
Lawrence Berkeley National Laboratory
LBL Publications

Title
Environmental Association Identifies Candidates for Tolerance to Low Temperature and 
Drought

Permalink
https://escholarship.org/uc/item/0p33r1zh

Journal
G3: Genes, Genomes, Genetics, 9(10)

ISSN
2160-1836

Authors
Lei, Li
Poets, Ana M
Liu, Chaochih
et al.

Publication Date
2019-10-01

DOI
10.1534/g3.119.400401
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0p33r1zh
https://escholarship.org/uc/item/0p33r1zh#author
https://escholarship.org
http://www.cdlib.org/


INVESTIGATION

Environmental Association Identifies Candidates for
Tolerance to Low Temperature and Drought
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Brian G. Shaw,* Xin Li,* Gary J. Muehlbauer,*,† Fumiaki Katagiri,† and Peter L. Morrell*,1

*Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and †Department of Plant
and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108

ORCID IDs: 0000-0001-5708-0118 (L.L.); 0000-0002-4332-5986 (A.M.P.); 0000-0002-2179-9638 (C.L.); 0000-0001-6839-4059
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0000-0001-9320-2629 (G.J.M.); 0000-0001-6893-3788 (F.K.); 0000-0001-6282-1582 (P.L.M.)

ABSTRACT Barley (Hordeum vulgare ssp. vulgare) is cultivated from the equator to the Arctic Circle. The
wild progenitor species, Hordeum vulgare ssp. spontaneum, occupies a relatively narrow latitudinal range
(�30 - 40�N) primarily at low elevation (, 1,500 m). Adaptation to the range of cultivation has occurred over
�8,000 years. The genetic basis of adaptation is amenable to study through environmental association. An
advantage of environmental association in a well-characterized crop is that many loci that contribute to
climatic adaptation and abiotic stress tolerance have already been identified. This provides the opportunity
to determine if environmental association approaches effectively identify these loci of large effect. Using
published genotyping from 7,864 SNPs in 803 barley landraces, we examined allele frequency differenti-
ation across multiple partitions of the data and mixed model associations relative to bioclimatic variables.
Using newly generated resequencing data from a subset of these landraces, we tested for linkage disequi-
librium (LD) between SNPs queried in genotyping and SNPs in neighboring loci. Six loci previously reported
to contribute to adaptive differences in flowering time and abiotic stress in barley and six loci previously
identified in other plant species were identified in our analyses. In many cases, patterns of LD are consistent
with the causative variant occurring in the immediate vicinity of the queried SNP. The identification of barley
orthologs to well-characterized genes may provide a new understanding of the nature of adaptive variation
and could permit a more targeted use of potentially adaptive variants in barley breeding and germplasm
improvement.
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When cultigens are disseminated from their region of origin, theymust
undergo adaptation to new climatic conditions (Gaut et al. 2018). These
bouts of adaptation are most extreme for widely cultivated species such
as barley and wheat, which are grown from the equator to the Arctic
Circle. Efforts to identify the genetic basis of agronomic phenotypes in

crops have typically started with a measurable phenotype or a proxy for
the phenotype (cf. Doebley and Stec 1991). Correlations between the
phenotype and genetic markers are identified using either quantitative
trait locus (QTL) interval mapping in bi-parental populations (Lander
and Botstein 1989) or association (also known as linkage disequilibrium
or LD) mapping in a panel of unrelated individuals (Lander and Schork
1994). Both QTL and LD mapping have been identified as top-down
approaches (Ross-Ibarra et al. 2007) because the investigator begins
with a pre-identified phenotype and searches for marker correlations.
Top-down approaches have proven extremely useful for identifying
loci with a measurable effect on a phenotype, but the data collected
generally do not aid in determining if the locus identifiedwas important
in the evolutionary origin of the trait. For example, in barley among
66 cloned genes, nearly half were identified by positional cloning
(Hansson et al. 2018) and only one locus was initially identified
as an allele frequency outlier (Comadran et al. 2012). Bottom-up
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approaches that identify genetic evidence of local adaptation or
genomic signatures of selection have rarely been used to move
from initial analysis to fully characterized genes (Doebley et al.,
2006; Ross-Ibarra et al., 2007; Morrell et al., 2012).

Genes identified in top-down approaches, by definition, contrib-
ute to measurable trait variation, but additional evidence is required
to determine if the loci identified have played a role in adaptation
(Ross-Ibarra et al. 2007; Kantar et al., 2017). For example, the loss
of inflorescence shattering in Asian rice was mapped to two loci
(Konishi et al. 2006; Li et al. 2006). Only one locus, qSH1, shows
evidence of selection in both the japonica and indica subspecies of
rice, suggesting that only qSH1 played a direct role in the domesti-
cation of both subspecies (Zhang et al. 2009).

Wild barley (Hordeum vulgare ssp. spontaneum), the progenitor of
cultivated barley (Hordeum vulgare ssp. vulgare), occurs primarily
within a limited latitudinal range of 30 - 40� N (Harlan and Zohary
1966). The geographic range of wild barley is bisected by the Zagros
Mountains, with peaks up to 4,400m, but wild barley occurs primarily
at , 1,500 m (Zohary et al. 2012). Barley was domesticated from its
wild progenitor �10,000 - 12,000 years ago. Domestication occurred
at least twice (Morrell and Clegg 2007) and involved genetic contri-
butions from across the geographic range of wild barley (Poets et al.
2015). The dissemination of cultivated barley beyond the initial cen-
ters of origin began�2,000 years after domestication (Willcox 2002).
Barley landraces and modern cultivars are the result of pre-historic
adaptation to growing conditions in Eurasia, North Africa, and much
more recently, to Australia and the New World. In Eurasia, the pro-
cess occurred as humans adopted an agropastoral lifestyle and spread
from the Fertile Crescent into a variety of geographic regions. This
included cultivation in regions with cooler and more mesic climates
in Europe (Pinhasi et al. 2005) as well as drier climates in North Africa
and Central Asia (Harris and Gosden 1996). Barley is frequently
produced at high elevations in East Africa, Asia, and Europe and
remains among the most important crops in Nepal and Tibet, where
it is grown at elevations up to 4,700 m.

The adaptation of cereals such as barley and wheat to northern
latitudes or dry climatic conditions involved changes in vernalization
requirements (Yan et al. 2006; Dawson et al. 2015), growth habit
(Turner et al. 2005; Zakhrabekova et al. 2012; Dawson et al. 2015),
and flowering time (Comadran et al. 2012; Dawson et al. 2015). Wild
species adapted to Mediterranean climates typically grow over winter
and flower in the spring. This is known as a winter growth habit.
Under cultivation, winter annuals such as barley and wheat have been
adapted to colder climates through spring planting, known as a spring
growth habit. Spring planting can make cultivation possible at higher
latitudes but also increases exposure to frost and freezing conditions
(Visioni et al. 2013).

Approaches for the identification of genetic variants contributing
to environmental adaptation must discriminate between the effects of
selection and neutral evolutionary processes (reviewed in Rellstab et al.
2015). Demographic effects acting on populations impact the entire
genome, whereas selection alters allele frequencies at individual loci
(Cavalli-Sforza 1966). The identification of loci involved in adaptation
to the environment has involved measures that focus on differentiation
in allele frequencies and approaches that identify correlations between
allele frequencies and environmental variables (De Mita et al. 2013).
Differentiation-based approaches were pioneered by Lewontin and
Krakauer (1973) who proposed an approach to identify variants subject
to differential selection between populations using allele frequency
differences measured by F-statistics. F-statistic-based comparisons
suffer from several weaknesses, including a high expected variance

in FST values (Nei and Maruyama 1975) and the arbitrary nature of
the partitioning of populations (Lotterhos and Whitlock 2014). If
informative population partitions are defined, FST measures can iden-
tify loci subject to strong differential selection (Beaumont and Balding
2004). For examination of environmental adaptation, this approach
partitions samples by categorical variables such as elevation and lat-
itude and seeks to identify the largest differences in allele frequency
among these partitions. It has the advantage of being applicable
to samples of both populations and individual accessions (Rellstab
et al. 2015).

In addition to differentiation-based approaches, the other broad
class of approaches for identifying potentially environmentally adap-
tive variants focuses on correlations between genetic variants and
environmental factors (De Mita et al. 2013). Correlative approaches
have been developed that address population structure and related-
ness among populations, thus better address heterogeneity of the
environment than is possible with categorical comparisons (Coop
et al. 2010). These approaches also take advantage of allele frequency
estimates from each sampled population, ultimately determin-
ing whether the frequency of individual variants is more strongly
correlated with environmental variables than with the underlying pat-
tern of relatedness among populations (Coop et al. 2010; Günther and
Coop 2013). The need for a sample of individuals from each popula-
tion limits the application of this approach (Rellstab et al. 2015).
Sampling design for studies seeking to identify the genetic basis of
local adaptation is an active area of research (Lotterhos and Whitlock
2015). Mixed-model association using bioclimatic variables is an ap-
proach that can be appropriately applied to samples where a single
individual represents each population (Eckert et al. 2010; Yoder et al.
2014; Rellstab et al. 2015). This approach explicitly controls for
population structure with bioclimatic variables such as average
temperatures and rainfall treated as “phenotypes” (Eckert et al. 2010;
Yoder et al. 2014; Rellstab et al. 2015; Contreras‐Moreira et al. 2019).

Simulation studies suggest that the power to detect the genetic
basis of adaptation using either differentiation or correlative ap-
proaches is dependent on factors such as the demographic history
and migration model (De Mita et al. 2013; Lotterhos and Whitlock
2014), sampling design (Lotterhos and Whitlock 2015), mating sys-
tem (DeMita et al. 2013; Lotterhos andWhitlock 2014), and whether
variants that contribute to local adaptation are expected to demon-
strate conditional neutrality or antagonistic pleiotropy (Tiffin and
Ross-Ibarra 2014). In simulations, genotype-environment correla-
tion methods have substantially more power to detect selection than
differentiation-based approaches but also have higher rates of false
positives (De Mita et al. 2013). FST comparisons have a low false
positive rate but also generally lower power to detect loci subject
to selection (De Mita et al. 2013; Lotterhos and Whitlock 2015).
De Mita et al. (2013) note that genotype-environment approaches
had higher power under an island model of migration while FST
approaches have higher power under isolation by distance.

Here, we make use of 803 barley accessions from a geographically
diverse collection of barley landraces genotyped with the barley 9K
Illumina Infinium iSelect Custom Genotyping BeadChip (Comadran
et al. 2012). The dataset includes all Old World landrace accessions
from the USDA-ARS National Small Grains Collection (NSGC) Core
Collection (Muñoz-Amatriaín et al. 2014) with a single accession rep-
resenting each geographic location. The core collection was designed
to maximize geographic coverage, which limited our analysis options.
Here, we present FST outlier and mixed-model association analyses
to identify loci potentially involved in cold and drought tolerance.
As in a number of previous empirical studies, we make use of both
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differentiation and correlation-based analyses (Fang et al. 2012;
Pyhäjärvi et al. 2013; Anderson et al. 2016) reviewed in Bragg et al.
(2015). For differentiation analysis using FST comparisons, we focus
on partitions of the sample that distinguish unique growth condi-
tions. These include latitude, elevation, and spring vs. winter growth
habit. To identify the factors that contribute most to allele frequency
differentiation, we also calculated FST for a longitudinal comparison, a
contrast reported in previous studies (Morrell and Clegg 2007; Saisho
and Purugganan 2007; Poets et al. 2015). We address the following
questions: 1) Which of the comparisons explains the largest portion
of allele frequency differentiation? 2) How many previously reported
cold temperature and drought tolerance related loci show evidence of
contributing to climatic adaptation? 3) Do barley orthologs for genes
associated with adaptive phenotypes show evidence of contribution
to environmental adaptation in our sample? 4) Given the LD expected
in a self-fertilizing species, how frequently are SNPs identified in
our analyses in the proximity of potentially causative loci? For this
final question, we make use of exome capture resequencing from
a sample of 62 landraces drawn from the larger panel. This permits
a direct estimate of LD between SNPs identified in our broader panel
of accessions and variants in a window surrounding each locus.

We identified six barley genes previously reported to be involved
in either cold or drought tolerance, or in flowering time. Furthermore,
our analyses identified six additional barley orthologs of genes charac-
terized as contributing to these traits in other plant species. A slight
relaxation of the empirical cutoff for outlier FST values identified an
additional four characterized barley genes and six orthologs from other
plants. Considering both allele frequency outlier and bioclimatic asso-
ciation analyses, we identified 282 barley genes not previously reported
to be associated with environmental adaptation. Comparisons of LD
between SNPs in genotyping and resequencing suggest that roughly a
quarter of the genes we identified on the basis of SNP genotyping are
strong candidates for association due to the relatively low gene density
in barley.

MATERIALS AND METHODS

Plant materials
We used 803 accessions of barley identified as landraces based
on passport data from a core collection within the United States
Department of Agriculture, National Small Grain Collection
(Muñoz-Amatriaín et al. 2014). The 803 individuals were collected
from Europe, Asia, and North Africa. These cover the range of
barley cultivation in human pre-history (Willcox 2002; Pinhasi
et al. 2005; Poets et al. 2015). Barley growth habits describe plant-
ing times. Spring growth habit is most common and constitutes
617 (76.8%) accessions in our sample. The balance of the sample
includes 142 (17.7%) winter accessions, 16 (2.0%) facultative ac-
cessions that can be planted for spring or winter growth, and
28 accessions (3.5%) of unknown growth habit. Barley can also be
divided into the ancestral two-row inflorescence type and the denser
six-row type. Our sample includes 542 (67.5%) accessions of six-
row barley, 219 (27.3%) two-row accessions, with the remaining
42 (5.2%) accessions of unknown row type. The reported geographic
coordinates for each accession were manually confirmed to identify
potentially inaccurate locations, and landraces with highly doubtful
locations were filtered out (Table S1). The elevations of collection
locations were inferred from the NASA Shuttle Radar Topographic
Mission (SRTM) 90 m data (http://www.cgiar-csi.org/) on Oct 7,
2015 using the getData function from R package ‘raster’ (Hijmans
et al. 2016).

Genotyping data
All samples were genotyped using the 7,864 SNPs on the 9K Illumina
Infinium iSelect Custom Genotyping BeadChip (Comadran et al.
2012). The genotyped data were published in Muñoz-Amatriaín
et al. (2014). The SNPs are distributed across the seven chromosomes
of the diploid barley genome. Because of the relatively large size of
the barley genome, the SNP panel includes �1 SNP per 648 Kb in
the 5.1 Gb genome (The International Barley Genome Sequencing
Consortium 2012). For more details on the SNP discovery panel see
the description in Comadran et al. (2012; 2015). Cultivated barley is
99% self-fertilizing (Wagner and Allard 1991; Bothmer 1992), and
thus the number of unique chromosomes sampled is roughly equal to
the sample size. The genotyped dataset was filtered for monomorphic
SNPs and SNPs with . 20% missingness (Supplemental dataset 1).
We culled SNPs in complete LD for comparative analyses, maintain-
ing SNPs with lower missingness (Supplemental dataset 2).

Estimating crossover relative to physical distance
We identified the physical position of 9K SNPs relative to the barley
reference genome (Mascher et al. 2017) (Supplemental dataset 3;
File S1). The crossover rate in cM/Mb was estimated using SNP
physical positions relative to genetic map positions (Muñoz-Amatriaín
et al. 2011). A Python script for this calculation and an R script
for locally weighted scatterplot smoothing (LOESS) reported by
Kono et al. (2018) are included in the project repository https://
github.com/MorrellLAB/Env_Assoc.

Sample differentiation
We estimated the degree of differentiation among individuals by
principal components analysis (PCA). PCA was performed using
the SmartPCA program from the EIGENSOFT package (Patterson
et al. 2006) with SNP data converted from VCF using PLINK 1.90
(Chang et al. 2015).

Exome resequencing data
We generated exome resequencing from 62 landrace accessions from a
randomly chosen subset of landraces in the corecollection.This includes
37 six-row spring and 25 two-row spring accessions (Table S2). DNA
wasextracted fromleaf tissuecollected fromasingleplantperaccessionat
the 4-5 leaf stage using a standard 2X CTAB isolation protocol (Saghai-
Maroof et al. 1984). The exome resequencing was performed using the
NimbleGen exome capture design for barley (Mascher et al. 2017)
followed by Illumina 125 bp paired-end resequencing at the University
of Kansas Medical Center Genome Sequencing Facility, Kansas City,
KS. The data were processed using publicly available software integrated
with bash scripts in the ‘sequence_handling’ workflow (Hoffman et al.
2018). Details are in File S1. Variant calling is similar to that reported
by Kono et al. (2016), with parameters specified in File S1.

Heterozygosity, SNP diversity, and SNP annotation
Observed heterozygosity was calculated using PLINK 1.90 with the flag
‘–het’. The R package ape (Paradis et al. 2004) was used to calculate the
average percent pairwise difference (Manhattan distance) between ac-
cessions. SNPs in coding and noncoding sequences and in amino acid
changing positions within genes were identified using ANNOVAR
(Wang et al. 2010) with gene models provided by Mascher et al.
(2017) (Supplemental dataset 4).

Bioclimatic and geographic variables
“WorldClim 1.4” bioclimatic data at a resolution of 2.5 min (Hijmans
et al. 2005) were downloaded on Oct 7, 2015 using the getData ‘raster’
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R function (Hijmans et al. 2016) in the R statistical language (R Core
Team 2018). The latitude, longitude, elevation, and BIO1 to BIO19
values of the collection locations for each landrace are given in the
phenotype data file (Supplemental data 5). Environmental variables
can be divided into three categories, geographic factors, temperature,
and precipitation. The latitude, longitude, and elevation were classified
as geographic factors, BIO1 to BIO11 were classified as temperature,
and BIO12 to 19 were classified as precipitation. To identify the
relationship among the 22 variables given our sample locations, we
performed independent components (ICs) analysis using the icai-
max function from the ‘ica’ R package (Bell and Sejnowski 1995).
ICs are conceptually similar to principal component summaries of
data; however, we found that using the top three ICs appears to
capture the cold temperature trend better than using the top three
PCs (Table S3). Details of IC interpretation and comparison to
Bioclim variables are reported in File S1.

Environmental association mapping
To identify associations between genotypes and environmental var-
iables, we used a compressed mixed linear model with a “Population
Parameters Previously Determined” (P3D) algorithm (Zhang et al.
2010) implemented in the Genome Association and Prediction In-
tegrated Tool (GAPIT) R package (Lipka et al. 2012). We used the
genotyping data to infer the population structure by principal com-
ponent analysis within GAPIT and used major principal components
(Figure S1a) to control for structure in the mixed linear model.
GAPIT implements kinship estimation from SNP data using the
approach of VanRaden (2008). The kinship matrix was used in all
mixed-model associations with environmental variables. We excluded
SNPs with minor allele frequency (MAF) # 0.01 from association
analysis. We applied the Benjamini-Hochberg false discovery rate
(FDR) correction. We report both adjusted p-values and FDR with
an FDR threshold # 0.25.

FST estimation
To compare allele frequency differentiation in partitions of the data
we calculated F-statistics (Wright 1949) for individual SNPs using
the measure of Weir and Cockerham (1984) as implemented in the
R package ‘HierFstat’ (de Meeûs and Goudet 2007). The FST analysis
considered five partitions of the data, which were elevation, high
latitude, low latitude, longitude, and growth habit.

The elevation comparison used a threshold of 3,000 m to delineate
high elevation accessions. This includes accessions from the European
Alps, the Caucasus, Himalayan, Hindu Kush Mountain regions, and
the Ethiopian Plateau. Since wild barley typically grows below 1,500 m
(Zohary et al. 2012), we also compared the allele frequency at three
elevations: below 1,500 m, 1,500 m - 3,000 m, above 3,000 m.

We compared allele frequencies at two latitudinal ranges: (1) within
the wild range of the species (30� N – 40� N) vs. landraces at latitudes
higher than 40� N (high latitude), and (2) within the wild range of
the species (30� N – 40� N) vs. landraces at latitudes lower than 30� N
(low latitude). High latitude includes the northern extent of the
range of wild barley and extends across Eurasia from the Central
Iberian Peninsula to the Northern Japanese Archipelago. Low lati-
tude includes the southern extent of the range of wild barley. For
landraces, this extends from northwestern Africa to just south of
the Japanese Archipelago. We also compared low and high latitude
vs. the wild range in a single comparison.

For a longitudinal comparison, we divided the sample at 48� E,
roughly through the ZagrosMountains, which coincides with themajor
axis of population structure in wild barley (Fang et al. 2014). The final

comparison was spring vs. winter growth habit, with assignment based
on USDA passport information.

To account for differences in sample size among partitions of the
data (Table S4) (Bhatia et al. 2013), we used resampling with equalized
sample numbers and 10 iterations without replacement. FST estimates
for each SNP were averaged across 10 iterations and outliers were
identified at the 99th percentile of the distribution. To calculate the
p-value for each FST value we performed 1,000 permutations. The
details can be found in File S1.

Identification of previously reported loci related to
cold, drought tolerance, and flowering time
A literature search was used to identify genes previously reported to
contribute to plant flowering time and cold or drought tolerance.
Google Scholar searches were performed with the terms “cold OR
freezing OR drought tolerance” or “flowering time” and “plant” or
“barley” (Table S5-7). For each publication with these keywords in the
title or abstract, we looked for evidence that individual genes were
reported to contribute to flowering time, cold, or drought tolerance.
The protein-coding sequences (CDS) of identified genes were used as
the query or subject in BLASTN against the barley high-confidence
CDS in May 2016 on the IPK Barley BLAST Server (Mascher et al.
2017). Barley genes and their interval information were extracted
if the combined “Score,” “Identity,” “Percentage,” and “Expectation”
produced the overall highest rank and the “Query length”
was .100 bp. In the event of identical scores, all highest ranked
hits were extracted.

The BEDOPS ‘closest-features’ function (Neph et al. 2012) was used
to compare the locations of SNPs and gene intervals. Specifically, if
the SNPs were located in the gene interval or 10 Kb up- or downstream
of the closest genes, we considered those SNPs as identifying the
closest gene.

LD Around SNPs
For each 9K SNP identified in environmental association analysis
or among FST outliers, we calculated LD with surrounding SNPs
called from exome capture resequencing data. We focused on 200 Kb
windows, 100 Kb upstream and downstream of the queried SNP.
When the queried SNP was also genotyped by exome capture, this
SNP was used for the LD analysis. If the queried SNP was not present
in exome capture, we extracted the SNPs called from exome capture
sequencing data surrounding the physical position of the queried
SNP. Then we performed LD analysis using the proximate SNP with
a MAF similar to the queried SNP. We filtered out SNPs using a MAF
threshold of 1% for all of the SNPs called from the exome capture
resequencing data. For LD analysis, filtering of variants could be anti-
conservative, thus for this analysis, we removed SNPs with $ 50%
missing data. We used the R package ‘LDheatmap’ (Shin et al. 2006)
to calculate r2 (Lewontin 1988).

Inference of ancestral state
The ancestral state for each SNP from both 9K (Supplemental data 6)
and resequencing datasets (Supplemental data 7) was inferred using
whole-genome resequencing data from Hordeum murinum ssp.
glaucum (Kono et al. 2018) with the programs ANGSD and ANGSD-
wrapper (Korneliussen et al. 2014; Durvasula et al. 2016). We chose
H. murinum ssp. glaucum for ancestral state inference because phy-
logenetic analyses have placed this diploid species in a clade relatively
close to H. vulgare (Jakob et al. 2004). Previous comparison of
Sanger and exome capture resequencing from the most closely related
species, H. bulbosum, identified substantial shared polymorphism,

3426 | L. Lei et al.



resulting in ambiguous ancestral states (Morrell et al. 2013). Methods
are detailed in Kono et al. (2018). Both minor and derived allele
frequencies were calculated using a Python script.

Haplotype analysis for individual genes
To assess evidence for functional diversity near SNPs identified
in our analysis, we examined haplotype-level diversity in loci that
flanked associations. We used exome capture resequencing from the
panel described above. Overlapping SNP genotyping was extracted
from SNP calls in a variant call format (VCF) file using ‘vcf-intersect‘
from vcflib (https://github.com/vcflib/vcflib). Missing genotypes were
imputed using PHASE (Stephens et al. 2001; Stephens and Scheet
2005); PLINK 1.9 (Chang et al. 2015) was used to convert the VCF
format into PHASE format. Homozygotes were treated as haploid
and heterozygotes were treated as diploid samples for haplotype
identification.

Data availability
All sequences were submitted to the NCBI SRA associated with
BioProject numbers PRJNA473780 and PRJNA488050. Supporting
data (Supplemental data 1-10), including a VCF file of exome capture
SNPs and the full results for environmental association and FST, are
available at https://doi.org/10.13020/adqb-bb41. Scripts for analysis
and associated files are available on a project Github site at https://
github.com/MorrellLAB/Env_Assoc. Supplemental material available
at FigShare: https://doi.org/10.25387/g3.9478253.

RESULTS

Summary of genotyping and resequencing data
We selected 803 barley landrace accessions that are a portion of the
core collection within the United States Department of Agriculture,
National Small Grain Collection (Muñoz-Amatriaín et al. 2014). All
samples were genotyped using the 7,864 SNPs on the 9K Illumina
Infinium iSelect Custom Genotyping BeadChip (Comadran et al.
2012) genotyping platform (Supplemental dataset 1, henceforth re-
ferred to as 9K SNPs). Genetic assignment identified four major
groups of landraces previously identified by Poets et al. (2015) as
Coastal Mediterranean, Central European, East African, and Asian
(Figure S2). After quality filtering of the genotyping data and exclu-
sion of landrace accessions without discrete locality information,
our SNP genotyping dataset includes 5,800 SNPs in 784 accessions
(Figure S3; Table S1; Supplemental dataset 2). Quality filtering of
genotyping data resulted in the removal of 352 SNPs with . 20%
missingness.

We also generated exome resequencing from 62 landrace acces-
sions from a randomly chosen subset of the core collection. Rese-
quencing and read mapping followed by read deduplication resulted
in an average of 18X exome coverage for the sample. After variant
calling and quality filtering, we identified 482,714 SNPs in 62 samples
(Figure S3; Table S2; Supplemental dataset 7; Supplemental dataset
8, henceforth referred to as exome SNPs). The site frequency spectrums
for SNPs in both the 9K and exome panels are shown in Figure S4.
Average inbreeding coefficients estimated from SNP genotyping data
and exome resequencing data are 0.996 (6 0.025) and 0.981 (6 0.008)
respectively.

Environmental association and FST outliers
To examine associations between environmental variables and SNP
diversity, we downloaded the latitude, longitude, elevation, and
19 bioclimatic variables of the collection locations for each landrace

from “WorldClim” (Supplemental data 5). Because there is expected
to be correlation among bioclimatic variables (Figure S5), we per-
formed independent component analysis on the 19 variables to identify
the subset of variables that best summarizes the range of environments
occupied by barley landraces (Supplemental dataset 9). Combined with
the 9K genotype data, we performed environmental association using
a mixed linear model in GAPIT. The population structure and the
kinship matrix were used in all mixed-model associations with envi-
ronmental variables and ICs. Relatively few individuals showed close
kinship; 95% of comparisons had pairwise distance . 0.1 based on
the Manhattan distance between accessions (Figure S6). Initially, we
identified 32 SNPs with the first three ICs with FDR# 0.25. Loosen-
ing FDR to # 0.3 or # 0.4 identified an additional 45 SNPs or 77 in
total. The first three ICs provide a limited summary of bioclimatic
variation because they incorporate only eight bioclimatic variables
(Table S3). The eight variables are not closely correlated to other
bioclimatic variables (Figure S5). Limiting the analysis to ICs poten-
tially excludes some of the bioclimatic signal associated with the
remaining variables. Thus, we also examined each of the bioclimatic
and geographic variables independently. The environmental associa-
tion with bioclimatic and geographic variables and three ICs identi-
fied 155 SNPs in significant associations (with FDR# 0.25) (Figure 1;
Table S8).

We examined allele frequency differentiation in five partitions of
the data including elevation, high latitude, low latitude, longitude,
and growth habit (Table S4). For both elevation and latitude, we
calculated a single FST value with the samples divided into three
groups (Table S9; Table S10; Figure S7). Since wild barley typically
grows below 1,500 m (Zohary et al. 2012), the three groups of
elevations were: below 1,500 m (low elevation), 1,500 m - 3,000 m
(middle elevation), and above 3,000 m (high elevation). Since the
geographic range of wild barley falls roughly between 30� N – 40� N,
the three groups include: below 30� N (low latitude), 30� N – 40� N
(middle latitude), and above 40�N (high latitude). We also calculated
FST for low and middle elevations relative to high elevation, low to
middle latitude, and middle to high latitude (Table S9; Table S10;
Figure S7). While FST values for pairwise comparisons include many
barley genes previously associated with adaptive phenotypes (see
below), the outliers in the single elevation FST comparison did not
include these candidate loci (Table S10-12). Thus, we focused on
reporting outlier results on the two-level comparisons (Supplemental
dataset 10). FST comparisons for elevation, latitude, and growth habit
identified 203 outliers (using FST values in the upper 1% as the
threshold) (Figure 1; Figure 2; Table S10). Considering both the
environmental association and FST comparisons, we identified a
total of 349 unique SNPs putatively associated with environmental
adaptation in our genotyping panel (Figure 1).

Environmental associations and FST outliers shared nine SNPs
in the coding portion of 11 annotated genes. The only characterized
gene found in both analyses is HvPhyC in barley. For details regarding
overlapping results see Table S11.

Loci previously reported to contribute to
environmental adaptation
Changes in flowering time and drought or cold tolerance are putatively
adaptive traits for a cultivated species that has experienced a dramatic
expansion in latitudinal range. Our results found four of the 57 genes
previously identified in barley as contributing to flowering time, two of
the 33 genes contributing to cold tolerance, and none of the 13 genes
contributing to drought tolerance (Table 1; Table 3) with the FST
threshold limited to the top 1% of values. However, we found six

Volume 9 October 2019 | Genetics Basis for Adaption to Climate | 3427

https://github.com/vcflib/vcflib
https://doi.org/10.13020/adqb-bb41
https://github.com/MorrellLAB/Env_Assoc
https://github.com/MorrellLAB/Env_Assoc
https://doi.org/10.25387/g3.9478253


genes previously identified in barley as contributing to flowering
time, four genes contributing to cold tolerance, and none of the
13 genes contributing to drought tolerance (Table 1), among the
2.5% of FST values.

The six loci, previously identified in barley and found to contribute
to flowering time (using the upper 2.5% of FST values), include four
loci identified as FST outliers. HvPhyC (Nishida et al. 2013) and
HvPpdH1 (Turner et al. 2005; Jones et al. 2008) occur among the
upper 1% of FST values (Table 2; Table 3). HvELF3 (Esp1L/eam8)
(Boden et al. 2014) and HvPpd-H2 (HvFT3) (Casao et al. 2011) are
included at the more liberal threshold of FST values in the upper 2.5%
(Table 2). Environmental association identified two additional flow-
ering time loci, HvPRR1 (HvTOC1) (Ford et al. 2016) and HvVrn-H1
(HvAP1) (Cockram et al. 2007), among the 155 outliers at FDR of
0.25 (Table 2).

We also identified four loci previously reported as contributing to
cold adaptation in barley, using FST values in the upper 2.5% (Table 3).
This includes HvCbf4B (Stockinger et al. 2007) and HvICE2 (Skinner
et al. 2006) as FST outliers for the low latitude, elevation and growth
habit comparisons at the top 1% threshold (Table 2). The upper
2.5% threshold for FST includes two additional characterized loci,
HvDhn8 (Choi et al. 1999) and HvSS1 (Barrero-Sicilia et al. 2011)
(Table 2).

A further six loci identified as FST outliers in the top 1% of
values or in environmental associations in our barley panel had
been previously identified as contributing to flowering time or cold
or drought tolerance in other plant species (Table 2). This includes
one flowering time-related locus characterized in Arabidopsis
thaliana, AtCOP1 (Xu et al. 2016), which was identified as an
FST outlier in the top 1% of values. Two loci (TaWCI16 and OsiSAP8)
related to cold tolerance were also identified. TaWCI16 was charac-
terized in wheat and involved in freezing tolerance (Sasaki et al. 2013).

The locus was identified in environmental association with “minimum
temperature of coldest month (BIO6).”OsiSAP8 is a rice (Oryza sativa)
locus, which has been associated with cold, drought, and salt stress
response (Kanneganti and Gupta 2008). OsiSAP8 was identified by a
SNP in the upper 1% of FST values. While no previously identified
drought tolerance loci from barley were detected in our analysis, we
find evidence of contributions from three loci previously character-
ized in three other plant species as contributing to drought tolerance
(Table 2). One of these genes was identified based on environmental
association while the other eight involved FST comparisons; only two
of the SNPs were included in the upper 1%. In the top 2.5% of values,
we found an additional six genes previously characterized in two
other plant species as contributing to drought tolerance (see Table 2
for details). The identification of multiple characterized loci between
the upper 2.5% and 1% of FST is indicative of the trade-off between
false discovery and false negative rate in empirical scans for adaptive
variation (see Teshima et al. 2006) (Table 4).

Relative differentiation among partitions of the sample
Comparison of average FST values across various partitions of the
dataset provides a means of determining the factors that contrib-
ute most to differentiation in barley landraces. Average FST was
highest for the longitude comparison with mean genome-wide
FST = 0.123 (6 0.13) (Table S9; Supplemental data 10). A primary
partitioning of barley populations by longitude, reported as eastern
and western populations, has been reported previously (Morrell
and Clegg 2007; Saisho and Purugganan 2007; Poets et al. 2015).
The second-highest average FST was for elevation at 0.089 (6 0.10)
(Table S9; Supplemental data 10). The three-level comparison of
FST from 0 - 1,500 m, 1,501 - 3,000 m, and .3,000 m resulted in a
slightly lower average FST = 0.0826 (6 0.0745) (Table S9; Figure S7;
Supplemental data 10). A three-level comparison of latitude with

Figure 1 The genomic distribution of outlier SNPs identified in the FST comparisons of elevation (below 3,000m vs. above 3,000m), low latitude
(below 30�N vs. 30-40�N), high latitude (30-40�N vs. above 40�N), growth habit (winter vs. spring), and association analysis of 21 bioclimatic
variables, which are categorized into three classes (precipitation, temperature, and geographic variables) and ICs.
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comparisons above and below the range of wild barley (seeMaterials
& Methods for details) was similar to elevation with average FST =
0.087 (60.082) (Table S9; Figure S7; Supplemental data 10). Pair-
wise comparisons of the wild range to high latitude, wild to low
latitude, and plant growth habit as either spring or winter barley
resulted in much lower average FST values (Table S9).

FST outliers from geographic patterns and growth habit
We focused on comparisons most directly linked to climatic differen-
tiation in FST outliers. We obtained results from the two-level compar-
isons for high and low latitude, elevation, and growth habit. The upper
1% of FST values from each comparison yielded 55 outlier SNPs for a
total of 203 unique SNPs (Figure 1; Figure 2; Table S11). The compar-
isons tend to identify unique SNPs. There is an overlap of four SNPs in
the low and high latitude comparisons and seven SNPs between eleva-
tion and growth habit, but other overlaps were not detected (Figure S8).
Winter barleys are less frequently grown at higher latitudes and ele-
vations due to harsh winter weather conditions, and indeed winter
barleys from these locations are relatively uncommon in the sample,
thus constraining the comparisons (Table S1). The elevation compar-
ison identified the largest number of previously characterized loci
including HvPhyC, HvICE2, and OSiSAP8 (Figure 2).

SNPs with the most extreme FST values for elevation, growth habit,
and latitude comparisons formed distinct geographic patterns. Each
comparison with the highest FST values occurred with SNPs that
fall within genes that are annotated, but uncharacterized. The highest
FST from the high latitude comparison occurred at SNP 12_30191
with FST = 0.484 (p-value = 0). The ancestral allele dominates within
the wild barley geographic range for this SNP. Whereas the derived
allele is more prevalent in higher latitude regions including the
northern extent of the range of wild barley. This range extends across

Eurasia from the Central Iberian Peninsula to the Northern Japanese
Archipelago (Figure 3A; Supplemental data 10). The highest FST from
the low latitude comparison is for the SNP SCRI_RS_153793 with
FST = 0.505 (p-value = 0). The ancestral state for the SNP predomi-
nates within the geographic range of wild barley and higher latitudes.
Whereas the derived allele is more prevalent in lower latitudes,
which includes the southern extent of the range of wild barley.
For landraces, this extends from northwestern Africa to just south
of the Japanese Archipelago (Figure S9A; Supplemental data 10).
The highest FST between samples from the elevation comparison
is for SNP 12_20648 with FST = 0.594 (p-value = 0). This SNP’s
ancestral allele occurs at high elevations, such as the Himalayan
Mountains, while the derived allele tends to occur at lower elevation
(Figure 3B; Supplemental data 10). The highest FST between samples
from the growth habit comparison was for SNP SCRI_RS_134850

n Table 1 The number of barley genes detected with signals
of adaptations and genotyped by 9K SNPs. The number in
the parentheses is the fraction of total genes in that functional
category that was genotyped or detected with signals of
adaptation

Total

Genotyped
by $1 9K
SNPs

Genotyped
by $2 9K
SNPs

With signals
of adaptation

Flowering
time

57 29 (50.9%) 9 (15.8%) 6 (10.5%)

Cold
tolerance

33 20 (60.6%) 9 (27.3%) 4 (12.1%)

Drought
tolerance

13 7 (53.9%) 3 (23.1%) 0 (0%)

Figure 2 FST for 9K SNPs in samples from comparisons of (A) high latitude, (B) low latitude, (C) elevation, and (D) growth habit.
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with FST = 0.390 (p-value = 0) (Figure S9B; Supplemental data 10).
The ancestral SNP state is C, and the derived state is T. The CC
genotype is observed in 60.5% of winter barley while TT is observed
in 88.2% of spring barley (Figure S9B; Supplemental data 7).

Environmental association to bioclimatic variables
Using amixed linearmodel, we identified 155 unique SNPs significantly
associated with at least one environmental factor with the threshold
of FDR , 0.25 (Figure 1; Table S8). The first three PCs explained
(48.07%) of the variance (Figure S1) and were used to control for
population structure. All of the p-values and Benjamini-Hochberg
FDR-values were reported in Supplemental data 9.

We found 81 SNPs associated with precipitation (variables BIO12
to BIO19) and 51with temperature (all variables fromBIO1 to BIO11)
for individual environmental variables (Figure 1). We also identified
47 SNPs associated with geographic variables (latitude, longitude,
and elevation), and 32 associated with independent components
(top three independent components calculated from BIO1 to BIO19
values after standardization for each BIO variable, called ICs) (Figure 1).
Another finding includes 47 cases where individual SNPs were as-
sociated with more than one environmental variable (Figure S10).
But more generally, as with the FST comparisons, the environmen-
tal variables tend to associate with unique sets of SNPs (Figure S10).
The largest proportion of unique SNPs were found for precipita-
tion (33.55%), followed by geographic variables (18.71%), tem-
perature variables (18.06%), and then ICs (1.29%) (Figure S10).
The aggregated independent components generally did not identify
novel variants.

Minor allele frequency of identified SNPs
The SNPs identified as FST outliers have averageMAF= 0.330 (6 0.101)
vs. a sample-wide average of 0.262 (6 0.140) a highly significant dif-
ference (Mann-Whitney U Test, p-value = 3.5 · 10215). SNPs with
significant environmental associations have an average MAF = 0.251
(6 0.137), which is slightly lower than the full SNP data set but not
statistically significant (Mann-Whitney U Test, p-value = 0.3114). While
MAF limits the potential to associate genotype to phenotype for associ-
ation analysis; the relatively large sample represented here does not suffer
from this major limitation of detection. The high MAF contrasts with
expectations that adaptive variants for less frequently occupied hab-
itats, such as high elevation sites of cultivation, should be relatively
uncommon (average MAF = 0.240 (6 0.091) of outliers from eleva-
tion comparison). A relatively low MAF might be expected under
models where adaptive variants in a particular environment exhibit
antagonistic pleiotropy, and thus confer lower fitness away from
habitats in which they are adaptive (Tiffin and Ross-Ibarra 2014).

SNP density and LD Near focal SNPs
As previously reported, SNP density is highest on chromosome arms
and lower in pericentromeric regions (Muñoz-Amatriaín et al. 2015;
Mascher et al. 2017). This trend is particularly evident for 9K SNPs
(Figure 4B; and Figure S3) and is broadly consistent with lower SNP
density in genomic regions with lower observed rates of crossover
(Muñoz-Amatriaín et al. 2011). Exome capture density is also lower
in pericentromeric regions, such that 51,567 SNPs are detected in
1.560 Gb in pericentromeric regions (33 SNPs/Mb) vs. 431,147 SNPs
in 3.02 Gb (143 SNPs/Mb) on chromosome arms.

n Table 2 Loci identified in environmental associations or FST comparisons that were previously reported to contribute to flowering time,
cold, and drought tolerance. Gene names are preceded by a two-letter prefix with the genus and specific epithet for the species where the
gene was identified. This includes, At - Arabidopsis thaliana, Ta - Triticum aestivum, Os - Oryza sativa, Br - Brassica napus, and Sod - Saccharum
officinarum. The FST comparisons involve the following: E: elevation; LL: Low Latitude; GH: growth habit; HL: high latitude. The � indicates
that the gene was identified at the 97.5% threshold but not the 99% threshold

Barley Other plants Bioclimatic variables FST

Cold tolerance HvCBF4B — — LL
�HvDhn8 — — E
HvICE2 — — E, GH
�HvSS1 — — E

— OsiSAP8 — E
— TaWCI 16 6 —

Drought tolerance — �AtACBP2 — LL
— �AtIRX14 — GH
— �AtABF3 — HL
— �AtAREB1 — HL
— �AtERECTA — HL
— �BrERF4 — GH
— SodERF3 — HL
— TaEXPA2 IC1 —

— OsNAC52 — LL
Flowering time — AtCOP1 — GH

�HvELF3/Esp1L/eam8 — — HL, GH
HvPpd-H1/HvPRR37 — — LL, HL
�HvPpd-H2/HvFT3 — — GH
HvPhyC — 7, 14,17, & IC2 E
HvPRR1/HvTOC1 — 8 —

HvVrn-H1/HvAP1 — 3 —

Note: 1 = Annual mean temperature; 2 = Mean diurnal range (Mean of monthly (max temp - min temperature)); 3 = Isothermality (2/7) (� 100); 4 = Temperature
seasonality (standard deviation �100); 5 = Max temperature of warmest month; 6 = Minimum temperature of coldest month; 7 = Temperature annual range (5 - 6); 8 =
Mean temperature of wettest quarter; 9 = Mean temperature of driest quarter; 10 = Mean temperature of warmest quarter; 11 = Mean temperature of coldest quarter;
12 = Annual precipitation; 13 = Precipitation of wettest month; 14 = Precipitation of driest month; 15 = Precipitation seasonality (Coefficient of variation); 16 =
Precipitation of wettest quarter; 17 = Precipitation of driest quarter; 18 = Precipitation of warmest quarter; 19 = Precipitation of coldest quarter; IC = Independent
component.
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We compared LD at queried SNPs to the surrounding region for
358 SNPs identified by environmental association or as FST outliers.
We observed 89.3% of these SNPs in exome capture resequencing.
The remaining 10.7% of the queried SNPs were replaced by proximal
SNPs with similar MAF. The replaced SNPs had an average MAF of
0.035 (6 0.005) and were on average 32.9 Kb (6 31.5 Kb) from the
physical position of the queried SNPs (Figure S11). For 123 (34.4%)
SNPs, LD with r2 . 0.45 (90th percentile) occurred within the same
gene (Figure S12A & B; Table 5). Detectable LD with flanking loci is
limited in pericentromeric regions because the locus tested is often the
only annotated gene within the 200 Kb window (Figure 4C). For an
additional 212 (59.2%) SNPs, LD extends well beyond the locus where
the initial association was identified (Figure S12 C & D). For 23 SNPs
(6.4%) there was either no LDwith the focal SNPs or no SNPs identified
in the 200 Kb window around the focal SNP (Table 5). These results
indicate that the potential to identify individual loci that contribute to
adaptive phenotypes is impacted by recombination rate variation and
gene density across the genome (Figure 4B, Figure S3).

Putative structural variation
An examination of FST outliers prior to LD filtering identified 15 SNPs
with FST of �0.40 for the elevation comparisons. All occur on
chromosome 5H at 663.25 cM based on the consensus genetic map
(Muñoz-Amatriaín et al. 2011). These SNPs span a physical distance
of 133.7 Mb (Table S12). The minor allele frequencies of these SNPs
are very similar (0.354 - 0.361) as expected based on FST values,
with minor alleles occurring in the same individuals in almost all
cases. All 15 SNPs are in nearly complete LD. The region that contains
the SNPs is between 131.2 Mb and 265.0 Mb of chromosome 5H and
overlaps with a region identified as a putative chromosomal inversion
in wild barley (Fang et al. 2014). The SNPs that Fang et al. (2014)
associated with the putative inversion occur between 126.7 Mb and
305.5 Mb. Evidence for an inversion in wild barley was based on
elevated FST values, extended LD, and enrichment for environ-
mental associations. Fang et al. (2014) reported a similar pattern
on chromosome 2H in wild barley at positions that correspond to
267.3 Mb to 508.7 Mb. We found less evidence of allele frequency
differentiation on 2H than in wild barley; observing two SNPs
which span �494 Kb with FST = 0.33 in our sample of landraces
(Table S12).

Haplotype analysis at individual genes
Environmental association results identified a SNP, SCRI_RS_137464,
significantly associated with mean “temperature of wettest quarter
(BIO8)” (p-value = 8.56 · 1024), which is in the HvPRR1/HvTOC1
gene (Figure 5A). TOC1 is an important component of the circadian

clock in Arabidopsis. It conveys a crucial function in the integration
of light signals to control circadian and morphogenic responses, which
is closely related to flowering time (Más et al. 2003).HvPRR1/HvTOC1
is the ortholog of TOC1 inArabidopsis thaliana and has a high level of
sequence similarity and conservation of diurnal and circadian expres-
sion patterns when compared to TOC1 in Arabidopsis (Campoli et al.
2012). Exome capture resequencing data identified 48 SNPs includ-
ing SCRI_RS_137464 in HvPRR1/HvTOC1. Five SNPs at the locus
annotate as nonsynonymous and are the most obvious candidates to
contribute to functional variation. Four of these are in the last exon of
the gene (Figure 5B & C). Five SNPs within HvPRR1/HvTOC1 have
relatively strong LDwith SCRI_RS_137464 (r2. 0.45) (Figure 5 A & B).
Resequencing identified 20 haplotypes with no obvious geographic
pattern (Figure 5C).

Environmental association of both “temperature of coldest month
(BIO6)” and “mean temperature of the coldest quarter (BIO11)” iden-
tified an association on chromosome 3Hwith SNP 11_10380 (p-value =
4.95 · 1024). The SNP is in the barley gene HORVU3Hr1G030150.1,
which is an ortholog of the wheat geneWCI16 (Wheat Cold Induced 16)
(Sasaki et al. 2013) (Figure S13). The derived alleles for genotyped
SNPs at this locus are much more common in landrace barley than in
wild lines. In previous published wild barley genotyping data (Fang
et al. 2014) the minor allele at 11_10380 occurs in four accessions
with geographic provenance information. Those accessions occur at
an average of 1,460 m - near the upper end of the elevational range
for wild barley. Estimated derived allele frequencies differ consider-
ably in wild barley and landraces, at 0.0072 and 0.13 respectively. The
200 Kb window surrounding the SNP contains one gene in addition
to HvWCI16 (Figure S13A). TaWCI16 encodes a putative transcrip-
tion factor involved in stomata development. It represents a novel
class of late embryogenesis abundant (LEA) proteins in response to
cellular dehydration and is involved in freezing tolerance (Sasaki et al.
2013). TaWCI16 was shown to improve freezing and cold tempera-
ture tolerance in wheat when transformed into Arabidopsis thaliana
(Sasaki et al. 2013). There were six SNPs identified using exome
capture sequencing from 61 landraces which includes 11_10380.
Three of six SNPs, including 11_10380, are in noncoding sequence
(Figure S13B). Of the three SNPs observed in coding regions, one is
a nonsynonymous change at nucleotide position 119. This changes
valine to leucine, which have similar properties. There is no evi-
dence of LD between this SNP and others within a 200 Kb window
(Figure S13A). Exome capture resequencing identified eight haplo-
types, with three of the five being relatively common. Seven haplo-
types predominate at lower elevation and lower latitude, with two of
those occurring most frequently (Figure S13C).

Environmental association analysis suggested that the SNP
SCRI_RS_235243 significantly (p-value = 3.62 · 1024) associ-
ated with “precipitation of driest months (BIO14)” hit the barley
gene HORVU1Hr1G008120.1. This is an ortholog that produces

n Table 3 The number of SNPs identified by FST outlier
approaches and the number of previously reported genes they
identify. For each comparison, 55 SNPs in total were identified as
outliers. Flowering time genes had one across all categories.
Drought tolerance had zero SNPs detected in all categories. HL:
high latitude; LL: Low Latitude; E: elevation; GH: growth habit

Flowering time Cold tolerance

SNPs SNPs Genes

HL 5 1 1
LL 4 2 2
E 1 1 1
GH 1 0 0

n Table 4 The number of SNPs significantly associated with
climatic factors and known genes they hit

Categories Number Climatic factors

Flowering time SNPs 3 3, 7, 8, 14, and 17
Genes 3 —

Cold tolerance SNPs 1 6
Genes 1 —

Drought tolerance SNPs 1 IC1
Genes 1 —

Note: Abbreviations for climatic factors are listed under Table 2.
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dehydroascorbate reductase (DHAR; EC 1.8.5.1) in Arabidopsis thali-
ana and bread wheat. It is one of two important enzymes function-
ing in the regeneration of ascorbate (AsA) which plays a role in
protection against oxidative stress (Eltayeb et al. 2006; Osipova
et al. 2011). The 200 Kb window surrounding the genotyped SNP
SCRI_RS_235243 contains four genes in addition to DHAR, which
includes two with exome capture sequence coverage (Figure S14A).
Previous results suggest that overexpression of DHAR can protect
plants against drought, salt, and polyethylene glycol-induced stress
in tobacco and bread wheat (Eltayeb et al. 2006; Osipova et al.
2011). Resequencing identified 53 SNPs in our panel, including
SCRI_RS_235243. This encompassed 28 SNPs in noncoding re-
gions, 14 synonymous, and 11 nonsynonymous (Figure S14 B & C).
SCRI_RS_235243 is one of nine nonsynonymous SNPs in the first exon
of the DHAR gene (Figure S14 B & C). Six SNPs are in high LD with
SCRI_RS_235243 (r2. 0.45), all are noncoding variants withinDHAR
(Figure S14 B & C). The derived variant at SCRI_RS_235243 occurs
within two haplotypes (Figure S14C) that occur in high latitude regions.

A putative causative variant is not immediately apparent for all
three of the loci described. However, as the loci HvPRR1/HvTOC1 and
DHAR demonstrate, barley landraces are frequently segregating for an
abundance of potentially functional variants.

DISCUSSION
Examination of environmental associations to bioclimatic vari-
ables and allele frequency outliers in a broad collection of Old-
World barley landraces has identified six loci with prior evidence of
contribution to climatic adaptation in barley (Table 1; Table 2).
This includes well-characterized loci that contribute to flowering
time, cold, or drought adaptation in barley including HvCbf4B
(Stockinger et al. 2007), HvICE2 (Skinner et al. 2006), PhyC
(Nishida et al. 2013), HvPpd-H1 (HvPRR37) (Turner et al. 2005;
Jones et al. 2008), and HvVrn-H1 (HvAP1) (Cockram et al. 2007).
All of these loci have been shown to alter phenotypes that are poten-
tially associated with adaptation across the very broad geographic
range of cultivation.

Orthologs that potentially played an adaptive role
We found six loci as FST outliers or in environmental associations that
had previously been identified as contributing to flowering time, cold,
or drought stress in other plant species (Table 2). This includes one
flowering time-related locus characterized in Arabidopsis thaliana,
AtCOP1 (Xu et al. 2016), which was identified as photomorphogenic
repressors and regulates flowering time (Lau and Deng 2012). Two loci
related to cold tolerance were identified. This included wheat locus
TaWCI16 involved in freezing tolerance (Sasaki et al. 2013) and
the rice (Oryza sativa) locus OsiSAP8 which has been associated
with cold, drought, and salt stress response (Kanneganti and Gupta
2008). TaWCI16 was induced during cold acclimation in winter
wheat (Sasaki et al. 2013). OsiSAP8 can be induced by multiple-
stresses including heat, cold, salt, desiccation, submergence, wound-
ing, heavy metals, and the stress hormone abscisic acid (Kanneganti
and Gupta 2008). For drought tolerance, we identified nine orthologs
characterized in five other plant species (Table 2). For example,
over-expression of the wheat expansin gene TaEXPA2 improved
seed production and drought tolerance in transgenic tobacco plants
(Chen et al. 2016).

Why did previously identified genes go undetected in
our study?
The genetic basis of flowering time in barley has been explored exten-
sively and multiple genes have been cloned (see Hansson et al. 2018).
However, relatively few cold or drought tolerance related genes
have been characterized or cloned (Visioni et al. 2013; Honsdorf
et al. 2014). Based on a literature search, we identified 57 flowering
time and 33 cold tolerance related genes in barley (Table S5; Table
S6). Our analyses found�10% of flowering time and�12% of cold
tolerance related genes (Table 1). We did not identify any of the
13 previously reported drought tolerance related genes (Table 1;
Table S7).

Why were more previously identified genes not detected? Not
every gene was genotyped by the 9K SNPs and many genes gen-
otyped are represented by a single SNP or a small number of SNPs

Figure 3 The geographic distribution of the SNPs with high FST. (A & C) The geographic distribution of allelic types of 9K SNP 12_30191 with
highest FST = 0.4839. The FST was from the high latitude (HL) comparison. (B & D) The geographic distribution of allelic types of 9K SNP 12_11529
with highest FST value of 0.6493. The FST was from the elevation comparison. The color bar indicates the elevations in meters. The filled pink
circles indicate the derived allele, while the blue open circles indicate the ancestral allele.
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(Table 1). The surveyed SNPs have an average MAF of 0.30 (6 0.11).
As in standard association mapping, the SNPs genotyped need to
occur in LD with a causative variant (Balding 2006); even SNPs in
close physical proximity can occur on alternate haplotypes and have
limited LD (Nordborg and Tavaré 2002). For flowering time, 29 of
57 genes were genotyped by at least one SNP. Nine genes were gen-
otyped by two or more SNPs (Table 1). All but one of these genes,
HvVrn-H3/HvFT1, was found in our analysis (Table S13). All nine
of these genes have been identified in previous geographic compari-
sons in barley (Muñoz-Amatriaín et al. 2014; Russell et al. 2016;
Contreras‐Moreira et al. 2019). Among genes identified by mul-
tiple SNPs is HvPpd-H1/HvPRR37, a key regulator of flowering

(Turner et al. 2005; Jones et al. 2008). This gene was genotyped by
eight SNPs with five SNPs identified as outliers in our compari-
sons. Previous studies have identified the HvCEN and HvVrn-H2/
HvZCCT-Ha/b/c genes associated with flowering time as allele fre-
quency outliers (Muñoz-Amatriaín et al. 2014; Russell et al. 2016;
Contreras‐Moreira et al. 2019). HvCEN was not genotyped by any
SNP in our panel. HvVrn-H2 was genotyped by a single SNP with
an FST = 0.143 in the elevation comparison, at the 75th percentile in
this comparison and thus below the 99th percentile threshold. In
summary, genes identified through top-down approaches are gen-
erally identified in our comparison if they are represented by a
sufficient number of SNPs (Table S13). Genes can contribute to

Figure 4 (A) The genomic distribution of outlier SNPs identified according to the FST comparisons of elevation (below 3,000 m vs. above
3,000 m), low latitude (below 30�N vs. 30-40�N), high latitude (30-40�N vs. above 40�N), growth habit (winter vs. spring) and association analysis
of 21 bioclimatic variables, which are categorized into three classes (precipitation, temperature, and geographic variables) on chromosome 3H. (B)
Exome capture target density (dark blue line), crossover rate in cM/Mb (purple line), the genomic distribution of SNPs identified in the 62 barley
landraces (vertical light blue lines), and 9K SNPs (red triangles) on chromosome 3H. The vertical dotted lines in panels (A) and (B) indicate that
those outlier SNPs are shared across different traits. (C) LD plots for SNPs significantly associated with at least one bioclimatic variable (bottom) on
chromosome 3H. Each plot shows a 200 Kb window, 100 Kb on either side of the SNP. For the LD plots, genotyped SNPs are at location 0, and
positions upstream and downstream are listed as negative and positive values. The light blue bars are genes in 200 Kb windows surrounding the
genotyped SNPs. The SNPs from the I to XII are: 11_20742, 11_10380, SCRI_RS_173916, 12_20108, 11_10601, 12_31008, SCRI_RS_173717,
SCRI_RS_6793, SCRI_RS_207408, 12_10210, SCRI_RS_192360, and 12_30960.
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phenotypic variation without having played a role in previous rounds
of adaptation (Ross-Ibarra et al. 2007; Kantar et al. 2017). However,
given current SNP densities, it is premature to conclude that any of
the absent loci did not contribute to adaptation in barley.

Comparison to previous studies
Three of the loci we identified as contributing to adaptive differenti-
ation in OldWorld landraces were previously reported as FST outliers.
They contribute to geographic differentiation in barley breeding pop-
ulations in North America (Poets et al. 2016). This includedHvCbf4B,
HvPpd-H1, and HvVrn-H1. They were also found as an FST outlier
and in association with temperature adaptation in comparisons of
wild barley populations (Fang et al. 2014). Two of the loci we iden-
tified as contributing to flowering time and cold tolerance, including
HvPpd-H2/HvFT3 and HvCbf4, were also found as outliers in allele
frequency in barley landraces in Spain (Contreras‐Moreira et al. 2019).
However, we did not identify other loci that overlapped between our
study and Contreras‐Moreira et al. (2019).

We focused on SNP comparisons, but also found evidence that a
large chromosomal inversion has contributed to elevational adaptation

in barley. On chromosome 5H, 15 SNPs have FST of �0.40 in the
elevation comparison. All occur at the consensus genetic map position
of 663.25 cM, which is consistent with the regions reported in barley
landraces from Spain (Contreras‐Moreira et al. 2019). Fang et al. (2014)
characterized the region as a putative chromosomal inversion that
differs in frequency between the eastern and western portions of the
geographic range of wild barley. Recent studies have identified putative
chromosomal inversions that contribute to elevation and temperature
gradients in teosinte and maize (Fang et al. 2012; Hufford et al. 2012;
Pyhäjärvi et al. 2013), rainfall regime and annual vs. perennial growth
habit inMimulus guttattus (Sweigart andWillis 2003; Lowry andWillis
2010; Twyford and Friedman 2015), and temperature and precipitation
differences in wild barley (Fang et al. 2014). In a close parallel to our
results, an inversion on maize chromosome 3 appears to contribute to
teosinte adaptation to high elevation and also has impacted highland
adaption in maize through altered flowering time (Wang et al. 2017).

Advantages of study design and future prospects
SNP density is a limitation in our study.With�40,000 annotated genes
in the barley genome (Mascher et al. 2017), roughly one in six genes was
directly genotyped. For about one-third of SNPs, there is limited LD
with nearby loci (Figure 4; Figure S12). In regions of the genome with
high crossover rates and higher gene density, LD can be limited beyond
the locus containing the genotyped SNP (Figure 4C and Figure S3). In
regions with limited crossover, gene density is also low (Figure 4B and
Figure S3). LD would typically have to extend hundreds of kilobases
between genotyped SNPs and a causative variant at another locus
(Figure S12) to create an association. High MAF of genotyped
variants may also contribute to limited LD. Common variants are

Figure 5 (A) The linkage disequilibrium (LD) analysis of genotyped SNP SCRI_RS_137464, which is significantly associated with BIO8 (“mean
temperature of the wettest quarter”). The blue bars indicate genes in the 200 Kb window surrounding SCRI_RS_137464, the red arrow indicates
the HvPRR1/HvTOC1 (flowering time related gene) that includes SNP SCRI_RS_137464 (B) The gene structure of HvPRR1/HvTOC1 and the
functional annotation of SNPs in this gene. (C) Haplotype structure of HvPRR1/HvTOC1 based on the SNPs in this gene. L: low; H: high.

n Table 5 Linkage disequilibrium (LD) for all SNPs associated with
environmental variables or identified as FST outliers

LD within a gene Extended LD No LD Missing�

FST 61 132 10 0
Association 62 80 7 6

Note: � indicates that there are no SNPs in the 200 Kb window around the target
SNP.
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typically older and have experienced more recombination, and can be
closer to linkage equilibrium (Nordborg and Tavaré 2002).

Our study benefits from large sample size. Russell et al. (2016)
performed environmental associationwith 1,688,807 SNPs from exome
capture resequencing in 137 cultivated samples. While the analysis
identified 10 loci associated with flowering time, many other previously
reported genes went undetected. This prompted the authors to suggest
a lack of power owing to small sample size (Russell et al. 2016).
Population-level sampling of individual landraces would make it pos-
sible to use more powerful allele frequency-based approaches such
as those of Coop et al. (2010), for detecting local adaptation. Land-
races of many crops are relatively heterogeneous (Brown 2000), and
species such as barley maintain relatively high levels of diversity
within landrace populations (Rodriguez et al. 2012).

Despite limited SNP density and the sampling of relatively common
variants, our comparative analyses identified a number of previously
identified barley loci and many plausible candidate loci from other
plant species. Better coverage of barley gene space through exome
capture or whole genome resequencing in a relatively deep panel
of accessions would likely uncover a much more comprehensive set
of variants contributing to environmental adaptation. This could
contribute to the targeted use of variants for adaptation to environ-
mental and climatic conditions for barley breeding and germplasm
improvement, with the potential to improve the understanding of
loci that contribute to climatic adaptation in wheat and other cereals.
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