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Abstract

Sleep staging holds significant importance in clinical
medicine, aiding in the diagnosis of various disorders related
to sleep and cognition. However, manually annotating a large
amount of sleep data is time-consuming and labor-intensive,
making it difficult to achieve. Efficiently utilizing these unan-
notated data poses a challenging task. We propose a novel self-
supervised learning method with Temporal-split Contrastive
and Electrode Autoencoder (TsC-EA) for sleep staging. We
demonstrate that our method achieves state-of-the-art perfor-
mance in self-supervised learning on SleepEDF and MASS-
SS3. Moreover, experimental results indicate that our method
can surpass the performance of supervised learning methods
using only 10% of labeled data. Additionally, we explore the
application of self-supervised learning in patients with disor-
der of consciousness. It can assist in diagnosing the severity
of DoC through analysis of sleep staging. Staging the sleep
patterns of patients with disorders of consciousness can help
in diagnosing the severity of their condition.
Keywords: Self-supervised Learning; Sleep Staging; Disorder
of Consciousness; Temporal-split Contrast; Autoencoder

Introduction
Sleep staging using EEG is crucial for diagnosing sleep
disorders(Carskadon & Rechtschaffen, 2011). Specifically,
it helps identify diseases by comparing sleep patterns in
patients with disorders of consciousness (DoC) to those in
healthy individuals(Pan et al., 2021). Traditional manual
sleep staging by doctors is time-intensive. However, ma-
chine learning(Adnane, Jiang, & Yan, 2012), especially deep
learning(Supratak et al., 2017), has revolutionized this pro-
cess by automating it, though its success largely depends on
access to large, well-annotated datasets. Acquiring such data
in clinical environments is often difficult due to resource con-
straints and privacy laws, making the use of unlabeled data in
automated systems a significant hurdle.

One of the limitations of deep learning methods is its
reliance on large amounts of data with high-quality la-
bels. Training a deep learning model with insufficient la-
beled data is a formidable challenge. In recent times, self-
supervised learning has emerged as a promising approach
to circumvent this limitation. This paradigm leverages un-
labeled data to construct auxiliary tasks, facilitating the ex-
traction of latent feature. After pre-training, only a small
amount of labeled data is needed for fine-tuning to achieve
good performance. Self-supervised learning, well-studied
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in computer vision(Chen et al., 2020) and natural language
processing(Devlin et al., 2018), doesn’t easily apply to sleep
signal analysis. Moreover, certain data augmentation strate-
gies that are universally accepted within the realm of image
analysis may not be directly transferable to the task of sleep
signal discrimination, as they could potentially compromise
the integrity of the analytical process. The experiments con-
ducted later in the article demonstrated that relying solely on
data augmentation yielded unsatisfactory results.

To address the aforementioned challenges, we propose a
novel self-supervised learning method for sleep staging. The
contributions of this research are delineated as follows:

1) We propose a novel self-supervised learning method
(termed Temporal-split Contrastive and Electrode Autoen-
coder, TsC-EA) to integrate the temporal and spatial fea-
tures of sleep EEG signals.

2) Compared with state-of-the-art self-supervised learning
approaches, the proposed method achieves better perfor-
mance with accuracies even close to supervised learning in
scenarios with lacking labeled data.

3) Based on the proposed self-supervised learning method, a
pilot study on DoC patients is conducted to alleviate the
lack of data in DoC patients.

Related Works
Self-supervised Learning
In self-supervised learning, contrastive learning methods like
SimCLR(Chen et al., 2020) and MoCo(K. He et al., 2020)
have marked a significant milestone, each with unique fea-
tures such as momentum-based negative sample genera-
tion (K. He et al., 2020) or projection head that improve
performance(Chen et al., 2020). These methods, which treat
augmented versions of the same sample as positive pairs and
different sample as negative pairs, have enhanced the quality
of learned representations, especially in image analysis.

Alongside these contrastive learning, generative models
have carved out their niche within self-supervised learning.
The use of generative models for self-supervised training has
garnered significant attention due to its simplicity and effi-
ciency. While masked autoencoder like Context Encoders
lag behind supervised methods(Pathak et al., 2016), Vision
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Figure 1: Architecture of the proposed TsC-EA.

Transformer (ViT) based autoencoder have seen success(Bao
et al., 2021; K. He et al., 2022), inspired by language mod-
els like BERT and GPT(Devlin et al., 2018; Radford et al.,
2019). The CIM technique uses the Beit model to create cor-
rupted images for better autoencoder training, thereby facili-
tating the efficacious training of autoencoder within convolu-
tional frameworks(Fang et al., 2022). The foregoing studies
underscore the pivotal role of suitably designed generative
tasks in bolstering self-supervised learning via autoencoder.
Despite these advancements, research on using autoencoder
for self-supervised learning in sleep staging is limited, with
current models showing less effective pre-training (Banville
et al., 2019; Xiao et al., 2021).

Self-supervised learning has achieved great success
in the field of biosignal. For instance, the CLOCS
framework(Kiyasseh, Zhu, & Clifton, 2021) employs the
temporal stability inherent in cardiac signals to categorize dis-
tinct temporal segments and leads from an identical subject as
positive pairs, while designating signals from disparate sub-
jects as negative pairs. Similarly, the CLISA framework(Shen
et al., 2023) identifies positive pairings predicated on the con-
gruence of emotional responses elicited in different subjects
while observing the same cinematic content. These method-
ologies exploit the intrinsic properties of biological signals
to enhance the robustness of learned representations. If a
method can be designed based on the biological properties
of sleep EEG, it will effectively enhance the application of
self-supervised learning in the field of sleep.

Self-supervised learning in sleep staging
Within the specialized domain of sleep stage classification,
the application of self-supervised learning techniques re-
mains comparatively underexplored. Two auxiliary tasks
called relative positioning (RP) and temporal shuffling (TS)
were proposed for self-supervised sleep staging(Banville et
al., 2019), which based on the stability of sleep. Moreover,
the SleepDPC framework (Xiao et al., 2021) adopts two ap-
proach, incorporating both predictive and discriminative tasks
to facilitate training.

Notwithstanding the ingenuity of these methods, they are
not without limitations. A significant reliance on the fine-
tuning of hyperparameters is evident, or there persists a dis-
cernible performance discrepancy when benchmarked against
fully supervised learning paradigms. Moreover, these tech-
niques predominantly concentrate on the temporal dynamics
of sleep patterns, frequently neglecting the spatial aspects in
sleep stages. In contrast, our approach simultaneously takes
into account both the temporal and the spatial feature, and
achieve excellent performance.

Methods
To deal with discernible performance discrepancy in the ex-
isting self-supervised learning methods for sleep EEG stag-
ing, we propose a novel method. This section fully ex-
plains the parts of the proposed framework. Time and spatial
features are extracted through modules Temporal-split Con-
trastive and Electrode Autoencoder. As depicted in the Fig-
ure 1, the initial step encompasses the application of a multi-
tude of augmentative transformations to the dataset, the aug-
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mented data will be processed by our two modules to extract
temporal and spatial feature. Subsequently, a Temporal-split
Contrastive module is integrated into the framework, tasked
with the comparative analysis of the preceding and follow-
ing halves of a data sample to reduce their distance. We fur-
ther introduce the Electrode Autoencoder generation module,
which is responsible for employing signals acquired from a
electrode to extrapolate and synthesize corresponding signals
for an another electrode, thereafter evaluating the similarity
between the synthesized and authentic signals. The afore-
mentioned auxiliary task is designed based on the temporal
and electrode congruence of the sleep signals(Carskadon &
Rechtschaffen, 2011; Berry et al., 2012) as shown in Figure 2.

Temporal-split Contrastive
We introduce the Temporal-split Contrastive module which
is designed to investigate latent features associated with the
temporal dynamics inherent in sleep data. Temporal-split
Contrastive is more capable of finding the essence of sleep
stage compared to methods relying on data augmentation.
The prevailing classification system for sleep stages typically
delineates a stage duration ranging from several minutes to
tens of minutes, an attribute that has been extensively ex-
amined in the literature(Carskadon & Rechtschaffen, 2011).
Our method involves independently encoding the anterior and
posterior segments of a data sample, which are then pro-
jected through a nonlinear transformation mechanism termed
the ’projection head’(Chen et al., 2020). Usually, instances
derived from identical temporal segments of a sample are
categorized as positive pairs, while disparate samples within
the same batch are considered negative pairs for contrastive
learning. Owing to the inherent stability of sleep patterns, it
is probable that segments extracted from an individual sample
correspond to an identical sleep phase. We employ the cosine
similarity metric to ascertain the proximity between segments
and apply the cross-entropy loss for optimization purposes.

For a given batch comprising N input samples, we bisect
an individual sample into anterior and posterior segments,
thereby generating contexts x1 and x2. Each segment is sub-
jected to a distinct set of data augmentations. We then derive
representations z1 = f (x1) and z2 = f (x2), where f denotes
the encoding function. Subsequent to a nonlinear transfor-
mation executed by the projection head, we procure outputs
h1 and h2 utilizing a multilayer perceptron (MLP). The tuple
(h1,h2) is regarded as a positive pair, emblematic of the an-
terior and posterior segments of the same sample. The rest
of the samples within the mini-batch, amounting to (2N −2),
are treated as negative pairs. This leads to the formulation of
the context contrastive loss, which is designed to augment the
similarity between a sample and its positive pairs while con-
currently diminishing the similarity with negative pairs within
the same mini-batch.

For a given context h1
i , its similarity to h2

i is normalized by
dividing it by the aggregate of its similarities to all (2N − 1)
samples within the batch, which includes both positive and
(2N − 2) negative samples. Then, the Temporal Contrastive

Loss function Lt , is articulated as follows:

ℓ(h1
i ,h

2
i ) =−log

epx(sim(h1
i ,h

2
i )/ τ)

∑
2N
k=1 1[k ̸=i]epx(sim(h1

i ,hk)/ τ)
(1)

Lt =
1

2N
∑

N
k=1[ℓ(2k−1,2k)+ ℓ(2k,2k−1)] (2)

sim(u,v) = uT v/||u||||v|| (3)

where sim(·) denotes the dot product between the pre-
similarity scores, 1 is an indicator function to evaluate that
k ̸= i, τ is a temperature parameter, and hk are negative pairs.

Electrode Autoencoder
Choosing challenging tasks to generate data that can aid in
using autoencoder for self-supervised learning(K. He et al.,
2022). In accordance with the guidelines delineated by the
American Academy of Sleep Medicine (AASM), polysomno-
graphic signals exhibit both commonalities and disparities
across varied electrodes. Certain characteristics are ubiqui-
tous across all electrodes, while some manifest more promi-
nently within specific cerebral regions(Berry et al., 2012).
Synthesizing the data frome another electrode is a challeng-
ing task for autoencoder generation.

In the proposed method, an Electrode Autoencoder Gen-
eration module is designed to enhance the model’s capacity
for discerning spatial discrepancies. This module employs a
strategy that utilizes the simultaneous reconstruction of data
from an alternative electrode to apprehend spatial characteris-
tics. Data procured from a single electrode undergoes dimen-
sional diminution via an Encoder, followed by the utilization
of a Decoder for reconstruction. The Decoder’s architecture
comprises deconvolutional layers and upsampling processes.
They form the autoencoder.

Figure 2: Examples of sleep EEG in different stages on elec-
trodes FPZ-CZ and PZ-OZ. The commonalities between the
preceding and following halves of a data sample. Within the
same sleep stage, there are commonalities and variabilities in
EEGs across different electrodes.

To distill latent spatial features inherent in sleep EEG, we
incorporate a generative task in the Electrode Autoencoder
module. Given a latent representation z, the autoencoder fab-
ricates the corresponding representation of an alternate elec-
trode through the Decoder. In this method, the augmented
data x from a electrode is initially transformed to z = f (x)
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to elicit feature extraction. Subsequently, z is reconstituted
to yield x′ = g(z), where g signifies the Decoder function.
The Mean Squared Error metric is employed to quantify the
congruence between the generated sample and the contempo-
raneous sample from an alternate Electrode, which denoted
as y.

Le =
1
N

∑
N
i=1

(
yi − x′i

)2 (4)

Finally, after scaling both loss functions to the same order
of magnitude, they are added together to obtain the total loss
function. Once pretraining is complete, the Projection Head
and Decoder are discarded, and fully connected layers are
employed in their place for outputting classification results.

L = λ1Lt +λ2Le (5)

In the formulas, the parameters λ1 and λ2 represent hyperpa-
rameters.

Experiment
We designed three sets of experiments to demonstrate the ef-
fectiveness of our method:

1) We conducted experiments using a small number of la-
bels for training on both the Sleep-EDF and MASS-SS3
datasets.

2) We performed unsupervised training on the Sleep-EDF
dataset and subsequently fine-tuned the model on the
MASS-SS3 dataset using only a small number of labels.

3) We performed unsupervised training on the Sleep-EDF
dataset and subsequently fine-tuned the model on the DoC
dataset.

Datasets
1) SleepEDF: The SleepEDF dataset contains 41 polysomno-

graphic (PSG) recordings from 20 healthy individuals,
including EEG, EOG, EMG, and ECG signals at a
100Hz sampling rate for EEG, segmented into 30-second
epochs(Kemp et al., 2000). It originally followed the R&K
guidelines, distinguishing REM from NREM sleep, with
NREM divided into stages N1, N2, N3, and N4. To con-
form to the updated AASM standards, we modified the
dataset in line with Deepsleepnet’s method(Supratak et al.,
2017) by combining N3 and N4 into a single N3 stage and
focusing on the 30 minutes directly preceding and follow-
ing the sleep period, thereby aligning the data with con-
temporary AASM guidelines(Berry et al., 2012).

2) MASS-SS3: The Mass-SS3 dataset encompasses PSG
recordings from 62 subjects, featuring EEG, EOG, EMG,
and ECG signals. The EEG is sampled at a rate of 256Hz,
with a page size of 30 seconds. The dataset annotations ad-
here to the AASM standards, categorizing sleep into REM
and NREM stages. The NREM stage further includes N1,
N2, and N3 sub-stages(O’reilly et al., 2014).

3) DoC Dataset: The DoC dataset encompasses overnight
signals from seven subjects with DoC, including EEG sig-
nals. The EEG signals were sampled at a rate of 500
Hz with a page size of 30 seconds.Given that the crite-
ria for sleep staging in patients with DoC are still under
investigation(Pan et al., 2021), we adopted the AASM stan-
dards for staging, categorizing sleep into REM and NREM
stages, with the latter comprising N1, N2, and N3 stages.
By assessing the differences between the DoC in the same
sleep stage and that of normal individuals, it can assist
in determining whether a patient is in an Vegetative State
(VS) or a Minimally Conscious State (MCS). The smaller
the difference compared to normal individuals, the better
the recovery tends to be.

Experiment Details

In the few-label(1%) training experiment 1), to align with the
actual situation, we employed leave-one-subject-out (LOSO)
cross validation approach. We initially conducted pre-
training using the training set with labels removed. For con-
sistency in validation and comparison, we utilized the CNN-
1d as the backbone (Wang, Yan, & Oates, 2017). During
the pre-training phase, we used the Adam optimizer with a
weight decay of 1e-4, learning rate of 1e-4, and trained for
200 epochs. Upon completion of pre-training, we retained
the weights and added a fully connected layer, fine-tuning
with 1% of the training set. We used the Adam optimizer for
fine-tuning with a weight decay of 1e-4 and a learning rate of
1e-4. We set exponential decay of 0.9 which was applied after
20 epochs, and training ceased when accuracy plateaued for
30 consecutive epochs. We calculated the mean and standard
deviation of the results obtained from multiple experiments.

In the transfer learning experiment 2), we transfer the
weights trained on Sleep-EDF to MASS-SS3. Here, we
divided the Sleep-EDF dataset into 90% for training and
10% for testing. The training strategy mirrored that of the
few-label training experiment. After training, we saved the
weights. Likewise, the MASS-SS3 dataset was split into
training (90%) and validation (10%) sets. We fine-tuned the
model on 1% of labeled data from the training set, following
the parameters set in the few-label training experiment. We
repeated this fine-tuning process with five randomly chosen
fixed seeds, and calculated the mean and standard deviation
of the results obtained from multiple experiments.

In the experiment 3), the weights pre-trained on the Sleep-
EDF dataset were loaded and transferred to classify DoC pa-
tients’ sleep stages. In the experiments, we partitioned the lo-
cal data using a five-fold cross-validation method. The train-
ing strategy was similar to the few-label training experiment.
The results of five-fold cross-validations were averaged, and
standard deviation was calculated.

The code was implemented using PyTorch 2.1 and trained
on an NVIDIA GeForce RTX 4070 GPU.
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Experimental Results and Discussion
To assess the effectiveness of our method, we compared it
with the following approaches in the few-label training ex-
periment.In the following method, SleepDPC employ 10%
of labeled data. Other methods employ 1% of labeled data.
CPC and TS-TCC have not been validated using the leave-
one-subject-out cross-validation method(Eldele et al., 2023).

1) Supervised Method: The method of directly using 1% of
labels for supervised training(Wang et al., 2017).

2) CPC:A self-supervised learning approach for prediction
using autoregressive models(Oord, Li, & Vinyals, 2018).
This method has been proven to perform well in sleep
staging(Eldele et al., 2023).

3) SimCLR:A self-supervised Learning method based on
data augmentation(Chen et al., 2020).

4) TS-TCC:A self-supervised Learning method integrating
autoregressive model prediction and data augmentation
contrast(Eldele et al., 2023).

5) SleepDPC:A self-supervised Learning approach for sleep
stage classification using predictive and discriminative
contrastive coding(Xiao et al., 2021).

As shown in Table 1, SimCLR exhibits suboptimal perfor-
mance in the context of sleep, which underscores the inap-
plicability of many inductive biases from computer vision to
sleep signal analysis. CPC and TS-TCC achieve the third and
second best results. But CPC, TS-TCC, and SleepDPC fo-
cus predominantly on temporal features, overlooking spatial
characteristics. This highlights the efficacy of our approach in
capturing both temporal and spatial dimensions concurrently.
These results indicate that our method outperforms the cur-
rent state-of-the-art.

Table 1: Accuracies% of the proposed method and baselines
in few-label (1%) experiments.

Method SleepEDF MASS-SS3
Supervised(Wang et al., 2017) 60.1±2.6 69.2±1.0
CPC(Oord et al., 2018) 74.7±0.2 -
SimCLR(Chen et al., 2020) 66.3±0.9 69.4±0.5
TS-TCC(Eldele et al., 2023) 75.8±0.3 -
SleepDPC(Xiao et al., 2021) 70.1±0.8 -
TsC-EA(Ours) 79.8±0.4 77.9±0.3

In the transfer learning experiment, we compared our
method with (1) Supervised: Trained only on MASS-SS3,
(2) SimCLR, (3) Transfer: models pretrained on Sleep-EDF
and then fine-tuned on MASS-SS3. Our results are in Table 2.
The results demonstrate that our method surpasses SimCLR
and outperforms the transfer methods relying on labels.

Table 2: Accuracies% of the proposed method and baselines
in transfer learning experiment (SleepEDF→MASS-SS3).

Method Accuracy
Supervised(Wang et al., 2017) 67.5±0.7
Transfer(Wang et al., 2017) 70.6±0.7
SimCLR(Chen et al., 2020) 70.1±1.1
TsC-EA(Ours) 76.0±0.2

In the sleep staging experiment on DoC patients, our re-
sults are in Table 3. Due to the absence of sleep spindles
and K-complexes, which are typically scarce in patients with
DoC, we were compelled to classify stages lacking distinc-
tive N1 or N3 features as N2 (Pan et al., 2021). The lack of
electrooculography data further compromised the accuracy of
our REM stage classification. We processed the data in two
separate batches: one retaining all original data (Raw) and
the other excluding the contentious N2 and REM stages (Pro-
cesssed). In the first set of data, our method showed capacity
to classify different sleep stages though with low accuracies.
This phenomenon may be attributed to the ambiguity of the
N2 staging criteria for DoC patients, leading to a significant
difference between N2 stages in normal individuals and DoC
patients.

Existing research indicates a lack of standardized N2 sleep
stage criteria for DoC patients (Sebastiano et al., 2018),
complicating feature learning and classification for models.
Transfer learning and SimCLR underperformed compared to
direct training in our experiments, likely due to the distinct
sleep patterns of DoC patients, particularly those in a Vegeta-
tive State (VS), which differ markedly from healthy subjects
(Pan et al., 2021). This discrepancy leads to a mismatch be-
tween the training and target data. In contrast, our method
yields more adaptable and generalizable features.

Table 3: Accuracies% of the proposed method and baselines
in the experiment with DoC

Method Raw Processed
Supervised(Wang et al., 2017) 60.3±0.1 61.2±0.8
Transfer(Wang et al., 2017) 58.5±0.1 57.0±0.7
SimCLR(Chen et al., 2020) 57.54±0.1 57.6±0.4
TsC-EA(Ours) 60.6±0.2 65.2±0.5

We explore the effect of label ratio on accuracy by using
the SleepEDF dataset, and the results are shown in Figure 3.
Our study shows that using just 5% of labeled data, our ap-
proach nearly matches the performance of fully supervised
training. And with 10% labeled data, our approach exceeds
fully supervised training. This underscores our approach’s ef-
ficiency in using minimal labeled data to achieve robust learn-
ing. However, accuracy gains level off after 50% data label-
ing due to the limitations of our model, which doesn’t incor-
porate additional sleep staging inputs like electrooculography
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and electromyography. Future work will enhance our model
with multimodal feature fusion and leverage larger datasets
to boost accuracy further.

Figure 3: The effect of label ratio on accuracy.

The superior performance of our method in all the exper-
iments underscores its efficacy and suggests its potential for
achieving better results compared to existing approaches.

We visualized the severity of the patients and the perfor-
mance of the algorithm using UMAP. Among them, healthy
individuals came from the sleepEDF dataset, and MCS and
VS from the DoC dataset. As shown in the Figure 4, when
the subject is a normal person, the clustering effect is the
best, with the wakefulness (W) period and other sleep cy-
cles being most distinct, and the other sleep cycles also being
somewhat separable. When the patient is assessed as MCS,
the clustering effect is worse, but still shows some clustering,
with wakefulness and other sleep cycles having some dis-
tinguishability; wakefulness is concentrated on the left side
of the figure, while other sleep cycles are relatively to the
right. When the patient is assessed as VS, there is almost no
discernible clustering, with all points evenly scattered across
the graph. This is consistent with related research; when the
patient is assessed as MCS, features such as spindle waves
and slow waves mostly disappear, but some sleep patterns are
still maintained, therefore wakefulness and other sleep cycles
still show some separability. When the patient is assessed as
VS, they are considered to have possibly lost sleep patterns
and circadian rhythm functions, retaining only sleep behav-
ior, making it difficult to distinguish even between wakeful-
ness and other sleep stages(Sebastiano et al., 2018; Pan et al.,
2021).

Our work still has some limitations. Our exploration of
applying self-supervised learning to sleep staging in patients
with DoC is not yet comprehensive enough. Future research
endeavors will concentrate on exploring domain adaptation
and transfer to patients with DoC(Z. He, Zhong, & Pan, 2022;
Pan et al., 2023), as well as on the aggregation of relevant
data and the pursuit of further investigative efforts to drive
progress in the field of medical automation.

Figure 4: UMAP visualization of subjects from different
types.

Conclusion
In this paper, we propose a novel framework for sleep self-
supervised learning. The introduced framework learns by
capturing both temporal and spatial variations and invariances
in sleep signals. Experimental results demonstrate the ef-
ficacy of our framework, show its ability to learn meaning-
ful features from sleep signals during the pre-training phase.
We also conducted research on sleep staging in patients with
DoC, demonstrating the practical value of our approach. By
staging the sleep of patients with DoC, the severity of DoC
can be diagnosed. In the self-supervised learning of sleep
staging domains, our approach attains state-of-the-art results.
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