reported to have large 

energetic barriers so simply running longer simulations (unless they are orders of magnitude 

longer) may not resolve issues with sampling.12,36,37

Binding studies, including in L99A, are typically done on much shorter timescales than 

those studied here. Thus, it is vital for researchers running such studies to have an idea 

of the relevant timescales for protein conformational sampling, and ensure that (a) they 

are using the appropriate protein structure(s) for their ligand, or (b) they are somehow 

enhancing sampling of protein conformational transitions, or (c) they diagnose the quality 

of protein sampling. Given that it is relatively common for structure-based design studies to 

uncover multiple distinct protein conformations upon binding of different ligands, it may be 

possible to anticipate some of these conformational changes.7,10,38,39 However, timescales 

for transitions between relevant protein conformations might be slow and uncharacterized, 

in which case researchers need to be cautious. We argue that it may be necessary to further 

develop and employ enhanced sampling methods for dealing with protein conformational 

changes.36,37,40–42

Lastly, we make all files necessary to reproduce our trajectories freely available. We also 

include the code used for analysis so that researchers can access our state analyses. To aid 

in further investigation of the macrostates presented in this work, we include snapshots of 
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structures along various points in the TICA surface in the Supporting Information, should 

researchers wish to analyze this data (Figure S10).

Conclusion

Using Markov state modeling, we verify that the discrete states of the T4 L99A binding 

pocket previously established in experiment10 can also be observed in MD, although we 

estimate that the conformational changes occur on timescales between 102 and 103 ns. Our 

timescale estimates are consistent with previous findings, where it was shown that for the T4 

L99A system, the choice of starting protein conformational state heavily influences which 

conformations are sampled through the course of the simulation.11 For known systems 

undergoing discrete conformational changes upon binding of a congeneric ligand series, we 

suggest combining short, replicate MD simulations of different bound ligands with MSMs 

to resolve biologically-relevant slow motions of the system. The coordinates resolved from 

kinetic information offer an alternative to RMSD-based definitions and can be used to 

provide more clarity on states of a biological system by allowing us to define macrostates by 

a collection of structures rather than a single static crystal structure.
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Figure 1. 
Discrete conformations of the T4 L99A F-helix. The F-helix region (residues 107–

115) of T4 L99A is reported10 to adopt three distinct conformations as observed 

crystallographically: closed, intermediate and open. Here we show three overlays of the 

F-helix region from the crystal structures we use to represent each state in this work. 

Shown is the benzene-bound crystal structure (4w52) to represent the experimentally 

defined closed state (purple), the butylbenzene-bound crystal structure (4w57) to represent 

the experimentally defined intermediate state (cyan), and the hexylbenzene-bound crystal 

structure (4w59) to represent the experimentally defined open state (green).
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Figure 2. 
Concatenated trajectory data projected onto a 2D TICA landscape. We concatenate six 100 

ns parallel trajectories each of benzene, butylbenzene and hexylbenzene bound to their 

native crystal structures (4w52, 4w57, 4w59, respectively) to form a concatenated trajectory 

(18 trajectories, total 1.8 μs). In this concatenated trajectory, we select the pairwise distances 

between all Cα−Cα and Cβ−Cβ atoms in the F-helix as features. Using TICA to resolve 

coordinates along the slowest motions of the system, we show the trajectory projected onto 

the top two tICs. We map where the crystal structures for closed (purple star), intermediate 

(cyan star) and open (green star) fall on this landscape. The arrangement of the crystal 

structures suggest that traversing along the first TICA component captures the discrete 

changes in the F-helix.
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Figure 3. 
RMSD of trajectory frames in 2D TICA space relative to experimental crystal structures. 

(A–C) On top of the density of the concatenated trajectory (gray), we project the frames 

from simulations of the (A) closed–benzene (purple dots), (B) int–butylbenzene (cyan dots) 

and (C) open–hexylbenzene (green dots) systems in 2D TICA space. (D–F) For each frame 

of the concatenated trajectory, we calculate the RMSD of the F-helix to different crystal 

structures. Shown is RMSD to (D) the benzene-bound crystal structure (closed), (E) the 

butylbenzene-bound crystal structure (intermediate) and (F) the hexylbenzene-bound crystal 

structure (open). The heatmap signifies the RMSD of each frame of the concatenated 

trajectory to the specified reference crystal structure. We additionally map where the closed 

(purple star), intermediate (cyan star) and open (green star) crystal structures fall on this 

landscape for reference. Frames closer to each respective crystal structure in TICA space 

tend to have lower RMSD to that structure.

Zhang et al. Page 18

J Chem Inf Model. Author manuscript; available in PMC 2025 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
MSM-resolved states for each native system. We construct MSMs to resolve discrete states 

based on the slowest processes in each of the three native systems. On top of the density 

of the concatenated trajectory (gray), we project the frames of simulations of the (A) closed–

benzene, (B) int–butylbenzene and (C) open–hexylbenzene systems. We color frames based 

on their MSM-assigned macrostates, keeping macrostate definitions consistent across the 

different native systems. In the elapsed simulation time (1 μs), we find that native systems 

are mostly confined to their starting protein conformational states.
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Figure 5. MSM-resolved states for each mixed system.
We initialize benzene, butylbenzene and hexylbenzene ligands each in their respective non-

native crystal structures to observe potential changes in the F-helix. On top of the density 

of the concatenated trajectory (gray), we project the frames corresponding to simulations of 

the (A) int–benzene, (B) open–benzene, (C) closed–butylbenzene, (D) open–butylbenzene, 

(E) closed–hexylbenzene and (F) int–hexylbenzene systems. We color frames based on their 

MSM-assigned macrostates, keeping macrostate definitions consistent across the different 

native systems. On these timescales, simulations of benzene in T4 L99A primarily stay 

in the closed conformation when simulated beginning from either the (A) int or (B) open 

structures. Simulations of butylbenzene only sample the closed state when begun from the 

(C) closed structure but undergo interconversion with the intermediate state when begun 

from the (D) open structure. Simulations of hexylbenzene interconvert between the closed 

and open states without sampling the intermediate state when begun from the (E) closed 

structure. When begun from the (F) int structure, simulations of hexylbenzene sample the 

closed, intermediate and open states. In the int-hexylbenzene system, we also observe a state 

(yellow) not found in any other systems.
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Table 3.

Order of magnitude estimates for transitions between closed and intermediate states.

system closed to int int to closed

int–hexyl 2 × 102 ns 1 × 101 ns

open–butyl 5 × 102 ns 4 ns
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Table 4.

Order of magnitude estimates for transitions between intermediate and open states.

system int to open open to int

int–hexyl 9 × 102 ns 1 × 102 ns
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Table 5.

Order of magnitude estimates for transitions between closed and open states.

system closed to open open to closed

closed–hexyl 1 × 103 ns 1 × 102 ns

int–hexyl 1 × 103 ns 4 × 101 ns
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