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ABSTRACT OF THE DISSERTATION

Characterizing Biological Neural Systems Using Variational Annealing and Applications
to Machine Learning Tasks

by

Anna Miller

Doctor of Philosophy in Physics

University of California San Diego, 2021

Professor Henry Abarbanel, Chair

Characterizing the many physical properties of biological neurons has been historically

difficult. The use of conductance models describing how properties of these systems change with

time can be combined with measured voltage traces to help characterize immeasurable properties

of a neuron. This is accomplished using data assimilation, which formulates the inference of

these properties as probability maximization using nonlinear optimization. Because measurement

noise and model error are inevitable in the study of complex systems, the methods used in this

dissertation are designed to cope with unknown processes.

This dissertation starts with an overview of data assimilation by formulating the problem
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data assimilation attempts to solve. I then introduce two methods, nudging and variational

annealing, which I use to characterize the properties of a neuron in the Zebra Finch songbird

system, HVCX. A key result from this experiment is that there are statistical differences in

estimated model parameters for neurons from different birds.

Current artificial neural network models are unmanageably large (billions of parameters)

and need massive amounts data and computational power to train. The insect olfactory system

is a biological network which is capable of learning and identifying new odors quickly in the

presence of interference. These properties make it attractive model to explore as a classifier for

machine learning tasks.

I give an overview of the insect olfactory system by describing its key properties. I

use these properties to create a simplified classification system using a winnerless competition

network as a pre-processor to a support vector machine. I demonstrate this networks classification

capabilities using classes designed to resemble the stimulus an insect receives in the presence

of odors. One key result from this experiment is that our network is capable of identifying a

mixtures of previously seen odors.
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Chapter 1

Introduction

Prior to originating as its own field in the 1960s, the field of neuroscience was spread

across many disciplines ranging from neuroanatomy and biology all the way to psychology and

linguistics. This has created the field of neuroscience today, which encompasses many disciplines

and approaches to the study of the nervous system. But why study it?

Understanding how the brain works can help identify when there are problems and shed

light on potential solutions to those problems. One example is the study of Alzheimer’s. While

research is still ongoing, studying how the disease progresses in the brain has allowed for scientists

to develop drugs that slow down the progression of the disease, improving patient quality of life.

Additionally, the brain has been used as inspiration for the artificial neural networks used

in machine learning today. Their origin dates back to the 1940s in which Warren McCulloch and

Walter Pitts built a model of neurons in the brain using simple neuron circuits. Frank Rosenblatt

built upon this work by conceiving the first idea specifically designed to make machines learn, the

perceptron. This idea differed from McCulloch-Pitts in that it included the ability for the network

to learn through changes in the synapses between neurons. Since then, artificial neural networks

have become more complex by vastly expanding the number of neurons in a network and using

clever architecture meant to emulate processes in the brain (e.g., convolutional neural networks
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recurrent neural networks).

These two applications are just a small part of what the field has to offer. Because of the

many disciplines which study neuroscience, there are also many approaches used within the study.

One such approach is the use of animal models.

Animal models have the benefit of being much smaller and simpler than their human

counterpart, making them more manageable study. They also allow for more invasive procedures,

which can yield information that would otherwise be impossible to obtain. This dissertation

focuses on the study of two such systems: the song system in Zebra Finch, and olfactory system

of insects.

The song bird system is an interesting system of study because song is a learned vocal

behavior controlled by discrete neural circuits. The song is learned within clear phases of

development, which is reflected in the development of the underlying neural circuits [21]. These

properties make the songbird system one which is relatively easy to study. Additionally, it has the

potential to inform how humans develop speech because the songbird system contains regions

analogous to regions in the human speech system. A deep understanding of the song bird system

can lead to information about speech disorders in humans [22, 26]. Within this dissertation, I

focus on a single neuron present in the song bird system, and use an inference technique in order

to estimate the physical parameters of the neuron.

The second system of study is the olfactory system in insects. This system is an important

system of study because it answers fundamental question of how animals detect, encode, and

process sensory information. Of the properties of interest, this network learns quickly, can

identify odors in the presence of strong noise, and is relatively well studied. These are attractive

properties within the context of machine learning because current deep network models are

becoming unmanageably large and data hungry, requiring multiple presentations of items within

an extremely large data set. Within this dissertation, I use the insect olfactory system as an

inspiration for a machine learning classifier.
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The study of both these systems share a common theme: I use physics and computation

tools to broadly understand the learning systems of neurons and neural networks, with the hope

that insights into these systems may help inform our greater understanding about learning.

1.1 Overview of the Dissertation

This dissertation contains 5 chapters. The first chapter is an introduction to the systems of

study and why they are interesting.

Chapter 2 sets up the idea of an inference problem one solution to that problem: data

assimilation. Here I explain the overall approach of data assimilation as well as a probabilistic

point of view and its relation to path integrals. I then present two methods data assimilation

methods: one which incorporates the use of nudging, and an annealing method developed within

the research group. Once these are established I give a brief mention of new methods being

developed.

Chapter 3 provides the background knowledge on the models used for single celled

neurons needed for the rest of the dissertation.

Chapter 4 starts with an overview of the bird song system in Zebra Finch. I then describe,

in detail, the model for HVCX neurons and briefly touch on the experimental data can be obtained.

The results of the data assimilation methods described in chapter 2 is presented

Chapter 5 starts with an introduction for how the olfactory system in insects can be

formulated as a winnerless competition network + support vector machine classifier. I then

present the results of this network’s ability to classify spatial signals independently and a mixture

of learned spatial signals.
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Chapter 2

Data Assimilation

The study of physics involves asking fundamental questions about the world around us

and using experiments and observations to create models reflecting the behavior of the system

and underlying physical properties. For simple systems, it’s entirely possible to develop these

models ab initio, or from first principles. However, for more complex systems, computational

tools must be used to develop quantitative models of these systems. This chapter details one such

approach, with a focus neuron models.

2.1 The Inverse Problem

We wish to model dynamical systems such that we are capable of accurately forecasting

the behavior of that system (prediction), and learn about quantities/relationships within that

system (inference). In practice, this is difficult as the physical system likely includes processes

that the modeler does not know about. Another difficulty comes from the noise is real data. Any

measurement tool is subject to noise, which limits the amount of knowledge one can infer from

the data. Due to these limitations, the appropriate approach is a probabilistic one. Given the

observations/measurements taken of the physical system, what is the most likely model to yield

these measurements. We wish to calculate the model and set of parameters that gave rise to the

4



observable data. This is called an inverse problem.

2.1.1 The Data and The Model

We start with a observation window in time [t0, tF ] within which we make a set of

measurements at times t = {τ1,τ2, ...,τk,τF}; t0 ≤ τk ≤ tF . At each of these measurement times,

we observe L quantities y(τk) = {y1(τk),y2(τk), ...,yL(τk)}. The number L of observations at each

measurement time τk is typically less, often much less, than the number of degrees of freedom D

in the observed system; D� L.

These measurements are a window into the dynamical processes of a system we wish

to characterize. The quantitative characterization is through a model we choose. The model

describes the interactions among the states of the observed system. If we are observing the time

course of a neuron, for example, we might measure the membrane voltage y1(τk) =Vm(τk) and

the intracellular Ca2+ concentration y2(τk) = [Ca2+](τk). From these data we want to estimate the

unmeasured states of the model as a function of time as well as estimate biophysical parameters

in the model.

The processes characterizing the state of the system (e.g. a neuron) we call xa(t); a =

1,2, ...,D ≥ L, and they are selected by the user to describe the dynamical behavior of the

observations through a set of differential equations in continuous time

dxa(t)
dt

= Fa(x(t),q). (2.1)

Most physical systems can be expressed in this manner, as a set of first-order differential

equations. Given that we cannot take measurements in continuous time, the use of a discretized

model of equation 2.1 is necessary. In discrete time, where tn = t0 +n∆t; n = 0,1, ...,N; tN = tF ,

5



equation 2.1 becomes

xa(tn+1) = xa(n+1) = fa(x(tn),q) = fa(x(n),q), (2.2)

where q is a set of fixed parameters associated with the model. f(x(n),q) is related to F(x(t),q)

through the choice the user makes for solving the continuous time flow for x(t) through a

numerical solution method of choice [81].

Thinking of neuron activity, equation (2.1) could be coupled Hodgkin-Huxley (HH)

equations [54, 98] for voltage, ion channel gating variables, constituent concentrations, and other

ingredients. Typical parameters might be maximal conductances of the ion channels, reversal

potentials, and other time-independent numbers describing the kinetics of the gating variables.

Specifics of this model are detailed in chapter 3. In many experiments L might be only 1, namely,

the voltage across the cell membrane, while D the number of state variable may be 10’s; that is,

many, and D� L.

As we proceed from the initiation of the observation window at t0 we must move our model

equation variables x(0), equation (2.2), from t0 to τ1 where the first measurement is made. Then

using the model dynamics we move along to τ2 and so forth until we reach the last measurement

time τF and finally move the model from x(τF) to x(tF). In each stepping of the model equations,

we may make many steps of ∆t in time to achieve accuracy in the representation of the model

dynamics. The full set of times tn at which we evaluate the model x(tn) we collect into the path of

the state of the model through D-dimensional space: X = {x(0),x(1), ...,x(n), ...,x(N) = x(F)}.

The dimension of the path is (N + 1)D+Nq, where Nq is the number of parameters q in our

model.

It is worth a pause here to note that we have now collected two of the needed three

ingredients to effect our transfer of the information in the collection of all measurements Y =

{y(τ1),y(τ2), ...,y(τF)} to the model f(x(n),q) along the path X through the observation window
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Figure 2.1: A visual representation of the window t0 ≤ t ≤ tF in time during which L-
dimensional observations y(τk) are performed at observation times t = τk; k = 1, ...,F . This also
shows times at which the D-dimensional model developed by the user x(n+1) = f(x(n),q) is
used to move forward from time n to time n+1: tn = t0+n∆t; n= 0,1, ...,N. D≥ L. The path of
the model X = {x(0),x(1), ...,x(n), ...,x(N) = x(F)} and the collection Y of L-dimensional ob-
servations at each observation time τk, Y= {y(τ1),y(τ2), ...,y(τk), ...,y(τF} (y= {y1,y2, ...,yL})
is also indicated.
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[t0, tF ]: (1) data Y, hopefully well curated, and (2) a model of the processes in Y, devised by

our experience and knowledge of those processes. The notation and a visual presentation of

this is found in Fig. (2.1). The third ingredient is the methods to generate the transfer from Y

to properties of the model. The next section details the formalism for how we approach this

information transfer.

2.1.2 Probabilistic Formulation of Data Assimilation

Inevitably, the data we collect is noisy, and equally, the model we select to describe the

production of those data has errors. This means we must use a statistical description of the

assimilation of information transfer from the data, Y, to the model. This takes the form of a

conditional probability distribution P(X|Y). Our goal is not the evaluation of the the probability

distribution, P(X|Y), but rather the estimation of some physical quantities of the system, denoted

G(X). We seek the conditional expected value of the quantity G(X) on the observed data. The

expected value of G(X) is

E[G(X)|Y] = 〈G(X)〉=
∫

dXG(X)P(X|Y)∫
dXP(X|Y)

. (2.3)

A usual quantity of interest of G(X) is the path G(X) = X. If one has an anticipated form for

the distribution at large X, then G(X) may be chosen as a parametrized version of that form and

those parameters determined near the maximum of P(X|Y).

2.1.3 Defining the Conditional Probability P(X|Y)

In order to evaluate equation 2.3, we must first write down an expression for the probability

distribution P(X|Y) = P(x(0),x(1), ...,x(N)|y(τ1),y(τ2), ...,y(τF)). We start with defining the

transfer probability of the system from state x(n−1) to state x(n), P(x(n)|x(n−1)).

We assume that the mapping of system from state x(n−1) to state x(n) is Markovian. That
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is, the probability of an event at time tn only depends on the state at time tn−1. Or, P(x(n)|x(n−

1), ...,x(0)) = P(x(n)|x(n−1)). When we know our model entirely, this transfer probability is

deterministic. However, with error, our discretized system becomes

x(n) = f(x(n−1),q)+ ε (2.4)

where ε = N (0,R−1
f ) and R−1

f is a D-by-D covariance matrix. The transfer probability is

P(x(n)|x(n−1)) = P(ε) ∝ e−
1
2 εT ·R f ·ε. (2.5)

Support Vector Machines (SVMs) are a class of learning algorithms that are used in

classification tasks. By default, the SVM is only capable of binary classification. Suppose

you have a set of labeled data points X = {x1,x2, ...,xi, ...,xm} with their corresponding label

Y = {y1,y2, ...,yi, ...,ym}. Since this is a binary classified, yi can take two values: −1 or +1. W

P(y(n)|x(n)) = P(η) ∝ e−
1
2 ηT ·Rm·η, (2.6)

where R−1
m is an L-by-L covariance matrix. We also assume that the measurement of

the system at any point in time depends only on the state at that time and not an previous state

of the system. That is P(y(n)|x(n),x(n− 1), ...,x(1)) = P(y(n)|x(n)). For our use case, these

covariance matrices (and the corresponding precision matrices) are diagonal. We denote non-zero

diagonal elements of these matrices as R f (a) and Rm(l).

Now that we have defined these probability distributions, we can proceed to defining our

conditional probability distribution. P(X|Y) can be rewritten using Baye’s rules. For viewing

clarity, we define an alternate notation: the path up to time tn is Xn and the state at time tn is xn.
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P(X|Y) = P(Xn|Yn) =
P(Xn,Yn)

P(Yn)
(2.7)

We can rewrite any path probability distribution P(Xn) as P(xn,Xn−1) and use Baye’s

theorem to obtain

P(Xn|Yn) =
P(Yn−1)P(yn,Xn|Yn−1)

P(yn|Yn−1)P(Yn−1)
· P(Xn|Yn−1)

P(Xn|Yn−1)
. (2.8)

We multiply the expression by P(Xn|Yn−1)

P(Xn|Yn−1)
in order to obtain a familiar expression. We

use the definition of conditional mutual information,

CMI(a,b|c) = log
[

(P(a,b|c)
P(a|c)P(a|c)

]
. (2.9)

This is Shannon’s conditional mutual information [35] telling us how many bits (for log2) we

know about a when observing b conditioned on c. For us a = {yn},b = {xn,Xn−1},c = {Yn−1}.

We define a recursion relation

P(Xn|Yn) =
P(yn,xn,Xn−1|Yn−1)

P(yn|Yn−1)P(xn,Xn−1|Yn−1)
·

P(xn|xn−1)P(Xn−1|Yn−1) (2.10)

= exp[CMI(yn,xn,Xn−1|Yn−1)]·

P(xn|xn−1)P(Xn−1|Yn−1). (2.11)

To get equation 2.10, we have to use the transfer probability assumption defined earlier.

Using this recursion relation (equation 2.11) to move backwards through the observation window

from tF = t0 +N∆t through the measurements at times τk to the start of the window at t0, we may
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write, up to factors independent of X

P(X|Y) =

{ F

∏
k=1

P(yk|Xk)
F−1

∏
n=0

P(xn+1|xn)

}
P(x0). (2.12)

Here, the iterations of k and n need not be the same. If we now write P(X|Y) ∝ exp[−A(X)]

where A(X), the negative of the log likelihood, we call the action, then conditional expected

values for functions along the path X are defined by

E[G(X)|Y] = 〈G(X)〉=
∫

dXG(X)exp[−A(X)]∫
dXexp[−A(X)]

. (2.13)

The action takes the convenient expression

A(X) =

{
−

F

∑
k=1

log[P(yk|Xk)]−
N

∑
n=0

log[P(xn+1|xn)]

}
− log[P(x0)], (2.14)

which is the sum of the terms which modify the conditional probability distribution when an

observation is made at t = τk and the sum of the stochastic version of xn→ xn+1− f(xn,q) and

finally the distribution when the observation window opens at t0.

In the language of Bayesian Inference, this is a Maximum a Posteriori estimation where

P(X|Y) is our posterior distribution, the first term of our action is our likelihood function, and the

transition probabilities are our prior distribution.

The action simplifies to what we call the ‘standard model’ of data assimilation when (1)

observations y are related to their model counterparts via Gaussian noise with zero mean and

diagonal precision matrix Rm, and (2) model errors are associated with Gaussian errors of mean
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zero and diagonal precision matrix R f :

A(X) =
F

∑
k=1

L

∑
l=1

Rm(l)
2

(x{l,k}− y{l,k})
2 +

F−1

∑
n=0

D

∑
a=1

R f (a)
2

(x{a,n+1}− fa(xn,q))2. (2.15)

If we have knowledge of the distribution P(x0) at t0 we may add it to this action. If we

have no knowledge of P(x0), we take its distribution to be uniform over the dynamic range of the

model variables.

Our challenge is to perform integrals such as equation (2.13). The evaluation of this

integral is computationally expensive. Fortunately, in most applications, we need not know the

full probability distribution. Instead we seek to sufficiently approximate this integral such that it

yields us the expected value of our properties of interest.

In most systems, we expect that the dominant contribution to the expected value comes

from the maxima of P(X|Y) or, equivalently the minima of A(X). At such minima, the two

contributions to the action, the measurement error and the model error, balance each other to

accomplish the explicit transfer of information from the former to the latter.

We note that when f(x(n),q) is nonlinear in X, the expected value integral equation (2.13)

is not Gaussian. So, some thinking is in order to approximate this high dimensional integral. The

two generally useful methods available for evaluating this kind of high-dimensional integral are

Laplace’s method [62, 63] and Monte Carlo techniques [81, 59, 76]. They will be addressed in

this order.

2.1.4 Laplace’s Method

Laplace’s method [62] is a method for approximating integrals of the form

H(x) =
∫

eMh(x)g(x)dx≈ eMh(x∗)g(x∗)
∫

e−
1
2 M|h′′(x∗)|(x−x∗)2

dx (2.16)
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Observations Assimilation Model
Improved
Model

Figure 2.2: The workflow of data assimilation. The goal of data assimilation is to use real
observations of a dynamical system to inform a physical model of that system.

where that h(x) and g(x) are smooth real functions, M is real value. As M increases, the

solution to the integral becomes more dependent upon the maximum value of h(x). The integral

is approximated by performing a second order Taylor expansion of h(x) around it’s global

maximizer, x∗. For our purposes, this amounts to finding the minimum of the action in equation

2.15.

To locate the minima of the action A(X) =− log[P(X|Y)] we must seek extremum paths

X( j); j = 0,1, ... such that ∂A(X)/∂X|X( j) = 0, and then check that the second derivative at X( j),

the Hessian, is a positive definite matrix in path coordinates. Both these conditions ensure that

the path X ( j) found is a minima of A(X).

Laplace’s method [62] expands the action around the X( j) seeking the path X(0) with the

smallest value of A(X). The contribution of X(0) to the integral equation 2.13 is approximately

exp
[
A(X(1))−A(X(0))

]
bigger than that of the path with the next smallest action.

This sounds more or less straightforward, however, finding the global minimum of a

nonlinear function such as A(X) is an NP-complete problem [74]. In a practical sense, this means

this problem is not solvable in a realistic amount of time. However there is an attractive feature of

the form of A(X) that permits us to accomplish more.

We now discuss two algorithmic approaches to implementing Laplace’s method.
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2.1.5 Precision Annealing for Laplace’s Method

Looking at equation 2.15, we see that if the precision of the model is zero, R f = 0,

the action is quadratic in the L measured variables xl(n) and independent of the remaining

states. The global minimum of such an action comes with xl(τk) = yl(τk) and any choice for

the remaining states and parameters. We can initialize our search such that we choose a path

where xl(τk) = yl(τk) and sample the remaining state variables and parameter values from a

uniform distribution covering their dynamic range. We call this path Xinit. Because we are not

enforcing model dynamics (R f = 0), the minimum of A(X) is very degenerate. We approach this

by initializing multiple paths, namely NI of them. We continue to call the collection of NI paths

Xinit. In practice this is usually anywhere from 10 to a couple hundred paths.

The next step is to increase R f from R f = 0 to a small value R f 0. Each state variable in

the problem has its own value for R f 0, R f 0(n). For the following explanation, will refer to R f

generally, as the value of R f 0(n) does not change our analysis. Each of the NI paths in Xinit is

used as an initial condition for our numerical optimization program chosen to find the minima of

A(X). This gives us NI paths X0. The action is evaluated on each of these paths NI , A(X0), and

recorded.

Next, we increase R f = R f 0→ R f 0α; α > 1, and now use the NI paths X0 as the initial

conditions for our numerical optimization program chosen to find the minima of A(X), we arrive

at NI paths X1. Evaluate A(X1) on all NI paths X1, and record the values. R f is increased

again to R f 0α2 and the same steps are repeated. We continue in this manner, increasing R f to

R f = R f 0αβ; β = 0,1, ..., then using the selected numerical optimization program to arrive at NI

paths Xβ. Evaluate A(Xβ) on all NI paths Xβ. We do this until we reach a maximum value of β

that we choose, βmax. The choice of βmax depends in part on the choice of α. We must make

R f = R f 0αβmax sufficiently large such that R f → ∞. This scaling is important as we seek to find a

path and set of parameters such that the action becomes independent of the model error, or the

model error is approximately zero. We can observe when this happens by plotting the values of
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the action as a function of β = logα

[
R f
R f 0

]
. We display all NI values of A(Xβ) versus β for all

β = 0,1,2, ...βmax. If we see that the values of the action ’level out’, or remain constant with an

increasing R f , we know that we have found a model estimation which reflects the dynamics of

the system.

We call this method precision annealing (PA) [107, 109, 108, 83]. It slowly turns up

the precision of the model collecting paths at each R f that emerged from the degenerate global

minimum at R f = 0. In practice it is able to track NI possible minima of A(X) at each R f . When

not enough information is presented to the model, that is L is too small, there are many local

minima at all R f . This is a manifestation of the NP-completeness of the minimization of A(X)

problem. None of the minima may dominate the expected value integral of interest.

As L increases, and enough information is transmitted to the model, for large R f one

minimum appears to stand out as the global minimum, and the paths associated with that smallest

minimum yields good predictions. We note that there are always paths, not just a single path, as

we have a distribution of paths, NI of which are sampled in the PA procedure, within a variation

of size 1/
√

Rm [95].

2.1.6 “Nudging” within Laplace’s Method

In meteorology, one approach to data assimilation is to add a term to the deterministic

dynamics which move the state of a model towards the observations [6]

xa(n+1) = fa(x(n),q)+u(n)(yl(n)− xl(n))δal, (2.17)

where u(n) > 0 and vanishes except where a measurement is available. This is referred to as

‘nudging’. u(n) is a penalty term which penalizes the system if the model state is too far from

observations. The penalty term can be seen in the action previous defined. In continuous time,

the action is defined as

15



A(x(t)) =
∫ tF

t0
dt L(x(t), ẋ, t) (2.18)

where the Lagrangian is

L(x, ẋ, t) =
L

∑
l=1

Rm(t, l)
2

(xl(t)− yl(t))2

+
D

∑
a=1

R f (a)
2

(ẋa(t)−Fa(x(t),q))2. (2.19)

The extremum of this action is given by the Euler-Lagrange equations of the calculus of

variations [40]

[
δab

d
dt

+
∂Fb(x(t))

∂xa(t)

][
ẋb(t)−Fb(x(t))

]
=

Rm(l, t)
R f (a)

δal(xl(t)− yl(t)), (2.20)

in which the right hand side is the ‘nudging’ term appearing in a natural manner. Approximating

the operator δab
d
dt +

∂Fb(x(t))
∂xa(t)

we can rewrite this Euler-Lagrange equation in ‘nudging’ form

dxa(t)
dt

= Fa(x(t))+u(t)δal(xl(t)− yl(t)). (2.21)

This method is different from precision annealing in that precision anneal casts our

problem as an unconstrained optimization where the dynamics of our system appear in the

action, which can be otherwise known as the cost or objective function. The nudging method

is a constrained optimization problem where we which to minimize the measurement error and

penalty term, equation 2.22, with the constraint that all estimates follow the dynamics described

16



in equation 2.21. This is achieved through the use of lagrange multipliers.

C =
F

∑
k=1

L

∑
l=1

(xl(k)− yl(k))2 +u(k)2 (2.22)

Both the precision annealing and nudging methods in combination with numerical opti-

mization tools will be used to address problems in this dissertation.

2.1.7 Monte Carlo Methods

Optimization methods focus their approach on finding the minima of an objective function.

For convex problems, this is relatively straight forward. However, the dynamics of our system are

non-linear, making the the landscape of our objective function much more complicated. Rather

than have a single global minima, the cost function contains many local minima. Due to the

way objective functions search the space, it is possible for them to ’get stuck’ in a local minima.

Monte Carlo techniques do not have this issues as they can move about the search space in any

direction with some probability.

Monte Carlo methods [71, 59, 83, 81] are well covered in the literature. Rather than go

into detail about these methods, I will discuss why such methods may be beneficial over the

precision annealing Laplace’s Approximation approach. The approach detail above requires the

evaluation of very high dimensional derivatives of A(X). Depending on the optimization method

chosen, one may need to calculate an (D×N) by (D×N) dimensional Hessian. There are many

approaches to handing this hessian. One can symbolically calculate all non-zero elements prior

to optimization [108], or using an approximation method such as L-BFGS-B [92]. Even such

approaches are insufficient depending on the problem [48]. The use of precision annealing in

combination Metropolis-Hastings Monte Carlo techniques addresses the difficulties associated

with large matrices for the Jacobians and Hessians required in variation principles [105]. It does

this by using random walkers to move around in X space. Each step the random walker takes is a
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proposal for a new position in this space. The proposal is then either accepted or rejected based on

a ratio of probabilities. If the proposal is accepted, this new state is recorded and future proposals

start from this new state. If the proposal is rejected, the old state is recorded and future proposal

start from the old state. In this way, the probability distribution is sampled and the expected value

of the integral can be computed after sufficiently may steps have been taken.

Metropolis-Hastings Monte Carlo techniques can suffer in high dimensional systems.

The random nature of the proposals can result in a low acceptance rate of proposals and a slow

exploration of X space. In theses types of high-dimensional problems, one can employ the use of

Hamiltonian Monte Carlo in conjunction with precision annealing. Hamiltonian Monte Carlo

adds an additional set of variables P and searches in (X,P) space instead of just X space. The

set of variables P are canonical conjugate of X and allow for the rules of classical mechanics to

move around in (X,P) space.

The Hamiltonian can be defined as

H(X,P) =− log(P(X,P|Y)) = A(X)+h(P) (2.23)

where h(P) =− log(P(P)). Proposals are then made following Hamilton’s equations

dX(s)
ds

=
∂H(X(s),P(s))

∂P(s)
;

dP(s)
ds

=−∂H(X(s),P(s))
∂X(s)

(2.24)

where s plays the role of time in classical mechanics and labels the movement of X and P.

Using these rules to move around in this space has the benefit of allowing large movement in X

space with a high probability of acceptance, ideally 1 if the Hamiltonian is perfectly conserved.

Practically, equations 2.24 need to be discretized which prevents perfect conservation of the

Hamiltonian. The use of symplectic integrators allows for a high proposal acceptance rate and

fast exploration of the phase space [34, 48].

For the purposes of estimating physical parameters of our system of interest, equation
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2.25 demonstrates that the expected value is unchanged for an arbitrary choice of the canonical

momentum.

∫
dXdPG(X)P(P)P(X|Y) =

dXdPG(X)e−H(X,P)∫
dXdPe−H(X,P)

= 〈G(X)〉 (2.25)

While HMC solves the issue of slow phase space search, one drawback of this method is

that it still requires the calculation of a Jacobian. For some problems, the use of PAMC may still

be preferred.

In addition to avoiding the calculation of large matricies, Monte Carlo techniques have

other advantages. In problems which do not have a clearly dominant global maxima, we cannot

use Laplace’s approximation. Monte Carlo techniques sample the entire probability distribution,

allowing for a more accurate evaluation of equation 2.13.

2.1.8 Validation

To reiterate what we have just explained, we have a time series of measurements Y,

and wish to find a model, F that describes the observations. We do this by approximating a

probability distribution P(X|Y), while estimating both the true state of the system X and the

constant parameters of the model q. We must choose one of the above techniques to perform this

task. In this way, DA is used to transfer information from the measurements to our model. The

general workflow of DA can be seen in figure 2.2.

If the transfer methods are successful and, according to some metric of success, we

arrange matters so that at the measurement times τk, the L model variables x(t) associated with

y(τk) are such that xl(τk)≈ yl(τk), we are not finished. We have then only demonstrated that the

model is consistent with the known data Y. The next step is to use the model, completed by the

estimates of the q and the state of the model at tF , x(tF), to predict forward for t > tF . We then

compare this prediction with the measurements y(τr) for τr > tF . If these two things generally
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agree, dependent of course on the metric of success we choose, we have succeeded in finding a

good model to represent the physical system we’re investigating.

As a small aside, the same overall setup applies to supervised machine learning net-

works [2] where the observation window is called the training set; the prediction window is called

the test set, and prediction is called generalization.

2.1.9 Twin Experiment

Prior to applying DA to a physical system, we must ask whether our algorithm is even

capable of yielding the correct parameter and state variable values given experimental conditions.

There are multiple ways to verify this. One such way is by calculating conditional Lyapunov

exponents (CLE). Lyapunov exponents are a metric which characterize the divergence of infinites-

imally close trajectories. If at some time, there are two paths separated by |δZ0|, the rate at which

this separation grows is≈ eλt . In a practical sense, this means that a system with positive lyapunov

exponents, λ, are difficult to predict. Conditional lyapunov exponents are similar, except that the

measured data is coupled to the model of the system. That is, the measured data drives the model.

We can calculate what the lyapunov exponents are under the condition that some measured data

exists (that’s what makes CLE’s conditional). If we find that there are positive CLE’s we know

our algorithm will be a poor predictor of the model with only the current amount of measured

data. This calculation has been done on a 20-dimensional Lorenz96 model [58], using nudging

methods. However, this calculation is much more difficult when using the precision annealing

methods laid out earlier in the chapter. Instead we test our chosen methods by designing an

experiment in which we have full knowledge and control of the model and experimental data.

Suppose we want to model the neuron of a mouse. We spend time looking at experiments

and reading papers and design a model, F , that we believe is an accurate representation of

this particular neuron. Once we have our model, the next step is to generate synthetic data an

appropriate numerical solver. We pick a starting point, and integrate that model forward. This
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gives us our ground truth. In this set up, we know the model, the parameters (because we chose

them), and every value of every state variable at every time. But the goal is to verify whether our

algorithm is capable of producing the correct parameters under experimental conditions. This

means we take the measurable state variables and add noise. The noise amount should be in

line with what we expect from the experimental tools taking the measurements. Then we set

aside the unmeasured state variables, and apply our DA method of choice to this noisy synthetic

data using the same model used to generate the data. We ask our DA method to estimate the

same parameters as we would in a ’real’ experiment. Then we obtain our results. Since we know

the model entirely, we can directly compare parameter estimations and the prediction. If DA is

incapable of estimating the correct model under these ideal conditions, we know that what we

have is insufficient and we must work to alter the experiment in some way. The twin experiment is

also an opportunity to tune the hyper parameters of our methods. The two major hyper-parameters

being α and β, but we can also tune the relative important we place on the differential equations

for each state variable by tuning the relative strength of R f 0 for each state variable. Once we have

obtained favorable results from the twin experiment, we can apply the methods to real data.
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Chapter 3

Neurological Background

The neuron is a complex biological structure. The cell body, or soma, is responsible for

maintaining neuron functions and contains the cell’s genetic information in its nucleus. One

or multiple axons propagate electrical signal down its long, tail-like structure, surrounded by

segments of myelin sheath. The myelin sheath functions like an insulator and does not allow ions

to cross the cell membrane at those regions, but instead only at junctions between the myelianated

sections, allowing for the quick propagation of electrical signal down the axon. Axon terminals

make synaptic connections with the dendrites of other neurons. Dendrites branch out from the cell

body and receive signal from other neurons through synapses. The varying lengths of dendrites

and finite speed of signal propagation vary the time it takes a signal to reach a post-synaptic

neuron. Depending on the parameters of interest and the research question one wants to answer,

models of varying complexity can be used.

3.0.1 Charge Conservation

The membrane of the neuron acts like and is modeled as a simple capacitor. Embedded in

the cell membrane, there are ion channels which allow the passage of one or more types ions. The

current of ions induce change in the potential difference across the membrane. This relationship
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can be expressed as

Cm
dV
dt

= ∑
all currents

I (3.1)

where Cm is the capacitance of the membrane, V is the potential difference across the membrane

(Vinside−Voutside), and I represents any current which passes through the membrane.

The choice of what ionic currents to include on the right hand side depends upon the

the type of neuron being modelled. If the goal is to create a biologically realistic model of a

spiking neuron (as not all neurons spike), that model would need to include a sodium INa and

potassium current IK , as these two current in combination create voltage spikes. As a neuron

receive stimulus, Na+ ions pass into the cell through open sodium channels, creating small

increases of potential, called graded potentials. If a threshold potential is reached, a rush of Na+

ions enter the cell, thereby causing a sharp increase. The voltage is brought back down by the

movement of K+ ions outside the cell. These two interactions create a spike in the voltage, called

an action potential. In addition to the sodium and potassium currents, simple biophysical models

frequently include a leak current, IL. This current is meant to capture the current of any ions the

membrane is permeable to, but frequently captures the passage of Cl− ions across the membrane.

Stimulus of a neuron comes from the synaptic connections made with other neurons.

Synapses are directional, so a neuron receive stimulus from any neuron which connects to its

dendrites, but not ones which its connected to through its axon terminals. For the purposes of

this notation, Isyn is used to represent the sum of all synaptic currents. In laboratory experiments,

one may wish to characterize a neuron’s response to specific current waveforms. This current is

designed by the experimenter and injected into the cell body through an electrode. This current is

denoted as Iin j, the injected current. Our equation now reads
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Cm
dV
dt

= INa + IK + IL + Iin j + Isyn. (3.2)

3.1 Goldman-Hodgkin-Katz First Order Approximation

The next question to answer is one chooses to define the currents. Ion channels are not

always open, but gated by specific conditions. Channels can be ligand-gated, closed until specific

ions or molecules bind to it, or voltage-gated, closed until a threshold voltage is reached. Due

to limitations on computational power, simplifications must be made. It would be unrealistic to

model every protein in every channel embedded in the membrane, though molecular dynamics

experiments do this on a smaller scale. Instead, we focus on what happens to the neuron as a

whole.

On either side of the neuron, there are differing amounts of concentration of each ion.

This creates a concentration gradient, that when the channels are open, ions move down freely.

However, since these ions are charged, there is also movement corresponding to the electrical

field the ions experience. For any given ion, the ion flux through the membrane is the sum of

these two effects: (1) the concentration gradient due to unequal concentrations of ion on either

side of the membrane, and (2) the electric field due to separation of charges across the membrane.

The ion flux of a through the membrane is as follows

Ja = Jdiffusion + Jelectric drift =−D∇[a]+ zµ[a](−∇V ) (3.3)

where D is a diffusion coefficient, µ is the ion a’s mobility, z is the valence of the ion, and

V is the voltage across the membrane. To get the ionic current across the membrane, we assume

that ions do not interact and the gradient of the voltage is constant. Integrating over the width of
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the membrane, and multiplying by the charge of the ion gives the Goldman-Hodgkin-Katz (GHK)

[41] current equation

I = PazaF
zaFV
RT

[a]i− [a]oe−zaFV/RT

1− e−zaFV/RT
. (3.4)

Here, the current is written using molar constants, but could easily be changed to ion

values
(

RT
zF = kBT

q

)
. Pa is the permeability of the membrane to ion a, which depends on the

mobility of the ion, the width of the membrane, and the relative solubility of the ion in the

membrane. F is Faraday’s constant (96485 C/mol), R is the gas constant (8.314 J/mol·K) and za

is the valence of the ion. [a]i and [a]o denote the intracellular and extracellular concentrations of

the membrane, respectively.

Ionic currents can pass into or outside the cell depending on the membrane voltage and

when the corresponding ionic channels are open. It is useful to define an equilibrium potential at

which membrane current for a given ion equals zero. This voltage is called the Nernst or reversal

potential and is found by setting equation 3.4 to zero. The reversal potential for ion a is

Ea =
RT
zaF

ln
[a]o
[a]i

. (3.5)

For the sake of model simplicity, the GHK equation is rarely used to model currents.

Instead, a first order approximation to 3.4 is used, expanding around the Nernst potential

I = P
z2F2

RT
[a]o · [a]i
[a]i− [a]o

ln
[a]o
[a]i

(Ea−V ) = g̃a(Ea−V ) (3.6)

where g̃a is the variable conductance of the ion across the membrane. For most ion currents,
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Figure 3.1: A model of a neuron. Here, we model the neuron’s membrane as a capacitor and its
various ion channels as ionic currents. The batteries labeled Ea are used to represent to reversal
potential in equation 3.5. The resistors labeled g̃K and g̃Na represent the conductance of each ion,
which can change over time, denoted by the variable resistors. gL is a constant value because it
captures ions passing through the membrane outside of ion channels.

this approximation is acceptable. The ions passing through the membrane are sufficiently small

in number as compared to the concentrations inside or outside the membrane, so [a]i and [a]o are

taken to be constant. This model breaks down when the concentration of an ion is noticeably

changed by the current of the ion through the membrane. In these instances, a model of the full

GHK is appropriate.

Figure 3.1 shows the model of a neuron in detail, using the approximations from equation

3.6, excluding currents from external sources. g̃Na and g̃K are modeled as variable resistors

because ion channels open and close, changing to overall conductance over time. The full

equation representing our model in figure 3.1 is

Cm
dV
dt

= g̃Na(ENa−V )+ g̃K(EK−V )+gL(EL−V ). (3.7)

Figure 3.1 is an example of a single-compartment model, meaning we neglect the geometry

of the neuron. However, incorporating the geometry of a neuron may be necessary to preserve

neuron spiking behavior. In these cases, we must use a multi-compartment model. Frequently,

multi-compartment models are used to capture behavior localized to dendrites. In these instances,

one or multiple dendritic compartments are connected to a somatic compartment. An example of
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Figure 3.2: A two compartment neuron model. The left compartment corresponds to the soma
of the neuron, where a sodium (Na+) and a potassium (K+) current are modeled. The right
compartment corresponds to a a dendrite where a calcium (Ca2+) current is modeled. The soma
and dendrite are connected ohmically, with a constant conductance gSD.

what a multi-compartment model might look like is shown in figure 3.2.

3.1.1 Hodgkin-Huxley Model

This dissertation will mainly focus on the usage of biophysical single-compartment

models. While there are many neuron models which can empirically recreate the properties of a

neuron, the usage of biologically realistic models can give us insight into how neural networks

operate.

All neuron models in this dissertation are based off a relatively simple biophysical model,

the Hodgkin-Huxley (HH) model. This model was developed by Alan Hodgkin and Andrew

Huxley in 1952 through their study of a giant squid neuron [50].

The general form of a HH current is

Ia(t) = gaminteger1
a (t)hinteger2

a (t)(Ea−V (t)), (3.8)

where Ea is the equilibrium Nernst potential [54, 98]. The gating variables {m(t),h(t)} lie

between zero and one and represents the probability of an ion channel to be open and inactivated,

respectively. m(t) is an activating gating variable which describes the opening of the ion channel.

As m(t) increases, the corresponding ionic current will also increase for a constant potential. h(t)
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is an inactivating gating variable. As h(t) increases, the corresponding ionic current will decrease

for a constant potential. h(t) does not describe the return of an ion channel to its closed or

deactivated state, but instead describes the blocking of ions through the channel while open. The

integer exponents to these gating variables are found by fitting data and their physical meaning is

unclear. ga represent the maximal conductance, which corresponds to when all ion channels are

open. ga is related to the overall conductance, g̃a by g̃a = gaminterger1
a (t)hinteger2

a (t).

The gating variables in the HH have their own time dependence and corresponding

differential equations. Gating variable equations take the form of

dw(t)
dt

= αw(V )(1−w)+βw(V )w (3.9)

where w(t) is a place holder for the gating variables {m(t),h(t)}, αw(V ) is the channel opening

rate constant, and βw(V ) is the closing channel rate constant. α(V )w and βx(V ) are exponential and

sigmoidal functions which can be difficult to work with numerically. Instead, it is easier to define

these functions in terms of the gating variable steady state value, w∞(V ) and a relaxation time

τw(V ). These kinetic variables are expressed in terms of rate constants using w∞(V )= αw(V )
αw(V )+βw(V )

and τw(V ) = 1
αw(V )+βw(V ) . The full equations for the gating variables are

dw(t)
dt

=
w∞(V )−w(t)

τw(V (t))
(3.10)

w∞(V ) =
1
2

[
1+ tanh

(
V −θw

dVw

)]
(3.11)

τw(V ) = tw,1 + tw,2

[
1− tanh2

(
V −θw,t

dVw,t

)]
(3.12)

where the functions for w∞(V ) and τw(V ) are approximations to the sigmoidal functions

that match for the range of the neuron’s behavior. The constants θw, dVw, θw,t , and dVw,t are
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chosen with this in mind.

Now that the general form of Hodgkin-Huxley like neurons has been established. We can

write out the full Hodgkin-Huxley model for the giant squid axon

dV
dt

=
1

Cm

[
gNam3h(ENa−V )+gKn4(EK−V )+gL(EL−V )+ Iext

]
(3.13)

dm
dt

=
m∞(V )−m(t)

τm(V )
(3.14)

dh
dt

=
h∞(V )−h(t)

τh(V )
(3.15)

dn
dt

=
n∞(V )−n(t)

τn(V )
, (3.16)

where Iext is any current received from outside the neuron. This could be an injected current

by an experimentalist, or a synaptic current from another neuron. The gating variable n(t) is

the activating gating variable for the potassium current, commonly labeled as n(t). Keeping

consistent with the form presented in equation 3.8, n = mK where integer1K = 4.
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Chapter 4

Birdsong System

The focus of this chapter is using Data Assimilation to characterize neurons in the avian

song system of the zebra finch. The avian song system is an attractive model to study because

(1) juvenile zebra finch learn their song through auditory feedback [27, 16, 36, 73], making this

system a good model for learning complex behavior [36, 101, 96] and (2) the manner in which

songbirds learn and reproduce their songs is analogous to the learning of speech in humans [32].

Zebra finch, in particular, are an attractive organism to study because they sing a single short,

stereotyped motif for their entire adult lives. Unlike other song birds species which can learn a

multitude of songs throughout their adult lives, the learning period for a zebra finch is limited to

the first year of its life, after which it does not significantly change its learned song[20].

Present research on this system involves the investigation of both single cell and network

dynamics and function responsible for learning and production of songs in zebra finch. Previous

studies have demonstrated that single neuron membrane dynamics play an important role in

encoding the zebra finch song [53]. This chapter will focus on these single neuron dynamics.

The song system starts with auditory pathways. This is where acoustic stimulation in

the ear is transformed into neuron spiking. Beyond the auditory pathway, two neural pathways

are principally responsible for song acquisition and production in zebra finch. The first is the
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Anterior Forebrain Pathway (AFP) which modulates learning. The second is a posterior pathway

responsible for directing song production: the Song Motor Pathway (SMP) [16, 73, 77]. The

HVC nucleus in the avian brain uniquely contributes to both of these [73].

There are two principal classes of projection neurons which extend from HVC: neurons

which project to the SMP pathway and HVCX neurons extend to the AFP [73, 38]. HVCRA

neurons connect to the robust nucleus of the arcopallium (HVCRA) a brain region which indirectly

stimulates the vocal respiratory muscles. HVCX neurons project to Area X, believed to be

responsible for inter-syllable song variability, which has been demonstrated to play a role in adult

learning [57].

These two classes of projection neurons combined with classes of HVC interneurons

(HVCI), make up the three broad classes of neurons within HVC. Figure 4.1 [17] displays these

structures in the avian brain.

In order to characterize these neuron classes, single neuron data must be obtained. In

vitro (outside the living organism) or in vivo (inside the living organism) observations of neurons

can be obtained through patch-clamp techniques making intracellular voltage recordings. In this

patch clamp technique, a pipette attaches to the membrane of the neuron and suction is applied

until the membrane tears. This allows the pipette to have access to the inside of the whole cell.

Within this pipette is a electrode capable of simultaneously injecting current and measuring the

whole-cell voltage response [47].

From this data, one can establish the physical parameters of the system [27]. Traditionally

this is done using neurochemicals to block selected ion channels and measuring the response

properties of others [49]. Single current behavior is recorded and parameters are found through

mathematical fits of the data. This procedure has its drawbacks, of course. There are various tech-

nical problems with the choice of channel blockers. Many of even the modern channel blockers

are not subtype specific [11] and may only partially block channels [39]. Data assimilation can

be used to address such problems and has been detailed in chapter 2.
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Figure 4.1: A drawing of the Song Production Pathway and the Anterior Forebrain Pathway of
avian songbirds. Parts of the auditory pathways are shown in grey. Pathways from the brainstem
that ultimately return to HVC are not shown. The Anterior Forebrain Pathway is responsible for
modulating learning of songs. The Song Production Pathway is responsible for directing song
production. The HVC network image is taken from [17].

Data assimilation has previously be used to characterize two of the three neuron classes,

HVCRA [55] and HVCI [19]. In this chapter, we turn towards characterizing the last of these three

neuron classes, HVCX. The bulk of this chapter is an extension of the work in [27]. This chapter

is organized as follows: First, the HVCX model is presented in detail in section 4.1.1. Next,

results of applying precision annealing methods on twin experiments and measured laboratory

data are located in sections 4.2.1 and 4.2.2 Lastly, the results of applying nudging methods on

measured data of multiple neurons is presented in section 4.2.3.
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4.1 Methods

4.1.1 HVCX Neuron Model

The equations describing the HVCX neuron dynamics are heavily based off the work

in [27]. These equations are of Hodgkin-Huxley (HH) form for a neuron without spatial consider-

ations, or a single-compartment model as explained in chapter 3. The model does not consider

synaptic input to the neuron and only captures activity induced by the experimenter through an

injected current.

The dynamical variables include the observable quantities: voltage across the cell mem-

brane, V (t) and the intracellular concentration of [Ca2+]in(t). V (t) is directly connected to action

potentials or voltage spikes that communicate among cells in a network; the time scale of these

spikes is a few ms. The voltage recordings are obtained through in vitro patch clamp measure-

ments, detailed in section 4.1.2. [Ca2+]in(t) provides a slow background modulation that raises

the cells potential (depolarizes the cell) or lowers it (hyperpolarizes the cell) on time scales as long

as 10’s of ms. Changes in calcium concentrations are measurable by injecting a dye into neurons

which fluoresces in response to a two photon laser near the infrared spectrum. A series of images

can be taken and this imaging data can be using to infer changes in the calcium concentration and

neuron activity [88]. Although, it is possible to obtain this data, the calcium concentration was

not used in the analysis detail in this chapter.

The voltage equation relates the capacitance of the cell membrane Cm as it separates

concentrations of ions within and without the cells to the various currents which contain the

nonlinear voltage dependence of the permeability of ions to passing into and out of the cell. The

model represents these ion currents: {Na+,K+,Ca2+} in several different ways.

For our choice of ion currents we follow the results of experimental data [33, 72, 61] and

generally reproduce the model listed in [27]. These models were developed based on the upon the

literature and properties found in neuron spiking. HVCX spiking properties include fast rectifying
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current, sag in response to hyperpolarizing current, and spike frequency adaption in response to

depolarizing current. Each of these properties can be explained by specific ion channel types.

C
dV (t)

dt
= INa(t)+ IK(t)+ IL(t)+ ICaT (t)+ ICaL(t)

+IA(t)+ ISK(t)+ Ih(t)+ INap(t)+ Iin jected(t) (4.1)

INa(t) and IK(t) are the standard HH currents we saw before in chapter 3. The combination

of these two currents is responsible for the majority of spiking behavior. IL(t) is a leak current

meant to capture the behavior of all leaky currents in the neuron. ICaT (t) is a low threshold

T-type calcium current that causes rebound depolarization in cooperation with Ih(t). Ih(t) is

activated during hyperpolarization and responsible for the observed voltage sag in response to

a hyperpolarizing current. ICaL(t) is a high threshold L-type calcium current. ICaL(t) works in

conjunction with ISK(t), a calcium concentration dependent potassium current, to create shifting

frequencies in neuron spiking (frequency adaptation). IA(t) is an A-type potassium current. It is

different from the other potassium current IK in that IK is considered a delayed-rectifier current

which slowly inactivates the neuron, while IA is a fast inactivating current. INap(t) is a persistent

sodium current. Unlike INa, the persistent sodium current doesn’t significantly inactivate, creating

a long duration current into the neuron [56]. From the model presented in [27], we eliminate

IKNa(t), a sodium dependent potassium current, and rewrite all sigmoidal functions as hyperbolic

tangents.

Chapter 3 details the approximations we make to establish the general form of a Hodgkin-

Huxley neuron. Most currents in this neuron can be modelled in this fashion. However, this is

not so for the Ca2+ currents. The intracellular concentration of Ca2+ within the cell is on the

order of 10−100 nM. During a voltage spike 106 ions pass into the cell, noticeably changing

the calcium concentration. This change in intracellular calcium concentration breaks one of the

assumptions detailed on chapter 3 for Hodgkin-Huxley approximations to currents. The use of
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the Goldman-Hodgkin-Katz (GHK) form for all calcium currents in necessary. We rewrite the

GHK form below,

Ia(t) =−Paz2
aF2

(
[a]in(t)− [a]oute−zaFV (t)/RT

1− e−zaFV (t)/RT

)
, (4.2)

for ion a. za is the charge on the ion, F the Faraday constant, R the gas constant, T the temperature,

and Pa the permeability of the cell membrane to ion a.

The two types of calcium currents written in GHK form are

ICaL(t) = gCaLV s2
∞(V )

(
[Ca]out

e2FV (t)/RT −1

)
(4.3)

ICaT (t) = gCaTV (t)[aT ]
3
∞(V )[bT ]

3
∞(rT )

(
[Ca]out

e2FV (t)/RT −1

)
(4.4)

bT∞
(rT ) =

1

1+ e
(

rT−θb
σb

) − 1

1+ e
(−θb

σb

) (4.5)

τrT (V ) = τr0 +
τr1

1+ e
(V−θrT

σrT

) (4.6)

where aT and bT are instantaneous activating and inactivating gating variables, respec-

tively. rT is a slow gating variable whose form is consistent with previously described gating

variable form, w(t). The forms presented here for the calcium currents are not quite GHK form,

instead the [a]in(t) term is dropped. These gating variables w(t) satisfy a first order kinetic

equation, equation 3.10. Unlike the form detailed in equation 3.11, w∞(V ) will be expressed in a

different manner shown below

w∞(V ) =
1
2

[
1− tanh

(
V −θw

2σw

)]
. (4.7)

All gating variables except h∞(V ), appearing in INa(t), follow this functional form [27]. Instead,

h(t) uses the rate based kinetic form described in equation 3.9, with the rates displayed in
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equations 4.8-4.9. θw is the half-activation voltage and σw controls the slope of the activation

function. The forms detailed in equations 3.11 and 4.7 are functionally identical. The parameters

in 3.11 have been scaled and the anti-symmetric nature of tanh() has been taken advantage of to

detail a simplified form.

αh(V ) =Cαhe
(

V−θαh
σαh

)
(4.8)

βh(V ) =
Cβh

1+ e

(
V−θ

βh
σ

βh

) (4.9)

For fast gating variables, such as m(t) of INa, mp(t) of INap (equation 4.11), s(t) of ICaL,

and a(t) of IA (equation 4.12), we replace the time-dependent equations their behavior after a

sufficiently long time, w∞(V (t)). The time constants, τw(V ), for n and hp (corresponding to the

activating and inactivating gating variables for IK and INap, respectively) are given below, where

τ̄w is an average time constant.

τw(V ) =
τ̄w

cosh
(

V−θw
2σw

) for n or hp (4.10)

INap = gNapmp∞(V )hp(ENa−V ) (4.11)

IA = gAa∞(V )e(EK−V ) (4.12)

(4.13)

The Ca2+ gated potassium current and mass conservation equation for Ca2+ are given
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below.

ISK = gSKk∞[Ca]in(t)(EK−V ) (4.14)

k∞([Ca2+]in(t)) =
[Ca2+]2in(t)

[Ca2+]2in(t)+ k2
s

(4.15)

d[Ca2+]in(t)
dt

= φ[ε(ICaT (t)+ ICaL(t))+ kCa(bCa− [Ca2+]in(t))] (4.16)

k∞([Ca2+]in(t)) is the steady-state activation function based on on the intracellular calcium

concentration, and ks is a dissociation constant which measures the rate of calcium unbinding

from the potassium channel (i.e., no longer activating the potassium channel). The constant φ

represents the fraction of free Ca2+ ions, whereas ε is a constant which combines the effects of

buffers, cell volume, and molar charge [27]. KCa is a rate constant related to calcium pumps and

bCa is the basal level of Ca2+ inside the neuron.

The last current in the model is Ih. It is comprised of a fast component, r f and slow

component rs. Both components obey the gating variable differential form in equation 3.10. Ih

and the associated time constants can be seen below,

Ih = gh
[
krr f +(1− kr)rs

]
(Eh−V ) (4.17)

τrs(V ) = τrs0 + τrs1

(
1− tanh2

(
V −θtrs

σtrs

))
(4.18)

τr f =
pr f

−7.4(V−θtr f1)

e
V−θtr f1
−0.8 −1

+65e
V−θtr f2
−23

, (4.19)

where kr is a tuned parameter which controls the sag seen in the hyperpolarized region.
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Table 4.1: Parameter values used to numerically generate the HVCX data. The source of these
values comes from [27]. Data was generated using an adaptive Runge-Kutta method, and can be
seen in Fig. (4.2A) and Fig. (4.2B).

Parameter Value Parameter Value Parameter Value
gNa 450 nS gL 2 nS kr 0.3

ENa 50 mV EL -70 mV θmp -40 mV
gK 50 nS gNap 1 nS σmp -6 mV
EK -90 mV gCaL 19 nS θs -20 mV
gCaT 2.65 nS θm -35 mV σs -0.05 mV
gSK 6 nS σm -5 mV θhp -48 mV
gh 4 nS θn -30 mV σhp 6 mV
Eh -30 mV σn -5 mV τ̄hp 1000 ms
Cm 100 pF τ̄n 10 ms θe -60 mV
θαh - 15 mV σαh -18 mV Cαh 0.128 ms−1

θβh -27 mV σβh -5 mV Cβh 4 ms−1

θa -20 mV θr f -105 mV σe 5 mV
σa -10 mV σr f 5 mV τe 20 ms
θrs -105 mV θaR -65 mV θb 0.4 mV
σrs 25 mV σaT -7.8 mV σb -0.1 mV
θrT -67 mV θrrT 68 mV φ 0.1
σrT 2 mV σrrT 2.2 mV ε 0.0015 µM

pA·ms
τr0 200 ms τr1 87.5 ms pr f 100
kCa 0.3 ms−1 bCa 0.1 µM ks 0.5 µM
τrs0 0.1 ms τrs1 193 ms θtrs -80 mV
σtrs -21 mV θtr f1 -70 mV θtr f2 -56 mV
σtr f1 -0.8 mV σtr f2 -23 mV

4.1.2 Experimental Data

Data was obtained by Arij Daou at the Margoliash lab. A fully detailed procedure for how

data is obtained can be seen in [27]. In vitro observations of HVCX neurons have been obtained

through brain slice preparation [27]. Brain slice preparation allows for the study of individual

neurons or synapses in isolation from the rest of the network. The brain region of interest is

sliced and recordings are taken using the patch clamp method described above. A pre-determined

current waveform is injected into neurons and the responding membrane voltage is measured.

The pre-determined current waveform is selected on criteria established through successful
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use of these techniques on other neuron models [70]. In order to obtain good estimation results,

we must choose a forcing or stimulus with the model in mind: the dynamical range of the neuron

must be thoroughly explored. This suggests a few key properties of the stimulus:

• The current waveform of Iin jected(t) must have sufficient amplitudes (±) and must be

applied sufficiently long in time that it explores the full range of the neuron variation.

• The frequency content of the stimulus current must be a low enough that it does not exceed

the low-pass cutoff frequency associated with the RC time constant of the neuron. This

cutoff is typically in the neighborhood of 50-100Hz.

• The current must explore all time scales expressed in the neuron’s behavior.

4.1.3 Variational Annealing Twin Experiment on HVCX Neuron Model

A twin experiment is a synthetic numerical experiment meant to mirror the conditions of

a laboratory experiment. We use our mathematical model with some informed parameter choices

in order to generate synthetic numerical data. Noise is added to observable variables in the model,

here that is V (t). These data are then put through our SDA procedure to estimate parameters and

unobserved states of the model. The neuron model is now calibrated or completed.

Using the parameters and the full state of the model at the end tF of an observation window

[t0, tF ], we take a current waveform Iin jected(t ≥ tF) to drive the model neuron and predict the time

course of all dynamical variables in the prediction window [tF , ...]. This validation of the model

is the critical test of our SDA procedure, here PA. In a laboratory experiment we have no specific

knowledge of the parameters in the model and, by definition, cannot observe the unobserved state

variables; here we can do that. So, ‘fitting’ the observed data within the observation window

[t0, tF ] is not enough, we must reproduce all states for t ≥ tF to test our SDA methods.

We assume that the neuron has a resting potential of −70 mV and set the initial values

for the voltage and each gating variable accordingly. We assume that the internal calcium
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concentration of the cell is Cin = 0.1 µM. We use an integration time step of 0.02 ms and integrate

forward in time using an adaptive Runge-Kutta method [81]. Noise is added to the voltage time

course by sampling from a Gaussian distribution N (0,2) in units of mV.

The waveform used to generate the data was chosen to have three key attributes: (1) It

is strong enough to cause spiking in the neuron, (2) it dwells a long time in a hyperpolarizing

region to capture the effects of IH , and (3) its overall frequency content is low enough to not be

filtered out by the neuron. On this last point, a neuron behaves like an RC circuit, it has a cut off

frequency limited by the time constant of the system. Any input current which has a frequency

higher than that of the cut off frequency won’t be ‘seen’ by the neuron. The time constant is

taken to be the time it takes to spike and return back to 37% above its resting voltage. We chose a

current where the majority of the power spectral density exists below 50 Hz.

The first two seconds of our chosen current waveform is a varying hyperpolarizing current.

In order to characterize Ih(t) and ICaT (t), it is necessary to thoroughly explore the region where

the current is active. Ih(t) is only activated when the neuron is hyperpolarized. The activation of

Ih(t) de-inactivates ICaT (t), thereby allowing its dynamics to be explored. Our waveform reaches

up to 300 pA for brief periods of time as this is the level needed to cause spiking for the short

duration. This spiking is necessary to characterize INa(t) and IK(t).

The parameters used to generate the data are located in Table (4.1). These starting

parameters are taken from many laboratory experiments performed on these neurons. The

collection of all such parameters is listed in [27]. The injected current and noisy generated

membrane voltage response may be seen in figures Fig. (4.2A) and Fig. (4.2B).

In order to mimic the experiments performed in [27], we chosen to estimate the maximal

conductance values and reversal potentials of key ionic currents. While these maximal conduc-

tance values are less known, reversal potential for a given neuron are fairly well defined. The

estimate of these potentials functions as another way to evaluate the success of our methods in

parameter estimation. We also the capacitance of the neuron. More specifically, we instructed our
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Figure 4.2: Generated Data of HVC using the model described and the current shown. (A) The
current ’injected’ into the neuron. (B) The voltage data of a neuron after integrating the model
using and adaptive Runge-Kutta method. Noise of N (0,1 mV) is added to each data point to
emulate the noise expected in the experiment.

methods to estimate the inverse capacitance and estimate the ratio g′ = g
Cm

instead of g and Cm

independently. Estimating g and Cm separately can present a challenge to numerical procedures.

For all state variables and parameter estimates, we set bounds on the possible values.

These values are informed partially based on model design, for example, state variables are

designed to only take values within the range [0,1], and partially due to biological experiments.

We know roughly what is an acceptable maximal conductance for each ionic current from multiple

biological experiments meant to measure these parameters. We also know the voltage ranges are

neuron is capable of exploring before ’frying’ it.

The numbers chosen for the data assimilation procedure in this paper are α = 1.4 and β

ranging from 1 to 80. R f ,0,V = 10−4 for voltage and R f ,0, j = 1 for all gating variables. These

numbers are chosen because we are not normalizing the data in any way and the voltage range is

100 times large than the gating variable range. Choosing a single R f ,0 value would result in the

gating variable equations being less enforced than the voltage equation by a factor of 104. The

α and β numbers are chosen because we seek to make R f
R f 0

sufficiently large. NI = 25 paths are
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initialized. The voltage estimates are initialized to their measured values and unmeasured state

variables are sampled from a uniform distribution over the allowed chosen ranges.

Within our computational capability we can reasonably perform estimates on 50,000 data

points. This captures a second of data when ∆t = 0.02ms. However, there are time constants in

the model neuron which are on order 1 second. In order for us to estimate the behavior of these

parameters accurately, we need to see multiple instances of the full response, and therefore need

a window on the order of 2-4 seconds. We can obtain this by downsampling the data. We know

from previous results that downsampling can lead to better estimations [18]. We take every ith

data point, depending on the level of downsampling we want to do. In this twin experiment, we

downsampled by a factor of 4 to incorporate 4 seconds of data in the estimation window.

Optimization was performed by an interior point optimization algorithm included in an

open-source software called IPOPT (ver 3.12.8) [106]. IPOPT allows for the choice of linear

solver. We used HSL ma97 linear solver [1]. For each NI paths, a minima is found at every β

value.

4.1.4 Variational Annealing on HVCX Neuron Data

Using the procedure detailed above, we proceeded to assimilate the voltage data obtained

from zebra finch HVCX to the model described in 4.1.1. We used all the same tuned hyper-

parameters. However, applying the same downsampling and time window resulted in very long

convergence times and poor estimations. As a result, we decreased the the number of data points

and changed the downsampling factor to 3 instead of 4, resulting in estimation on a shorter time

window. Instead of 50000 data points spanning 4.0 s, we used 40000 data points spanning 2.4s.

All other hyper parameters were kept the same. The injected current and measured voltage from

one HVCX neuron data can be seen in figure 4.3. All other parameters were kept the same.
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Figure 4.3: Data Recorded in vitro of a HVCX neuron. Brain slices were taken from the HVC in
Zebra finch. Current clamp experiment was performed where a pre-designed current waveform
was injected into the neuron (A). The resulting voltage response was measured at a 50kHz
sampling rate (B).

4.1.5 Nudging Methods HVCX Neuron Data

In the field of optimization, there is a theorem called the ”no free lunch theorem”, which,

when broadly translated, means there is no one optimization method to rule them all. In other

words, if an optimization performs well on one class of problems, it is likely at the expense of

performance on another class of problems. There are no shortcuts. With that motivation, we

employ the “nudging” method described in equation 2.17 on the same HVCX X problem. In this

section we use data from multiple HVCX neurons, using a variety of different current waveforms.

The baseline characteristics of an ion channel are set by the properties of the cell membrane

and the complex proteins penetrating the membrane forming the physical channel. Differences

among birds would then come from the density or numbers of various channels as characterized

by the maximal conductances. If such differences were identified, it would promote further

investigation of the biologically exciting proposition that these differences arise in relation to

some aspect of the song learning experience of the birds [26].

The questions we asked was whether we could, using SDA, identify differences in biophys-
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Figure 4.4: (A) One of the library of stimuli used in exciting voltage response activity in an
HVCX neuron. The cell was prepared in vitro, and a single patch clamp electrode injected
Iinjected(t) (this waveform) and recorded the membrane potential. (B) The voltage response.
One of the library of stimuli used in exciting voltage response activity in an HVCX neuron. The
cell was prepared in vitro, and a single patch clamp electrode injected Iinjected(t) (this waveform)
and recorded the membrane potential.

ical characteristics of the birds. This question is motivated by prior biological observations. Using

the same HVCX model as before, we estimated the maximal conductances {gNa,gK,gCaT ,gSK,gh}

while holding other parameters constant.

We estimated the parameters of nine total neurons, four belonging to one bird, and

five belonging to another non-sibling bird. Each neuron received multiple different waveforms

designed according to the criteria laid out in section 4.1.2. Figure 4.4 shows an example of one

such waveform. Within the lab, each current waveform was presented to each neuron multiple

times. For every current and voltage response measurement, our nudging SDA method was

applied. The time steps chosen for each estimation windowed dependended on the the current.

However, estimation was performed on windows encompassing 1 - 3 seconds of data with no

downsampling. Each run started with the forcing parameter at u = 100 with NI = 5 initial paths.

Like with variational annealing, the initial guesses for the state and parameter estimates are

sampled from a uniform distribution over the bounds allowed chosen ranges.
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4.2 Results

4.2.1 Variational Annealing on a Twin Experiment of HVCX

The results of this experiment can be seen in figure 4.5. Here we present a plot of the

action as a function of β = log[R f /R f 0]. As explained in chapter 2, we are looking for the value

of the action to level off as a function of R f . This leveling off is an indication that our model

estimate reflects the dynamics of the system [108]. Once this has been established, we can

then explore how well our parameter estimations perform when integrating them forward as

predictions of the calibrated model. Looking at the action plot in figure (4.5), we can see there

is a region in which the action appears to level off, around β = 40. It is in this region where we

begin to look for our parameter estimates.

We examine all solutions around this region of β and utilize their parameter estimates

in our predictions. We compare our forecast to the “real” data from our synthetic experiment.

We choose which paths to predict by first isolating which 5 of the 25 paths corresponded to the

lowest action value for each β. We then took the last time step in the estimated path, and used

that to predict forward using the estimated parameters in the dynamical equations. This is done

for the 5 lowest action paths for each β, using β values ranging from 25 to 45. We focused on this

β value range as that is where the action plot levels off. Each one of the 25 initial paths found the

same minima. Small differences in parameter estimates between paths can be attributed to the

normalized threshold of error we allow to determine when the optimization is complete.

We evaluate how good each prediction is by using calculating the correlation coefficient

between estimates and the synthetic data. This metric is chosen instead of a simple root mean

square error because slight variations in spike timings yield a high amount of error even if the

general spiking pattern is correct. correlation coefficient can account for these variations in spike

timing as it is invariant under shifts in the data.

The prediction plot and parameters for the prediction with the highest correlation coeffi-
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Figure 4.5: Action levels for the HVCX model twin experiment. We see that the action rises to a
“plateau” where it becomes quite independent of R f . The calculation of the action uses PA with
α = 1.4 and R f ,0 = Rm. NI = 25 initial choices for the path Xinit were used in this calculation.
For small R f one can see the slight differences in action level associated with local minima
of A(X). The relative leveling off of the action is a sign that the optimization is becoming
independent of the model error.

cient can be seen in figure (4.6) and table (4.2). The voltage trace in red is the estimated voltage

after data assimilation is completed. It is overlayed on the synthetic input data in black. The blue

time course is a prediction, starting at the last time point of the red estimated V (t) trace and using

the parameter estimates associated with the estimated path displayed.

The red curve matches the computed voltage trace quite well. There is no significant

deviation in the frequency of spikes, spike amplitudes, or the hyperpolarized region of the cell.

Looking at the prediction window, we can see that there is some deviation in the hyperpolarized
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Figure 4.6: Results of the “twin experiment” using the model HVCX neuron described in
section 4.1.1. Noise was added to data developed by solving the dynamical equations. The
noisy V (t) was presented to the precision annealing SDA calculation along with the Iinjected(t)
in the observation window t0 = 0 ms, tF = 4000 ms. From all estimates, we take the path the
lowest action (all paths are approximately the same solution) and plot it in red. The noisy model
voltage data is shown in black. For t ≥ 4000 ms we show the predicted membrane voltage, in
blue, generated by solving the HVCX model equations using the parameters estimated during
SDA within the observation window.
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voltage trace after 7000 ms. Additionally, our our predicted voltage does not become nearly as

hyperpolarized as the real data. This is an indication that our parameter estimates for currents

activated in this region are not entirely correct.

The estimated parameters are shown in table 4.2. We can see there is a general trend in

the way parameters are estimated. The conductances tend to be estimated as higher than their true

value, and the reversal potentials tend to be estimated as lower their true values. One exception

is gSK , thought to be responsible for spike frequency adaptation. In order for this mechanism to

occur, the neuron needs to be stimulated for enough time for the timing between spikes to shift.

This is not something we considered in the design of this current, and will need to be considered

in future experiment designs.

Table 4.2: Parameter estimates from the path with the ’best’ prediction. The best prediction is
chosen by finding the highest correlation coefficient between the predicted voltage and ’real’
voltage.

Parameter Bounds Estimate Actual Value Units
g′Na 0.1, 10 4.98 4.5 nS/pF

ENa 1, 100 43.2 50 mV
g′K 0.01, 5 0.907 0.5 nS/pF
EK -140, -10 -127.4 -90 mV
g′CaT 0.001, 1 0.0326 0.0265 nS/pF
g′SK 0.001, 1 0.0373 0.06 nS/pF
g′h 0.001, 1 0.0432 0.04 nS/pF
Eh -100, -1 -44.1 -30 mV
Cinv 0.001, 0.5 0.011 0.01 pF−1

Of particular interest is the parameters surrounding Ih. This current was specifically

designed to explore the hyperpolarized region of the neuron in order to accurately estimate this

current. We can see that Eh is estimated as being significantly lower than its true value. This

may be an indication that the waveform needs adjusting. Previous experiments have shown

that a chaotic current is more successful than square wave pulses at characterizing neurons,

however, these neuron models did not include currents which are only active where the neuron

is hyperpolarized like Ih. Due to its long time constant, a current similar to a square wave pulse
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may be better than one with small oscillations. Alternatively, it may be the amplitude of these

oscillations that are the problem. Ih, at its highest current value, is only 4 pA, whereas our input

current oscillates with an amplitude of at least 20 pA in the hyperpolarizing region. Adjusting the

current waveform to include smaller amplitude or no oscillations in the hyperpolarizing region

may allow us to better estimate the parameters of Ih. Despite these, we still are able to reproduce

neuron behavior quite well. All parameters fall within a reasonable physical range and none hit

the boundaries we set. This is an indication that variational annealing is capable of parameterizing

this model and can be applied to biological data.

4.2.2 Variational Annealing on Biological Data from HVCX Neurons

The results of this experiment can be seen in figure 4.7. We can see the action does not

level off like we would expect, and what happened in our twin experiment. This is an indication

that the estimated path for all state variables is not consistent with the mathematical model and

its estimated parameters. We know from section 4.2.1, that our SDA methods are capable of

parametrizing the HVCX neuron model described in section 4.1.1, provided the model is an

accurate representation of the data. This brings into question whether mathematical model is a

sufficient representation of the biological neuron.

Figure 4.8 shows our estimates and prediction plots overlayed on the true biological

data. We note that the hyperpolarized neuron response matches quite well in both estimation

and prediction windows. However, in both the estimation and prediction windows, the neuron

responses spikes for too long. The estimated parameters are displayed in table 4.3, along with the

parameters we used to generate the data in the twin experiment. The parameters we chose were

based on literature, and should be reasonably close to the ’true’ values.

Here we can see that both gNa and Eh hit the search boundary. What is interesting to note

is that, despite the incorrectly estimated Eh, the voltage response in the hyperpolarized regions

are reasonable in the prediction window. This is an indication that the response here is governed
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Figure 4.7: Action levels for the HVCX model using biological data. We don’t see the action
level off and become independent of R f . This is an indication that our methods have not found a
solution consistent with the equations of our model. The calculation of the action uses PA with
α = 1.4 and R f ,0 = Rm. NI = 25 initial choices for the path Xinit were used in this calculation.

by the amplitude of oscillations of the input current, and the effects of Ih are well captured by the

current in this region. This is in agreement with what we found in the twin experiment.

Most other parameters appear to deviate significantly from the twin experiment values,

most surprising are the parameters associated with INa and IK . These two currents are responsible

for the majority of spiking behavior.

Generally speaking, increasing gNa can increase the amplitude and shift the timing of

spikes. Increasing gK can narrow the width of spikes and alter the number of burst spikes for short

50



duration stimuli. Figure 4.9 displays the synthetic (red) and biological (blue) neuron response

for the same current. We can see that the voltage response in the synthetic data is different than

the biological data in a few key ways: (1) within a spike burst, the synthetic data is missing the

initial spike, (2) the synthetic data is missing a second burst of spikes at time t = 2150 ms, and

(3) the synthetic data spikes are wider and have a lower amplitude. This is an indication that our

model is wrong in some way. SDA functions by trying to find a parameter set which will make

our model reproduce the blue voltage trace. However, we only allow conductances and reversal

potentials to vary. If we want to make or synthetic neuron spikes sooner, with a higher amplitude,

and narrower spikes, increasing both gNa and gK are the only ways we are allowed to do so. This

is reflected in our parameter estimates, table 4.3. Both gNa and gK are significantly higher than

we would expect. gNa hits the upper bound of our search region, which is an unrealistic value.

gK does not hit the upper bound of our search, but is much larger than previous experiments

suggested it would be. The differences in the model displayed in figure 4.9 may account for the

the poor parameter estimation.

Another potential source for this model error is the removal of the sodium dependent

potassium current. From the model described in [27], we dropped the sodium dependent potassium

current, IKNa. This current, in addition to ISK , can be responsible for spike-frequency adaptation.

With some guidance from the authors of [27], we chose to keep ISK over IKNa for the sake of

model simplicity.

4.2.3 Nudging on Multiple HVCX Neurons

The main result of this experiment can be seen in figure 4.10. This figure displays

the parameter estimates for {gNa,gCaT ,gSK} in two birds. In this experiment, we ran multiple

current waveforms through each of the nine neurons. Each neuron was stimulated with a single

waveform more than once. Figure 4.10 displays the best parameter estimates for all nine neurons,

corresponding to a single waveform. In this example, the current waveform was run through
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Figure 4.8: Results of the experiment using the model HVCX neuron described in section 4.1.1
and biological data taken in lab. Noise was added to data developed by solving the dynamical
equations. The noisy V (t) was presented to the precision annealing SDA calculation along with
the Iinjected(t) in the observation window t0 = 0 ms, tF = 4000 ms. The noisy model voltage data
is shown in black, and the estimated voltage is shown in red. For t ≥ 4,000 ms we show the
predicted membrane voltage, in blue, generated by solving the HVCX model equations using
the parameters estimated during SDA within the observation window.

each of the nine neurons four times, so there are a total 36 parameter estimates in this plot. The

parameter estimates for each run were found by calculating the expected value of each parameter,

excluding all paths which had a high final value for the cost function.

The maximal conductances from one bird are shown in blue and from the other bird, in

red. There is a striking difference between the distributions of maximal conductances. Neurons

from each bird occupy a small but distinct region of the parameter space. This clear separation of

parameter estimates was reproduced for multiple different stimuli and is not stimulus specific (not

shown). This result and its implications for birdsong learning, and more broadly for neuroscience,
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Table 4.3: Parameter estimates from the best prediction. The best prediction is chosen by finding
the highest correlation coefficient between the predicted voltage and measured voltage. Also
shown are the parameters used to generate the data in the twin experiment. These parameters
were chosen from literature surrounding experiments on these neurons, and were believe to be
near the ’true’ parameters.

Parameter Bounds Estimation Twin Experiment Units

g′Na 0.1, 12 12.0 4.5 nS/pF
ENa 1.0,100.0 29.4 50 mV
g′K 0.01, 5 1.45 0.5 nS/pF
EK -150.0,-1.0 -130.2 -90 mV
g′CaT 0.001, 1 0.156 0.0265 nS/pF
g′SK 0.001, 1 0.032 0.06 nS/pF
g′h 0.001,1 0.058 0.04 nS/pF
Eh -100.0,-1.0 -1.0 -30 mV
Cm 0.001, 0.5 0.022 0.01 pF−1

are described in Daou and Margoliash [26].

One limitation of the present result is that the SDA estimates for gSK for a subset of the

neurons/observations for Bird One reach the bounds of the observation window. The reasons for

this likely similar to what is explained in the previous section: limitations on regions explored by

the injected current, discrepancies between the model and governing dynamics of the neuron, and

our cost function.

4.3 Conclusions

There are several insights that can be made from the analysis in this chapter related to

how we approach the parametrization of neurons.

Section 4.2.1 has shown that variational annealing is capable of parametrizing the HVCX

model. Although our experiment produced reasonable results, more can be done to change the

input to better fit this model. Particularly, our twin experiment has shown that refinement is needed

to our current inputs. Two things we can change are the inclusion of regions of constant current

in both the depolarizing and hyperpolarizing regions. A constant depolarizing current will better
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Figure 4.9: A section of the voltage response, overlaying the twin experiment described above
and the real neuron response data. One can clearly see the response as different. Our model
does not respond to the current with nearly as much amplitude, we have less spikes in a burst,
and our model spikes are wider.

allow use to characterize currents associated with spike-frequency adaptation ICaT and ISK . A

constant hyperpolarizing current may better allow use to characterize Ih. More generally, we need

to make adjustments to our stimulating currents to account for the for these behaviors. A good

stimulating current should include all properties described in section 4.1.2, and constant stimuli

which both hyperpolarizes and depolarizes the neuron to captures spike-frequency adaptation and

sag behavior.

When we applied our variational annealing technique to biological data, it did not produce

an accurate forecast of the neuron response. Given our neuron model and successful twin

experiment, we know that variational annealing is capable of characterizing a neuron with the

same model under the same conditions. The results suggest that the model we chose was wrong.
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Figure 4.10: A three dimensional plot of three of the maximal conductances estimated from
HVCX cells using the stimulating current shown in Figure 4.4A. Membrane voltage responses
from five neurons from one bird were recorded many times, and membrane voltage responses
from four neurons from a second bird were recorded many times. One set of maximal conduc-
tances {gNa,gCaT ,gSK} are shown. The estimates from Bird 1 are in red-like colors, and the
estimates from Bird 2 are in blue-like colors.

One source of model error could be the parameters we chose to keep constant. The

model in its entirely has 65 parameters, some of which are very difficult to measure in traditional

laboratory experiments. Figure 4.9 shows clear differences between our model and the biological

response. Multiple parameters that contribute to these types of responses so it is difficult to point

to which parameter might be wrong by visualizing the data. Nonetheless, the demonstrates that

our model for the neuron has some inconsistencies with the real thing.

Additionally, figure 4.10 shows that the maximal conductance parameters for two different
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birds are not the same. The variation of parameters across birds means that we shouldn’t hold

parameters constant. Although computationally more expensive, allowing more parameters to be

estimated may improve performance.

One final note to touch on is the action itself. Within the action of variational annealing

and the cost function in nudging, the measurement error term is the square error between the

estimate and the measured experimental data. It has previously been shown for neuron models

that the majority of the measurement error between estimate and measured data is due to small

timing differences between the neuron spikes [95]. The square error metric heavily penalizes

small time shifts between spikes in the ’estimate’ and ’measured’ time series. Functions to

make the estimates prioritize the timing of spikes over things like amplitude. In the context of

modeling neurons, we would favor a spike train that is slightly shifted in time with matching

amplitudes over one which was exact with different amplitudes. We could improve the results of

our experiment by using a different metric, for example dynamic time warping (DTW). DTW is a

metric designed to measure the similarity between two time series, while allowing for non-linear

’warping’ between the two signals. Although computationally intense, this would prioritize the

shape of our time series rather than point by point matching.

Chapter 4 was adapted from work being prepared for publication of the material as it may

appear in A. Miller, D. Li, J. Platt, A. Daou, D. Margoliash, and H.D.I. Abarbanel, Statistical

Data Assimilation: Formulation and Examples From Neurobiology, with consent of the authors.

The dissertation author was the primary investigator and author of this paper.
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Chapter 5

Winnerless Competition Networks

The focus of this chapter is to build and assess a model of the olfactory network in insects.

The insect olfactory system is an attractive system to study because it is an example of a relatively

simple neural system where learning takes place [24, 14]. Of particular interest is the way in

takes odors, a chemical input, and nonlinearly transform it into a complex temporal pattern of

electrical signals, and identifies the odors reliably [66, 65].

A image of the complete network of the olfactory system can be seen in figure 5.1. The

network starts when odor molecules bind to receptors within the insect antenna, stimulating activ-

ity in the olfactory receptor neurons (ORNs). ORNs project to the Antennal Lobe (AL). Within

the AL, there are synaptically dense regions, neuropils, where a group of neurons can collectively

receive stimulus from the ORNs. These synaptically dense regions are called glomeruli and are

comprised of two types of neurons: projection neurons (PNs) and local neurons (LNs). Projection

neurons, aptly named, are excitatory neurons that ”project” to the mushroom body (MB). Local

neurons are inhibitory neurons that connect to other neurons within the AL. The interaction of

PNs and LNs within the antennal encode the signal from the ORNs both spatially (which neurons

are firing) and temporally (when they fire) [66, 64].

Kenyon cells (KC) within the mushroom body (MB) receive the spatiotemporal signal
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from the AL further change the signal by making it very sparse [80]. Depending on the insect,

there are one to two orders of magnitude more KCs than neurons in the AL, allowing for roughly

2% of neurons to respond to a given odor. The kenyon cells regulate their firing by projecting to

the giant gabaergic neuron (GGN) in the locust [44], or the anterior paired laternal (APL) neurons

in drosophila [67]. As the kenyon cells attempt to fire, they stimulate the GGN/APL, and the

GGN/APL is able to inhibit the spiking of kenyon cells, enforcing sparsity [79].

The KCs also project to a different region of the MB, called the β-lobe (BL). The BL

neurons are the readout neurons of the olfactory system. The synaptic connections between the

KC and βL neurons are plastic and follow a plasticity rule called spike timing dependent plasticity

(STDP) [24]. STDP functions to further separate the odor representation [9].

Each component of the network, or layer, in the network does its part to transform the

input signal into an easily read output that allows the insect to reliably distinguish between odors

even in the presence of environmental noise [8]. This property has made the olfactory system to

be very attractive for investigation and modeling in a machine learning setting [31, 29, 30, 13, 12,

93, 25, 10]. In this chapter, we will detail the important aspects of the olfactory network relevant

to its ability to learn. We will then build a simplified model based of these properties. Lastly, we

will explore the model’s ability to classify odors.

5.1 Building A Simplified Network

In the previous section gave an overview of the insect olfactory network and briefly

touched on the properties crucial to its function. In this section, we go into these properties in

depth and build up a simplified model which approximates the networks full behavior. This

simplified model is comprised of two parts (1) a winnerless competition network meant to

replicate the behavior of the antennal lobe, and (2) a support vector machine (SVM), meant

to replicate the behavior of the Mushroom Body. This model was built with the intention of
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Figure 5.1: The neural circuits that perform the identification and classification of components
in odors. The initial stage is composed of sensory neurons that are activated when a particular
chemical component attaches to receptor neurons. These sensors produce electrical signals
directed to the second stage called the antennal lobe (AL). Within the AL are excitatory projection
neurons (PNs) and inhibitory interneurons (LNs). These neurons fire in such a way that encodes
the input from the olfactory receptor neurons. The PNs carry AL activity forward to the next
stage of olfactory recognition called the mushroom body (MB). The MB is comprised of a large
number of Kenyon Cells (KC) whose activation is regulated by the Giant Gabaergic Neuron
(GGN). The activity of of the KCs is projected to the β-Lobe, which are the readout neurons
of this network. On the whole, the MB is suggested to act as a support vector machine in the
biological olfactory network [51].
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capturing all of the olfactory network’s key properties which being the least computationally

intensive.

5.1.1 Input

In order to investigate this network’s ability to classify, we must create an input which

emulates the role of the ORNs. An ORN’s response to a given odor molecule depends on the

olfactory receptor gene it contains. These genes can be narrowly tuned, only responding to a few

molecules, or more broadly tuned, responding to many odor molecules. The are tens of thousands

of ORNs in insects (90,000 in locusts [85], 60,000 in honey bees [60]), but these ORNs are not

all unique. In each insect, there are on the order of 100 different olfactory receptor genes [91]

which dictate how all of the ORNs fire. When no odor is present, ORNs fire spontaneously and

the firing rate depends on ORN type [104, 28].

To look at the input the AL would receive, we modeled 200 NaKL neurons (equations

3.13 - 3.16) with spontaneous firing rates in response to stimuli and found that the collective

activity of these neurons looks like a noisy DC signal. We also know that the concentration of

an odor in air alters the firing rates of ORNs. As the odor concentration increases, ORN firing

rate increases and more ORNs respond [46, 45]. This change in firing affects the collective ORN

activity by changing its amplitude.

Using this information, we choose to represent the collective activity of all ORNs with a

given receptor gene as a DC current. To differentiate between odors, we use the fact that all ORNs

with a given olfactory receptor gene project to the same glomeruli within the AL. Therefore we

can define an odor by which neurons within the AL receive stimulus, and how much stimulus

(amplitude) they receive. This is an entirely spatial representation of odors. Section 5.2.5 goes

over how we represent each odor as vector, where each element in the vector corresponds to a

neuron in the AL and the values dictate the amplitude of a DC current.

In addition to investigating how well our network distinguishes between odors, we also
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want evaluate its response to mixtures of odors. When presenting a mixture of two known odors to

an insect, only the ORNs which responded to the individual components are stimulated. No new

ORNs are recruited in the presence of a mixture [15]. For this reason, we approximate mixtures

of odors as a linear combination of the two ’base’ odors.

5.1.2 Substitution of the Antennal Lobe: Winnerless Competition Net-

works

The AL is comprised of PNs and LNs organized to receive stimulus in groups, called

glomeruli. For the purposes of building a network, we focus on the activity of the PNs. All the

information received from the ORNs must be encoded in PN activity because LN activity is not

seen outside the AL. translating information, we focus on the activity of the PNs as PN activity is

the only activity which continues on in our network.

When an odor is presented, a subset of AL neurons begin spiking in an odor-specific way.

Since we seek to understand how the stimulus is encoded and passed along to other regions in the

network, we focus primarily on the PNs.

The first key property we want to reproduce is the local field potential (LFP). The LFP is

the average potential of all PNs and oscillates at frequencies ranging from 20-30Hz in locusts

[66, 65]. The LFP works as a point of reference for the rest of the network. Within the AL, PNs

have been found to exhibit transient synchrony with the LFP. In other words, PNs will spike

in phase with the LFP for short durations after the onset of an odor. This transient synchrony

of PN spiking with the LFP over many epochs of the LFP is reproducible and functions to

continually increase the separation of similar odors over time [64, 13, 12, 103]. Additionally, the

LFP creates cyclical integration windows where KCs are more sensitive to coincident PN spiking

[80, 43, 42, 7].

The next property we want to reproduce is the long timescale (hundreds of miliseconds)

odor-specific periods of spiking and quiescence in PN activity. The destruction of this patterning
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reduces odor separation [12, 13].

Lastly, we can investigate how the AL activity evolves over time by translating the PN

activity into a higher dimensional phase space and observing its trajectory. When stimulated

by distinct current inputs from a sensory input network, the biological AL produces trajectories

in the network phase space following distinct patterns. There are three phases to its trajectory:

(1) an ”on transient” immediately following the onset of a stimulus, (2) a fixed point which the

network reaches and stays near after 1-2s, and an ”off transient” immediately following the offset

of the stimulus. We can think of PN activity as a stimulus specific orbit in this phase space.

In order for a simpler model to function as a stand in for the insect antennal lobe, the

model must reproduce the properties detailed above. These observed properties led to a suggestion

of an AL network structure [87, 86, 5] called winnerless competition networks (WLC).

Winnerless competition behavior is characterized by sequential switching from one group

to another, where one group is temporarily the ”winner”. In winnerless competition networks,

the ”winner” is a subset of neurons which dominate firing at any given point in time. However,

winnerless competition behavior has been observed in many dynamical systems, such as in models

describing population levels in a predator-prey system, the Lotka-Volterra model [4],and in some

studies investigating the convection of fluids in a turbulent rotating layer [23].

The first WLC network created was comprised of spiking neurons with only inhibitory

connections. Investigation of the nine neuron WLC network was performed by Rabinovich

[87, 86]. He found that the network, in response to stimulus, was defined by saddle points

or saddle limit cycles connected by heteroclinic contours. These saddle points correspond to

different neurons firing, and the heteroclinic contours between points correspond to the switching

dynamics emphasized above.

A comparison of WLC network activity in higher dimensional phase space reveals that

WLC reproduce the ”on” and ”off” transient dynamics of the antennal lobe, but do not reproduce

the fixed point behavior. Analysis of each of the three phases showed that the largest distinct
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between odors happens during the transient phases and the fixed point alone was not sufficient

for classification purposes. The reproduction of transient dynamics and sequential switching

of neuron firing makes the WLC network an acceptable substitute to the insect antennal lobe

[87, 86, 69].

5.1.3 Substitution of the Mushroom Body: Support Vector Machines

Now that we have a replacement for the AL, we must address the functionality of the rest

of the network. Once the odor is encoded by the AL, the signal moves on the MB. KC receive

the signal, where the GGN is responsible for enforcing KC spiking sparsity. The last stop for the

odor is the BL neurons. These neurons are the read out neurons of the network. Their output

identifies the received odor. There are strong inhibitory connections between the BL neurons,

enforcing competition. Huerta proposed a mathematical equivalence between the function of the

MB (KC and BL neurons) to a modified version of a Support Vector Machine (SVM) [52, 51].

For our purposes, we will use a regular multi class SVM. The remainder of this section will detail

what a SVM is and the changes made by Huerta.

Support Vector Machines (SVMs) are a class of learning algorithms that are used in

classification tasks. By default, the SVM is only capable of binary classification. Suppose

you have a set of labeled data points X = {x1,x2, ...,xi, ...,xm} with their corresponding label

Y = {y1,y2, ...,yi, ...,ym}. Since this is a binary classified, yi can take two values: −1 or +1. We

seek to draw a hyperplane between these two classes such that data points which fall on one

side of the hyperplane correspond to one class and data points which fall on the other side of

the hyperplane correspond to the other. Figure 5.2 shows the elements of how an SVM works.

We choose to define an equation for the hyperplane w ·x+b = 0. An SVM uses the data points

closest to the dividing hyperplane to influence its position and orientation. These data points are

called support vectors. We define two lines, along which the support vectors fall: w ·x+b =−1

for data points with label yi =−1 and w ·x+b =+1 for data points with label yi =+1. ±1 was
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chosen because the scaling does not affect the placement of the hyperplane. The distance between

these two hyper planes is 2
||w|| . The goal of an SVM is to to orient the dividing hyperplane in such

a way that maximizes the margin.

In order to maximize the margin, we need to minimize ||w|| with the constraint that there

are no data points that fall inside the margin. In other words, we expect that w ·xi +b≥ 1 when

yi = +1 and w · xi + b ≤ −1 when yi = −1. We simplify the form and write out the goal in

equation

minimize
‖w‖

2
such that

for all {xi,yi}, yi(w ·xi +b)≥+1
(5.1)

We use Lagrange multipliers and optimization to find the optimal values of w and b for

the decision boundary.

If data is not linearly separable data, SVM have something called the kernel trick where

we can employ the use of a kernel, K. The idea behind the kernel trick is that, while our data

may not be linearly separable in our n dimensional space (where n is the length of the vector xi),

we can transform the data into a higher dimensional space where it is linearly separable. The

transformation function is usually denoted as φ, and the kernel defines the inner product of the

higher dimensional space, or K(xi,x j) = φ(xi) ·φ(x j). This kernel trick is somewhat analogous

to what the mushroom body does. There are roughly 1000 PNs in the AL, while there are 50000

KCs in the mushroom body. The significant dimensional increase allows for the KCs to have high

specificity.

Once the decision boundary has been found, we can present new data to the trained

SVM.The decision function for some data point xk is f (xk) = w ·xk +b, where we replace xk

with φ(xk) if a kernel was used. In the binary case, f (xk)< 0 corresponds to the class yk =−1

and f (xk)> 0 corresponds to the class yk =+1.
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There are two configurations that allow for multiple classes when using an SVM: one-

vs-one and one-vs-rest. In both of these configurations, we are training multiple binary SVMs.

One-vs-one finds a dividing line between each class, needing to train n!
2!(n−2)! SVMs, while

one-vs-rest finds a dividing line between a class and every other class, needing to train n SVMs.

Here we use the one-vs-rest configuration, training a total of L SVMs when there are L classes

and L decision functions, fl . A data point is identified as belong to one class by comparing all

values fl(xk), and choosing the one yielding the greatest magnitude.

In [51] Huerta details an equivalence between something called Inhibitory Support Vector

Machines (ISVM) and the function of the MB. The main difference between a regular SVM and

ISVM is an additional inhibitory term in the decision function, regulated by scalar µ.

fl(xk) = wl ·φ(xk)−µ
L

∑
m

wmφ(xk) (5.2)

This inhibitory term makes it such that the SVMs inhibit each other, and each of the

decision boundaries must adjust to classify the entire data set as well as possible. This formulation

of the ISVM functions similarly to to the output in the BL neurons. BL neurons inhibit each other

through inhibitory synapses, leading to a single active BL neuron at any given time.

For our purposes, initial testing found that the use of a kernel and the introduction of the

inhibitory term was unnecessary for the success of the network. In this work, we use a multi-class

linear SVM in a one-vs-rest configuration.

5.2 Methods

5.2.1 Neuron Models and Synapses

The base ingredients of any neural network, but more specifically the winnerless competi-

tion network, are neurons. The directed connections between neurons are called synapses. As we
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Figure 5.2: An image of a Support Vector Machine. Here there are two classes, corresponding
to the red and blue color, which we we give the labels −1 and +1, respectively. The goal of an
SVM is to choose a dividing line which maximizes the distance away from either class using
the closest data points, otherwise known as support vectors. We choose an expression for the
dividing line, w ·x+b = 0, and parallel lines to represent the or support vectors w ·x+b =+1
and w ·x+b =−1. Finally we are left to maximize the distance 2

‖w‖ under the condition that no
data points fall between the two support vector lines.

saw in chapter 3, we can model neurons with a set of by nonlinear differential equations. Within

this chapter, we explore the properties of the WLC network using two different neuron models,

the Hodgkin-Huxley model and the FitzHugh-Nagumo Model.

66



5.2.2 Hodgkin Huxley Neurons

Hodgkin Huxley model is a biologically realistic model formulated in 1952 during the

study of giant squid neurons [50]. The basis of this model treats the neuron as a capacitor across

which currents of different ions can pass. While there are many potential ion currents, the HH

model focuses on a select few: a sodium current responsible for increasing the voltage across

the neuron membrane, the potassium current, responsible for the sudden fall in the voltage of the

membrane, and a leak current meant to capture the leak of ion across the membrane outside the

dynamics of the sodium and potassium channels.

These currents are described in a conductance based model, which is a first order approxi-

mation of the more complete solution, balancing electrical forces and diffusion. The maximum

conductance of each channel, the Nernst, or reversal, potential of each channel (a point of zero

current of that ion, not necessarily zero current across the membrane) depending on the con-

centrations of each ion inside and outside the neuron, and the fraction of channels which have

opened/close (gating variables). The full description of the model can be seen in chapter 3 section

3.1.1.

The parameters for equations 3.10 - 3.12 are listed in table 5.1. In this table, the conduc-

tance and capacitance terms have been combined into one term g′a =
ga
Cm

.

Table 5.1: The Parameters Used in conjunction with the Hodgkin-Huxley neuron model (equa-
tions 3.10 - 3.16).

Parameter Data Units Parameter Data Units

g′Na 120 nS/pF ENa 50 mV
g′K 20 nS/pF EK -77 mV
g′L 0.3 nS/pF EL -54.4 mV
θm -40 mV dVm 0.0667 mV−1

tm,1 0.1 ms tm,2 0.4 ms
θh -60 mV dVh -0.0667 mV−1

th,1 1 ms th,2 7 ms
θn -55 mV dVn 0.0333 mV−1

tn,1 1 ms tn,2 5 ms
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5.2.3 Hodgkin Huxley Synapses

Neurons are connected and communicate through unidirectional synapses. When an

action potential travels down the axon, to the axon terminals, neurotransmitters are released from

the terminal into the synaptic cleft connecting the two neurons. These neurotransmitters then bind

to the post synaptic neuron, and allow for the signal from one neuron to be communicated to the

other. There are a few different neurotransmitters regularly seen, but our focus is on describing

inhibitory synapses, as you will see in section 5.2.4. Gamma aminobutyric acid (GABA) is an

inhibitory neurotransmitter. The equations governing a synapse can be seen in equations 5.3 -5.4.

dr
dt

= αr
Tm

1+ e(Vpre−Vp)/Kp
(1− r)−βrr (5.3)

Isyn = gNtr(V −Egaba) (5.4)

Here, r is a gating variable which scales the transmission as a function of time. αrTm

and βr opening an closing rates, respectively. Note here that the opening rate is proportional to

the maximum neurotransmitter concentration, Tm. Vpre is the voltage of the pre-synaptic neuron.

Vp is the half activation voltage of the synapse and Kp dictates the rate of change of activation

with respect to voltage. Equation 5.4 is the inhibitory current the post-synpatic neuron receives

from one other neuron. gNtr is the maximal conductance for the synapse and Egaba is the reversal

potential related to the neurotransmitter, GABA.

FitzHugh-Nagumo Model

The second neuron model used in the network is the FitzHugh Nagumo (FHN) model.

This is a two dimensional model based on the Hodgkin Huxley model discovered in 1952. The

purpose of this model was to recreate/isolate the mathematical properties of the Hodgkin-Huxley

model [37]. The HH model has 4 state variables that can be group into two time scales. V and
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m are on one ’fast’ time scale, and h and n are on a slow time scale. The behavior of h and n

is closely related, h≈ 1−n. We can take advantage of these properties and reduce our neuron

model to 2 state variables: a voltage variable, V , with fast excitation and a recovery variable, w,

that provides slower negative feedback. Because this model is much simpler, it is computationally

more efficient, while still capturing important spiking characteristics of the HH model. Equations

for this model are shown below in equations 5.5-5.7.

dV
dt

=
1
τ1
(V − V 3

3
−w+ Iin j− z(V −ν)+0.35 mV) (5.5)

τ3
dw
dt

=V −bw+a (5.6)

dz
dt

=
1
τ2
(Isyn− z) (5.7)

Equation 5.5 up to and including the injected current, Iin j as well as equation 5.6 are the original

equations developed by FitzHugh and Nagumo.

This model is originally dimensionless, but to put it in the context of neurondynamics,

we will give the voltage-like variable, V , units of mV and the injected current, Iin j units of pA.

Time is in units of ms. These dimensions are chosen to be comparable to biological neurons.

Here there is no term for membrane capacitance, so to correct the dimensions of current, Iin j is

multiplied by 1MΩ.

When this neuron receives a sufficiently large injected current, V will rapidly increase to

roughly 1 mV. The combination of the cubic term in equation 5.5 and the recovery variable, w,

rapidly work to decrease the voltage back to its resting potential of −1 mV. The time constants,

τ1 = 0.08 ms and τ3 = 1 ms, control to rate at which this happens. a and b are constant parameters

with values a = 0.7 and b = 0.8. 0.35 mV was added to the voltage equation to ensure WLC

properties in this network.

In an insect antennal lobe, there are two classes of neurons: inhibitory local neurons and
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excitatory projection neurons. Our modified model of FitzHugh-Nagumo neurons performs the

role of both. Equation 5.7 and its corresponding term in equation 5.5 describe the inhibitory

synapses for this network. z is a something similar to conductance while ν = −1.5 mV is the

reversal potential of the synapse. The time constant τ2 = 3.1 ms controls the rate at which the

synaptic conductance changes. Isyn is the total synaptic current received by a given neuron. The

total synaptic current is described by equations 5.8 and 5.9

Isyn = ∑
all Vpre

gsynALG(V ) (5.8)

G(V ) =
1

1+ e−1000Vpre
(5.9)

where G = 1 for V > 0 mV and G = 0 otherwise. When a pre-synaptic neuron is

depolarized, it produces a constant synaptic current received by the post-synaptic neuron. gsynAL

is the strength of synaptic inhibition and set to gsynAL = 0.1. This value is chosen by us to make

sure the inhibition is not so weak that it has no effect, but not so strong that a few neurons

dominate spiking. Values both too small and too large tend to produce winner-take-all networks.

We chose to use a steep sigmoid function for G(V ) in place of a step function for integration

purpose, which can be seen in equation 5.9.

5.2.4 Network Connectivity

In order to replicate the size of the AL in locusts, we use a network with 1000 neurons,

using one of the two neuron models described above. The initial conditions of each neuron are

set to be near their values in the absence of stimulus, randomly sampled from a narrow gaussian

distribution. The connectivity of this network is based entirely on the empirical properties needed

to reproduce WLC behavior. We use a large randomly connected network of either HH or FHN

neurons, with a connection probability of 0.5. Each network was tested by verifying the properties

detailed in section 5.1.2. Like neurons, the initial conditions of the synapse state variables are
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randomly chosen near their rest values.

All network modelling was performed by using the Brian2 Python package [99]. Brian2

is an open source simulator for spiking neural networks.

5.2.5 Robustness to Noise in a Winnerless Competition Network with HH

and FHN Neurons

One of the more attractive features of the insect olfactory network is its ability to perform

even in the presence of noisy, turbulent air. Here we investigate our networks ability to correctly

classify odors in the presence of noise.

As we described in section 5.1.1, an odor is defined by injecting a DC current into a

unique subset of neurons, which we express as a vector I j. Within the insect olfactory network,

the number of ORNs that respond to a given odor can vary wildly, depending on the molecule

and its concentration. To find out how many neurons should be in this subset, we varied the

fraction of neurons which received injected current and looked at the network response. We

started with as low as 5% and went as high as 50% of neurons stimulated. The amplitude of the

injected current, I0, was set such that it stimulated action potentials in isloated FHN neurons.

There are two properties we checked for in the network activity. First, we look at the average

neuron potential to verify that the LFP has some oscillatory nature, as the LFP plays a significant

role in the insect’s ability to learn. Next, we looked at overall network spiking activity to ensure

that a pattern of spiking and quiescence . We found that, if we injected roughly one-third of all

neurons with current, the pattern was preserved.

Additionally, we found that WLC network activity is sensitive to the amplitude of the

input current, I0. If we elect to choose an I0 that is too large, the inhibitory network is too weak

to combat it, and we end up with a winner-take-all arrangement, where the winners are neurons

which receive this injected current. If I0 is too small, we don’t stimulate enough activity within the

network to encode the odor. I0 was set to 150 pA, chosen empirically to preserve WLC behavior.
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The input base current vectors Ibase j(t) are selected by drawing the components of each

Ibase j : {I1, I2, . . . , IN} from a uniform random distribution including a decision threshold such

that ≈ 1/3 of the values are set to I0. The rest are set to 0. This gives N/3 distinct stepwise DC

currents: off before t0, then on with amplitude I0, and then off again after tM. The base odors I j

are not orthogonal to one another.

In order to create noisy version of odors, we take the base odor Ibase j, and add a small

amount of noise for each neuron. This is chosen by sampling from a uniform distribution, and

scaling the number by the strength of the original odor I0, and an additional parameter η.

Each of the K noisy current stimuli I j are j = 1,2, . . . ,K currents in N-dimensional neuron

space is given by a distinct input vector

I j(t) = θ(t− t0)θ(tM− t)
[

Ibase j + I0ηξ

]
. (5.10)

All elements of ξ are sampled from a uniform distribution ranging from -1 to 1, ξi =

U(−1,1).

The noise changes the amplitude of the DC current injected (or not injected) into each

neuron. Neurons not originally receiving current could receive a small positive or negative

injected current. Neurons originally receiving I0 = 150 pA, will have the strength of the DC

current changed. We create additional noisy odors for a given base odor by resampling the noise

using the above procedure.

The network tested is comprised of N = 1000 FHN neurons, randomly connected with a

probability of 0.5. 500 base odors we randomly chosen and stimulated the network for 100 ms

each, with an integration time step of 0.05 ms.

We take the output of this network and feed it through a one-vs-rest multiclass SVM to

train it. The SVM is trained in 1000-dimensional space, corresponding to the voltages of each of

the 1000 neurons. Each time point is a data point. Once the SVM is trained on the base odors,
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we test the network by measuring the networks ability to classify noisy odors. For a given η, we

create two noisy odors per base odor and run them through the WLC network for 100 ms. The

voltage outputs of each noisy odor are taken and ran through the SVM. For a given odor, each

time point is labeled as belonging to one of 500 odors. We then classify the whole time series by

counting the labels and choosing the odor that most frequently appears. We repeat this procedure,

varying η from η =
√

3
4 to η = 5

√
3.

We then repeat this procedure, building a N = 1000 neuron WLC network with HH

neurons and connection probability of 0.5 and I0 = 150 pA. The network is trained on 15 base

odors, and tested on 10 randomly sampled noisy odors per base odor, for a total of 150 noisy

odors per η. η is varied from η = 0 to η = 8 and each stimulus is presented to the network for

125 ms each.

5.2.6 Winnerless Competition Network with FHN Neurons in the Presence

of Mixtures

In nature, an insect is not exposed to single odors in isolation, but rather a mixture of these

odors. When presented with a mixture of odors, the insect must be able to identify the individual

components. It is for this reasoning that we explore how the WLC network responds to odor

mixtures.

In order to create mixtures of odors, we take two base odors created in the way laid out by

section 5.2.5. We then assume that a mixture of odors is a linear combination of the two base

odors as shown in equation 5.11.

Imixture(t) = αIbase 1(t)+(1−α)Ibase 2(t) (5.11)

α is a scaling factor that takes a value between 0 and 1.

A 1000 neuron network was created, as described in section 5.2.5. The WLC+SVM
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network was trained in the same fashion as above on 50 distinct base odors presented for 100

ms each. From these 50 odors, two were selected to create the mixtures. α is varied from 0 to 1,

increasing by increments of 0.01. Each of these mixtures was presented to the network for 100

ms. We then extend this analysis to a mixture of 3 odors.

5.3 Results

5.3.1 Robustness to Noise in a Winnerless Competition Network with HH

and FHN Neurons

In order to visualize the spatiotemporal encoding of the WLC network in we reduce the

dimensions of this N = 1000 dimensional space by projecting it into 3 dimensional space through

the use of Principal Component Analysis (PCA)[82]. PCA is a procedure used to reduce the

dimensions in a dataset by calculating a covariance matrix and transforming the data into a lower

dimensional space corresponding to the eigenvectors with the largest eigenvalues, known as

principle components. Because the matrix is real and symmetric, the eigenvectors which make up

this lower dimensional space are orthogonal.

For our purposes, we take the neuron voltage outputs Vj(t); j = 1,2, . . . ,N of five different

base odors concatenate them into one large data set. We then use PCA on this dataset to project the

data into 3 dimensional space. This projection can be seen in figures 5.4 and 5.3, where each data

point represents a point in time. For both a WLC network of FHN and HH neurons, the separation

between odors in the PCA space is clear. Figure 5.3 shows the full trajectory from rest. For each

of the five odors, the network initially starts at rest. It then shoots off into different directions

in this space, where it orbits. The geometric image of this orbit is a heteroclinic contour. Not

displayed here is the trajectory when the stimulus is removed. Figure 5.4 displays the heteroclinic

contours without the initial trajectory. This trajectory was removed in order to better visualize the
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trajectory in this space. Both figures display a clear separation of network activity in response to

differing odors in this 3 dimensional space.

-100

0

100

200

300

400

-50

0

50

100

150

200 -120

-80

-40

0

40

PCA
2

PC
A 3

PCA 1

 Odor0
 Odor1
 Odor2
 Odor3
 Odor4

WHC N = 1000
HH Model Network
PCA

Figure 5.3: Five distinct odors represented by stimulating currents were presented to the 1000
model WLC network built with Hodgkin-Huxley (here) or Fitz-Hugh Nagumo biophysical
neurons [54, 98, 102] connected by inhibitory synaptic processes. A PCA projection was
performed on a concatenation of the five distinct, 1000 dimensional voltage signals produced by
these stimuli. The projection displayed is into the three dimensional space spanned by the PCA
eigenvectors with the largest singular values. In this very low dimensional space the separation
of the input stimuli in space (neuron number) and time is clear. Before the stimulation is turned
on, all signals are at rest. When stimulation begins they move rapidly to different regions of
PCA projected state space and remain there while the stimulation persists.

Next we turn to the full network’s ability to correctly classify in the presence of noise.

The FHN neuron WLC+SVM network, was trained on 500 base odors presented to the network

for 100 ms each. We test the networks ability to classify new odors by presenting 1000 noisy

odors for each η value, two noisy odors per base odor. η was varied from η = 0 (no noise) to
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Figure 5.4: Five distinct odors represented by stimulating currents were presented to the 1000
model WLC network built with Fitz-Hugh Nagumo biophysical neurons [54, 98, 102] connected
by inhibitory synaptic processes. A PCA projection was performed on a concatenation of the five
distinct, 1000 dimensional voltage signals produced by these stimuli. The projection displayed
is into the three dimensional space spanned by the PCA eigenvectors with the largest singular
values. In this very low dimensional space the separation of the input stimuli in space (neuron
number) and time is clear. Before the stimulation is turned on, all signals are at rest. When
stimulation begins they move rapidly to different regions of PCA projected state space and
remain there while the stimulation persists.
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η = 5
√

3. For each presentation of an odor, all time points were labelled as belonging to one of

the 500 original odors, and the time series of the odor presentation was classified based on the

label which appeared the most.

The results can be seen in figure 5.5. We plot the classification accuracy against a noise-

to-signal ratio (inverse of the signal-to-noise). Here we can see that this network architecture

performs well even in the presence of significant feature noise. This level of performance is

surprising. Because we add noise by changing the amplitudes of the injected current at each

neuron and odors are primarily spatial, we would expect that once the noise was strong enough

to add or remove an amplitude of I0, this would distort the odor enough that the WLC network

would see it as a different input. However, the SVM is still accurate under these conditions. A

similar curve is displayed in figure 5.6, corresponding the the HH WLC+SVM network. Here

η ranges from η = 0 to η ≈ 8.3. Adjusting for the factor of
√

3, the FHN networks perform

similarly in response to noise.

5.3.2 Winnerless Competition Networks with FHN Neurons in the Pres-

ence of Mixtures

In order to test the networks response to mixtures, we train a N = 1000 FHN neuron

WLC+SVM network on 50 base odors. We then sample two base odors from the 50, which we will

denote as Ibase 1 and Ibase 2, and create a mixture Imixture(α) = αIbase 1+(1−α)Ibase 2; 0≤ α≤ 1.

This mixture was then presented to the trained network for 125 ms. Each data point in the 1000

dimensional voltage time series output of this mixture was classified as belonging to one of the 50

base odors. More mixtures are created by varying α from α = 0 (entirely odor Ibase 1) to α = 1

(entirely odor Ibase 2) in increments of 0.01. For our purposes, we express the classification of

odor in terms of a probability shown in equation 5.12.
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Figure 5.5: The classification accuracy of noisy currents presented to a WLC+SVM trained
on 500 baseline (η = 0) odors—see equation (5.10). Multiple trials of each noisy (η > 0) odor
were presented to the WLC+SVM network (with FHN neurons at the nodes) for tM− t0 = 100
ms. The odor is labeled by taking the highest probability of Eq.(5.12)
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Figure 5.6: The classification accuracy of noisy odors presented to a HH WLC+SVM network
trained on 15 odors. Multiple trials of each noisy odor having η 6= 0 in Eq.(5.10) were presented
to the network for 125 ms with the label assigned as described in equation.(5.12). The clas-
sification accuracy is found by comparing this prediction to the label of the “baseline” odor
equation.(5.10) to which the noise is added. Data for FHN neurons is similar and is presented in
Fig (5.5).
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PIbase k(Odor) =
Time in SVM region k

Total time in all SVM regions
. (5.12)

Figure(5.7) shows the probability of Ibase 1 as a function of α. At α = 0 we expect the

probability to be essentially zero, and at α = 1, it should very close to unity. The data in this

figure was fit with a sigmoid function, given by the expression in 5.13, with a = 14.6. The dots in

red show the calculation for PIbase 1 at each α value.

PIbase 1(α) =
1
2

[
1− tanha(0.5−α)

]
=

eaα

eaα + ea(1−α)
, (5.13)

with a = 14.6.

For each α value, Imixture(α) was entirely contained within the regions corresponding to

Ibase 1 or Ibase 2, with some very small leakage into the other 48 odors classes. This experiment

was performed two additional times by resampling the odors contained in the mixture. The results

(not shown) are similar to figure 5.7.

If the network is presented with a mixture of two unknown (but previously experienced)

odors, we can recover the concentration α by calculating PIbase k(Odor) and inverting equation

(5.13); thus the fraction of each pure odor can be written as

α =
1
2
+

1
a

tanh−1[2PIbase k(α)−1].

We extend this analysis to a mixture of three odors by sampling three new odors from

the initial 50 and using the same network used for a 2 base odor mixture. The equation for the a

mixture of three odors can be seen in equation 5.14 where 0≤ α≤ 1, 0≤ β≤ 1, α+β≤ 1.

Imix(α,β) = αIbase 1 +βIbase 2 +(1−α−β)Ibase 3 (5.14)

Each data point in the voltage time series output is labeled. We increment α and β by

80



Figure 5.7: A WLC+SVM network was trained on 50 pure odors I j; j = 1,2, . . . ,50 and the
mixture αI1 +(1−α)I2 presented. Sigmoid curves were fit to the data. The input mixture
varies linearly in α, while the classification probability follows a non-linear sigmoid. The MB
enhances the separation in the AL and creates sharp boundaries between odors. The robustness
to noise of the WLC+SVM network is due in part to the sharp boundary between classes of
mixtures as shown here.
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0.04 until all combinations of values of α and β are explored.

The results can be seen in figure 5.8. The red dots are given by taking the output of the

WLC network and calculating equation 5.12 for one base odor, which we call Ibase 1. The blue

dots represent the fit to the data, given by

PIbase 1(α,β) =
eσα

eσα + eσβ + eσ(1−α−β)
(5.15)

with σ = 20. Here we see similar results to the two odor case.

We can generalize the ability to to identify relative odor concentrations of mixtures. If we

have a linear mixture of K previously seen base odors (ααα = {α1,α2, . . . ,αK})

Imix(ααα) =
K

∑
k=1

αkIk, (5.16)

the output from the WLC+SVM network, using equation 5.12, will be matched accurately by the

expression

PIbase j(ααα) =
eσα j

∑
K
k=1 eσαk

;
K

∑
k=1

αk = 1. (5.17)

We can invert this equation for each of the K odors, to get K α j values as a function of the

observed PIbase j(ααα).

A casual observer may ask why the WLC network (and therefore the AL) is necessary at

all. An SVM, if trained on the vectors of our base odors, II+base k, is capable of classifying

these odors correctly with comparable performance to our WLC+SVM network. However, an

SVM alone will classify a mixture, Imixture into one of the previously seen 50 base odors. Without

the voltage time series response from the WLC network, the ability to separate mixtures of learned

base odors is totally lost.
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Figure 5.8: Mixture of three odors (currents): Imix(α,β) = αI1 + βI2 + (1−α− β)I3 after
processing by a 1000-dimensional WLC + SVM network (red dots). Fit to data (blue dots) is
given by fitting equation 5.15.
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5.4 Conclusions

Section 5.2.5 demonstrates that our WLC+SVM network structure is capable of sepa-

rating spatial classes and is particularly robust to high levels of noise using both FHN and HH

neurons. While an impressive result, there is still room for improvement. When compared to the

classification ability of an SVM alone, the WLC+SVM network performs comparable to the SVM.

This result is not surprising. An SVM is a modern tool used in machine learning specifically for

classification purposes of non-time dependent signals. In the above experiments, we use constant

inputs meant to replicate the collective behavior of the ORNs. However, the strength of the AL

and presumable the WLC network comes from its ability to handle noisy, time varying signals.

Even in controlled laboratory experiments where turbulence is minimized, the ORN

response to an odor is dynamic [89, 75, 68]. This manifests itself in the ORNs by odor specific

time-delays between odor presentation and ORN activity. ORN response is dependent on many

factors, including the concentration and its rate of change [75]. Previous studies have found

that time delays of ORN response are essential for complex spatiotemporal encoding within the

antennal lobe [89], but how the AL accounts for this information is still an open question [78].

One way in which we can improve upon these experiments is by testing the network’s capability

to encode time-dependent signals.

A general improvement that can be made to the WLC network is to introduce lateral

excitation. As there are no excitatory synapses in this network to replicate projection neurons,

a mechanism is needed to allow for spiking in neurons that do not receive direct stimulus from

odors. To accomplish this, 0.35 mV to the voltage equation. This allows our neurons, when

isolated, to spike without input. However, depending on the input, the inhibitory effect from the

directly stimulated neurons completely prevents the activity of non-stimulated neurons. This

behavior is necessary as it has been shown that the recruitment of non-stimulated neurons through

lateral excitation improve the antennal lobe’s ability to distinguish similar odors [94, 8].
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Additionally, the way in which we input data into the SVM could be changed to drastically

reduce training time. There is a somewhat recently developed technique for handling multivariate

time series, called reservoir computing. The reservoir computing approach uses a recurrent

(inter-connected) neural network to process sequential data. That data is then processed in the

usual manner, depending on the desired application. Examples include the use of linear regression

or a linear classifier such as a SVM. In these implementations, the linear models trained do not use

the entire time series, but instead use the last state of the network. This is because interconnected

networks have the capability to embed all the information necessary to reconstruct the original

input [100]. However, this implementation may compromised the ability of the network to

distinguish mixtures.

Section 5.3.2 demonstration the network’s ability to identify and recover individual

components of mixtures presented to the network. This network allows for the identification of

mixtures of classes given a single data point, impossible with an SVM alone. This WLC+SVM

network arrangement provides additional functionality over standard classifications methods.

However there is still more to be explored. While there are no additional neurons recruited

in the presence of a mixture odors, a linear combination representation may not be sufficient.

Competitive binding between molecules functions to normalize the ORN response. That is, the

strength of ORN response does not depend on the number of components within the mixture, and

is largely explained by competitive antagonism [90, 97]. This means a mixture of odors cannot

be explained by a linear combination of the base odors.

Chapter 5 was adapted from work being prepared for publication of the material as J. Platt,

A. Miller, L.Fuller, H.D.I. Abarbanel, Machine Learning Classification Informed by a Functional

Biophysical System, with consent of the authors. The dissertation author was one of the primary

investigators and authors of this paper.
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Physique,Tome Sixiéme, pages 621–656, 1774.

[63] P.S. Laplace. Memoir of the probability of causes of events. Statistical Science, 1:365–378,
1986. Translation to English by S. M. Stigler.

[64] Gilles Laurent. Olfactory network dynamics and the coding of multidimensional signals.
Nature Reviews Neuroscience, 3(11):884, November 2002.

[65] Gilles Laurent and Hananel Davidowitz. Encoding of Olfactory Information with Oscillat-
ing Neural Assemblies. Science, 265(5180):1872–1875, September 1994.

[66] Gilles Laurent, Katrina MacLeod, Mark Stopfer, and Michael Wehr. Spatiotemporal
Structure of Olfactory Inputs to the Mushroom Bodies. Learning & Memory, 5(1):124–
132, May 1998.

90



[67] Andrew C. Lin, Alexei Bygrave, Alix de Calignon, Tzumin Lee, and Gero Miesenböck.
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