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Abstract

Security and Usability Issues in Event-driven Applications

by

Priyanka Bose

An application is a computer program designed to run on a device. To ease our daily

life, we delegate many tedious tasks to these applications. An event-driven application

is one where the events drive an application from one state to the other. For example,

in the case of Android apps, clicking UI buttons perform certain actions which change

the app state. Here, clicking the button is an example of an event. Similarly, for smart

contracts, which are very popular nowadays, the execution of a transaction, which can be

thought of as an event, drives the state of the smart contract into a different one.

These event-driven applications suffer from both usability and security issues that can

be abused by malicious actors. For example, a bug in an Android app may cause the device

to become unresponsive or crash altogether. Frequent such crashes result in the instability

of the app and a bad user experience. Moreover, app crashes due to a programming error,

such as a null pointer exception, may create an opportunity for a malicious user to exploit

the vulnerability and execute arbitrary code on the device. For decentralized applications,

that use smart contract, a vulnerability in a contract can be exploited by a malicious actor

leading to tremendous losses, as demonstrated by recent attacks [1, 2, 3, 4]. For instance,

the notorious “TheDAO” [5] reentrancy attack led to a financial loss of about $50M in

2016. Furthermore, in recent years, several other reentrancy attacks, e.g., Uniswap [6],

Burgerswap [7], Lendf.me [8], resulted in multimillion dollar losses. Furthermore, given

the high popularity and significant total value locked in decentralized applications, they

have become attractive targets for various money-making opportunities for malicious

x



actors. These bad actors may seek to exploit weaknesses in the applications to engage

in high-frequency trading activities such as front-running and back-running or to corner

the market by buying NFTs (Non-fungible tokens) and selling them later at a significant

profit.

Hence, it is crucial to comprehensively analyze and understand the security and

usability issues associated with event-driven applications. This is particularly important

given the potential financial losses and negative impact on user experience that may

result from vulnerabilities in these applications However, these event-driven applications

typically have multiple entry points and are highly stateful, allowing anyone to invoke

these entry points independently and in any order—making the automated analysis

challenging.

Throughout my Ph.D. research, I focused on analyzing various aspects related to the

security and usability issues of these event-driven applications and extensively discussed

the findings in my dissertation. First, I introduce the fundamental differences between

traditional applications and event-driven applications and highlight the unique challenges

these event-driven applications pose. Next, I present a comprehensive threat model for

these applications with associated security, usability issues, and risks. Lastly, I present

in detail how my work focuses on analyzing these applications. Specifically, I present

Columbus, a callback-driven Android app testing technique that employs a combination

of static analysis, under-constrained symbolic execution and type-guided dynamic heap

introspection to generate valid and effective inputs to test the stability and usability

of these apps. Furthermore, I developed Sailfish, a scalable system for automatically

finding state-inconsistency bugs in smart contracts. Finally, my research delved into the

intriguing economic landscape of decentralized applications, with a particular focus on

the emerging field of NFT trading—exploring how actors in this ecosystem make use

of these unique digital assets to earn profits through high-frequency trading activities,
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sometimes in malicious ways.
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Chapter 1

Introduction

An event-driven application is a software program that responds to user inputs or system

events by triggering appropriate actions or functions. For an event-driven app, a program

can be thought of as divided into different components where each component can serve as

an independent entry point to the program. When an external user input or system event

occurs, any relevant component can be executed to respond to the event. This differs from

traditional program-driven applications, where the execution starts at the beginning of

the program and follows a predetermined path, invoking functions or programs as needed

before returning the output at the end.

Both Android apps and decentralized apps follow an event-driven paradigm. While

Android apps run on a single device, decentralized apps are designed to operate on a

distributed network of computers. In an Android app, every interaction with the user

interface generates an event that triggers a corresponding callback or event-handler. These

components are responsible for handling the event and advancing the app to different

states accordingly. Similarly, decentralized apps typically have a web-based user interface

on the front-end and a smart contract-based back-end. Smart contracts are programs that

run on top of the EVM and include multiple public functions that serve as independent
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Introduction Chapter 1

entry points. When a user interacts with the web UI of a decentralized app, a transaction

is created, and one of its public functions is executed based on the input provided in the

transaction.

1.1 Security and usability issues in event-driven apps

As with the traditional program-driven apps, security and usability is a crucial concern

for event-driven apps as well.

As of 2021, Android remains the most widely-used mobile operating system, with a

global market share of 75% and approximately 2.8B billion active users worldwide [9].

Android apps serve diverse purposes, ranging from email and banking to gaming and

beyond. The official Android app market, Google Play Store, has experienced tremendous

growth and currently hosts over 2.9M apps, with over 100K apps added every month

[10]. However, vulnerabilities in Android apps can result in app crashes, hindering their

usability and making them susceptible to attacks such as denial-of-service and remote

code execution, among others, which can be exploited by attackers.

Similarly, decentralized apps, or dApps, are built on blockchain technology, which

provides a high degree of security through their decentralized and distributed nature.

However, decentralized apps are not immune to security threats, and several risks must

be considered. One significant security concern is the potential for malicious actors to

exploit vulnerabilities in dApps’ smart contracts. Smart contracts have seen widespread

adoption, with over 45 million [11] instances covering financial products [12], online

gaming [13], real estate, and logistics. Therefore, a vulnerability in a contract can lead

to tremendous losses, as demonstrated by recent attacks [1, 2, 3, 4]. For instance, the

notorious “TheDAO” [5] reentrancy attack led to a financial loss of about $50M in

2016. Furthermore, in recent years, several other reentrancy attacks, e.g., Uniswap [6],

2



Introduction Chapter 1

Burgerswap [7], Lendf.me [8], resulted in multimillion dollar losses. To make things worse,

smart contracts are immutable—once deployed, the design of the consensus protocol

makes it particularly difficult to fix bugs. Since smart contracts are not easily upgradable,

auditing the contract’s source pre-deployment, and deploying a bug-free contract is even

more important than in the case of traditional software.

Additionally, decentralized apps face a threat from malicious trading activities, partic-

ularly in the context of cryptocurrency trading. Decentralized exchanges allow users to

trade cryptocurrencies such as fungible and non-fungible tokens, as well as Ether, which

many users consider to be an investment opportunity. The simplest approach is to buy

tokens in Ether at one price and sell them later at a higher price, generating a profit equal

to the difference in value. However, some savvy traders employ both illicit and benign

strategies to maximize their profits. These may include tactics such as frontrunning,

backrunning, and arbitraging, among others.

In order to encourage usage of these event-driven apps, it is important to address

security and usability issues that may act as deterrents for users. This requires careful

analysis and implementation of measures to mitigate these issues and ensure that the apps

are both secure and user-friendly. While extensive research has been conducted in this

field to study and detect such issues, every technique seems to have its own limitations.

Android apps. Android apps need to be thoroughly tested before developers push them

to the market in order to provide a smooth user experience. Modern Android apps use

rich user interfaces (UIs) and complex app logic, thus making automated exploration

challenging. Android apps are event-driven programs, i.e., each interaction with the UI

of the app generates an event, which drives the app through different states. Therefore,

synthesizing a correct sequence of events is essential to efficiently explore the state space

of an app. Many prior techniques rely on UI testing frameworks [14, 15, 16, 17, 18, 19, 20]

to exercise the app by generating appropriate events. However, a large class of events
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Introduction Chapter 1

is widget-specific, and requires multiple user actions to be taken in a specific order at

specific UI coordinates. Given the variety of the Android widgets, and the different types

of events they support, this is non-trivial. To address this, callback-driven approaches [21]

leverage the fact that when a UI event is triggered, the associated event handler, also

known as callback, is executed. Callbacks are the methods in the app typically invoked by

the Android framework on the occurrence of an event, e.g., click on a widget. Callback-

driven techniques call those callbacks directly—essentially eliminating the need for event

generation altogether.

Existing callback-driven approaches suffer from two main limitations. (L1) They

assume the knowledge of both the Android callbacks and the APIs to determine what to

call and how, respectively. Given an app, the first challenge is to identify its callbacks.

For that, existing tools maintain a fixed and often small list of supported callbacks. Once

a callback is identified, it has to be invoked with arguments that match the types that

the callback expects. Callbacks accept two types of arguments: primitive, e.g., int, and

float, or objects. Object arguments are harder to deal with. Prior techniques depend on a

human expert for writing the necessary driver code, which would leverage widget-specific

Android APIs to retrieve live objects from the app context, so that those can be supplied

as arguments. Since adding support for a callback requires a non-trivial manual effort, it

is hard to extend the support for all the callbacks in the framework. Quite understandably,

while there are approximately 19, 647 callbacks in Android 4.2 [22], the state-of-the-art

callback-driven testing tool EHBDroid [21] supports only 58 of them. (L2) Apps accept

user-supplied data as input, e.g., text. Only generating event sequences, which existing

tools focus on, is not enough, because certain functionalities may only be reachable under

specific input. For example, a payroll app calculates tax differently depending on the

income of an employee. To address these challenges, an automated app testing technique

must be able to identify callbacks and supply appropriate input for testing.

4



Introduction Chapter 1

Smart contracts. Smart contract vulnerabilities can result in huge financial losses.

One such vulnerability class is state-inconsistency (SI) bugs that enable an attacker

to manipulate the global state, i.e., the storage variables of a contract, by tampering

with either the order of execution of multiple transactions (transaction order dependence

(TOD)), or the control-flow inside a single transaction (reentrancy). In those attacks, an

attacker can tamper with the critical storage variables that transitively have an influence

on money transactions through data or control dependency. Though “TheDAO” [5] is the

most well-known attack of this kind, through an offline analysis [23, 24] of the historical

on-chain data, researchers have uncovered several instances of past attacks that leveraged

state-inconsistency vulnerabilities.

While there are existing tools for detecting vulnerabilities due to state-inconsistency

bugs, they either aggressively over-approximate the execution of a smart contract, and

report false alarms [25, 26], or they precisely enumerate [27, 28] concrete or symbolic traces

of the entire smart contract, and hence, cannot scale to large contracts with many paths.

Dynamic tools [24, 23] scale well, but can detect a state-inconsistency bug only when the

evidence of an active attack is present. Moreover, existing tools adopt a syntax-directed

pattern matching that may miss bugs due to incomplete support for potential attack

patterns [25].

A static analyzer for state-inconsistency bugs is crucial for the pre-deployment auditing

of smart contracts, but designing such a tool comes with its unique set of challenges. For

example, a smart contract exposes public methods as interfaces to interact with the outside

world. Each of these methods is an entry point to the contract code, and can potentially

alter the persistent state of the contract by writing to the storage variables. An attacker

can invoke any method(s), any number of times, in any arbitrary order—each invocation

potentially impacting the overall contract state. Since different contracts can communicate

with each other through public methods, it is even harder to detect a cross-function attack
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where the attacker can stitch calls to multiple public methods to launch an attack. Though

Sereum [24] and Ecfchecker [29] detect cross-function attacks, they are dynamic tools

that reason about one single execution. However, statically detecting state-inconsistency

bugs boils down to reasoning about the entire contract control and data flows, over multiple

executions. This presents significant scalability challenges, as mentioned in prior work [24].

Cryptocurrency trading. The transparency of blockchains opens up the possibility of

launching economic attacks by manipulating the market. Since uncommitted Ethereum

transactions and their gas bids are visible to other network participants, an attacker

can offer a higher gas price to get their malicious transactions mined early in a block,

before the victim transaction. This behavior is called front-running [30]. The authors

in FlashBoys [31] demonstrated how arbitrage bots front-run transactions in decen-

tralized exchanges (DEX) to generate non-trivial revenues. Sandwich attacks take this

idea a step further by both front- and back-running victim transactions. Zhou et. al. [32]

quantified the probability of being able to perform such an attack and the profits it can

yield. In fact, a recent paper [33] reported the profit extracted from the blockchain to

be a staggering $28.8M USD in just two years, leveraging sandwiching, liquidation, and

arbitrage. Another DeFi trading instrument, flashloans, allows a borrower immediate

access to a large amount of funds without offering any collateral, under the condition

that the loan needs to be repaid in the same transaction. Qin et. al. [34] analyzed

how flashloans have been used to execute arbitrage and oracle manipulation attacks.

DefiPoser [35] proposes trading algorithms to generate profit by crafting complex DeFi

transactions, both with and without flashloans.

Previous research has mostly focused on market manipulation strategies concerning

fungible tokens and Ether. However, non-fungible tokens (NFTs) have also gained

significant value and several NFT marketplaces (NFTMs) have emerged in recent years

to facilitate their buying and selling, including well-known platforms such as OpenSea,
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Rarible, and Axie. These NFTMs have seen tremendous growth, with OpenSea alone

generating 236M USD in platform fees and facilitating a trading volume of 3.5B USD

in August 2021[36]. Moreover, individual NFT sales have seen an unprecedented surge

in value[37], with nine out of the top ten most expensive sales [38] occurring between

February and August 2021. As a result, malicious actors have entered the NFT space to

employ adversarial trading strategies to make quick profits.

However, analyzing such trading activities surrounding NFTs is challenging due to

several factors. Unlike ERC-20 exchanges, NFTM are order-book based. Additionally,

since each NFT is unique, traders need to specifically buy the token they want, and

the marketplace will not automatically fill orders. Moreover, the value of NFTs is not

standardized and is entirely based on perceived value, making their valuation tricky. Also,

NFT trading strategies can vary significantly based on different NFT actions. Therefore,

the analysis used for ERC-20 exchanges is not applicable to the NFT ecosystem, and a

different approach is necessary to analyze NFT trading.

1.2 Contributions.

This dissertation details my research on the investigation and analysis of security

and usability issues in event-driven applications. I have examined two such real-world

event-driven apps and conducted an automatic analysis of their security, usability issues,

and associated risks. This investigation revealed that different types of event-driven apps

present distinct challenges, which are discussed in detail in this dissertation. Additionally,

I demonstrate that using a combination of program analysis techniques enables the

detection of such issues in event-driven apps in a more scalable and precise manner. In

summary, this dissertation presents the following contributions:

• We propose a callback-driven Android app testing approach by presenting (i)
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a generic technique to extract all the callbacks present in an app, and (ii) an

analysis based on under-constrained symbolic execution (primitive arguments),

and type-guided dynamic object filtering for generating valid arguments to invoke

callbacks. Further, we make the app exploration systematic by integrating two

novel feedback mechanisms: (i) a data dependency feedback that increases the

probability of triggering bugs due to uninitialized variables, and (ii) a crash-guided

dynamic scoring mechanism that prevents us from rediscovering the same bugs.

We implement the proposed technique in a practical tool called Columbus, and

we make it publicly available [39]. Our evaluation demonstrates that Columbus

outperforms the state-of-the-art tools both in terms of code coverage and the number

of unique crashes that it identifies.

• We define state-inconsistency vulnerabilities and identify two of its root-causes,

including a new reentrancy attack pattern that has not been investigated in the

previous literature. We model state-inconsistency detection as hazardous access

queries over a unified, compact graph representation (called a storage dependency

graph (SDG)), which encodes the high-level semantics of smart contracts over global

states. We propose a novel value-summary analysis that efficiently computes global

constraints over storage variables, which when combined with symbolic evaluation,

enables Sailfish to significantly reduce false alarms. We perform a systematic

evaluation of Sailfish on the entire data set from Etherscan. Not only does

Sailfish outperform state-of-the-art smart contract analyzers in terms of both

run-time and precision, but also is able to uncover 47 zero-day vulnerabilities (out

of 195 contracts that we could manually analyze) not detected by any other tool.

• We study high-frequency opportunistic trading of NFTs. We first present a sys-

tematic overview of how NFT trading works, and what are the different trade

8
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actions performed by the buyers and sellers. We then study previous instances of

opportunistic trades, and organized them according to the strategies employed by

the traders, viz., acquire, instant profit generation, and loss minimization. Next, we

analyze strategies used to acquire high-value NFTs for long-term holding. NFTs

acquired this way are meant to be held for long, and sold when the market is

assessed to be favorable. We analyze strategies used to make an instant profit in the

NFT market. NFTs acquired this way are meant to be held for a short time, and

are typically sold in the same transaction, thus making an instant profit. Lastly, we

analyze strategies used to minimize potential losses incurred from an NFT purchase.

The remainder of this dissertation is structured as follows:

In Chapter 2, we introduce Columbus, a callback-driven testing technique that

employs two strategies to eliminate the need for human involvement: (i) it automatically

identifies callbacks by simultaneously analyzing both the Android framework and the app

under test; (ii) it uses a combination of under-constrained symbolic execution (primitive

arguments), and type-guided dynamic heap introspection (object arguments) to generate

valid and effective inputs. Lastly, Columbus integrates two novel feedback mechanisms—

data dependency and crash-guidance—during testing to increase the likelihood of triggering

crashes and maximizing coverage. In our evaluation,Columbus outperforms state-of-the-

art model-driven, checkpoint-based, and callback-driven testing tools both in terms of

crashes and coverage.

In Chapter 3, we present Sailfish, a scalable system for automatically finding state-

inconsistency bugs in smart contracts. To make the analysis tractable, we introduce

a hybrid approach that includes (i) a light-weight exploration phase that dramatically

reduces the number of instructions to analyze, and (ii) a precise refinement phase based

on symbolic evaluation guided by our novel value-summary analysis, which generates

9



Introduction Chapter 1

extra constraints to over-approximate the side effects of whole-program execution, thereby

ensuring the precision of the symbolic evaluation. We developed a prototype of Sailfish

and evaluated its ability to detect two state-inconsistency flaws, viz., reentrancy and

transaction order dependence (TOD) in Ethereum smart contracts. Our experiments

demonstrate the efficiency of our hybrid approach as well as the benefit of the value

summary analysis. In particular, we show that Sailfish outperforms five state-of-the-art

smart contract analyzers (Securify, Mythril, Oyente, Sereum and Vandal) in

terms of performance, and precision. In total, Sailfish discovered 47 previously unknown

vulnerable smart contracts out of 89,853 smart contracts from Etherscan.

In Chapter 4, we analyze and study the high-frequency opportunistic trading of NFTs

in decentralized exchanges. Through this study, we have identified several illicit and

profit-making trading strategies that are employed by malicious actors to earn profits. In

addition, we show that not all NFT trading strategies result in profit; some can result in

substantial losses for traders..

Finally, Chapter 5 contains the conclusions drawn from my work and future directions.
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Chapter 2

Columbus: Android App Testing

Through Systematic Callback

Exploration

In this chapter, we present Columbus, a callback-driven Android app testing technique.

Android apps are event-driven programs, i.e., each interaction with the UI of the app

generates an event, which drives the app through different states. Therefore, synthesizing a

correct sequence of events is essential to efficiently explore the state space of an app. Many

prior techniques rely on UI testing frameworks [14, 15, 16, 17, 18, 19, 20] to exercise the

app by generating appropriate events. However, a large class of events is widget-specific,

and requires multiple user actions to be taken in a specific order at specific UI coordinates.

As we explain in Section 2.2, the onDateChanged event of the DatePickerDialog widget

is one such example. Generating such events deterministically is challenging for a UI-based

testing tool, unless it has been equipped with the knowledge of how to generate all the cor-

rect events. Given the variety of the Android widgets, and the different types of events they

support, this is non-trivial. To address this, callback-driven approaches [21] leverage the
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fact that when a UI event is triggered, the associated event handler, also known as callback,

is executed. Callbacks are the methods in the app typically invoked by the Android frame-

work on the occurrence of an event, e.g., click on a widget. Callback-driven techniques call

those callbacks directly—essentially eliminating the need for event generation altogether.

Existing callback-driven approaches suffer from two main limitations. (L1) They

assume the knowledge of both the Android callbacks and the APIs to determine what to

call and how, respectively. Given an app, the first challenge is to identify its callbacks.

For that, existing tools maintain a fixed and often small list of supported callbacks. Once

a callback is identified, it has to be invoked with arguments that match the types that

the callback expects. Callbacks accept two types of arguments: primitive, e.g., int, and

float, or objects. Object arguments are harder to deal with. Prior techniques depend on a

human expert for writing the necessary driver code, which would leverage widget-specific

Android APIs to retrieve live objects from the app context, so that those can be supplied

as arguments. Since adding support for a callback requires a non-trivial manual effort, it

is hard to extend the support for all the callbacks in the framework. Quite understandably,

while there are approximately 19, 647 callbacks in Android 4.2 [22], the state-of-the-art

callback-driven testing tool EHBDroid [21] supports only 58 of them. (L2) Apps accept

user-supplied data as input, e.g., text. Only generating event sequences, which existing

tools focus on, is not enough, because certain functionalities may only be reachable under

specific input. For example, a payroll app calculates tax differently depending on the

income of an employee.

We present Columbus, an Android app testing technique that addresses both the

challenges. To address L1, Columbus adopts a two-phase approach. First, we statically

identify all the callbacks present in the app (what to call). Specifically, our callback dis-

covery module statically extracts all the callback signatures L supported by the Android

framework. Since an app has to override a framework callback to provide its own imple-
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mentation, we use L to identify the callback implementations present in the app. Once

callbacks are identified, then we dynamically prepare arguments (how to call) to invoke

them with. Unlike previous techniques that rely on manually-written, callback-specific

driver code to generate object arguments, we resort to a hybrid approach. Our exploration

module performs a dynamic introspection of the app’s heap at run-time, followed by a

type-guided object filtering to supply appropriate arguments to the callback. This callback

discovery and argument generation strategies together insulate Columbus from the

complexity of the Android API and obviate the need for any prior knowledge. To address

L2, we leverage the fact that many user inputs are of primitive types, and often appear as

the arguments to the callbacks. Therefore, the argument generation module symbolizes the

primitive arguments of a callback, and performs an under-constrained symbolic execution

to generate the possible values of those arguments to drive the execution along all paths.

Symbolic execution is scoped within a single callback instead of the entire app to maintain

a balance between precision and scalability.

In addition to tackling those two limitations, we integrate two novel feedback mecha-

nisms into our exploration loop. (i) The callback dependency module passes on statically-

identified data-dependencies between callbacks as feedback, which enables Columbus

to generate callback sequences that increase the likelihood of triggering crashes due

to uninitialized objects, e.g., NullPointerException. (ii) We design a crash-guided

dynamic scoring mechanism that gradually deprioritizes crash-inducing paths in the app

to drive the exploration towards unexplored code. In effect, Columbus is incentivized

to discover more crashes than rediscovering the already found ones.

We evaluated Columbus on 60 apps of the AndroTest [40] benchmark, and top 140

real-world apps from the Google Play Store. Compared to the state-of-the-art model-based

techniques Stoat [17] and Ape [20], checkpoint-based technique TimeMachine [41],

and callback-driven technique EHBDroid [21], Columbus achieves 12%, 5%, 6%, and
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31% more in average coverage, and discovers 4.42, 1.23, 1.57, and 5.48 times more crashes

on the AndroTest apps, respectively. Columbus is also able to find 70 crashes in 54

real-world apps.

2.1 Background

Android events. Android apps are event-driven programs. That is, apps behave as state

machines, and events cause a transition from one state to the other. An event is generated

in response to one or more user actions (UI events), or by Android itself (system events).

Examples of UI events include click, drag, pan, pinch, zoom, etc. Modern Android

devices are equipped with peripherals, such as, Bluetooth and WiFi, and sensors like

motion sensors and accelerometers. Any change in the state of these devices is detected

by the OS, which then generates a system event to notify “interested” apps. Examples of

system events are Bluetooth disconnected, phone tilted, and low battery level.

Based on the number of actions needed to generate an event, we define two types of

events: primitive and composite. Primitive events are either system events or UI events

generated due to a single action. For example, MotionEvent (ME) reports the movement

of an input device like a mouse, pen, finger, trackball, or KeyEvent reports key and

button related actions. A composite event consists of multiple primitive ones, which are

sequenced with strict spatial and temporal requirements. Say, we want to drag an object

from point p1, and drop it at point pn along the trajectory [p1, p2, p3, ..., pn]. In order to

programmatically generate a drag event, the following sequence (temporal) of primitive

events need to be fired at those exact coordinates (spatial): ME.ACTION DOWN (p1) →

{ME.ACTION MOVE (pi) | 2 ≤ i ≤ (n − 1)} → ME.ACTION UP (pn). Without the support

for a composite event, it is nearly impossible for a UI testing tool to generate most

of them just ‘by chance’. To make matter worse, numerous such composite events are
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widget-specific, e.g., the DateChanged event recognized by DatePickerDialog. Therefore,

adding support for individual events in a UI testing tool is nearly impossible.

Android callbacks. An Android callback, also known as an event handler, is a piece

of code that the framework invokes when a specific event takes place, for example; the

onClick callback is called when a click event occurs. Typically, the framework only

provides empty callbacks, which an app selectively overrides to respond to the respective

events. When an event is generated, it is broken down into Messages, which are then put

into a MessageQueue managed by the Looper, the entity that runs the message loop. The

Looper processes the Messages in first-in-first-out order, and calls the associated callbacks.

While invoking a callback, the framework supplies the appropriate arguments, which can

be of two types—primitive, e.g., int, float, etc., or object, i.e., an instance of a class.

Android activity: An activity is a UI element that acts as a container of other UI

elements. It often presents itself in the form of a window. Activities are managed by

maintaining an activity stack. When a new activity starts, it is placed on the top of the

stack, while the previous one is paused, and remains below the current one in the stack.

A paused activity does not come to the foreground again until the current activity exits.

An activity transitions through different states of its lifecycle as a user navigates through

an app. Lifecycle callbacks, e.g., onCreate, onPause, onResume, are the ones associated

with such lifecycle events.

2.2 Motivation and challenges

This section introduces a motivating example, the challenges it presents to the state-

of-the-art callback-driven app testing tools, and how we tackle them.

The code in Figure 2.1 shows three callbacks that an Android app might implement. The

callback functions are executed when the user interacts with specific UI elements, i.e., clicks
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1 protected void onListItemClick(ListView l, View v, int position , long id) {

2 File f = (File)(mList.get(id).get(ITEM_KEY_FILE));

3 if (f.isFile ()) {

4 mSelectedFile = f;

5 showDialog(DIALOG_IMPORT_FILE);

6 }

7 }

8

9 public void onClick(DialogInterface dialog , int whichButton) {

10 File f = mSelectedFile;

11 Intent i = new Intent(mContext , myActivity.class);

12 Uri u = Uri.fromFile(f);

13 i.setData(u);

14 startActivity(i);

15 }

16

17 public void onDateChanged(DatePicker view , int year , int month , int day) {

18 if (day == 15 && month == 6 && year == 2020)

19 Toast.makeText(context , "Success!", ...).show();

20 }

Figure 2.1: Code containing three callbacks. Their data dependencies ( ) and checks
on the arguments ( ) are highlighted.

on a list item, clicks on a button, and sets a date using a DatePickerDialog (Figure 2.2),

respectively. UI-based testing tools [14] generate events, e.g., clicks, to interact with the UI

of such apps. However, these tools are not widget-aware, meaning that, they are unable to

systematically generate composite events unless they already know how to generate them.

For example, the following events need to be generated in an exact sequence, on specific UI

elements, to call the onDateChanged callback—(i) DatePickerDialog widget is clicked

to bring up the spinner control, (ii) the day/month/year is changed by clicking on the

up/down arrows, and (iii) the Set button is clicked. It is unlikely for a UI-based testing

tool to be able to deterministically generate this event sequence without any guidance.

Moreover, to set a particular date, the up/down arrows need to be clicked a specific

number of times—which is hard as well. To overcome this limitation, callback-driven

techniques [21] invokes the callback, e.g., onDateChanged, directly bypassing the UI layer

altogether. While callback-driven testing shows promise, it still suffers from the following
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Figure 2.2: A DatePickerDialog

widget

1 void onCreate(Bundle bundle) {

2 ListView lv = getListView ();

3 }

4
5 void ehbTest () {

6 for (int i=0; i<lv.size(); i++) {

7 View v = lv.getChildAt(i);

8 long id = lv.getAdapter ()

9 .getItemId(i);

10 this.onListItemClick(lv,v,i,id);

11 }

12 }

Figure 2.3: EHBDroid instrumentation for
onListItemClick()

limitations.

Identifying callbacks. The first step of callback-driven testing is identifying the call-

backs. Unfortunately, the set of callbacks supported by the Android framework is huge.

While previous research [22] identified approximately 19, 647 callbacks in Android 4.2;

EHBDroid, the state-of-the-art callback-driven testing tool, supports only 58 callbacks.

Columbus statically analyzes the app and the Android framework together to address

this issue (Section 2.3.1).

Providing callback arguments. Callbacks accept either primitive arguments or objects.

The primitive arguments are often involved in path conditions within the callback. Without

the correct value of such primitives, part of the callback may never be exercised. In

Figure 2.1, the Toast message appears only on a specific date. Existing callback-based

testing tools use a set of predefined values to invoke callbacks. Therefore, Line 19 will

possibly never be explored. Columbus symbolizes primitive arguments and employs

under-constrained symbolic execution to infer values to make larger part of the callback

code reachable (Section 2.3.2).

For object arguments, such as, the ListView and View arguments of the onListItem-

Click callback in Figure 2.1, callback-driven tools use the Android API (by statically
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instrumenting the app) to retrieve correct objects from the app context, as shown in

Figure 2.3 (Line 2 and Line 7). However, this approach is not scalable, as the number of

callbacks in the Android framework is huge, and the tool requires adding explicit support

for all the arguments of all the callbacks. Instead, Columbus retrieves live objects

from the app heap at runtime, and then applies type-guided object filtering to provide

the correct arguments (Section 2.3.2). Type information comes from a one-time, static,

pre-processing phase.

Data dependency feedback. Variables are often shared among multiple callbacks.

Shared data introduces data dependencies, which an app should either enforce by restrict-

ing available UI actions, or handle by placing a sanity check. In Figure 2.1, both the

onClick and onListItemClick callbacks use the same variable mSelectedFile. Specif-

ically, onListItemClick opens a file, and sets the file handle mSelectedFile (Line 4),

which onClick uses in Line 10. This implies that onListItemClick has to be invoked

before onClick, otherwise the onClick method would generate a NullPointerException.

Columbus statically infers such data dependencies and passes the same as feedback

during testing. While synthesizing a callback sequence, Columbus attempts to violate

the expected order to increase the likelihood of inducing crashes (Section 2.3.3).

2.3 The Columbus framework

In this work, we propose Columbus, a framework to test Android apps by directly

invoking their callbacks. For a given Android app, Columbus first identifies its callbacks

(Section 2.3.1). It then obtains the primitive argument values that correspond to different

execution paths in these callbacks (Section 2.3.2) and identifies inter-callback dependencies

(Section 2.3.3). Finally, our tool invokes the identified callbacks—(i) in orders that initially

violate (to increase the chances of triggering uninitialized data-related bugs), and later
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Figure 2.4: Overview of Columbus with reference to the motivating example in Figure 2.1

respect their dependencies, (ii) with their expected arguments during the exploration

(Section 2.3.4). Columbus keeps track of the callback-defining classes explored during the

app execution, and gives higher priority to exploring classes that have been less explored.

Figure 2.4 depicts the high-level workflow of our system.

2.3.1 Callback discovery

Every Android app defines its own set of callbacks. Though state-of-the-art ap-

proaches [21] resorted to a predefined set of callbacks, the Android framework contains

thousands [22] of callbacks, and the number is constantly increasing. In order to facilitate

effective app exploration, in this work, we present an approach to automated callback

discovery. Columbus’s callback identification is presented in Algorithm 1. At a high

level, our callback discovery approach first statically analyzes the framework (Function

AndroidFrameworkAnalysis) followed by an analysis of the app under test (Function

AppAnalysis), and outputs a list of callbacks present in the app.
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Algorithm 1: Static callback identification

1 Function AndroidFrameworkAnalysis
Input : Android framework JAR
Output : Classes with callback candidates ∆

2 ∆← {}
3 CGf ← GetCallGraph(JAR)
4 CHf ← GetClassHierarchy(JAR)
5 foreach class cf ∈ GetClassesFromJar(JAR) do
6 Mf ← ∅
7 foreach method mf ∈ GetMethodsFromClass(cf ) do
8 if IsPublicOrProtected(mf ) then
9 if GetCallers(cf ,mf , CGf ) 6= ∅ then

10 Mf ←Mf ∪mf

11 end

12 end

13 end
14 ∆[cf ]← ∆[cf ] ∪Mf

15 end
16 foreach (cf ,Mf ) ∈ ∆ do
17 foreach subclass c′f ∈ GetSubClasses(cf ) do

18 M ′
f ← ∆[c′f ]; M ′

f ←M ′
f ∪Mf ; ∆[c′f ]←M ′

f

19 end

20 end
21 return ∆, CHf

22 Function AppAnalysis
Input : App’s APK, Framework classes with callback candidates ∆, Framework’s class

hierarchy CHf

Output : Application callbacks CB
23 CB ← ∅
24 foreach class ca ∈ GetClassesFromApk(APK) do
25 ClassAndItsParents← ca ∪ GetSuperClasses(ca)
26 foreach cpa ∈ ClassAndItsParents do
27 foreach (cf ,Mf ) ∈ ∆ do
28 if cpa extends cf ∨ cpa implements cf then
29 foreach ma ∈ GetClassMethods(cpa) do
30 foreach mf ∈Mf do
31 if IsCompatible(mf ,ma) then
32 CB ← CB ∪ma

33 end

34 end

35 end

36 end

37 end

38 end

39 end
40 return CB
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Android framework analysis. Our analysis is based on two observations. (i) As

discussed in Section 4.1, in order to perform the intended action once an event is generated,

an app needs to override the respective callback present in the Android framework. To be

overridden, a callback needs to be declared as either a protected, or a public method within

the framework. (ii) Moreover, at runtime, callbacks are typically invoked within the

framework through a series of internal method calls once an event is generated—meaning

that, callbacks have caller(s) within the framework.

Columbus first constructs the framework’s callgraph CGf . To build the call graph,

Columbus performs intra-procedural type inference [42] to determine the possible dy-

namic types of the object on which a method is called. When this fails, Columbus

then over-approximates the possible targets as all the subclasses of its static type. Now,

for every method mf in a framework class cf , Columbus considers mf as a potential

callback (Lines 7−−13) if—(i) mf is declared as either protected, or public, and (ii) mf

has at least one caller in CGf . At the end, we compute a mapping ∆ that maps each class

cf to their potential callbacks. Each callback mf is a tuple, which consists of the defining

class cf , the method name, and the types of its arguments. Now, this mapping ∆ is

incomplete, because a class can inherit callbacks from its superclasses as well. Therefore,

Columbus computes the complete list of potential callbacks for every cf by walking up

the class hierarchy to consolidate superclass callbacks, too (Lines 16−−20). The updated

callback mapping ∆ and the class hierarchy information CHf are returned as the output.

Note that Columbus performs the framework analysis once per framework.

The above analysis is inspired by EdgeMiner [22]. The main goal of EdgeMiner is to

detect framework callbacks, and using that to discover the registration methods within

the framework. However, the end goal of Columbus is to detect application level callbacks

by leveraging the framework callbacks.

Android app analysis. The goal of this phase is to find whether any app class method
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ma is a valid overriding method of the framework class callback mf . In order to override

a callback within an app, the app class ca needs to either extend or implement the

corresponding callback-defining class cf of the Android framework. For example, in

Figure 2.1, to override the onListItemClick callback, the app class needs to extend the

ListActivity framework class. Columbus identifies such pairs of classes (cf , ca) by

statically analyzing the app. In the next step, it checks whether any app method ma ∈ ca

has the same name and the same number of arguments as any framework method mf ∈ cf ,

and the arguments of ma are type-compatible with those of mf (Lines 29 − −35). We

call a type t1 to be compatible with another type t2, if either t1 = t2, or t1 is a subclass

of t2 according to the class hierarchy. To determine type compatibility, Columbus

constructs the full class hierarchy by unifying (⊕) the framework class hierarchy CHf

with the app class hierarchy CHa. Let A→ B denote that A is a superclass of B. Now,

if the relations H1 = A → B and H2 = B → C appear in CHa and CHf , respectively,

then H1 ⊕ H2 = A → B → C. Finally, we obtain the set of potential callbacks in an

app. Our analysis would discover all three functions onListItemClick, onClick, and

onDateChanged in Figure 2.1 as callbacks.

Identifying callbacks by analyzing either the app, or the framework alone is challenging.

Since a callback is invoked by the framework, the callback methods do not have incoming

edges visible from the call graph of the app. However, an analysis relying only on this

fact alone will generate false positives—because, it could detect a non-callback method

as a callback due to the inherent incompleteness of Java call graphs [43]. Similarly, our

framework analysis is over-approximated in a way that will definitely contain the callbacks,

but non-callbacks methods, too. Intuitively, therefore we ‘intersect’ the framework callback

candidates and app methods to determine the true callbacks.

During this phase, we can encounter methods of a generic Android framework class

Object, that are declared as public, and can therefore be overridden by the corresponding

22



Columbus: Android App Testing Through Systematic Callback Exploration Chapter 2

application-level classes inheriting the Object class. The number of such callbacks

appearing as part of the final callback list was negligible (around 3%). We do not consider

such methods as callbacks.

2.3.2 Generating arguments for callbacks

In order to invoke a callback, we need to provide argument values conforming to

the correct types. In case of GUI-action-driven exploration strategies, the framework

provides these arguments, which are derived from the events resulting from the GUI

actions. Therefore, to invoke callbacks without relying on GUI actions, Columbus needs

to tackle the challenge of generating arguments for these callbacks, with a goal to explore

the paths within a callback resulting in faster coverage and better crash discovery.

A callback argument can be one of two types: primitive or reference. For each type,

Columbus uses different strategies to generate the corresponding arguments.

Primitive type arguments.

Primitive type arguments, e.g., integer, long, string, and boolean, are typically

involved in program paths that can only be explored with a specific set of values. For

instance, Line 19 of the onDateChange callback in Figure 2.1 will get executed only if

the integer arguments day, month, and year are equal to 15, 6, and 2020. Therefore, to

effectively explore all the paths in such a callback without resorting to a computationally

expensive random search, Columbus needs to provide these specific set of values to

the callback during invocation. In this case, Columbus symbolizes respective callback

arguments, and performs an under-constrained symbolic execution (until termination, or

time-out) to generate concrete values.

Precisely, Columbus starts the symbolic execution at the entry point of each of
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the callbacks, and collects constraints on the arguments corresponding to each of the

execution paths. It then solves these constraints and generates concrete argument values,

which when provided as arguments to the callback during invocation, result in exercising

those paths within the callback. During symbolic execution, we track constraints on

objects that modify the program state, such as (i) callback arguments, and (ii) API

return values.

Callback arguments. Columbus executes the callback with symbolic and uncon-

strained arguments. It then collects the constraints in each of the execution paths that

involve operations on the symbolic arguments. For example, if one of the arguments is an

object, and during execution, one of its fields is set to 5, Columbus’s symbolic execution

engine will automatically add a constraint stating that the specific attribute needs to be

equal to 5 (to follow a particular program path of interest).

API calls. Columbus’s symbolic execution engine generates summaries for common

functions, for example, the Java runtime function exit(). These summaries capture the

side effects of these APIs that modify the program state. For APIs without a summary,

we return a fresh symbolic value conforming to the return type of the API.

Columbus’s symbolic execution engine is capable of generating concrete values of

integer, float, boolean, and constant string types.

Reference type arguments.

Reference type argument objects frequently represent UI elements where a user per-

forms certain actions. In Figure 2.1, when a user clicks on AlertDialog (a subclass object

of DialogInterface), the framework invokes the onClick callback with an argument

object of type AlertDialog. Therefore, to invoke the onClick callback without relying

on the Android framework, we need to provide an object of type DialogInterface, or a

subclass of DialogInterface—as an argument.
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App heap search. During the app exploration (Section 2.3.4), as and when new

Activities are visited, these object instances are created in the app heap. Therefore, in

order to invoke a callback that requires reference type arguments, Columbus monitors

the app heap by dynamically instrumenting the app under test. In many cases, the

argument type present in the callback signature is not the one created in the app heap.

In Figure 2.1, the onClick callback has an argument of type DialogInterface. However,

the object created will be of type AlertDialog, a subclass of DialogInterface. To

account for this scenario, i.e., if an object instance of a reference type inferred from

the callback signature is not available in the app heap, Columbus searches for object

instance(s) that is a subclass of the required type.

Custom object creation. It may still happen that no object instances of the required

type or its subclass are found in the heap. For example, certain types of objects required as

a callback argument, e.g., KeyEvent, and MotionEvent, that are created by the Android

framework only when it registers touch, or key-press on UI elements. Therefore, in order

to invoke such callbacks, Columbus leverages Java reflection. Specifically, for such a

reference, Columbus creates the object using its public constructor. If the constructor

expects primitive type arguments, Columbus uses either a random value, or a value from

a pre-defined set as the argument. For example, to create KeyEvent, or MotionEvent

objects, Columbus uses pre-defined values as they should be valid screen coordinates in

order to successfully explore the callback. If a constructor expects reference type objects,

Columbus either finds these objects through app heap search, or creates recursively

through Java reflection. For example, if we were to create an object of type A which has

a constructor that accepts an object of type B, then we create objects bottom up (i.e.,

first B, then A). In case multiple such constructors exist, Columbus picks the one which

requires the least number of reference type arguments.
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2.3.3 Inter-callback dependency

Callbacks within an app can share variables resulting in read-write data dependencies.

As discussed in Section 2.2, for onListItemClick and onClick callbacks (Figure 2.1),

prioritizing dependency-violating order, i.e., invoking onClick before onListItemClick,

brings us faster to a crash discovery. Whereas invoking the callbacks in the dependency-

respecting order allows for a better code coverage. For example, the execution of the

Lines 13 − −14 in onClick happens only if the reference mSelectedFile accessed at

Line 10 is defined by a prior execution of onListItemClick.

Based on this observation, Columbus computes callback pairs having shared variable

dependencies by performing a field-insensitive analysis of the app. The intuition is to first

compute a set of class variables vars that are not initialized through a default initializer.

The default initializers are the methods that get automatically invoked whenever a class

or activity gets created, e.g., the life cycle methods of an activity, class constructors, etc.

These variables vars are our target candidates, since they are defined and accessed only

through callbacks. Next, for every such variable var ∈ vars, Columbus searches for

callback pairs (cb1, cb2) where one of them reads (R) var, and the other writes (W) var.

The output of this phase will be a set of variables with their dependent callback pairs.

For the example in Figure 2.1, the output will be {mSelectedFile, (‘R’, onClick), (‘W’,

onListItemClick)}.

These dependency pairs are used as feedback during the exploration phase detailed in

Section 2.3.4. In order to accelerate crash discovery, Columbus implements a weighted-

score based exploration strategy, which initially prioritizes executing callbacks that write

to variables over the callbacks that read from the same variables—inducing the depen-

dency violating callback invocation orders. However, during the exploration, Columbus

dynamically adjusts the scores, e.g., penalizes the callbacks that frequently result in a
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crash, or prioritizes the callbacks that are executed less frequently, in order to explore

newer or less explored program paths as well.

2.3.4 Callback-guided exploration

To explore an app under test, we first statically obtain its callbacks (Section 2.3.1),

their dependencies (Section 2.3.3), and the primitive argument values (Section 2.3.2).

Then, Columbus spawns the app, dynamically instruments it to inspect the app heap,

and starts exploring its functionalities. Columbus invokes a callback whenever an

instance of the activity, or the class defining the callback appears in the app’s heap. If

the callback expects reference type arguments, Columbus then generates such argument

objects using the strategy detailed in Section 2.3.2. Algorithm 2 gives an overview of our

app exploration strategy. Columbus’s exploration strategy is composed of the following

components:

Activity monitor. As the app is being explored, two kinds of entities get created, or

destroyed in the heap: (i) activities and related UI element objects, and (ii) regular class

objects, as the side-effect of calling a callback that instantiates the class. The activity

monitor records such events by monitoring the invocation of the lifecycle callbacks of the

activities, and the class constructors. For example, invocation of onCreate() signals an

activity creation, and onDestroy() is invoked when an activity is destroyed. The activity

monitor maintains an activity stack S by pushing an activity to S when a new activity is

created, and popping an activity off S when it is destroyed. Therefore, the most recently

created activity, which we call as the live activity, always remains at the top of S.

The app is explored in a depth-first manner, and runs in continuous cycles. For a live

activity act, the activity monitor retrieves all the class objects newClasses created in the

app heap (Line 18), passes it on to the selector for choosing the next callback cb, which is
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Algorithm 2: Callback driven exploration

1 Function CallbackExploration
Input : Application callbacks AC, their dependencies Dep, class hierarchical information

CHf and CHa, duration t
Output : Crash dumps crashes

2 crashes← ∅, explored← {}, testingCycle← 0
3 CbW ← ∅ // callback weights
4 ClW ← ∅ // class weights
5 foreach callback cb ∈ AC do
6 cl← GetclassDefiningMethod(cb)
7 CbW ← CbW ∪ (cl, cb, 0.0)
8 ClW ← ClW ∪ (cl, 0.0)

9 end
10 while until t is reached do
11 spawnApp ()
12 testingCycle← testingCycle+ 1
13 foreach callback cb ∈ AC do
14 explored[cb]← false
15 end
16 while until no new activity left to explore do
17 act← getLiveActivity()
18 newClasses← getNewClasses(act, explored)
19 if newClasses = ∅ then
20 RemoveActivity(act)
21 go to Line 16

22 end
23 cl← getNextClass(newClasses ∪ act, ClW,Dep)
24 cb← getNextCallback(cl, explored, CbW,Dep)
25 if cb = ∅ then
26 explored← explored− (cb, false) ∪ (cb, true)
27 go to Line 16

28 end
29 allargs← generateArguments(cl)
30 foreach args ∈ allargs do
31 inst← getInstance(cl)
32 newCrash← ExecuteCallback(inst, cb, args)
33 if newCrash 6= ∅ then
34 crashes← crashes ∪ newCrash
35 UpdateAndPenalizeWeights(ClW,CbW, cl, cb)
36 restartApp () and go to Line 10

37 end
38 else
39 UpdateWeights(ClW,CbW, cl, cb)
40 end

41 end

42 end

43 end
44 return crashes
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then executed by the executor. The function getNewClasses() returns only those classes

for which at least one callback is still unexplored. If a callback creates a new live activity

act′, the activity monitor puts act on hold, and switches to act′. When all the callbacks of

an activity or its associated classes have been executed, the activity monitor destroys the

activity, removes it from S (Lines 19−−22), and starts exploring the next live activity.

One testing cycle ends, and the next one begins when S becomes empty.

Selector. The selector module receives the candidate classes newClasses to be explored

from the activity monitor, and chooses a callback cb to be executed next (Line 24). While

choosing cb, it considers the class weights ClW , callback weights CbW , inter-callback

dependencies Dep, and the visited status explored of the callbacks. The explored map

is cleared when a testing cycle begins. All the weights are initially set to zero, and are

dynamically adjusted during the exploration based on how frequently the classes and the

callbacks have been explored. Similarly, when a callback is explored, the explored map is

updated (Line 26).

To choose a callback, the selector employs multiple strategies in the following order:

(i) In the beginning, when none of the callback is explored, the selector uses Dep to

choose the callback cb with the read (R) dependency, and its defining class cl. (ii) The

selector consults the explored map to prioritize unexplored callbacks over the explored

ones. (iii) A class or callback with lower weight (ClW or CbW ) has been explored the

least; therefore it is prioritized next for execution. The tie among multiple unexplored

classes, or callbacks with the same weight is broken randomly.

Executor. The executor executes the callback selected by the selector. The executor

searches the app heap for an instance of a class, or an activity that overrides the callback

(Line 31). If an instance is found, the executor generates the arguments for the callback

respecting their types (Section 2.3.2). However, an argument can have multiple possible

values executing different paths (primitive), or depending on the availability of objects in
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the heap (reference). The executor, therefore, schedules the callback for execution for

each combination of such inferred values. After each execution, the class weight for a

class cl and the callback weight for a callback cb are updated as shown in Figure 2.5.

CbWcb : − CbWcb + ext

sch

sch ← number of scheduled executions of cb
ext ← number of executions of cb at time t

ClWcl : − avg(CWcb) ∀cb ∈ cl

Figure 2.5: New class and callback weights after each execution

Intuitively, the executor updates the weights to reflect what percentage of callbacks

are executed with respect to the total number of possible invocations—since a crash,

or a creation of new activity may interrupt the processing of the rest of the scheduled

executions. The class weights are accordingly adjusted such that the least explored class,

and its callbacks are prioritized to be executed the next time the activity comes live.

Crash detector. After the execution of a callback, the crash detector monitors whether

it results in a crash of the app. We do not want to rediscover the same crash repeatedly.

Therefore, if a crash happens, the UpdateAndPenalizeWeights() (Line 35) function

updates the class weights to deprioritize the callback cb, and its defining class cl—the

callback weight CbWcb is increased by δ (an empirically determined constant), and

accordingly the class weight ClWcl is adjusted. The idea is to gradually increase the

callback weight in order to account for the case when only a specific set of argument

values results in a crash, and all other values should still be able to explore the callback.

Therefore, instead of not choosing the callback at all, the selector deprioritizes the callback

for some time.
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2.4 Evaluation

In our evaluation, we aim at answering the following research questions: RQ1. How

does Columbus compare with the state-of-the-art testing tools in terms of both code

coverage and discovered crashes? RQ2. How effective is Columbus in finding crashes in

popular, real-world apps? RQ3. What is the benefit of leveraging dependency feedback?

2.4.1 Experimental setup

Dataset. To answer RQ1 and RQ3, we used AndroTest [40], a collection of 68 apps.

This dataset has become the de facto standard benchmark for Android app testing, and

it has been used in the evaluation of a large number of tools [40, 17, 44, 41, 45, 46, 47,

48, 49, 16, 50, 51]. However, we had to remove 8 apps that were not fully compatible

with Android 9 (which is the environment we used for Columbus). For example, the

ListView in the netcounter app does not appear in Android 9. Therefore, we used the

remaining 60 apps for all our experiments.

For RQ2, we created a dataset of popular, real-world apps. We will refer to this

dataset as the real-world dataset. To build this dataset, we first compiled a list of Google

Play Store [52] apps with a minimum of 500,000 installs and a user rating of at least 4.5

stars. Then, we collected first 140 apps compatible with Frida instrumentation. As we

show in Table 2.2, these apps are quite diverse and belong to 14 broad categories.

Environment. Our experiments were conducted on a system with an Intel(R) Core(TM)

i9-10885H @ 2.40GHz processor (16 cores), 128GB of memory, and 1TB of solid-state drive

(relevant for the snapshot save and restore mechanism used by TimeMachine), running a

64-bit Ubuntu 20.04 operating system. For testing, we used 8 Google Pixel 3a phones run-

ning Android 9 (Pie, API level 28), with the Internet and Bluetooth connectivity enabled.

We did not create any accounts for those apps that allow user logins. We ran each tool for 3
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hours on each app, repeated each experiment 5 times, and averaged out the results to min-

imize the effect of any inherent randomness. Before testing each app, we first brought the

phones to a clean-slate state by wiping its sdcard contents, and then pushed the sdcard

files used by Stoat in their experiment to the phones. All the tools except TimeMachine,

which requires a virtual machine (VM) to operate, were tested on real hardware (phone).

Pre-exploration. Before the dynamic exploration could begin, Columbus prepares an

app by running the first three static pre-processing phases. We provide relevant results

for the 60 apps of the AndroTest dataset: The callback discovery module identified a total

of 30,682 and 4,991 callbacks in the Android framework and the apps, respectively. Out

of 4,991 app callbacks discovered, 1,566 callbacks had at least one primitive argument,

thus necessitating the invocation of the argument generation module. With a timeout of

5 minutes, the argument generation succeeded for 1,332 callbacks, while it timed out for

the remaining 234 callbacks. Additionally, 4,147 callbacks have at least one reference type

argument, and in total 4,857 reference type arguments. Out of them, 4,650 objects were

always found on the heap, and the remaining 207 objects needed to be created. Finally,

the callback dependency module discovered a total of 2,456 dependency relations between

975 variables across all the apps.

Coverage and crash collection. We used Emma [53] to collect statement coverage.

The coverage data was collected every minute for all tested tools. Emma injects its

own instrumentation code into the apps. Unfortunately, its coverage reports do include

coverage data from its own packages, which can either inflate, or deflate the overall

coverage. Therefore, we excluded Emma-specific classes from the coverage calculation.

We detect crashes by parsing (i) Logcat [54] logs fetched by the log watcher, a long-

running process that streams logs from the devices (phones) in real-time, and (ii) logs of the

crashes captured by the Frida server. We used the widely adopted practice of computing

the stack hash to determine the uniqueness of crashes. Crashes that do not contain
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the app’s package name were filtered out. For Frida reports, we occasionally observed

that certain crashes that originate from the dynamic instrumentation contain an app’s

package name. Therefore, we manually inspected and removed those irrelevant crashes

after the initial package-name-based filtering. Then, we normalized the stack traces for

the remaining crashes by removing irrelevant and ephemeral information, e.g., timestamp,

process id (PID), etc. Finally, we compute hashes over these sanitized stack traces.

Implementation. We implemented the first three phases of our analysis, viz., callback

identification, callback dependency discovery, and primitive argument generation using the

angr [55] binary analysis framework. All these phases are performed offline, before the

testing begins on the device. For exploration, the final phase, we leveraged the Frida [56]

dynamic instrumentation toolkit.

2.4.2 Experimental results

Performance on benchmark apps.

To investigate how our technique performs with respect to prior work, we use the

AndroTest benchmark apps. Specifically, we compared the achieved code coverage

and the number of crashes found by Columbus with the state-of-the-art model-based

techniques Stoat [17] and Ape [20], checkpoint-based technique TimeMachine [41],

and callback-driven technique EHBDroid [21]. Unfortunately, we could not make the

publicly available version of EHBDroid work on our test apps due to the incompatibility

of their instrumentation module with our test subjects. Instead, we implemented their

testing strategies by modifying Columbus in three ways: (i) we consider only those 58

callbacks supported by EHBDroid, (ii) we disabled dependency and crash guidance,

and (iii) we restricted primitive argument values to those used by EHBDroid instead of

the values computed by our argument generation module.
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Apps Line coverage Crashes
ST EH AP TM CB CBwd ST EH AP TM CB CBwd

mileage 38 23 58 40 60 57 2 0 15 9 4 4
bomber 61 56 66 97 88 87 0 0 0 0 0 0
mirrored 31 16 38 46 47 47 0 0 0 1 1 1
batterydog 59 5 72 73 72 72 0 0 0 1 0 0
triangle 90 91 90 91 91 91 0 0 0 0 1 1
translate 46 29 48 48 49 49 1 1 1 0 1 1
anymemo 26 18 50 42 52 46 2 1 6 6 7 7
zooborns 18 17 19 25 26 26 3 0 3 3 1 1
qsettings 40 23 50 40 47 46 1 1 1 0 1 0
wchart 57 24 32 51 85 83 2 1 0 0 3 3
addi 17 16 21 19 18 18 1 0 8 1 3 3
LNM 49 3 34 48 50 50 4 0 4 7 2 1
gestures 32 32 32 50 78 78 0 0 0 0 0 0
MNV 35 13 64 42 68 68 2 1 4 4 1 1
wikipedia 24 21 25 31 19 19 0 0 0 0 0 0
dialer 66 53 65 40 73 73 1 1 1 3 2 2
photost 24 9 26 28 12 12 2 1 1 3 3 3
battery 92 55 55 93 88 88 0 0 0 3 0 0
aCal 18 8 28 29 22 19 3 0 5 3 3 1
tomdroid 55 24 57 53 61 59 0 0 4 0 2 2
RMP 82 87 83 65 92 92 1 0 0 1 2 2
SpriteText 62 63 62 63 61 59 0 0 0 0 0 0
LPG 63 37 89 82 0 0 0 0 0 0 0 0
ringdroid 0 40 42 23 47 47 1 2 4 2 2 2
sftp 11 5 15 12 18 18 0 0 0 0 3 1
PWMG 3 6 7 16 6 6 0 1 0 0 2 2
fbubble 49 49 56 82 74 72 0 0 0 0 3 3
myexp 55 1 33 46 65 63 0 0 0 1 7 7
sanity 13 8 26 27 36 35 1 0 2 1 2 1
SMT 87 2 87 63 87 85 0 0 0 0 0 0
alogcat 65 33 73 79 60 53 0 0 0 0 2 2
worldclock 97 90 98 94 95 95 1 1 0 1 2 2
mlife 87 35 86 84 92 92 0 0 0 0 2 2
lbuilder 22 28 28 26 37 35 0 1 0 0 4 4
CDT 63 31 65 85 87 87 0 0 0 0 0 0
bites 26 15 42 36 54 54 2 0 5 8 3 3
multisms 40 26 74 57 78 78 0 1 0 1 1 1
yahtzee 69 3 46 6 51 46 1 0 3 1 3 3
nectroid 40 27 44 38 46 46 0 0 0 2 2 2
anycut 70 12 71 71 66 66 0 2 0 0 3 3
PMM 66 27 62 56 65 62 4 0 11 3 4 4
manpages 40 20 54 77 78 74 0 0 0 1 3 3
zoffcc 18 15 16 20 16 16 3 0 4 1 4 4
amazed 62 64 76 52 84 84 0 0 1 1 1 1
alarmclock 72 15 76 68 71 71 6 0 4 4 5 5
hndroid 13 5 11 8 15 15 0 1 0 2 2 2
sboard 100 58 100 100 100 100 0 0 0 0 0 0
hotdeath 16 63 73 75 80 76 1 3 2 0 5 5
dalvik-exp 23 6 72 70 64 64 1 0 5 3 4 4
jamendo 10 13 28 9 30 30 5 3 0 0 5 5
importcont 57 2 53 42 78 74 0 0 0 0 1 1
blokish 36 35 49 52 45 45 0 0 2 0 2 2
Book-cat 4 4 33 35 38 38 0 1 2 4 4 0
Templaro 55 76 87 60 86 83 0 1 0 2 3 3
DAC 53 48 76 88 94 91 0 0 0 0 0 0
Agrep 37 8 58 63 61 58 0 0 7 2 7 7
Syncmypix 15 18 21 25 26 26 1 1 0 1 3 3
tippytipper 72 9 86 84 89 89 0 0 0 0 2 2
WHAMS 80 0 77 69 79 79 0 0 0 1 1 1
A2dp 29 14 40 45 47 42 6 0 6 0 3 3

Avg/Sum 46 27 53 52 58 57 58 25 111 87 137 126

Table 2.1: Coverage and the number of crashes reported by all the tools in the
AndroTest dataset. ST: Stoat, EH: EHBDroid, AP: Ape, TM: TimeMachine, CB:
Columbus, CBwd: Columbus without dependency feedback

In Table 2.1, we present the statement coverage achieved as well as the crashes triggered

by all tools on the benchmark apps.

Coverage. We find that Columbus achieves higher code coverage than Stoat, EHB-

Droid, Ape and TimeMachine for 45, 55, 41, and 41 apps, respectively. Moreover,
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Figure 2.10: Coverage (Y-axis) achieved on AndroTest, grouped by app size (Lines of
Code). Number of apps in a size group is indicated in parentheses. ‘x’ denotes the
mean of a boxplot

Columbus achieves the best coverage in 36 apps, followed by TimeMachine (16 apps),

Ape (10 apps), Stoat (5 apps), and EHBDroid (2 apps). To gain an overall view of the

tools’ performances, we report the average code coverage, achieved by each tool across all

apps, in the last row of Table 2.1. As can be seen, Columbus attains the highest (58%)

coverage on average, followed by Ape (53%), TimeMachine (52%), Stoat (46%), and

EHBDroid (27%). Figure 2.12 shows the progression of coverage over time for all the

tools averaged across all the benchmark apps. Starting from the 5th minute, the coverage

achieved by Columbus exceeds other tools. Until approximately the 20th minute, the

coverage increases at a fairly fast rate, after that, it starts to slow down. Further, the

boxplot in Figure 2.10 shows the spread of the coverage achieved by all the tools grouped

by the size of the apps. We use group sizes identical to the ones used in previous work [41].

As the figure shows, Columbus exhibits significant improvement over other tools in

terms of coverage for all size groups.

The improvement in coverage for Columbus can be attributed to its systematic
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exploration of the callbacks. While UI-based techniques struggle to generate complex

events and appropriate user input, Columbus sidesteps this problem by directly calling

the callbacks and supplying argument values (computed by the argument generation

module) that are likely to explore additional code paths. In addition, the crash-guidance

feedback helps Columbus to make the best use of the time-budget by preventing the

exploration from getting stuck at individual crashes for a long time.

Figure 2.11 shows a code snippet from the RandomMusicPlayer app from AndroTest.

This example shows an interesting case where Columbus naturally enjoys clear benefits

over previous, more “heavyweight” techniques that use symbolic execution [47], and other

UI-testing tools. To explore all the branches (if conditions), a UI-based tool would need

to click on all corresponding buttons, which is challenging. ACTEve [47] solves this

problem by concolically executing the app together with an instrumented version of the

Android framework. Since, in our case, Columbus introspects the app heap to retrieve

live objects, we observed the coverage of this app quickly going up, because Columbus

invokes the onClick callback with all the button Views already present in the heap.

To better understand the challenges Columbus faces during exploration, we manually

examined 10 of those apps where Columbus did not achieve the best coverage. We

summarize our findings next: (i) For callbacks where the symbolic execution timed

out, the argument generation module could not return any useful value. As a result,

Columbus fell back to its default strategy of trying out random argument values, which

negatively affected the coverage. (ii) There exist callbacks that are stateful. That is,

the application logic is conditioned on class variables. Note that Columbus is not

state-aware, therefore this challenge is orthogonal to what Columbus aims to solve.

(iii) For unconstrained callback arguments, we use random values from a predefined

list, which might be ineffective. For instance, the yahtzee app lists the game moves

in a drop-down list. A move can be chosen by the arg2 argument (unconstrained) of
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1 public void onCl ick ( View t a r g e t ) {
2 // Send i n t en t accord ing to the but ton c l i c k e d
3 i f ( t a r g e t == mPlayButton ) {
4 s t a r t S e r v i c e (new In tent ( Mus icServ ice .ACTION PLAY) ) ;
5 } else i f ( t a r g e t == mPauseButton ) {
6 s t a r t S e r v i c e (new In tent ( Mus icServ ice .ACTION PAUSE) ) ;
7 } else i f ( t a r g e t == mSkipButton ) {
8 s t a r t S e r v i c e (new In tent ( MusicServ ice . ACTION SKIP) ) ;
9 } else i f ( t a r g e t == mRewindButton ) {

10 s t a r t S e r v i c e (new In tent ( Mus icServ ice .ACTION REWIND) ) ;
11 } else i f ( t a r g e t == mStopButton ) {
12 s t a r t S e r v i c e (new In tent ( Mus icServ ice .ACTION STOP) ) ;
13 } else i f ( t a r g e t == mEjectButton ) {
14 showUrlDialog ( ) ;
15 }
16 }

Figure 2.11: Code snippet (redacted) from RandomMusicPlayer

the onItemSelected( , , arg2, ) callback, which then looks up the appropriate UI

object using that argument. Many such values of arg2 that we supply could be invalid,

while UI-based techniques can “blindly” click on the list item without being aware of

the valid values of that argument.

Crashes. Columbus found a total of 153 crashes. After excluding the potential false

positives, the total number of crashes become 137 (Table 2.1). As presented in Table 2.3,

Columbus found crashes of 16 different types in 49 out of 60 apps in the AndroTest

dataset. Compared to Stoat, EHBDroid, Ape, and TimeMachine, Columbus

discovered 4.42, 5.48, 1.23, and 1.57 times more crashes, respectively. To acquire a

better understanding of how the tools perform on individual apps, we calculated the

number of apps for which each tool discovers the most number of crashes. While Stoat,

EHBDroid, Ape, and TimeMachine finds the most crashes in 14, 10, 25 , and 21 apps,

respectively, Columbus performs the best for the highest (45) number of apps.
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Figure 2.12: Progression of coverage over time by all the tools on the AndroTest
dataset. Tool codes are similar to Table 2.1

False positive analysis. Our strategy of invoking callbacks directly, sometimes with

artificially-prepared arguments, can potentially lead to false positives (FP), i.e., generate

spurious crashes that cannot be triggered when the app is normally exercised from the

UI. Since Stoat, Ape, and TimeMachine are UI-driven testing tools, they always

generate legitimate crashes. For Columbus, we identify two potential reasons for FPs

and quantify their prevalence.

(i) Disabled UI elements. Since Columbus does not access the UI state of the

app, it may (incorrectly) invoke a callback cbd associated with a widget W , which is

disabled at the time of invocation. If such a callback cbd exists in an app, then there

exists another callback cbe that calls W.setEnabled() to enable the widget. We found

that only 71 (cbe) out of 4,991 callbacks in our benchmark apps contain such calls. Now,

setEnabled calls from inside the lifecycle callbacks are not problematic. Because, the

latter is called by the Android framework, which enables the respective UI elements as

part of the initialization of the app. Among those 71, only 4 callbacks are non-lifecycle

ones, which is negligible with respect to the total number of callbacks.

(ii) Uninitialized nested object argument. If a callback expects an object

argument of class A that we do not find in the heap, we create an instance a by
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invoking the class constructor C. However, instances created in this way may be partially

uninitialized. Suppose, A contains a field A.b of class B, which C leaves uninitialized.

If the callback attempts to access A.b, then it will result in a NullPointerException.

This is a spurious crash, because when the app is exercised from the UI, the framework

would invoke the callback with a correctly constructed object. In case of the benchmark

apps, we needed to create object arguments for only 207 (4.15%) out of 4,991 callbacks.

Unfortunately, there is no straightforward way to estimate further how many of these

callbacks require nested object arguments. Even then, since we already invoke object

creation for a reasonably small number of callbacks, that makes the probability of such

FPs minimal.

To investigate into our potential sources of FPs, we first collected all 55 crashes that

are found only by Columbus, but not by any of those tools. Then, we manually verified

those reports to determine potential FPs. We call a report legitimate, if we can reproduce a

crash with the same stack trace by exercising the app from the UI. To do that, we collected

a sequence of callback invoked immediately before the crash from our tool’s output log,

and also reviewed the relevant part of the source code to seek further guidance. If we

failed to reproduce the crash within a reasonable number of tries, we flagged the report as

FP. Note that, this estimate is conservative and best-effort, because it includes true crash

reports that we could not reproduce because of Android apps’ inherent statefulness. At

the end, we failed to reproduce 16 crashes out of total 153 crashes, which, even in the worst

case, translates to a mere 10.46% FP rate. We argue that this amount of FPs is acceptable

in practice, given the benefits (extra crashes, coverage) that our approach brings.

RQ1: Compared to the state-of-the-art tools, Columbus attains the highest coverage

on average (58%), and discovers the most number of crashes (137) on the AndroTest

dataset.
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Category Count

Education 27
Games 26
Personalization 18
Tools 17
Multimedia 11
Photography 4
Lifestyle 7
Health & Fitness 4
Food & Drink 4
Entertainment 6
Travel & Local 6
Business 2
Productivity 4
Others 4

Total 140

Table 2.2: Real-world
app categories

ID Exception type A R

1 NullPointerException 52 22
2 IllegalStateException 16 26
3 ArrayIndexOutOfBoundsException 7 4
4 IndexOutOfBoundsException 10 2
6 CursorIndexOutOfBoundsException 10 -
7 UnsatisfiedLinkError 6 -
8 RuntimeException 1 2
9 IllegalArgumentException 15 4

10 ClassCastException 1 2
12 StaleDataException 3 -
13 ActivityNotFoundException 8 6
14 SQLiteDoneException 1 -
15 NumberFormatException 1 -
16 App Exceptions 6 2

Total 137 70

Table 2.3: Crashes found by Columbus.
A: AndroTest, R: Real-world dataset

Performance on real-world apps.

To understand the practicality of our approach, we tested Columbus on the real-world

dataset. In line with the previous approaches [44, 17, 41], we only considered the number

of crashes discovered by our tool for this evaluation.

Crashes. As shown in Table 2.3, we discovered a total of 70 crashes of 9 different types in

54 out of 140 apps, where IllegalStateException (37.14%) and NullPointerException

(31.43%) are the most prevalent ones.

RQ2: Columbus is able to find 70 crashes in 54 out of 140 real-world Play Store

apps, belonging to 14 categories.

Effectiveness of dependency feedback.

To show the effectiveness of the dependency feedback, we performed an ablation study

by comparing Columbus with Columbus wd, a modified version of our tool that runs

without the dependency feedback. Table 2.1 presents the results of this experiment on

the AndroTest dataset.

While the coverage attained by both Columbus and Columbus wd are comparable,
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the latter finds − 3 fewer crashes than the former in 5 apps. By manually inspecting

those apps—Book-cat, qsettings, sanity, sftp, and aCal, we can confirm that the

additional crashes are correlated with the number of dependency relations discovered. In

other words, due to higher than average (41 dependencies/app) number of dependencies

being present in those apps, the dependency feedback could indeed help Columbus in

triggering more crashes. In addition, Columbus achieved better coverage than any other

tool for the first four apps.

RQ3: The dependency feedback used by Columbus is useful for triggering crashes

in apps, particularly for those ones with large amount of inter-callback dependencies.

2.5 Limitations

Inferring correct value of the object fields. Currently, our argument generation

module can only infer the correct values of the primitive arguments. However, it can

be extended to support object arguments as well. Consider the callback: onKeyDown

(int keyCode, KeyEvent event), which gets called when a key down event occurs.

Now, event.getUnicodeChar() API returns the Unicode character c generated by that

key event. If a callback has paths conditioned on c, we can infer its correct values by

symbolizing the return value of the API. The inferred values can be used during testing

to either dynamically set the correct value of the appropriate field of the event argument,

or ‘hook’ the getUnicodeChar() API to alter its return value—exercising more paths in

effect.

Creating values for login. There are Android apps which requires a userid and password

to login first before one can explore its functionality. Columbus in its current shape

can not detect such a login prompt, and enter the username and password automatically
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to explore such an app. However, this is a limitation that we share with the existing

state-of-the art tools, and an interesting direction for future work.

2.6 Related work

Random. Random testing based techniques such as Monkey [14] delivers random

events. Dynodroid [45], in addition, considers system-level events, and monitors which

events have registered listeners in the app to prioritize certain events depending on the

context. PUMA [57] presents an automation framework that has support for custom

dynamic exploration strategies. However, random testing strategies, though popular,

often get stuck in a “local optima,” making no further progress.

Model-based. Model-based testing approaches guide the exploration of the app by

deriving a model of the app’s UI. Though some techniques require this model to be

provided manually [58, 59, 60], others reconstruct the UI model using dynamic app

exploration [61, 62, 17, 63, 64, 65]. Other techniques also perform model abstraction via

identifying the structural similarities between different layouts [66], model refinement by

merging several UI interaction [20], and state recovery using snapshotting [41]. Model

based testing techniques oftentimes suffer from state explosion if there are too many

states in the app. Therefore, they need to strike a balance between model completeness

and scalability.

Symbolic execution-based. Anand et. al. [47] concolically executes both the Android

framework and the entire app, which is precise, but not scalable. In contrast, Columbus

does symbolic execution only within a callback to strike a balance between precision, and

scalability. Another approach [67] starts the symbolic exploration in reversed order from

the target blocks, and obtains the sequences of events to reach these targets. Additionally,

several other techniques were introduced for the symbolic execution of the apps that
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include libraries as well [68, 69].

Hybrid. Similar to Columbus, several approaches also employ hybrid techniques,

i.e., combination of static and dynamic strategies, for app exploration. In particular,

[70, 71, 72, 73, 74] reconstruct the app model statically, followed by dynamic exploration.

Other techniques use static analysis to discover dependencies between different application

components, and use it during the dynamic exploration [70, 75, 67, 76, 74, 77]. Another

guided exploration technique CAR [78] uses a static constraint analysis to keep the

symbolic execution scalable and obviate the need for whole program symbolic execution.

In contrast, Columbus aims to maximize coverage similar to other app testing tools

limiting the scope of the symbolic execution only within the callback and sets up the

environment in an under-constrained manner. Moreover, during the dynamic exploration,

Columbus uses a type-guided object matching to supply an existing, well-formed object

to the callback. Whereas, CAR resorts to a refinement-based construction of heap objects,

guided by a crash-oracle. A crash resulting from a malformed object acts as a ‘hint’ to

fix the shape of the object. EHBDroid [21] instruments the app statically to include

callback invocations within the app code in order to invoke them directly. However, their

technique is not generic, and suffers from limitations as discussed before.

2.7 Conclusion

In this chapter, we introduce Columbus, a callback-driven testing technique that

addresses the limitations of prior approaches. Columbus automatically identifies callbacks

by analyzing both the Android framework and the app under test. It utilizes a combination

of under-constrained symbolic execution and type-guided dynamic heap introspection

to generate valid and effective inputs for callbacks, reducing the reliance on human

involvement. Furthermore, Columbus incorporates two novel feedback mechanisms, data

43



Columbus: Android App Testing Through Systematic Callback Exploration Chapter 2

dependency, and crash-guidance, to enhance testing effectiveness. These mechanisms

increase the likelihood of triggering crashes and maximize coverage during testing. The

evaluation of Columbus demonstrates its superiority over state-of-the-art model-driven,

checkpoint-based, and callback-driven testing tools in terms of crashes detected and

coverage achieved. Columbus offers a promising solution for automated testing of

Android apps, providing improved efficiency and effectiveness compared to existing

techniques.

44



Chapter 3

Sailfish: Vetting Smart Contract

State-Inconsistency Bugs in Seconds

In this chapter, I present Sailfish, a highly scalable tool that is aimed at automatically

identifying state-inconsistency bugs in smart contracts. To tackle the scalability issue

associated with statically analyzing a contract, Sailfish adopts a hybrid approach that

combines a light-weight Explore phase, followed by a Refine phase guided by our novel

value-summary analysis, which constrains the scope of storage variables. Our Explore

phase dramatically reduces the number of relevant instructions to reason about, while

the value-summary analysis in the Refine phase further improves performance while

maintaining the precision of symbolic evaluation. Given a smart contract, Sailfish

first introduces an Explore phase that converts the contract into a storage dependency

graph (SDG) G. This graph summarizes the side effects of the execution of a contract on

storage variables in terms of read-write dependencies. State-inconsistency vulnerabilities

are modeled as graph queries over the SDG structure. A vulnerability query returns

either an empty result—meaning that the contract is not vulnerable, or a potentially

vulnerable subgraph g inside G that matches the query. In the second case, there are
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two possibilities: either the contract is indeed vulnerable, or g is a false alarm due to the

over-approximation of the static analysis.

To prune potential false alarms, Sailfish leverages a Refine phase based on symbolic

evaluation. However, a conservative symbolic executor would initialize the storage variables

as unconstrained, which would, in turn, hurt the tool’s ability to prune many infeasible

paths. To address this issue, Sailfish incorporates a light-weight value-summary analysis

(VSA) that summarizes the value constraints of the storage variables, which are used as the

pre-conditions of the symbolic evaluation. Unlike prior summary-based approaches [79, 80,

81] that compute summaries path-by-path, which results in full summaries (that encode all

bounded paths through a procedure), leading to scalability problems due to the exponential

growth with procedure size, our VSA summarizes all paths through a finite (loop-free) pro-

cedure, and it produces compact (polynomially-sized) summaries. As our evaluation shows,

VSA not only enables Sailfish to refute more false positives, but also scales much better

to large contracts compared to a classic summary-based symbolic evaluation strategy.

We evaluated Sailfish on the entire data set from Etherscan [11] (89,853 contracts),

and showed that our tool is efficient and effective in detecting state-inconsistency bugs.

Sailfish significantly outperforms all five state-of-the-art smart contract analyzers we

evaluated against, in the number of reported false positives and false negatives. For

example, on average Sailfish took only 30.79 seconds to analyze a smart contract,

which is 31 times faster than Mythril [27], and 6 orders of magnitude faster than

Securify [25].

3.1 Background

This section introduces the notion of the state of a smart contract, and provides a

brief overview of the vulnerabilities leading to an inconsistent state during a contract’s
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execution.

Smart contract. Ethereum smart contracts are written in high-level languages like

Solidity, Vyper, etc., and are compiled down to the EVM (Ethereum Virtual Machine)

bytecode. Public/external methods of a contract, which act as independent entry points of

interaction, can be invoked in two ways: either by a transaction, or from another contract.

We refer to the invocation of a public/external method from outside the contract as an

event. Note that events exclude method calls originated from inside the contract, i.e.,

a method f calling another method g. A schedule H is a valid sequence of events that

can be executed by the EVM. The events of a schedule can originate from one or more

transactions. Persistent data of a contract is stored in the storage variables which are,

in turn, recorded in the blockchain. The contract state ∆ = (V ,B) is a tuple, where

V = {V1, V2, V3, ..., Vn} is the set of all the storage variables of a contract, and B is its

balance.

State inconsistency (SI). When the events of a schedule H execute on an initial

state ∆ of a contract, it reaches the final state ∆′. However, due to the presence of

several sources of non-determinism [82] during the execution of a smart contract on the

Ethereum network, ∆′ is not always predictable. For example, two transactions are not

guaranteed to be processed in the order in which they got scheduled. Also, an external

call e originated from a method f of a contract C can transfer control to a malicious actor,

who can now subvert the original control and data-flow by re-entering C through any

public method f ′ ∈ C in the same transaction, even before the execution of f completes.

Let H1 be a schedule that does not exhibit any of the above-mentioned non-deterministic

behavior. However, due to either reordering of transactions, or reentrant calls, it might

be possible to rearrange the events of H1 to form another schedule H2. If those two

schedules individually operate on the same initial state ∆, but yield different final states,

we consider the contract to have a state-inconsistency.
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Reentrancy. If a contract A calls another contract B, the Ethereum protocol allows B

to call back to any public/external method m of A in the same transaction before even

finishing the original invocation. An attack happens when B reenters A in an inconsistent

state before A gets the chance to update its internal state in the original call. Launching

an attack executes operations that consume gas. Though, Solidity tries to prevent such

attacks by limiting the gas stipend to 2,300 when the call is made through send and trans-

fer APIs, the call opcode puts no such restriction—thereby making the attack possible.

In Figure 3.1, the withdraw method transfers Ethers to a user if their account balance

permits, and then updates the account accordingly. From the external call at Line 4, a

malicious user (attacker) can reenter the withdraw method of the Bank contract. It makes

Line 3 read a stale value of the account balance, which was supposed to be updated at

Line 5 in the original call. Repeated calls to the Bank contract can drain it out of Ethers,

because the sanity check on the account balance at Line 3 never fails. One such infamous

attack, dubbed “TheDAO” [5], siphoned out over USD $50 million worth of Ether from a

crowd-sourced contract in 2016.

Though the example presented above depicts a typical reentrancy attack scenario,

such attacks can occur in a more convoluted setting, e.g., cross-function, create-based, and

delegate-based, as studied in prior work [24]. A cross-function attack spans across multiple

functions. For example, a function f1 in the victim contract A issues an untrusted external

call, which transfers the control over to the attacker B. In turn, B reenters A, but through

a different function f2. A delegate-based attack happens when the victim contract A

delegates the control to another contract C, where contract C issues an untrusted external

call. In case of a create-based attack, the victim contract A creates a new child contract

C, which issues an untrusted external call inside its constructor.

Transaction Order Dependence (TOD). Every Ethereum transaction specifies the

upper limit of the gas amount one is willing to spend on that transaction. Miners choose
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1 cont rac t Bank {
2 f unc t i on withdraw ( u int amount ) {
3 i f ( accounts [ msg . sender ] >= amount ) {
4 msg . sender . c a l l . va lue ( amount ) ;
5 accounts [ msg . sender ] = amount ;
6 }
7 }
8 }

Figure 3.1:

1 cont rac t Queue {
2 f unc t i on r e s e r v e ( u int256 s l o t ) {
3 i f ( s l o t s [ s l o t ] == 0) {
4 s l o t s [ s l o t ] = msg . sender ;
5 }
6 }
7 }

Figure 3.2:

Figure 3.3: In Figure 3.1, the accounts mapping is updated after the external call
at Line 4 . This allows the malicious caller to reenter the withdraw() function in an
inconsistent state. Figure 3.2 presents a contract that implements a queuing system
that reserves slots on a first-come-first-serve basis leading to a potential TOD attack.

the ones offering the most incentive for their mining work, thereby inevitably making the

transactions offering lower gas starve for an indefinite amount of time. By the time a

transaction T1 (scheduled at time t1) is picked up by a miner, the network and the contract

states might change due to another transaction T2 (scheduled at time t2) getting executed

beforehand, though t1 < t2. This is known as Transaction Order Dependence (TOD) [83],

or front-running attack. Figure 3.2 features a queuing system where an user can reserve a

slot (Line 3, 4) by submitting a transaction. An attacker can succeed in getting that slot

by eavesdropping on the gas limit set by the victim transaction, and incentivizing the

miner by submitting a transaction with a higher gas limit. Refer to Section 3.3 where we

connect reentrancy and TOD bugs to our notion of state-inconsistency.

3.2 Motivation

This section introduces motivating examples of state-inconsistency (SI) vulnerabili-

ties, the challenges associated with automatically detecting them, how state-of-the-art

techniques fail to tackle those challenges, and our solution.
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3.2.1 Identifying the root causes of SI vulnerabilities

By manually analyzing prior instances of reentrancy and TOD bugs—two popular SI

vulnerabilities (Section 3.1), and the warnings emitted by the existing automated analysis

tools [24, 27, 25, 28], we observe that an SI vulnerability occurs when the following

preconditions are met: (i) two method executions, or transactions—both referred to as

threads (th)—operate on the same storage state, and (ii) either of the two happens—(a)

Stale Read (SR): The attacker thread tha diverts the flow of execution to read a stale

value from storage(v) before the victim thread thv gets the chance to legitimately update

the same in its flow of execution. The reentrancy vulnerability presented in Figure 3.1

is the result of a stale read. (b) Destructive Write (DW): The attacker thread tha

diverts the flow of execution to preemptively write to storage(v) before the victim

thread thv gets the chance to legitimately read the same in its flow of execution. The

TOD vulnerability presented in Figure 3.2 is the result of a destructive write.

While the SR pattern is well-studied in the existing literature [25, 24, 28, 84], and

detected by the respective tools with varying degree of accuracy, the reentrancy attack

induced by the DW pattern has never been explored by the academic research community.

Due to its conservative strategy of flagging any state access following an external call

without considering if it creates an inconsistent state, Mythril raises alarms for a

super-set of DW patterns, leading to a high number of false positives. In this work, we

not only identify the root causes of SI vulnerabilities, but also unify the detection of both

the patterns with the notion of hazardous access (Section 3.2).

3.2.2 Running examples

Example 1. The contract in Figure 3.4 is vulnerable to reentrancy due to destructive

write. It allows for the splitting of funds held in the payer’s account between two payees —
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1 // [Step 1]: Set split of ’a’ (id = 0) to 100(%)

2 // [Step 4]: Set split of ’a’ (id = 0) to 0(%)

3 function updateSplit(uint id, uint split) public{

4 require(split <= 100);

5 splits[id] = split;

6 }

7

8 function splitFunds(uint id) public {

9 address payable a = payee1[id];

10 address payable b = payee2[id];

11 uint depo = deposits[id];

12 deposits[id] = 0;

13

14 // [Step 2]: Transfer 100% fund to ’a’

15 // [Step 3]: Reenter updateSplit

16 a.call.value(depo * splits[id] / 100)("");

17

18 // [Step 5]: Transfer 100% fund to ’b’

19 b.transfer(depo * (100 - splits[id]) / 100);

20 }

Figure 3.4: The attacker reenters updateSplit from the external call at Line 16 and and
sets splits[id] = 0. This enables the attacker to transfer all the funds again to b.

a and b. For a payer with id id, updateSplit records the fraction (%) of her fund to be

sent to the first payer in splits[id] (Line 5) . In turn, splitFunds transfers splits[id]

fraction of the payer’s total fund to payee a, and the remaining to payee b. Assuming

that the payer with id = 0 is the attacker, she executes the following sequence of calls

in a transaction – (1) calls updateSplit(0,100) to set payee a’s split to 100% (Line 5);

(2) calls splitFunds(0) to transfer her entire fund to payee a (Line 16); (3) from the

fallback function, reenters updateSplit(0,0) to set payee a’s split to 0% (Line 5); (4)

returns to splitFunds where her entire fund is again transferred (Line 19) to payee b.

Consequently, the attacker is able to trick the contract into double-spending the amount

of Ethers held in the payer’s account.

Example 2. The contract in Figure 3.5 is non-vulnerable (safe). The withdrawBalance

method allows the caller to withdraw funds from her account. The storage variable

userBalance is updated (Line 10) after the external call (Line 9). In absence of the mutex,

the contract could contain a reentrancy bug due to the delayed update. However, the
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mutex is set to true when the function is entered the first time. If an attacker attempts

to reenter withdrawBalance from her fallback function, the check at Line 4 will foil such

an attempt. Also, the transfer method adjusts the account balances of a sender and

a receiver, and is not reentrant due to the same reason (mutex).

3.2.3 State of the vulnerability analyses

In light of the examples above, we outline the key challenges encountered by the state-

of-the-art techniques, i.e., Securify [25], Vandal [84], Mythril [27], Oyente [28],

and Sereum [24] that find state-inconsistency (SI) vulnerabilities. Table 3.2 summarizes

our observations.

Cross-function attack. The public methods in a smart contract act as independent

entry points. Instead of reentering the same function, as in the case of a traditional

reentrancy attack, in a cross-function attack, the attacker can reenter the contract through

any public function. Detecting cross-function vulnerabilities poses a significantly harder

challenge than single-function reentrancy, because every external call can jump back to

any public method—leading to an explosion in the search space due to a large number of

potential call targets.

Unfortunately, most of the state of the art techniques cannot detect cross-function

attacks. For example, the No Write After Call (NW) strategy of Securify identifies

a storage variable write (SSTORE) following a CALL operation as a potential violation.

Mythril adopts a similar policy, except it also warns when a state variable is read after an

external call. Both Vandal and Oyente check if a CALL instruction at a program point

can be reached by a recursive call to the enclosing function. In all four tools, reentrancy is

modeled after The DAO [5] attack, and therefore scoped within a single function. Since the

attack demonstrated in Example 1 spans across both the updateSplit and splitFunds
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methods, detecting such an attack is out of scope for these tools. Coincidentally, the

last three tools raise alarms here for the wrong reason, due to the over-approximation in

their detection strategies. Sereum is a run-time bug detector that detects cross-function

attacks. When a transaction returns from an external call, Sereum write-locks all the

storage variables that influenced control-flow decisions in any previous invocation of the

contract during the external call. If a locked variable is re-written going forward, an

attack is detected. Sereum fails to detect the attack in Example 1 (Figure 3.4), because

it would not set any lock due to the absence of any control-flow deciding state variable 1.

Our solution: To mitigate the state-explosion issue inherent in static techniques,

Sailfish performs a taint analysis from the arguments of a public method to the CALL

instructions to consider only those external calls where the destination can be controlled

by an attacker. Also, we keep our analysis tractable by analyzing public functions in

pairs, instead of modeling an arbitrarily long call-chain required to synthesize exploits.

Hazardous access. Most tools apply a conservative policy, and report a read/write

from/to a state variable following an external call as a possible reentrancy attack. Since this

pattern alone is not sufficient to lead the contract to an inconsistent state, they generate a

large number of false positives. Example 1 (Figure 3.4) without the updateSplit method

is not vulnerable, since splits[id] cannot be modified any more. However, Mythril,

Oyente, and Vandal flag the modified example as vulnerable, due to the conservative

detection strategies they adopt, as discussed before.

Our solution: We distinguish between benign and vulnerable reentrancies, i.e., reen-

trancy as a feature vs. a bug. We only consider reentrancy to be vulnerable if it can be

leveraged to induce a state-inconsistency (SI). Precisely, if two operations (a) operate on

the same state variable, (b) are reachable from public methods, and (c) at-least one is

1A recent extension [85] of Sereum adds support for unconditional reentrancy attacks by tracking
data-flow dependencies. However, they only track data-flows from storage variables to the parameters of
calls. As a result, even with this extension, Sereum would fail to detect the attack in Example 1.
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1 function withdrawBalance(uint amount) public {

2 //[Step 1]: Enter when mutex is false

3 //[Step 4]: Early return , since mutex is true

4 if (mutex == false) {

5 //[Step 2]: mutex = true prevents re -entry

6 mutex = true;

7 if (userBalance[msg.sender] > amount) {

8 //[Step 3]: Attempt to reenter

9 msg.sender.call.value(amount)("");

10 userBalance[msg.sender] -= amount;

11 }

12 mutex = false;

13 }

14 }

15

16 function transfer(address to, uint amt) public {

17 if (mutex == false) {

18 mutex = true;

19 if (userBalance[msg.sender] > amt) {

20 userBalance[to] += amt;

21 userBalance[msg.sender] -= amt;

22 }

23 mutex = false;

24 }

25 }

Figure 3.5: Line 6 sets mutex to true, which prohibits an attacker from reentering by
invalidating the path condition (Line 4).

a write—we call these two operations a hazardous access pair. The notion of hazardous

access unifies both Stale Read (SR), and Destructive Write (DW). Sailfish performs a

lightweight static analysis to detect such hazardous accesses. Since the modified Example 1

(without the updateSplit) presented above does not contain any hazardous access pair,

we do not flag it as vulnerable.

Scalability. Any Solidity method marked as either public or external can be called

by an external entity any number of times in any arbitrary order—which translates to an

unbounded search space during static reasoning. Securify [25] relies on a Datalog-based

data-flow analysis, which might fail to reach a fixed point in a reasonable amount of time,

as the size of the contract grows. Mythril [27] and Oyente [28] are symbolic-execution-

based tools that share the common problems suffered by any symbolic engine.

Our solution: In Sailfish, the symbolic verifier validates a program path involving
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Table 3.1: Comparison of smart-contract bug-finding tools.

Tool Cr. Haz. Scl. Off.

Securify [25]
Vandal [84]
Mythril [27]
Oyente [28]
Sereum [24]
Sailfish

Table 3.2: Full Partial No support. Cr.: Cross-function, Haz.: Hazardous
access, Scl.: Scalability, Off.: Offline detection

hazardous accesses. Unfortunately, the path could access state variables that are likely to

be used elsewhere in the contract. It would be very expensive for a symbolic checker to

perform a whole-contract analysis required to precisely model those state variables. We

augment the verifier with a value summary that over-approximates the side-effects of the

public methods on the state variables across all executions. This results in an inexpensive

symbolic evaluation that conservatively prunes false positives.

Offline bug detection. Once deployed, a contract becomes immutable. Therefore, it is

important to be able to detect bugs prior to the deployment. However, offline (static)

approaches come with their unique challenges. Unlike an online (dynamic) tool that

detects an ongoing attack in just one execution, a static tool needs to reason about all

possible combinations of the contract’s public methods while analyzing SI issues. As a

static approach, Sailfish needs to tackle all these challenges.

3.2.4 Sailfish overview

This section provides an overview (Figure 3.6) of Sailfish which consists of the

Explorer and the Refiner modules.

Explorer. From a contract’s source, Sailfish statically builds a storage dependency graph
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(SDG) (Section 3.4.1) which over-approximates the read-write accesses (Section 3.4.2)

on the storage variables along all possible execution paths. State-inconsistency (SI)

vulnerabilities are modeled as graph queries over the SDG. If the query results in an

empty set, the contract is certainly non-vulnerable. Otherwise, we generate a counter-

example which is subject to further validation by the Refiner.

Example 1 Example 1 (Figure 3.4) contains a reentrancy bug that spans across two func-

tions. The attacker is able to create an SI by leveraging hazardous accesses—splits[id]

influences (read) the argument of the external call at Line 16 in splitFunds, and it is set

(write) at Line 5 in updateSplit. The counter-example returned by the Explorer is 11

→ 12 → 16 → 4 → 5 . Similarly, in Example 2 (Figure 3.5), when withdrawBalance

is composed with transfer to model a cross-function attack, Sailfish detects the write at

Line 10, and the read at Line 19 as hazardous. Corresponding counter-example is 4 ... 9

→ 17 ... 19 . In both the cases, the Explorer detects a potential SI, so conservatively

they are flagged as possibly vulnerable. However, this is incorrect for Example 2. Thus,

we require an additional step to refine the initial results.

Refiner. Although the counter-examples obtained from the Explorer span across only

two public functions P1 and P2, the path conditions in the counter-examples may involve

state variables that can be operated on by the public methods P∗ other than those two.

For example, in case of reentrancy, the attacker can alter the contract state by invoking

P∗ after the external call-site—which makes reentry to P2 possible. To alleviate this

issue, we perform a contract-wide value-summary analysis that computes the necessary

pre-conditions to set the values of storage variables. The symbolic verifier consults the

value summary when evaluating the path constraints.

Example 2 In Example 2 (Figure 3.5), the Refiner would conservatively assume the

mutex to be unconstrained after the external call at Line 9 in absence of a value summary –
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which would make the path condition feasible. However, the summary (Section 3.5) informs

the symbolic checker that all the possible program flows require the mutex already to be

false, in order to set the mutex to false again. Since the pre-condition conflicts with

the program-state δ = {mutex 7→ true} (set by Line 6), Sailfish refutes the possibility of

the presence of a reentrancy, thereby pruning the false warning.

3.3 State Inconsistency bugs

In this section, we introduce the notion of state-inconsistency, and how it is related to

reentrancy and TOD bugs.

Let ~F be the list of all public/external functions in a contract C defined later in

Figure 3.11. For each function F ∈ ~F , we denote F .statements to be the statements of F ,

and f = F .name to be the name of F . In Ethereum, one or more functions can be invoked

in a transaction T . Since the contract code is executed by the EVM, the value of its program

counter (PC) deterministically identifies every statement s ∈ F .statements during run-time.

An event e = 〈pc, f(~x), inv〉 is a 3-tuple that represents the inv-th invocation of the func-

tion F called from outside (i.e., external to the contract C) with arguments ~x. Identical in-

vocation of a function F is associated with the same arguments. For events, we disregard in-
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ternal subroutine calls, e.g., if the function F calls another public function G from inside its

body, the latter invocation does not generate an event. In other words, the notion of events

captures the occurrences when a public/external method of a contract is called externally,

i.e., across the contract boundary. Functions in events can be called in two ways: either di-

rectly by T , or by another contract. If an external call statement sc ∈ Fc.statements results

in a reentrant invocation of F , then pc holds the value of the program counter of sc. In this

case, we say that the execution of F is contained within that of Fc. However, the value pc =

0 indicates that F is invoked by T , and not due to the invocation of any other method in C.

Definition 1 (Schedule). A schedule H = [e1, e2, ..., en], ∀e ∈ H, e.f ∈ {F .name|F ∈

~F} is a valid sequence of n events that can be executed by the EVM. The events, when

executed in order on an initial contract state ∆, yield the final state ∆′, i.e., ∆
e1−→ ∆1

e2−→

∆2...
en−→ ∆′, which we denote as ∆

H−→ ∆′. The set of all possible schedules is denoted by H.

Definition 2 (Equivalent schedules). Two schedules H1 and H2, where |H1|= |H2|,

are equivalent, if ∀e ∈ H1, ∃e′ ∈ H2 such that e.f = e′.f ∧ e.inv = e′.inv, and ∀e′ ∈

H2,∃e ∈ H1, such that e′.f = e.f ∧ e′.inv = e.inv. We denote it by H1 ≡ H2.

Intuitively, equivalent schedules contain the same set of function invocations.

Definition 3 (Transformation function). A transformation function µ : H → H

accepts a schedule H, and transforms it to an equivalent schedule H′ ≡ H, by employing

one of two possible strategies at a time—(i) mutates pc of an event ∃e′ ∈ H′, such that

e′.pc holds a valid non-zero value, (ii) permutes H. These strategies correspond to two

possible ways of transaction ordering, respectively: (a) when a contract performs an

external call, it can be leveraged to re-enter the contract through internal transactions,

(b) the external transactions of a contract can be mined in any arbitrary order.

Definition 4 (State inconsistency bug). For a contract instance C, an initial state

∆, and a schedule H1 where ∀e ∈ H1, e.pc = 0, if there exists a schedule H2 = µ(H1),
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where ∆
H1−→ ∆1 and ∆

H2−→ ∆2, then C is said to have a state-inconsistency bug, iff

∆1 6= ∆2.

Definition 5 (Reentrancy bug). If a contract C contains an SI bug due to two schedules

H1 and H2 = µ(H1), such that ∃e ∈ H2 (e.pc 6= 0) (first transformation strategy), then

the contract is said to have a reentrancy bug.

In other words, e.pc 6= 0 implies that e.f is a reentrant invocation due to an external

call in C.

Definition 6 (Generalized TOD bug). If a contract C contains an SI bug due to two

schedules H1 and H2 = µ(H1), such that H2 is a permutation (second transformation

strategy) of H1, then the contract is said to have a generalized transaction order dependence

(G-TOD), or event ordering bug (EO) [86].

Permutation of events corresponds to the fact that the transactions can be re-ordered

due to the inherent non-determinism in the network, e.g., miner’s scheduling strategy, gas

supplied, etc. In this work, we limit the detection to only those cases where Ether transfer

is affected by state-inconsistency—which is in line with the previous work [25, 28]. We

refer to those as TOD bugs.

3.4 Explorer: Lightweight exploration over SDG

This section introduces the storage dependency graph (SDG), a graph abstraction

that captures the control and data flow relations between the storage variables and the

critical program instructions, e.g., control-flow deciding, and state-changing operations of

a smart contract. To detect SI bugs, we then define hazardous access, which is modeled

as queries over the SDG.
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3.4.1 Storage dependency graph (SDG)

In a smart contract, the public methods are the entry-points which can be called by

an attacker. Sailfish builds a storage dependency graph (SDG) N = (V,E, χ) that

models the execution flow as if it was subverted by an attacker, and how the subverted

flow impacts the global state of the contract. Specifically, the SDG encodes the following

information:

Nodes. A node of an SDG represents either a storage variable, or a statement operating

on a storage variable. If V be the set of all storage variables of a contract, and S be the

statements operating on V , the set of nodes V := {V ∪ S}.

Edges. An edge of an SDG represents either the data-flow dependency between a storage

variable and a statement, or the relative ordering of statements according to the program

control-flow. χ(E)→ {D, W, O} is a labeling function that maps an edge to one of the three

types. A directed edge 〈u, v〉 from node u to node v is labeled as (a) D; if u ∈ V , v ∈ S,

and the statement v is data-dependent on the state variable u (b) W; if u ∈ S, v ∈ V , and

the state variable v is written by the statement u (c) O; if u ∈ S, v ∈ S, and statement u

precedes statement v in the control-flow graph.

We encode the rules for constructing an SDG in Datalog. First, we introduce the

reader to Datalog preliminaries, and then describe the construction rules.

Datalog preliminaries. A Datalog program consists of a set of rules and a set of facts.

Facts simply declare predicates that evaluate to true. For example, parent("Bill",

"Mary") states that Bill is a parent of Mary. Each Datalog rule defines a predicate as a

conjunction of other predicates. For example, the rule: ancestor(x, y) :- parent(x,

z), ancestor(z, y)—says that ancestor(x, y) is true, if both parent(x, z) and

ancestor(z, y) are true. In addition to variables, predicates can also contain constants,

which are surrounded by double quotes, or “don’t cares”, denoted by underscores.
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reach(s1, s2) : − s2 is reachable from s1

intermediate(s1, s2, s3) : − reach(s1, s2), reach(s2, s3)
succ(s1, s2) : − s2 is the successor of s1

extcall(s, cv) : − s is an external call,
cv is the call value

entry(s,m) : − s is an entry node of method m
exit(s,m) : − s is an exit node of method m
storage(v) : − v is a storage variable
write(s, v) : − s updates variable v

depend(s, v) : − s is data-flow dependent on v
owner(s) : − only owner executes s

Figure 3.7: Built-in rules for ICFG related predicates.

Base ICFG facts. The base facts of our inference engine describe the instructions in

the application’s inter-procedural control-flow graph (ICFG). In particular, Figure 3.7

shows the base rules that are derived from a classical ICFG, where s, m and v correspond

to a statement, method, and variable respectively. Sailfish uses a standard static

taint analysis out-of-the-box to restrict the entries in the extcall predicate. Additionally,

owner(s) represents that s can only be executed by contract owners, which enables

Sailfish to model SI attacks precisely. In the context of smart contract, the owner refers

to one or more addresses that play certain administrative roles, e.g., contract creation,

destruction, etc. Typically, critical functionalities of the contract can only be exercised

by the owner. We call the statements that implement such functionalities as owner-only

statements. Determining the precise set of owner-only statements in a contract can be

challenging as it requires reasoning about complex path conditions. Sailfish, instead,

computes a over-approximate set of owner-only statements during the computation of base

ICFG facts. This enables Sailfish, during the Explore phase, not to consider certain

hazardous access pairs that can not be exercised by an attacker. To start with, Sailfish

initializes the analysis by collecting the set of storage variables (owner-only variables) O

defined during the contract creation. Then, the algorithm computes the transitive closure

of all the storage variables which have write operations that are control-flow dependent on
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O. Finally, to compute the set of owner-only statements, Sailfish collects the statements

which have their execution dependent on O.

sdg(s1, v,
′W′) : − write(s1, v), storage(v)

sdg(s1, v,
′D′) : − depend(s1, v), storage(v)

sdg(s1, s2,
′O′) : − sdg(s1, , ), reach(s1, s2), sdg(s2, , ),

¬intermediate(s1, , s2)
sdg(s1, s2,

′O′) : − extcall(s1, ), entry(s2, )
sdg(s4, s3,

′O′) : − extcall(s1, ), entry( ,m0),
succ(s1, s3), exit(s4,m0)

Figure 3.8: Rules for constructing SDG.

SDG construction. The basic facts generated from the previous step can be leveraged

to construct the SDG. As shown in Fig 3.8, a “write-edge” of an SDG is labeled as ’W’,

and is constructed by checking whether storage variable v gets updated in statement s.

Similarly, a “data-dependency edge” is labeled as ’D’, and is constructed by determining

whether the statement s is data-dependent on the storage variable v. Furthermore, we

also have the “order-edge” to denote the order between two statements, and those edges

can be drawn by checking the reachability between nodes in the original ICFG. Finally,

an external call in Solidity can be weaponized by the attacker by hijacking the current

execution. In particular, once an external call is invoked, it may trigger the callback

function of the attacker who can perform arbitrary operations to manipulate the storage

states of the original contract. To model these semantics, we also add extra ’O’-edges to

connect external calls with other public functions that can potentially update storage

variables that may influence the execution of the current external call. Specifically, we

add an extra order-edge to connect the external call to the entry point of another public

function m, as well as an order-edge from the exit node of m to the successor of the

original external call.

Example 3 Consider Example 1 (Figure 3.4) that demonstrates an SI vulnerability due
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deposits[id] = 0deposits splits

a.call.value (depo * 
splits[id] / 100)

b.call.value (depo * 
(100 - splits[id]) / 100)

W

OD

D

O

D

D
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splits[id] = split
require 
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Figure 3.9: SDG for Example 1. Ovals and rectangles represent storage variables and
instructions. Blue [ ] and green [ ] colored nodes correspond to instructions from
splitFunds and updateSplit methods, respectively. The O, D, and W edges stand
for order, data, and write edges, respectively. The red [ ] edges on splits denote
hazardous access.

to both splitFunds and updateSplit methods operating on a state variable splits[id].

Figure 3.9 models this attack semantics. deposits and splits[id] correspond to the

variable nodes in the graph. Line 12 writes to deposits; thus establishing a W relation

from the instruction to the variable node. Line 16 and Line 19 are data-dependent on

both the state variables. Hence, we connect the related nodes with D edges. Finally, the

instruction nodes are linked together with directed O edges following the control-flow. To

model the reentrancy attack, we created an edge from the external call node 2 → 4 , the

entry point of splitFunds. Next, we remove the edge between the external call 2 , and

its successor 3 . Lastly, we add an edge between 5 , the exit node of updateSplit, and

3 , the following instruction in updateSplit.
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3.4.2 Hazardous access

Following our discussion in Section 3.3, to detect SI bugs in a smart contract, one

needs to enumerate and evaluate all possible schedules on every contract state—which

is computationally infeasible. To enable scalable detection of SI bugs statically, we define

hazardous access, which is inspired by the classical data race problem, where two different

execution paths operate on the same storage variable, and at least one operation is a write.

In a smart contract, the execution paths correspond to two executions of public function(s).

As shown in the hazard(.) predicate in Figure 3.10, a hazardous access is a tuple

denoted by 〈s1, s2, v〉, where v is a storage variable which both the statements s1 and s2

operate on, and either s1, or s2, or both are write operations. While deriving the data-flow

dependency predicate sdg(s, v, ′D′), we consider both direct and indirect dependencies

of the variable v. We say that a statement s operates on a variable v if either s is an

assignment of variable v or s contains an expression that is dependent on variable s.

Sailfish identifies hazardous access statically by querying the contract’s SDG, which

is a path-condition agnostic data structure. A non-empty query result indicates the

existence of a hazardous access. However, these accesses might not be feasible in reality

due to conflicting path conditions. The Refiner module (Section 3.5) uses symbolic

evaluation to prune such infeasible accesses.

3.4.3 State inconsistency bug detection

As discussed in Section 3.3, a smart contract contains an SI bug if there exists

two schedules that result in a different contract state, i.e., the values of the storage

variables. Instead of enumerating all possible schedules (per definition) statically which is

computationally infeasible, we use hazardous access as a proxy to detect the root cause of

SI. Two schedules can result in different contract states if: (a) there exist two operations,
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where at least one is a write access, on a common storage variable, and (b) the relative

order of such operations differ in two schedules. The hazardous access captures the first

(a) condition. Now, in addition to hazardous access, SI bugs require to hold certain

conditions that can alter (b) the relative order of the operations in the hazardous access

pair. For reentrancy, Sailfish checks if a hazardous access pair is reachable in a reentrant

execution, as it can alter the execution order of the statements in a hazardous access pair.

To detect TOD, Sailfish checks whether an Ether transfer call is reachable from one of

the statements in a hazardous access pair. In this case, the relative execution order of

those statements determines the amount of Ether transfer.

Reentrancy detection. A malicious reentrancy query (Figure 3.10) looks for a hazardous

access pair 〈s1, s2〉 such that both s1 and s2 are reachable from an external call in the

SDG, and executable by an attacker.

To detect delegate-based reentrancy attacks, where the delegatecall destination is

tainted, we treat delegatecall in the same way as the extcall in Figure 3.10. For untainted

delegatecall destinations, if the source code of the delegated contract is available, Sailfish

constructs an SDG that combines both the contracts. If neither the source, nor the

address of the delegated contract is available, Sailfish treats delegatecall in the same

way as an unsafe external call. For create-based attacks, since the source code of the

child contract is a part of the parent contract, Sailfish builds the SDG by combining

both the creator (parent) and the created (child) contracts. Subsequently, Sailfish

leverages the existing queries in Figure 3.10 on the combined SDG. For untainted extcall,

and delegatecall destinations, Sailfish performs inter-contract analysis to build an SDG

combining both contracts. To model inter-contract interaction as precisely as possible, we

perform a backward data-flow analysis starting from the destination d of an external call

(e.g., call, delegatecall, etc.), which leads to the following three possibilities: (a) d is visible

from source, (b) d is set by the owner at run-time, e.g., in the constructor during contract
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hazard(s1, s2, v) : − storage(v), sdg(s1, v,
′W′),

sdg(s2, v, ), s1 6= s2

reentry(s1, s2) : − extcall(e, ), reach(e, s1), reach(e, s2),
hazard(s1, s2, ),¬owner(s1),¬owner(s2)

tod(s1, s2) : − extcall(e, cv), cv > 0, reach(s1, e),
hazard(s1, s2, ),¬owner(s∗),
s? ∈ {s1, s2}

Base case :
cex(s0, s1) : − entry(s0, ), succ(s0, s1), f(s1, s2),

extcall(s′, ), reach(s1, s
?),

s? ∈ {s1, s2, s
′}, f ∈ {tod, reentry}

Inductive case :
cex(s1, s2) : − cex( , s1), succ(s1, s2), f(s3, s4),

extcall(s′, ), reach(s2, s
?),

s? ∈ {s3, s4, s
′}, f ∈ {tod, reentry}

Figure 3.10: Rules for hazardous access and counter-examples.

creation. In this case, we further infer d by analyzing existing transactions, e.g., by looking

into the arguments of the contract-creating transaction, and (c) d is attacker-controlled.

While crawling, we build a database from the contract address to its respective source.

Hence, for cases (a) and (b) where d is statically known, we incorporate the target contract

in our analysis if its source is present in our database. If either the source is not present,

or d is tainted (case (c)), we treat such calls as untrusted, requiring no further analysis.

Example 4 When run on the SDG in Figure 3.9 (Example 1), the query returns the

tuple 〈3, 5〉, because they both operate on the state variable splits, and belong to distinct

public methods, viz., splitFunds and updateSplit respectively.

TOD detection. As explained in Section 3.1, TOD happens when Ether transfer is

affected by re-ordering transactions. Hence, a hazardous pair 〈s1, s2〉 forms a TOD if the

following conditions hold: 1) an external call is reachable from either s1 or s2, and 2) the

amount of Ether sent by the external call is greater than zero.

Sailfish supports all three TOD patterns supported by Securify [25]—(i) TOD
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Transfer specifies that the pre-condition of an Ether transfer, e.g., a condition c guarding

the transfer, is influenced by transaction ordering, (ii) TOD Amount indicates that the

amount a of Ether transfer is dependent on transaction ordering, and (iii) TOD Receiver

defines that the external call destination e is influenced by the transaction ordering. To

detect these attacks, Sailfish reasons if c, or a, or e is data-flow dependent on some

storage(v), and the statements corresponding to those three are involved in forming a

hazardous pair.

Counter-example generation. If a query over the SDG returns ⊥ (empty), then the

contract is safe, because the SDG models the state inconsistency in the contract. On the

other hand, if the query returns a list of pairs 〈s1, s2〉, Sailfish performs a refinement

step to determine if those pairs are indeed feasible. Since the original output pairs

(i.e., 〈s1, s2〉) can not be directly consumed by the symbolic execution engine, Sailfish

leverages the cex-rule in Figure 3.10 to compute the minimum ICFG G that contains

statements s1, s2, and the relevant external call s′. In the base case, cex-rule includes

edges between entry points and their successors that can transitively reach s1, s2, or s′. In

the inductive case, for every node s1 that is already in the graph, we recursively include

its successors that can also reach s1, s2, or s′.

Example 5 Sailfish extracts the graph slice starting from the root (not shown in

Figure 3.9) of the SDG to node 5 . The algorithm extracts the sub-graph 〈root〉 ∗−→ 2 →

4 → 5 → 3 , maps all the SDG nodes to the corresponding ICFG nodes, and computes

the final path slice which the Refiner runs on.
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3.5 Refiner: Symbolic evaluation with value sum-

mary

As explained in Section 3.4, if the Explorer module reports an alarm, then there are

two possibilities: either the contract is indeed vulnerable, or the current counter-example

(i.e., subgraph generated by the rules in Figure 3.10) is infeasible. Thus, Sailfish proceeds

to refine the subgraph by leveraging symbolic evaluation (Section 3.5.2). However, as

we show later in the evaluation, a naive symbolic evaluation whose storage variables

are completely unconstrained will raise several false positives. To address this chal-

lenge, the Refiner module in Sailfish leverages a light-weight value summary analysis

(Section 3.5.1) that output the potential symbolic values of each storage variable under

different constraints, which will be used as the pre-condition of the symbolic evaluation

(Section 3.5.2).

3.5.1 Value summary analysis (VSA)

For each storage variable, the goal of value summary analysis (VSA) is to compute

its invariant that holds through the life-cycle of a smart contract. While summary-based

analysis has been applied in many different applications before, there is no off-the-shelf

VSA for smart contracts that we could leverage for the following reasons: (a) Precision.

A value summary based on abstract interpretation [87] that soundly computes the interval

for each storage variable scales well, but since it ignores the path conditions under which

the interval holds, it may lead to weaker preconditions that are not sufficient to prune

infeasible paths. For the example in Figure 3.5, a naive and scalable analysis will ignore

the control flows, and conclude that the summary of mutex is > (either true or false),

which will be useless to the following symbolic evaluation, since mutex is unconstrained.
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(b) Scalability. A path-by-path summary [80, 81] that relies on symbolic execution

first computes the pre-condition prew, post-condition postw, and per-path summary

φw = prew ∧ postw for every path w. The overall summary φf of the function f is the

disjunction of individual path summaries, i.e., φf = ∨wφw. We identify the following

barriers in adopting this approach out of the box: (i) Generation: The approach is

computationally intensive due to well-known path explosion problem. (ii) Application:

The summary being the unification of the constraints collected along all the paths, such

a summary is complex, which poses a significant challenge to the solver. In fact, when

we evaluated our technique by plugging in a similar path-by-path summary, the analysis

timed out for 21.50% of the contracts due to the increased cost of the Refine phase.

(iii) Usability : Lastly, such a summary is precise, yet expensive. Computing a precise

summary is beneficial only when it is used sufficient times. Our aim is to build a usable

system that scales well in two dimensions—both to large contracts, and a large number of

contracts. As the dataset is deduplicated, the scope of reusability is narrow. Therefore, an

expensive summary does not pay off well given our use case. What we need in Sailfish

is a summarization technique that has a small resource footprint, yet offers reasonable

precision for the specific problem domain, i.e., smart contracts.

Therefore, we design a domain-specific VSA (Figure 3.12) to tackle both the challenges:

(a) Precision: Unlike previous scalable summary techniques that map each variable to

an interval whose path conditions are merged, we compensate for such precision loss at

the merge points of the control flows using an idea inspired by symbolic union [88]—our

analysis stitches the branch conditions to their corresponding symbolic variables at the

merge points. (b) Scalability: (i) Generation: This design choice, while being more

precise, could still suffer from path explosion. To mitigate this issue, our analysis first

starts with a precise abstract domain that captures concrete values and their corresponding

path conditions, and then gradually sacrifices the precision in the context of statements
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Program P ::= (δ, π, ~F)
ValueEnv δ ::= V → Expr
PathEnv π ::= loc→ C

Expr e ::= x | c | op(~e) | S(~e)
Statement s ::= havoc(s) | l := e | s; s | r = f(~e)

| (if e s s) | (while e s)
Function F ::= function f(~x) s returns y

x, y ∈ Variable c ∈ Constant S ∈ StructName

Figure 3.11: Syntax of our simplified language.

that are difficult, or expensive to reason about, e.g., loops, return values of external calls,

updates over nested data structures, etc. (ii) Application: Lastly, we carefully design

the evaluation rules (If-rule in Figure 3.12) that selectively drop path conditions at the

confluence points—which leads to simpler constraints at the cost of potential precision

loss. However, our evaluation of Sailfish suggests that, indeed, our design of VSA strikes

a reasonable trade-off in the precision-scalability spectrum in terms of both bug detection

and analysis time.

To formalize our rules for VSA, we introduce a simplified language in Figure 3.11. In

particular, a contract P consists of (a) a list of public functions ~F (private functions

are inline), (b) a value environment δ that maps variables or program identifiers to

concrete or symbolic values, and (c) a path environment π that maps a location loc

to its path constraint C. It is a boolean value encoding the branch decisions taken

to reach the current state. Moreover, each function F consists of arguments, return

values, and a list of statements containing loops, branches, and sequential statements,

etc. Our expressions e include common features in Solidity such as storage access,

struct initialization, and arithmetic expressions (function invocation is handled within

a statement), etc. Furthermore, since all private functions are inline, we assume that

the syntax for calling an external function with return variable r is r = f(~e). Finally,

we introduce a havoc operator to make those variables in hard-to-analyze statements
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unconstrained, e.g., havoc(s) changes each variable in s to > (completely unconstrained).

Figure 3.12 shows a representative subset of the inference rules for computing the

summary. A program state consists of the value environment δ and the path condition π.

A rule 〈e, δ, π〉 〈v, δ′, π′〉 says that a successful execution of e in the program state 〈δ, π〉

results in value v and the state 〈δ′, π′〉.

Bootstrapping. The value summary procedure starts with the “contract” rule that

sequentially generates the value summary for each public function Fi (all non-public

methods are inline). The output value environment δ′ contains the value summary for all

storage variables. More precisely, for each storage variable s, δ′ maps it to a set of pairs

〈π, v〉 where v is the value of s under the constraint π. Similarly, to generate the value

summary for each function Fi, Sailfish applies the “Func” rule to visit every statement

si inside method Fi.

Expression. There are several rules to compute the rules for different expressions e. In

particular, if e is a constant c, the value summary for e is c itself. If e is an argument of

a public function Fi whose values are completely under the control of an attacker, the

“Argument” rule will havoc e and assume that its value can be any value of a particular

type.

Helper functions. The dom(δ) returns all the keys of an environment δ. The lhs(e)

returns variables written by e.

Collections. For a variable of type Array or Map, our value summary rules do not

differentiate elements under different indices or keys. In particular, for a variable a of

type array, the “store” rule performs a weak update by unioning all the previous values

stored in a with the new value e0. We omit the rule for the map since it is similar to an

array. Though the rule is imprecise as it loses track of the values under different indices,

it summarizes possible values that are stored in a.

Assignment. The “assign” rule essentially keeps the value summaries for all variables
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from the old value environment δ except for mapping e0 to its new value e1.

External calls. Since all private and internal functions are assumed to be inline, we

assume all function invocations are external. As we do not know how the attacker is going

to interact with the contract via external calls, we assume that it can return arbitrary

values. Here is the key intuition of the “ext” rule: for any invocation to an external

function, we havoc its return variable r.

Loop. Finally, since computing value summaries for variables inside loop bodies are

very expensive and hard to scale to complex contracts, our “loop” rule simply havocs all

variables that are written in the loop bodies.

Conditional. Rule “if” employs a meta-function µ to merge states from alternative

execution paths.

µ(b, v1, v2) =


{〈>, v1〉} if b == true

{〈>, v2〉} if b == false

{〈b, v1〉, 〈¬b, v2〉} Otherwise

In particular, the rule first computes the symbolic expression v0 for the branch condition

e0. If v0 is evaluated to true, then the rule continues with the then branch e1 and

computes its value summary v1. Otherwise, the rule goes with the else branch e2 and

obtains its value summary v2. Finally, if the branch condition e0 is a symbolic variable

whose concrete value cannot be determined, then our value summary will include both v1

and v2 together with their path conditions. Note that in all cases, the path environment π′

needs to be computed by conjoining the original π with the corresponding path conditions

that are taken by different branches.
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P = (δ, π, ~F), 〈F0, δ, π〉 〈void, δ1, π1〉
...

〈Fn, δn, πn〉 〈void, δ′, π′〉
〈P, δ, π〉 〈void, δ′, π′〉

(Contract)

〈s, δ, π〉 〈void, δ′, π′〉
〈(function f(~x) s returns y), δ, π〉 〈void, δ′, π′〉

(Func)

〈c, δ, π〉 〈c, δ, π〉
(Const) isArgument(a) v = havoc(a)

〈a, δ, π〉 〈v, δ′, π〉
(Argument)

〈e1, δ, π〉 〈v1, δ, π〉 ⊕ ∈ {+,−, ∗, /}
〈e2, δ, π〉 〈v2, δ, π〉 v = v1 ⊕ v2
〈(e1 ⊕ e2), δ, π〉 〈v, δ, π〉

(Binop)

〈e0, δ, π〉 〈v0, δ, π〉
δ′ = {y 7→ δ(y) | y ∈ dom(δ) ∧ y 6= a} ∪ {a[0] 7→ (δ(a[0]) ∪ 〈π, v0〉)}

〈(a[i] = e0), δ, π〉 〈void, δ′, π〉 (Store)

〈 , v〉 = δ(a[0])

〈a[i], δ, π〉 〈v, δ, π〉
(Load)

δ′ = {y 7→ δ(y) | y ∈ dom(δ) ∧ y 6= e0} ∪ {e0 7→ 〈π, e1〉 ∪ δ(e0)}
〈(e0 = e1), δ, π〉 〈void, δ′, π〉 (Assign)

δ′ = {y 7→ δ(y) | y ∈ dom(δ) ∧ y 6= r} ∪ {r 7→ 〈π, havoc(r)〉}
〈r = f(~e), δ, π〉 〈void, δ′, π〉 (Ext)

〈e0, δ, π〉 〈v0, δ, π〉 π′ = π ∧ v0
δ′ = {y 7→ δ(y) | y 6∈ lhs(e1)} ∪ {y 7→ 〈π′, havoc(y)〉 | y ∈ lhs(e1)}

〈(while e0 e1), δ, π〉 〈v0, δ′, π ∧ ¬v0〉 (Loop)

〈e0, δ, π〉 〈v0, δ, π〉 b = isTrue(v0)
〈e1, δ, π ∧ b〉 〈v1, δ1, π1〉
〈e2, δ, π ∧ ¬b〉 〈v2, δ2, π2〉

δ′ = δ ∪ δ1 ∪δ2
〈(if e0 e1 e2), δ, π〉 〈µ(b, v1, v2), δ′, π〉

(If)

Figure 3.12: Inference rules for value summary analysis.

3.5.2 Symbolic evaluation

Based on the rules in Figure 3.10, if the contract contains a pair of statements 〈s1, s2〉

that match our state-inconsistency query (e.g., reentrancy), the Explorer module

(Section 3.4) returns a subgraph G (of the original ICFG) that contains statement s1 and
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s2. In that sense, checking whether the contract indeed contains the state-inconsistency

bug boils down to a standard reachability problem in G: does there exist a valid path π

that satisfies the following conditions: 1) π starts from an entry point v0 of a public method,

and 2) following π will visit s1 and s2, sequentially. 2 Due to the over-approximated

nature of our SDG that ignores all path conditions, a valid path in SDG does not always

map to a feasible execution path in the original ICFG. As a result, we have to symbolically

evaluate G and confirm whether π is indeed feasible.

A naive symbolic evaluation strategy is to evaluate G by precisely following its control

flows while assuming that all storage variables are completely unconstrained (>). With

this assumption, as our ablation study shows (Figure 3.18), Sailfish fails to refute a

significant amount of false alarms. So, the key question that we need to address is: How

can we symbolically check the reachability of G while constraining the range of storage

variables without losing too much precision? This is where VSA comes into play. Recall

that the output of our VSA maps each storage variable into a set of abstract values

together with their corresponding path constraints in which the values hold. Before

invoking the symbolic evaluation engine, we union those value summaries into a global

pre-condition that is enforced through the whole symbolic evaluation.

Example 6 Recall in Fig 3.5, the Explorer reports a false alarm due to the over-

approximation of the SDG. We now illustrate how to leverage VSA to refute this false

alarm.

Step 1: By applying the VSA rules in Figure 3.12 to the contract in Figure 3.5,

Sailfish generates the summary for storage variable mutex: {〈mutex = false, false〉,

〈mutex = false, true〉}. In other words, after invoking any sequence of public functions,

2Since TOD transfer requires reasoning about two different executions of the same code, we adjust
the goal of symbolic execution for TOD as the following: Symbolic evaluate subgraph G twice (one uses
true as pre-condition and another uses value summary). The amount of Ether in the external call are
denoted as a1, a2, respectively. We report a TOD if a1 6= a2.
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mutex can be updated to true or false, if pre-condition mutex==false holds. Here, we

omit the summary of other storage variables (e.g., userBalance) for simplicity.

Step 2: Now, by applying the symbolic checker on the withdrawBalance function for

the first time, Sailfish generates the following path condition π: mutex == false ∧

userBalance[msg.sender] > amount as well as the following program state δ before

invoking the external call at Line 9: δ = {mutex 7→ true, ...}

Step 3: After Step 2, the current program state δ indicates that the value of mutex is

true. Note that to execute the then-branch of withdrawBalance, mutex must be false.

Based on the value summary of mutex in Step 1, the pre-condition to set mutex to false

is mutex = false. However, the pre-condition is not satisfiable under the current state

δ. Therefore, although the attacker can re-enter the withdrawBalance method through

the callback mechanism, it is impossible for the attacker to re-enter the then-branch at

Line 6, and trigger the external call at Line 9. Thus, Sailfish discards the reentrancy

report as false positive.

3.6 Implementation

Explorer. It is a lightweight static analysis that lifts the smart contract to an SDG. The

analysis is built on top of the Slither [89] framework that lifts Solidity source code to

its intermediate representation called SlithIR. Sailfish uses Slither’s API, including

the taint analysis, out of the box.

Refiner. Sailfish leverages Rosette [88] to symbolically check the feasibility of

the counter-examples. Rosette provides support for symbolic evaluation. Rosette

programs use assertions and symbolic values to formulate queries about program behavior,

which are then solved with off-the-shelf SMT solvers. Sailfish uses (solve expr) query

that searches for a binding of symbolic variables to concrete values that satisfies the
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assertions encountered during the symbolic evaluation of the program expression expr.

3.7 Evaluation

In this section, we describe a series of experiments that are designed to answer the

following research questions: RQ1. How effective is Sailfish compared to the existing

smart contracts analyzers with respect to vulnerability detection? RQ2. How scalable is

Sailfish compared to the existing smart contracts analyzers? RQ3. How effective is the

Refine phase in pruning false alarms?

3.7.1 Experimental setup

Dataset. We have crawled the source code of all 91,921 contracts from Etherscan [11],

which cover a period until October 31, 2020. We excluded 2,068 contracts that either

require very old versions (<0.3.x) of the Solidity compiler, or were developed using

the Vyper framework. As a result, after deduplication, our evaluation dataset consists

of 89,853 Solidity smart contracts. Further, to gain a better understanding of how

each tool scales as the size of the contract increases, we have divided the entire dataset,

which we refer to as full dataset, into three mutually-exclusive sub-datasets based on

the number of lines of source code—small ([0, 500)), medium ([500, 1000)), and large

([1000,∞)) datasets consisting of 73,433, 11,730, and 4,690 contracts, respectively. We

report performance metrics individually for all three datasets.

Analysis setup. We ran our analysis on a Celery v4.4.4 [90] cluster consisting of six

identical machines running Ubuntu 18.04.3 Server, each equipped with Intel(R) Xeon(R)

CPU E5-2690 v2@3.00 GHz processor (40 core) and 256 GB memory.

Analysis of real-world contracts. We evaluated Sailfish against four other static

analysis tools, viz., Securify [25], Vandal [84], Mythril [27], Oyente [28], and one
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dynamic analysis tool, viz., Sereum [24]—capable of finding either reentrancy, or TOD,

or both. Given the influx of smart contract related research in recent years, we have

carefully chosen a representative subset of the available tools that employ a broad range of

minimally overlapping techniques for bug detection. SmartCheck [91] and Slither [89]

were omitted because their reentrancy detection patterns are identical to Securify’s

NW (No Write After Ext. Call) signature.

We run all the static analysis tools, including Sailfish, on the full dataset under

the analysis configuration detailed earlier. If a tool supports both reentrancy and TOD

bug types, it was configured to detect both. We summarize the results of the analyses

in Table 3.3. For each of the analysis tools and analyzed contracts, we record one of the

four possible outcomes– (a) safe: no vulnerability was detected (b) unsafe: a potential

state-inconsistency bug was detected (c) timeout : the analysis failed to converge within

the time budget (20 minutes) (d) error : the analysis aborted due to infrastructure issues,

e.g., unsupported Solidity version, or a framework bug, etc. For example, the latest

Solidity version at the time of writing is 0.8.3, while Oyente supports only up to

version 0.4.19.

3.7.2 Vulnerability detection

In this section, we report the fraction (%) of safe, unsafe (warnings), and timed-out

contracts reported by each tool with respect to the total number of contracts successfully

analyzed by that tool, excluding the “error” cases.

Comparison against other tools. Securify, Mythril, Oyente, Vandal, and

Sailfish report potential reentrancy in 7.10%, 4.18%, 0.99%, 52.27%, and 2.40% of the

contracts. Though all five static analysis tools detect reentrancy bugs, TOD detection

is supported by only three tools, i.e., Securify, Oyente, and Sailfish which raise
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Bug Tool Safe Unsafe Timeout Error

Securify 72,149 6,321 10,581 802
Vandal 40,607 45,971 1,373 1,902
Mythril 25,705 3,708 59,296 1,144
Oyente 26,924 269 0 62,660

R
ee

n
tr

an
cy

Sailfish 83,171 2,076 1,211 3,395

Securify 59,439 19,031 10,581 802
Oyente 23,721 3,472 0 62,660

T
O

D

Sailfish 77,692 7,555 1,211 3,395

Table 3.3: Comparison of bug finding abilities of tools

potential TOD warnings in 21.37%, 12.77%, and 8.74% of the contracts.

Mythril, being a symbolic execution based tool, demonstrates obvious scalability

issues: It timed out for 66.84% of the contracts. Though Oyente is based on symbolic

execution as well, it is difficult to properly assess its scalability. The reason is that

Oyente failed to analyze most of the contracts in our dataset due to the unsupported

Solidity version, which explains the low rate of warnings that Oyente emits. Unlike

symbolic execution, static analysis seems to scale well. Securify timed-out for only

11.88% of the contracts, which is significantly lower than that of Mythril. When we

investigated the reason for Securify timing out, it appeared that the Datalog-based

data-flow analysis (that Securify relies on) fails to reach a fixed-point for larger contracts.

Vandal’s static analysis is inexpensive and shows good scalability, but suffers from poor

precision. In fact, Vandal flags as many as 52.27% of all contracts as vulnerable to

reentrancy–which makes Vandal reports hard to triage due to the overwhelming amount

of warnings. Vandal timed out for the least (1.56%) number of contracts. Interestingly,

Securify generates fewer reentrancy warnings than Mythril. This can be attributed

to the fact that the NW policy of Securify considers a write after an external call as

vulnerable, while Mythril conservatively warns about both read and write. However,

Sailfish strikes a balance between both scalability and precision as it timed-out only
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Tool
Reentrancy TOD

TP FP FN TP FP FN

Securify 9 163 17 102 244 8
Vandal 26 626 0 – – –
Mythril 7 334 19 – – –
Oyente 8 16 18 71 116 39
Sailfish 26 11 0 110 59 0

Table 3.4: Manual determination of the ground truth

for 1.40% of the contracts, and generates the fewest alarms.

Ground truth determination. To be able to provide better insights into the results,

we performed manual analysis on a randomly sampled subset of 750 contracts ranging

up to 3, 000 lines of code, out of a total of 6,581 contracts successfully analyzed by all

five static analysis tools, without any timeout or error. We believe that the size of the

dataset is in line with prior work [92, 93]. We prepared the ground truth by manually

inspecting the contracts for reentrancy and TOD bugs using the following criteria: (a)

Reentrancy: The untrusted external call allows the attacker to re-enter the contract, which

makes it possible to operate on an inconsistent internal state. (b) TOD: A front-running

transaction can divert the control-flow, or alter the Ether-flow, e.g., Ether amount, call

destination, etc., of a previously scheduled transaction.

In the end, the manual analysis identified 26 and 110 contracts with reentrancy and

TOD vulnerabilities, respectively. We then ran each tool on this dataset, and report

the number of correct (TP), incorrect (FP), and missed (FN) detection by each tool in

Table 3.4. For both reentrancy and TOD, Sailfish detected all the vulnerabilities (TP)

with zero missed detection (FN), while maintaining the lowest false positive (FP) rate.

We discuss the FPs and FNs of the tools in the subsequent sections.

False positive analysis. While reasoning about the false positives generated by different

tools for the reentrancy bug, we observe that both Vandal and Oyente consider every
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external call to be reentrant if it can be reached in a recursive call to the calling contract.

However, a reentrant call is benign unless it operates on an inconsistent state of the

contract. Securify considers Solidity send and transfer APIs as external calls, and

raisesd violation alerts. Since the gas limit (2, 300) for these APIs is inadequate to mount

a reentrancy attack, we refrain from modeling these APIs in our analysis. Additionally,

Securify failed to identify whether a function containing the external call is access-

protected, e.g., it contains the msg.sender == owner check, which prohibits anyone else

but only the contract owner from entering the function. For both the cases above, though

the Explorer detected such functions as potentially unsafe, the benefit of symbolic

evaluation became evident as the Refiner eliminated these alerts in the subsequent phase.

Mythril detects a state variable read after an external call as malicious reentrancy.

However, if that variable is not written in any other function, that deems the read safe.

Since Sailfish looks for hazardous access as a pre-requisite of reentrancy, it does not

raise a warning there. However, Sailfish incurs false positives due to imprecise static

taint analysis. A real-world case study of such a false positive is presented in Appendix ??.

To detect TOD attacks, Securify checks for writes to a storage variable that influences

an Ether-sending external call. We observed that several contracts flagged by Securify

have storage writes inside the contract’s constructor. Hence, such writes can only happen

once during contract creation. Moreover, several contracts flagged by Securify have

both storage variable writes, and the Ether sending external call inside methods which are

guarded by predicates like require(msg.sender == owner)—limiting access to these

methods only to the contract owner. Therefore, these methods cannot be leveraged to

launch a TOD attack. Sailfish prunes the former case during the Explore phase itself.

For the latter, Sailfish leverages the Refine phase, where it finds no difference in the

satisfiability of two different symbolic evaluation traces. Next, we present a real-world case

where both Securify and Sailfish incur a false positive due to insufficient reasoning of
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contract semantics.

Figure 3.13 features a real-world contract where bTken is set inside the constructor.

The static taint analysis that Sailfish performs disregards the fact that Line 5 is guarded

by a require clause in the line before; thereby making the variable tainted. Later at

Line 9 when the balanceOf method is invoked on bTken, Sailfish raises a false alarm.

1 contract EnvientaPreToken {

2 // Only owner can set bTken

3 function enableBuyBackMode(address _bTken) {

4 require( msg.sender == _creator );

5 bTken = token(_bTken);

6 }

7 function transfer(address to, uint256 val) {

8 // Trusted external call

9 require(bTken.balanceOf(address(this))>=val);

10 balances[msg.sender] -= val;

11 }

12 }

Figure 3.13: False positive of Sailfish (Reentrancy).

1 contract Depay{

2 function pay(..., uint donation) {

3 donations += donation;

4 }

5 function withdrawDonations(address recipient) {

6 require(msg.sender == developer)

7 recipient.transfer(donations);

8 }

9 }

Figure 3.14: False positive of TOD.

Figure 3.14 presents a real-world donation collection contract, where the contract

transfers the collected donations to its recipient of choice. Both Sailfish and Securify

raised TOD warning as the transferred amount, i.e., donations at Line 7, can be modified

by function pay() at Line 3. Though the amount of Ether withdrawn (donations) is
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different depending on which of withdrawDonations() and pay() get scheduled first—

this does not do any harm as far as the functionality is concerned. In fact, if pay()

front-runs withdrawDonations(), the recipient is rewarded with a greater amount of

donation. Therefore, this specific scenario does not correspond to a TOD attack.

False negative analysis. Securify missed valid reentrancy bugs because it considers

only Ether sending call instructions. In reality, any call can be leveraged to trigger

reentrancy by transferring control to the attacker if its destination is tainted. To consider

this scenario, Sailfish carries out a taint analysis to determine external calls with tainted

destinations. Additionally, Securify missed reentrancy bugs due to lack of support

for destructive write (DW), and delegate-based patterns. False negatives incurred by

Mythril are due to its incomplete state space exploration within specified time-out.

Our manual analysis did not observe any missed detection by Sailfish.

Finding zero-day bugs using Sailfish. In order to demonstrate that Sailfish is

capable of finding zero-day vulnerabilities, we first identified the contracts flagged only

by Sailfish, but no other tool. Out of total 401 reentrancy-only and 721 TOD-only

contracts, we manually selected 88 and 107 contracts, respectively. We limited our

selection effort only to contracts that contain at most 500 lines of code, and are relatively

easier to reason about in a reasonable time budget. Our manual analysis confirms 47

contracts are exploitable (not just vulnerable)—meaning that they can be leveraged by an

attacker to accomplish a malicious goal, e.g., draining Ether, or corrupting application-

specific metadata, thereby driving the contract to an unintended state. We present a few

vulnerable patterns, and their exploitability.

We have redacted the code, and masked the program elements for the sake of anonymity

and simplicity. The fact that the origin of the smart contracts can not be traced back in

most of the cases makes it hard to report these bugs to the concerned developers. Also,

once a contract gets deployed, it is difficult to fix any bug due to the immutable nature of
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the blockchain.

Cross-function reentrancy: Figure 3.15 presents a simplified real-world contract—

vulnerable to cross-function reentrancy attack due to Destructive Write (DW). An attacker

can set both item 1.creator (Line 11), and item 1.game (Line 12) to an arbitrary value by

invoking funcB(). In funcA(), an amount amt is transferred to item 1.creator through

transferFrom—an untrusted external contract call. Therefore, when the external call is

underway, the attacker can call funcB() to reset both item 1.creator, and item 1.game.

Hence, item 1.fee gets transferred to a different address when Line 6 gets executed.

1 function funcA(to , amt) public {

2 ...

3 IERC721 erc721 = IERC721(item_1.game)

4 erc721.transferFrom(_, item1.creator , amt)

5 ...

6 item1.creator.transfer(item_1.fee)

7 }

8

9 function funcB(_creator , _game) {

10 ...

11 item_1.creator = _creator

12 item1_1.game = _game

13 ...

14 }

Figure 3.15: Real-world cross-function reentrancy

Delegate-based reentrancy: Figure 3.16 presents a real-world contract, which is vul-

nerable to delegate-based reentrancy attack.

The contract contains three functions—(a) funcA contains the delegatecall, (b)

funcB() allows application data to be modified if the assertion is satisfied, and (c) funcC

contains an untrusted external call. A malicious payload can be injected in the data

argument of funcA, which, in turn, invokes funcC() with a tainted destination to. The

receiver at Line 14 is now attacker-controlled, which allows the attacker to reenter to

funcB with isTokenFallback inconsistently set to true; thus rendering the assertion at

Line 8 useless.
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1 function funcA(bytes _data) {

2 __isTokenFallback = true;

3 address(this).delegatecall(_data);

4 __isTokenFallback = false;

5 }

6

7 function funcB (){

8 assert(__isTokenFallback);

9 // Write to application data

10 }

11

12 function funcC(address _to) {

13 Receiver receiver = Receiver(_to)

14 receiver.tokenFallback (...)

15 ...

16 }

Figure 3.16: Real-world delegatecall-based reentrancy

CREAM Finance reentrancy attack. By exploiting a reentrancy vulnerability in the

CREAM Finance, a decentralized lending protocol, the attacker stole 462,079,976 AMP

tokens, and 2,804.96 Ethers on August 31, 2021 [94]. The attack involved two contracts:

CREAM Finance contract C, and AMP token (ERC777) contract A. The borrow() method

of C calls the transfer() method of A, which, in turn, calls the tokenReceived() hook

of the receiver contract R. Such a hook is simply a function in R that is called when tokens

are sent to it. The vulnerability that the attacker leveraged is that there was a state (S)

update in C.borrow() following the external call to A.transfer(). Since, A.transfer()

further calls R.tokenReceived() before even the original C.borrow() call returns, the

attacker took this opportunity to reenter C before even the state update could take place.

Since the version of Slither that Sailfish uses lacks support for all types of Solidity

tuples, we could not run our tool as-is on the contract C. To see whether our approach can

still detect the above vulnerability by leveraging its inter-contract analysis, we redacted

the contracts to eliminate syntactic complexity unrelated to the actual vulnerability.

When run on the simplified contract, Sailfish successfully flagged it as vulnerable to the

reentrancy attack, as expected.

Transaction order dependency: TOD may enable an attacker to earn profit by
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front-running a victim’s transaction. For example, during our manual analysis, we

encountered a contract where the contract owner can set the price of an item on demand.

A user will pay a higher price for the item if the owner maliciously front-runs the user’s

transaction (purchase order), and sets the price to a higher value. In another contract

that enables buying and selling of tokens in exchange for Ether, the token price was

inversely proportional with the current token supply. Therefore, an attacker can front-run

a buy transaction T , and buy n tokens having a total price pl. After T is executed, the

token price will increase due to a drop in the token supply. The attacker can then sell

those n tokens at a higher price, totaling price ph, and making a profit of (ph − pl). We

illustrate one more real-world example of a TOD attack in Figure 3.17 . recordBet()

1 contract Bet {

2 function recordBet(bool bet , uint _userAmount) {

3 userBlnces[msg.sender ]= _userAmount;

4 totalBlnc[bet] = totalBlnc[bet] +_userAmount;

5 }

6 function settleBet(bool bet) {

7 uint reward = (userBlnces[msg.sender ]* totalBlnc [!bet]

8 / totalBlnc[bet];

9 uint totalWth = reward + userBlnces[msg.sender ];

10 totalBlnc [!bet] = totalBlnc [!bet] - reward;

11 msg.sender.transfer(totalWth);

12 }

13 }

Figure 3.17: Real-world example of a TOD bug.

allows a user to place a bet, and then it adds (Line 4) the bet amount to the total balance

of the contract. In settleBet(), a user receives a fraction of the total bet amount as

the reward amount. Therefore, if two invocations of settleBet() having same bet value

race against each other, the front-running one will earn higher reward as the value of

totalBlnc[!bet], which reward is calculated on, will also be higher in that case.

Exploitability of the bugs. We classified the true alerts emitted by Sailfish into the

following categories—An exploitable bug leading to the stealing of Ether, or application-
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Tool Small Medium Large Full

Securify 85.51 642.22 823.48 196.52
Vandal 16.35 74.77 177.70 30.68
Mythril 917.99 1,046.80 1,037.77 941.04
Oyente 148.35 521.16 675.05 183.45
Sailfish 9.80 80.78 246.89 30.79

Table 3.5: Analysis times (in seconds) on four datasets.

specific metadata corruption (e.g., an index, a counter, etc.), and a non-exploitable yet

vulnerable bug that can be reached, or triggered (unlike a false positive), but its side-effect

is not persistent. For example, a reentrant call (the attacker) is able to write to some state

variable V in an unintended way. However, along the flow of execution, V is overwritten,

and its correct value is restored. Therefore, the effect of reentrancy did not persist. Another

example would be a state variable that is incorrectly modified during the reentrant call, but

the modification does not interfere with the application logic, e.g., it is just written in a log.

Out of the 47 zero-day bugs that Sailfish discovered, 11 allow an attacker to drain Ethers,

and for the remaining 36 contracts, the bugs, at the very least (minimum impact), allow the

attacker to corrupt contract metadata—leading to detrimental effects on the underlying ap-

plication. For example, during our manual analysis, we encountered a vulnerable contract

implementing a housing tracker that the allowed addition, removal, and modification of

housing details. If a house owner adds a new house, the contract mandates the old housing

listing to become inactive, i.e., at any point, there can only be one house owned by an owner

that can remain in an active state. However, we could leverage the reentrancy bug in the

contract in a way so that an owner can have more than one active listing. Therefore, these

36 contracts could very well be used for stealing Ethers as well, however, we did not spend

time and effort to turn those into exploits as this is orthogonal to our current research goal.

Comparison against Sereum. Since Sereum is not publicly available, we could only

compare Sailfish on the contracts in their released dataset. Sereum [24] flagged total
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16 contracts for potential reentrancy attacks, of which 6 had their sources available in the

Etherscan, and therefore, could be analyzed by Sailfish. Four out of those 6 contracts

were developed for old Solidity versions (<0.3.x)—not supported by our framework.

We ported those contracts to a supported Solidity version (0.4.14) by making minor

syntactic changes not related to their functionality. According to Sereum, of those 6

contracts, only one (TheDAO) was a true vulnerability, while five others were its false

alarms. While Sailfish correctly detects TheDAO as unsafe, it raises a false alarm for

another contract (CCRB) due to imprecise modeling of untrusted external call.

RQ1: Sailfish emits the fewest warnings in the full dataset, and finds 47 zero-day

vulnerabilities. On our manual analysis dataset, Sailfish detects all the vulnerabilities

with the lowest false positive rate.

3.7.3 Performance analysis

Table 3.5 reports the average analysis times for each of the small, medium, and large

datasets along with the full dataset. As the data shows, the analysis time increases with

the size of the dataset for all the tools. Vandal [84] is the fastest analysis across all

the four datasets with an average analysis time of 30.68 seconds with highest emitted

warnings (52.27%). Securify [25] is approximately 6x more expensive than Vandal

over the entire dataset. The average analysis time of Mythril [27] is remarkably high

(941.04 seconds), which correlates with its high number of time-out cases (66.84%). In

fact, Mythril’s analysis time even for the small dataset is as high as 917.99 seconds.

However, another symbolic execution based tool Oyente [28] has average analysis time

close to 19% to that of Mythril, as it fails to analyze most of the medium to large

contracts due to the unsupported Solidity version. Over the entire dataset, Sailfish

takes as low as 30.79 seconds with mean analysis times of 9.80, 80.78, and 246.89 seconds
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Figure 3.18: Ablation study showing the effectiveness of value-summary analysis for
reentrancy and TOD detection.

for small, medium, and large ones, respectively. The mean static analysis time is 21.74

seconds as compared to the symbolic evaluation phase, which takes 39.22 seconds. The

value summary computation has a mean analysis time of 0.06 seconds.

RQ2: While the analysis time of Sailfish is comparable to that of Vandal, it is 6,

31, and 6 times faster than Securify, Mythril, and Oyente, respectively.

3.7.4 Ablation study

Benefit of value-summary analysis: To gain a better understanding of the benefits of

the symbolic evaluation (Refine) and the value-summary analysis (VSA), we performed

an ablation study by configuring Sailfish in three distinct modes: (a) static-only (SO),

only the Explorer runs, and (b) static + havoc (St+HV), the Refiner runs, but it

havocs all the state variables after the external call. (c) static + value summary (St+VS),
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the Refiner runs, and it is supplied with the value summary facts that the Explorer

computes. Figure 3.18 shows the number of warnings emitted by Sailfish in each of

the configurations. In SO mode, the Explore phase generates 3,391 reentrancy and

14,485 TOD warnings, which accounts for 3.92% and 16.75% of the contracts, respectively.

Subsequently, St+HV mode brings down the number of reentrancy and TOD warnings

to 2,436 and 10,560, which is a 28.16% and 27.10% reduction with respect to the SO

baseline. Lastly, by leveraging value summary, Sailfish generates 2,076 reentrancy and

7,555 TOD warnings in St+VS mode, which is a 14.78% and 28.46% improvement over

St+HV configuration. This experiment demonstrates that our symbolic evaluation and

VSA are indeed effective to prune false positives.

Figure 3.19 shows a real-world contract that demonstrates the benefit of the value-

summary analysis. A modifier in Solidity is an additional piece of code which wraps

the execution of a function. Where the underscore ( ) is put inside the modifier decides

when to execute the original function. In this example, the public function reapFarm

is guarded by the modifier nonReentrant, which sets the reentrancy lock (shortened

as L) on entry, and resets it after exit. Due to the hazardous access (Line 14 and

Line 18) detected on workDone, Explorer flags this contract as potentially vulnerable.

However, the value summary analysis observes that the require clause at Line 7 needs

to be satisfied in order to be able to modify the lock variable L, which is encoded as:

L = {〈false, L = false〉, 〈true, L = false〉}. In other words, there does not exist a

program path that sets L to false, if the current value of L is true. While making the

external call at Line 16, the program state is δ = {L 7→ true, ...}, which means that L

is true at that program point. Taking both the value summary and the program state

into account, the Refiner decides that the corresponding path leading to the potential

reentrancy bug is infeasible.
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1 interface Corn{

2 function transfer(address to, uint256 value);

3 }

4 contract FreeTaxManFarmer {

5 // Prevents re-entry to the decorated function

6 modifier nonReentrant () {

7 require (! reentrancy_lock);

8 reentrancy_lock = true;

9 _;

10 reentrancy_lock = false;

11 }

12

13 function reapFarm(address tokn) nonReentrant {

14 require(user[msg.sender ][tokn]. workDone > 0);

15 // Untrusted external call

16 Corn(tokn).transfer(msg.sender , ...);

17 // State update

18 user[msg.sender ][tokn]. workDone = 0;

19 }

20 }

Figure 3.19: The benefit of value-summary analysis.

RQ3: Our symbolic evaluation guided by VSA plays a key role in achieving high

precision and scalability.

3.7.5 Speedup due to value-summary analysis:

To characterize the performance gain from the value-summary analysis, we have

further designed this experiment where, instead of our value summary (VS), we provide a

standard path-by-path function summary [79, 80, 81] (PS) to the Refiner module. From

16,835 contracts for which Sailfish raised warnings (which are also the contracts sent to

the Refiner), we randomly picked a subset of 2,000 contracts (i) which belong to either

medium, or large dataset, and (ii) VS configuration finished successfully without timing

out—for this experiment. We define speedup factor s = tps
tvs

, where tm is the amount of

time spent in the symbolic evaluation phase in mode m. In PS mode, Sailfish timed out

for 21.50% of the contracts owing to the increased cost of the Refine phase. Figure 3.20
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Figure 3.20: Relative speedup due to value summary over a path-by-path function summary.

presents a histogram of the speedup factor distribution of the remaining 1,570 contracts

for which the analyses terminated in both the modes.

Our novel value summary analysis is significantly faster than a classic summary-based

analysis.

3.8 Limitations

Source-code dependency. Although Sailfish is built on top of the Slither [89]

framework, which requires access to the source code, we do not rely on any rich semantic

information from the contract source to aid our analysis. In fact, our choice of source

code was motivated by our intention to build Sailfish as a tool for developers, while

enabling easier debugging and introspection as a side-effect. Our techniques are not tied

to source code, and could be applied directly to bytecode by porting the analysis on top

of a contract decompiler that supports variable and CFG recovery.
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Potential unsoundness. We do not claim soundness with respect to the detection rules

of reentrancy and TOD bugs. Also, the meta-language our value-summary analysis is

based on distills the core features of the Solidity language, it is not expressive enough

to model all the complex aspects [95], e.g., exception propagation, transaction reversion,

out-of-gas, etc. In turn, this becomes the source of unsoundness of the Refiner. Ad-

ditionally, Sailfish relies on Slither [89] for static analysis. Therefore, any soundness

issues in Slither, e.g., incomplete call graph construction due to indirect or unresolved

external calls, inline assembly, etc., will be propagated to Sailfish.

Imprecise analysis components. Sailfish performs inter-contract analysis (Appendix ??)

when the source code of the called contract is present in our database, and more impor-

tantly, the external call destination d is statically known. If either of the conditions does

not hold, Sailfish treats such an external call as untrusted, thereby losing precision.

The question of external call destination d resolution comes only when Sailfish is used

on contracts that have been deployed already. For cases where d is set at run-time, our

prototype relies on only contract creation transactions. If d is set through a public setter

method, our current prototype cannot detect those cases, though it would not be hard to

extend the implementation to support this case as well. Moreover, Sailfish incurs false

positives due to the imprecise taint analysis engine from Slither. Therefore, using an

improved taint analysis will benefit Sailfish’s precision.

Bytecode-based analysis. Sailfish relies on control-flow recovery, taint analysis, and

symbolic evaluation as its fundamental building blocks. Recovering source-level rich data

structures, e.g., array, strings, mappings, etc., is not a requirement for our analysis. Even

for EVM bytecode, recovering the entry points of public methods is relatively easier due

to the “jump-table” like structure that the Solidity compiler inserts at the beginning of

the compiled bytecode. Typically, it is expected for a decompiler platform to provide the

building blocks in the form of an API, which then could be used to port Sailfish for
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bytecode analysis. That said, the performance and precision of our analysis are limited by

the efficacy of the underlying decompiler. Thanks to the recent research [96, 97, 98, 99]

on EVM decompilers and static analysis, significant progress has been made in this front.

Other bugs induced by hazardous access. If a contract contains hazardous access,

but no reentrancy/TOD vulnerability, that can still lead to a class of bugs called Event

Ordering (EO) bugs [86], due to the asynchronous callbacks initiated from an off-chain

service like Oraclize. We consider such bugs as out of scope for this work.

3.9 Related work

Static analysis. Static analysis tools such as Securify [25], MadMax [26], Zeus [93],

SmartCheck [91], and Slither [89] detect specific vulnerabilities in smart contracts.

Due to their reliance on bug patterns, they over-approximate program states, which can

cause false positives and missed detection of bugs. To mitigate this issue, we identified two

complementary causes of SI bugs—Stale read and Destructive write. While the former

is more precise than the patterns found in the previous work, the latter, which is not

explored in the literature, plays a role in the missed detection of bugs (Section 3.2). Unlike

Sailfish, which focuses on SI bugs, MadMax [26] uses a logic-based paradigm to target

gas-focused vulnerabilities. Securify [25] first computes control and data-flow facts, and

then checks for compliance and violation signatures. Slither [89] uses data-flow analysis

to detect bug patterns scoped within a single function. The bugs identified by these tools

are either local in nature, or they refrain from doing any path-sensitive reasoning—leading

to spurious alarms. To alleviate this issue, Sailfish introduces the Refine phase that

prunes significant numbers of false alarms.

Symbolic execution. Mythril [27], Oyente [28], EthBMC [100], SmartScopy [101],

and Manticore [102] rely on symbolic execution to explore the state-space of the contract.
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EthBMC [100], a bounded model checker, models EVM transactions as state transitions.

teether [103] generates constraints along a critical path having attacker-controlled

instructions. These tools suffer from the limitation of traditional symbolic execution, e.g.,

path explosion, and do not scale well. However, Sailfish uses the symbolic execution

only for validation, i.e., it resorts to under-constrained symbolic execution aided by VSA

that over-approximates the preconditions required to update the state variables across

all executions.

Dynamic analysis. While Sereum [24] and Soda [104] perform run-time checks within

the context of a modified EVM, TxSpector [23] performs a post-mortem analysis of

transactions. Ecfchecker [29] detects if the execution of a smart contract is effectively

callback-free (ECF), i.e., it checks if two execution traces, with and without callbacks,

are equivalent—a property that holds for a contract not vulnerable to reentrancy attacks.

Sailfish generalizes ECF with the notion of hazardous access for SI attacks. Thus,

Sailfish is not restricted to reentrancy, instead, can express all properties that are

caused by state inconsistencies. Dynamic analysis tools [105, 106, 107, 108, 109] rely on

manually-written test oracles to detect violations in response to inputs generated according

to blackbox or greybox strategies. Though precise, these tools lack coverage—which is

not an issue for static analysis tools, such as Sailfish.

Hybrid analysis. Composition of static analysis and symbolic execution has been

applied to find bugs in programs other than smart contracts. For example, Sys [110] uses

static analysis to find potential buggy paths in large codebases, followed by an under-

constrained symbolic execution to verify the feasibility of those paths. Woodpecker [111]

uses rule-directed symbolic execution to explore only relevant paths in a program. To

find double fetch bugs in OS kernels, Deadline [112] employs static analysis to prune

paths, and later performs symbolic execution only on those paths containing multiple

reads. Several other tools [113, 114, 115, 116, 117] employ similar hybrid techniques for
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testing, verification, and bug finding. Such hybrid analyses have been proved effective to

either prune uninteresting paths, or selectively explore interesting parts of the program.

In Sailfish, we use static analysis to filter out interesting contracts, find potentially

vulnerable paths, and compute value-summary to be used in conjunction with the symbolic

execution—to achieve both scalability, and precision.

State inconsistency (SI) notions. SeRIF [118] detects reentrancy attacks using a

notion of trusted-untrusted computation that happens when a low-integrity code, invoked

by a high-integrity code, calls back into the high-integrity code before returning. Code

components are explicitly annotated with information flow (trust) labels, which further

requires a semantic understanding of the contract. Then, they design a type system

that uses those trust labels to enforce secure information flow through the use of a

combination of static and dynamic locks. However, this notion is unable to capture

TOD vulnerabilities, another important class of SI bugs. In Sailfish, we take a different

approach where we define SI bugs in terms of the side-effect, i.e., creation of an inconsistent

state, of a successful attack. Further, we model the possibility of an inconsistent state

resulting from such an attack through hazardous access. Perez et. al. [119], Vandal [84],

Oyente [28] consider reentrancy to be the possibility of being able to re-enter the calling

function. Not only do these tools consider only single-function reentrancy, but also the

notion encompasses legitimate (benign) reentrancy scenarios [24], e.g., ones that arise

due to withdrawal pattern in Solidity. In addition, Sailfish requires the existence of

hazardous access, which enables us to account for cross-function reentrancy bugs, as well

as model only malicious reentrancy scenarios. To detect reentrancy, Securify [25] looks

for the violation of the “no write after external call” (NW) pattern, which is similar to

the “Stale Read” (SR) notion of Sailfish. Not all the tools that support reentrancy

bugs have support for TOD. While Sailfish shares its notion of TOD with Securify,

Oyente marks a contract vulnerable to TOD if two traces have different Ether flows.
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Unlike Sailfish for which hazardous access is a pre-requisite, Oyente raises alarm for

independent Ether flows not even related to SI.

3.10 Conclusion

In this chapter, we present Sailfish, a scalable system designed to automatically

detect state-inconsistency bugs in smart contracts. To address the challenge of analyzing

complex smart contracts efficiently, we propose a hybrid approach that combines a light-

weight exploration phase with a precise refinement phase based on symbolic evaluation

guided by a novel value-summary analysis. The experiments conducted on Ethereum

smart contracts demonstrate the effectiveness of Sailfish in detecting two types of state-

inconsistency flaws: reentrancy and transaction order dependence (TOD). The hybrid

approach employed by Sailfish, along with the value-summary analysis, contributes

to its efficiency and accuracy in identifying state-inconsistency bugs. Overall, Sailfish

presents a valuable contribution to the field of smart contract analysis, offering a scalable

and effective solution for detecting state-inconsistency bugs and improving the security of

blockchain-based applications.
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Chapter 4

Exploiting the Unfair Advantage:

Investigating Opportunistic Trading

in the NFT Market

Decentralized Finance (DeFi), the financial system built around blockchain, eliminates

intermediaries, and provides a trustless environment to its beneficiaries. The transparency

of a blockchain grants its participants access to both code (smart contracts) and data

(transactions). The promise of fairness is built into the blockchain, by design. The

trustless and transparent nature of a blockchain should not only reduce the risk of fraud

and manipulation, but also create a financial environment accessible equally to all the

involved parties.

Unlike traditional financial markets, DeFi largely lacks comprehensive regulatory

frameworks, partly because it is challenging for regulatory authorities to establish consis-

tent guidelines, and enforce them across jurisdictions. The lack of regulation combined

with the public availability of information have enabled sophisticated “players” with

advanced technical expertise to spot high-value trade opportunities, and grab them in
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no time; all before the rest of the market can react. For example, in a sandwich attack,

the attacker first observes a large buy/sell order placed by a victim (transparency of the

order book) that could cause significant price movement for an asset. Then, the attacker

places their own buy/sell orders on both sides of the original order. In effect, they not

only make their trade execute at a more favorable price, but also make the victim trade

execute at a worse than expected price, effectively making profit out of their loss. Since

the steps involved are time-sensitive and compute-intensive, such attacks can only be run

by bots (automated programs). Evidently, such opportunities are not available to regular

users without advanced knowledge.

Existing research on cryptoeconomics focusing on fairness of the cryptocurrency

market, economic risks, and abuses primarily extends in two directions—(i) high-frequency

trading of ERC-20 tokens, e.g., arbitrage [120, 35, 121], miner/block extractable value

(MEV/BEV) [33, 122, 123], frontrunning [31, 30, 124], flashloan [34], sandwich [32]

attacks, etc., and (ii) manipulation of both ERC-20 and ERC-721 token markets, e.g.,

NFT rug pull [125, 126, 127], ponzi schemes [128, 129, 130, 131], cryptocurrency pump

and dump [132, 133, 134], NFT trading malpractices [135, 136, 137, 138, 139, 140, 141],

etc. However, none of the previous research studied the landscape of opportunistic trading

in the NFT (ERC-721) market. Our work fills that void.

NFTs are high value assets. However, ERC-20 tokens predate NFTs in terms of

inception and popularity, which is why the opportunistic trading in the NFT market

has not received enough attention yet, even though the instances of such trades are

equally prevalent in both markets. For example, somebody made $100K through specu-

lative trading of CryptoKitties, and roughly $8K by running an arbitrage bot [142].

On a separate occasion, a sniper bot launched a flashloan attack by front-running a

CryptoPunks bid transaction, and bagged a punk almost at no cost [143] as the reward.

Despite exhibiting opportunities similar to the traditional ERC-20 market, NFTs
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come with their unique challenges for both the trader and the analyst—(i) Determining

profitability. NFTs being non-fungible by design, no two NFTs are the same, unlike

fungible ERC-20 tokens. This makes it hard to determine the “true” price of a token,

which is heavily influenced by the market sentiment. Knowing the worth of an NFT is

crucial for a buyer to make decisions, e.g., if it is worth to buy an NFT, if it is better to

sell it immediately (probably to ride on the hype), or hold it for a longer time expecting

a price appreciation, etc. (ii) Diverse trade actions. Unlike ERC-20 tokens that

support limited actions like buy/sell, NFT trade actions are diverse, for example, listing,

auctions (place/accept/cancel bids), etc. Since these actions are oftentimes marketplace-

specific, it is hard to build an infrastructure (e.g., bot) that supports all the existing

and newer marketplaces. (iii) Spotting trading opportunity. Typically, a ERC-20

trade opportunity spans across multiple similar type of protocols. For example, an

arbitrage can be spotted by detecting cycles in token exchange rates across decentralized

exchanges [120]. Where as, as we will see, profit-making trades involving NFTs typically

touch multiple different types of protocols. Detecting such opportunities in real-time is

hard in a competitive market. As a side effect, a “supposedly” open (and fair) market

turns out to be profitable only to advanced traders.

In this work, we study the high-frequency, opportunistic trades in the NFT market.

First, we taxonomize the opportunistic trades. Next, we build models that identify

previous instances of such trades, and quantify their prevalence, and financial impact.

By shedding light on the underexplored or unexplored aspects of the money-making

opportunities, we hope that our work aims will pave the way for future research and

exploration in this field.
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4.1 Background

In this section, we will discuss concepts pivotal to understanding the rest of the work.

Blockchain and smart contracts. As a distributed digital ledger, the blockchain

provides the necessary underpinning for cryptocurrency, a form of ownable digital asset.

Transactions change the state of the blockchain. Any connected node in the network can

broadcast transactions. Since the participating nodes are geographically distributed, they

receive those transactions at different times and in different orders. Therefore, a consensus

protocol is necessary to achieve an agreement about the ledger’s state. Cryptocurrency

trading relies on blockchain technology for recording transactions. The native currency

of a blockchain, e.g., Ether in case of the Ethereum blockchain, is intertwined with the

functioning of the blockchain itself, such as sending transactions, offering incentives, and

governance. In addition to storing records, some blockchains can run Turing-complete

programs called smart contracts.

Ethereum blockchain. Ethereum is one of the most popular blockchains in the world.

The current version (v2.0) of Ethereumfollows a consensus mechanism called proof of

stake (PoS). An account is an entity represented by an address that can send transactions.

An externally owned account (EOA) is controlled by anyone holding the corresponding

private key, while contract accounts are managed by smart contracts. In PoS, transactions

are validated by special nodes called validators, who stake (lock in) Ethers in the network

to participate in the validation process. To incentivize the validators and prevent denial-

of-service (DoS) attacks, transactions cost gas which is deducted from the sender’s Ether

balance.

Ethereumsmart contracts are written in languages like Solidity, and run on top

of EthereumVirtual Machine (EVM). When a contract executes, it can emit events to

indicate the occurrence of certain action. As shown in Figure 4.1, when amount worth of
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funds are sent to an address to, a contract can emit a fundSent event. Events are stored

in transaction logs. An event parameter can be marked as indexed to allow for efficient

searching and filtering. In our example, to is indexed, while amount is not. Events in

the transaction log of a contract are associated with a monotonically increasing identifier

called log index, which is assigned in the order the events are emitted.

event fundSent(address indexed to, uint amount);

Figure 4.1: An event declaration in Solidity.

Decentralized finance (DeFi). The smart contracts play two important roles to further

the economic framework built around blockchain—(a) they create and manage digital

assets, called tokens. For example, Tether (USDT) is a fungible ERC-20 token, while

Decentraland is a non-fungible ERC-721 token. In the same way as the primary

(native) currency, these secondary assets are also equally ownable and tradable. (b)

they implement decentralized protocols to automate financial processes, e.g., lending and

borrowing protocols, decentralized exchanges (DeX), etc. This open financial system built

around blockchain is called Decentralized Finance (DeFi).

Non-fungible token (NFT). All copies of a fungible token are identical, while every

non-fungible token (NFT) is unique. Among the NFTs managed by a smart contract,

each NFT is uniquely identified by a tokenId. The creation and destruction of a token is

referred to as minting and burning, respectively. ERC-721 and ERC-1155 are two popular

standards for NFTs. While ERC-721 allows creation of only unique tokens, ERC-1155 is

a multi-token standard that supports both fungible and non-fungible tokens within the

same contract. In effect, an NFT (identified by a tokenId) can have only one copy in

a ERC-721 contract, while it can have multiple copies in ERC-1155. The totalSupply

variable in a contract keeps track of the number of unique NFTs in circulation. When a

token with tokenId is transferred from the from address to the to address, a Transfer
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event (Figure 4.2) is emitted on the log. A collection refers to a set of NFTs that are

managed by one smart contract, and typically have something in common, for example,

they may share certain attributes, or be used for the same purpose. NFTs in one collection

typically look alike, such as CryptoPunks.

event Transfer(address indexed from ,

address indexed to , uint256 tokenId);

Figure 4.2: Transfer event in ERC-721 and ERC-1155.

NFT marketplace. NFT marketplaces (NFTMs) like OpenSea, SuperRare, Sorare

connect sellers to buyers. The sellers either list (T1) their items (NFTs) for sale, or put

them on auction (T2). The buyers, in turn, can either buy (T3) the items at the listed

price, or make offers (T4), or place bids (T5) if the item is on auction. Should they change

their mind, the buyers (bidders) can also retract (T6) their bids if they have not been

filled yet. Sometimes, instead of making an offer on an individual NFT, buyers can make

a collection offer (T7) for all NFTs in a collection. Collection offers are useful if a buyer

would like to buy any NFT in a collection, but does not have a specific NFT in mind. A

given collection offer can only be accepted once, and will expire for all other NFTs in the

collection after being accepted. We call T1-7 trade actions.

NFT liquidity pool. The NFTMs discussed above follow a traditional orderbook-

based model, where the platform maintains the list of all open orders. Instead of

directly connecting buyers to sellers, automated market markers (AMMs), also known

as decentralized exchanges (DEX), facilitate near-instant token swaps by algorithmically

setting prices for assets based on supply and demand. Funds are sold to and bought from

liquidity pools (LP), which are smart contracts that lock up large volume of crowdsourced

tokens. Examples of popular ERC-20 DEXes are Uniswap, Curve, Balancer, etc.

Similarly, an NFT AMM is a platform that allows traders to instantly buy or sell their
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NFTs through LPs. While traditional NFTMs allow the seller to have better control on

the price of the item to be sold, NFT LPs are better suited for cases where the seller

wants to make an instant trade.

Let’s take NFTX [144] as an example, which is a constant-product AMM. On NFTX,

NFT holders deposit their NFTs into a vault, and mint a fungible token (vToken)

specific to that NFT collection, for example, PUNK for CryptoPunks, in return. That

“vToken” that represents a 1:1 claim on a random NFT from within that collection’s

vault. If and when the user wants to claim any NFT from the vault, they can bring the

token back, and redeem an NFT from the collection. Note that the vToken represents

a claim on a random NFT from the specific collection, not the exact one the holder

deposited.

LPs consist of a token pair, where one token can be exchanged for the other. vTokens

can be deposited to an AMM like Sushiswap to create a liquid market. Consider such

a vToken-ETH pool with 10 vTokens and 2 ETH. This would make the price of the

corresponding NFT 2/10 = 0.20 ETH. Now, if one NFT is purchased for 0.20 ETH, that

NFT is removed from one side of the pool, while 0.20 ETH get added onto the other side,

resulting in 9 NFTs and 2.2 ETH. With this, the price of the NFT goes up to 2.2/9 = 0.24

ETH.

4.2 Analysis approach

This paper studies opportunistic trading in the NFT market. Traditional trading

strategies tend to be based on fundamental analysis, such as studying a company’s

financial statements or economic indicators, and making investment decisions based on

the expected long-term value of an asset. On the other hand, opportunistic trading relies

on trends and patterns in the market. It differs from traditional trading strategies in that
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it mostly seeks to take advantage of short-term market inefficiencies, news events, hype,

volatility, temporary imbalances in supply and demand, price discrepancies, etc., rather

than attempting to profit from long-term trends. While traditional trading is “proactive,”

where the trader strives to anticipate long-term market conditions, opportunistic trading

is far more “reactive,” where a trader is forced to react quickly to instantaneous market

situations.

In this paper, we attempt to answer the following research questions—(RQ1.) What

types of opportunistic trading instances are prevalent in the NFT market? (RQ2.)

What is the financial impact of each type of opportunistic trade? (RQ3.) How does

opportunistic trading differ in the NFT space from the more traditional ERC-20 and

cryptocurrency market?

Attacker model. An opportunistic trader performs the following two functions—(i)

Spotting opportunities. Like many other blockchain-based financial protocols, NFT

protocols are complex as well. This is even more true with the rise of newer financial

instruments, such as NFT liquidity pools. To exacerbate the situation, opportunities often

arise from the composition of more than protocols. For example, an arbitrageur takes

advantage of the discrepancies of the price of an asset (NFT) across different exchanges.

Since such opportunities are short-lived, they often need to be spotted in real-time. (ii)

Executing trades. Opportunities are competitive, thereby needing the trader to quickly

analyze, and react to changing market conditions in order to capitalize on short-term

opportunities.

In our model, an attacker is an opportunistic trader with solid financial and technical

knowledge, and access to reasonable computing resources to perform both the above

functions. Therefore, most of the instances as we will see next are high-frequency, bot-

driven trades. Depending on the type and timing of the trade, the attacker can be both a

seller and a buyer.
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Methodology and data collection. We perform both qualitative and quantitative

analysis to understand the landscape. Since manually analyzing the profitability and

the rationale behind all NFT trades is not feasible, it makes the problem of finding

opportunistic trading challenging. To address this issue to the best possible extent, we

gathered instances of opportunistic trading both actively (finding ourselves) and passively

(finding previous reports). For the passive analysis, we collected previously reported

instances from publicly available resources, such as, blogs, forums, write-ups and Twitter

keyword search. Specifically, we searched Twitter with related hashtags, e.g., front-run,

mev, arbitrage, etc., and then manually filtered out irrelevant results. Additionally, to

discover new instances, we randomly sampled 100 trades from the NFT sales over $5,000

USD for each of the NFTMs we support, and manually analyzed them for the sign of

suspicious, opportunistic trades.

We identify three broad categories of trades—(i) Acquire. These strategies are used

to grab high-value NFTs that are worth holding for a long time (Section 4.3). (ii) Profit

generation. These strategies are used to generate instant profit through simultaneous

buying and selling of NFTs (Section 4.4). (iii) Loss minimization. These strategies

are used to minimize losses from a potentially bad purchase (Section 4.5).

I Marketplace selection. To include an NFTM in our analysis, we had to first under-

stand the marketplace-specific protocol, and then develop protocol-specific transaction

parsers, which is non-trivial. Therefore, we carefully integrated the support for the most

prominent NFTMs in our analysis. In line with the previous work [145, 135], we used

DappRadar [146], a popular tracker for dApps, to select the relevant marketplaces. Due

to the popularity of Ethereum, we selected the top four (as on July 15, 2022) Ethereum-

backed NFTMs ranked by all-time transaction volume—OpenSea (34.69B), LooksRare

(4.84B), CryptoPunks (3.1B), and X2Y2 (1.24B). Further, we support all three versions

of OpenSea marketplace, viz., v1.0, v2.0, and v3.0. In addition, during our passive
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analysis, we discovered numerous reports of opportunistic trading in CryptoKitties

(30.1M), which is one of the older and popular collection. We included that too in our

analysis.

I Recovering trade actions. For the NFTMs we considered in this work, relevant

NFT trade actions (Section 4.1) are visible from the blockchain. The quantitative analysis

was performed on the Ethereum blockchain data until March 15, 2023 (block 16,000,000)

from the genesis block.

We process each block B starting from the genesis block (block number = 0). Now,

such opportunistic trades can be executed either through an EOA, or if the trade involves

complicated run-time logic, touches multiple protocols, and requires atomicity of a batch of

transactions, then through a bot contract. Therefore, in order to conduct a comprehensive

analysis, we consider both external and internal transactions, which we denote as T .

t info(b, h, st, s, r, : − Transaction at block b with hash h,
gp, gu, ind, d, ts) status st, sender s, receiver r,

gas price gp, timestamp ts
index ind and gas used gu

listing(u,m, n, p) : − User u lists an NFT n at
NFTM m at price p

cancel listing(u,m, p, n) : − User u cancels the listing of an
NFT n listed at NFTM m at price p

buy(u,m, p, n) : − User u buys an NFT
n listed at NFTM m at price p

place bid(u,m, p, n) : − User u placed a bid of value
p on an NFT n listed at NFTM m

accept bid(u,m, p, n) : − User u accepts a bid of value p
on an NFT n listed at NFTM m

cancel bid(u,m, p, n) : − User u cancels a bid of value p
on an NFT n listed at NFTM m

Figure 4.3: Extracted predicates from transactions

NFTMs vary in their trading functionalities, and may even have distinct implemen-

tations for the same trade actions. Therefore, we need to consider marketplace-specific
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implementation to infer NFT trade details, such as action type, targeted tokens, their

prices, etc., during our analysis. Figure 4.3 illustrates the predicates we extract from a

transaction T . For each T ∈ B, we extract two types of information—(i) generic transac-

tion details, such as block number b, transaction hash h, transaction status st, sender

s and receiver r, gas price gp, gas used gu, transaction index ind within the containing

block B, transaction data d, timestamp ts, etc., and (ii) NFT trade-specific information,

such as trade actions, details n of the NFT involved in this trade, marketplace m where

the trade takes place, the buy/sell/bid price p of n, etc.

We extract generic transaction details from the blockchain, which is then used to infer

trade-specific information in the following two steps— (Step-I) We first understand the

NFTM protocol by examining the source code of the marketplace contract, and observing

past transactions. Thus, we identify the public methods corresponding to the trade

actions, and understand the semantics of their arguments. (Step-II) In Solidity, each

method (having a specific signature) is hashed to a unique four-byte-long string called

method selector. The selector is encoded in the transaction data when a method is invoked.

Therefore, we match the selectors that appear in the decoded transaction data d with the

ones identified in the previous step to infer trade actions.

In addition, for a transaction T we define the following operator—TradeAction(T):

returns the trade action if T represents one of the supported actions, viz.,

A = {listing, cancel listing, buy, place bid, accept bid, cancel bid}, null otherwise. For a

particular type of trade transaction T, we use the dot (.) notation to refer to its attributes

as defined in Figure 4.3. For example, if Tl is a listing transaction, Tl.m denotes the

marketplace where the respective NFT is listed at, and so on. Finally, T denotes the set

of transactions of our interest across all the supported NFTMs M, i.e., T = {T | T.m ∈

M∧ TradeType(T) ∈ A}. We use the notations, predicates, and operators introduced

above throughout the rest of this paper.
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I Token contract identification. We built a dataset of ERC-721 and ERC-1155

token contracts (contract addresses) for our analyses. Our method of token contract

identification does not require the source code of the contracts. Since only a fraction of

the contracts on the blockchain have their sources available [147], a source code-agnostic

method significantly broadens the scope of our analysis. We took a two-step approach—

(Step-I) We relied on the fact that a ERC-721- and ERC-1155-conforming token always

emits a Transfer event (Section 4.1) when an NFT is transferred from one account to the

other. Such Transfer event logs can be identified from the blockchain in a way similar

to the method selector-based approach (used for method identification) described above.

(Step-II) Unfortunately, ERC-20 token standard, too, defines a similar Transfer event

upon the transfer of token, thus making their event logs “apparently” indistinguishable

from the ones emitted by the NFT contracts. In effect, the Transfer logs identified in the

previous step contain false positives, which includes the ones emitted by ERC-20 tokens as

well. Now, for ERC-20 token, the third (last) argument of the Transfer event represents

the value (amount) of the tokens transferred, while for both the NFT standards, it

represents the tokenId. As defined by the respective standards, this particular argument

is indexed only for the NFTs, but not for the ERC-20 tokens. We leverage this observation

to identify the Transfer logs emitted by the NFT contracts, and record the corresponding

addresses.

In the end, we identified 152,478 ERC-721 and 27,824 ERC-1155 token contracts in

total. Further, we randomly sampled 200 of the identified contracts, and verified if those

are, indeed, NFTs by consulting both OpenSea and Etherscan. We found that 195

(97.50%) of them are true positives.

I Price feed. We fetch historical price data from CoinGecko [148] to convert token

(cryptocurrency) prices to equivalent US Dollars at the time of the respective trades.
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4.3 Acquire

Frontrunning refers to the malicious practice of exploiting the knowledge of a pending

victim transaction Tv, and use that knowledge to execute an attack transaction Ta before

Tv. By scheduling their transaction before victim’s, an attacker makes a profit that the

victim was supposed to make, leaving the unfortunate victim suffer a loss.

The Ethereummempool is a globally visible, temporary, public storage area of un-

confirmed transactions that are waiting to be included in a block. When a user sends a

transaction, it enters the mempool, and awaits validation by miners. Miners typically

prioritize transactions according to the gas price offered. The higher the gas price, the

more incentive miners have to include the transaction in the next block they mine. In

frontrunning, an attacker first observes a victim transaction Tv from the mempool. If

it deems profitable, then they replay the same transaction, but with a higher gas price,

so that the miners include the attack transaction Ta before Tv. Ironically, in context

of opportunistic trading, the attacker not only banks on the victim’s effort of finding a

profitable trade opportunity (which is already hard in the competitive market), but also

robs the victim of their profit.

With the rising popularity of NFTs as an investment vehicle, frontrunning has become

prevalent in the NFT trading as well. Traders frontrun NFT trades to either buy or sell

NFTs depending on the trade actions (Section 4.1) performed by the trades. We identified

the following types of frontrunning attacks in the NFT trading.

Buy–Buy. In this attack, both the victim V and the attacker A are buyers. When A

spots a profitable buy order transaction Tv submitted by V to purchase an NFT N , A

frontruns Tv with another buy order Ta targeting the same NFT. As a result, A acquires

the NFT, while Tv becomes invalid and eventually reverts.

Interestingly, in theory, if A knew beforehand that purchasing N is a worthy investment,

109



Exploiting the Unfair Advantage: Investigating Opportunistic Trading in the NFT Market Chapter 4

then they could probably make the same purchase without even frontrunning V , just

like a regular buyer. However, NFT market is hype-driven, and speculative. Only a few

special-purpose utility NFTs which represent in-game assets, or tickets to access services,

hold intrinsic value. Except those ones, NFT valuation is largely derived from the external

factors like supply and demand, or people’s perception. Seeing the victim V attempting

to purchase an NFT serves as an “endorsement” of public interest, which is probably

what motivates A to frontrun the victim.

Buy–Cancel. In this attack, the victim V is a seller, while the attacker A is a buyer.

When A observes a cancel order transaction Tv to cancel the listing of an NFT submitted

by V , A frontruns Tv with a buy order Ta targeting the same NFT. As a result, A acquires

the NFT, while Tv becomes invalid and eventually reverts.

Typically, this type of frontrunning attack happens when a seller unintentionally lists

an NFT at an exceptionally lucrative price, but then realizes the mistake, and promptly

attempts to cancel the listing to avoid any potential loss. Unfortunately, this very attempt

of the seller to prevent a loss attracts the attention of the attacker to that NFT, which

would otherwise probably remain unnoticed.

Accept bid–Cancel bid. In this attack, the victim V is a buyer, while the attacker A

is a seller. When A observes a cancel bid transaction Tv to cancel a prior bid submitted

by V on an NFT, A frontruns Tv with an accept bid transaction Ta, thus forcing V to

purchase the NFT against their will.

This can occur either due to the buyer’s accidental bid placement, or their subsequent

realization that the deal may not be beneficial. The seller then act quickly to exploit

the situation before the buyer’s bid is canceled, ensuring they do not miss out on the

possibility of a profitable outcome.

Place bid–Accept bid. In this attack, both the victim V and the attacker A are buyers.

When A observes an accept bid transaction Tab from a seller to accept a bid B previously

110



Exploiting the Unfair Advantage: Investigating Opportunistic Trading in the NFT Market Chapter 4

submitted by a potential buyer V , A frontruns Tab with a place bid transaction Ta with a

slightly higher bid amount than B, so that they the NFT is sold to them instead of the

victim.

In certain cases involving popular collections, there have been instances where victim

buyers place extremely low bid B, most likely to try out their luck. Then they patiently

wait for the sellers to accept those bids. On the other hand, the seller gets frustrated

by only receiving low bids, and eventually goes ahead to accept one of these low bids.

An attacker then exploits the situation by frontrunning the accept bid transaction Tab

by placing a slightly higher bid than the existing one. As a consequence, the original

bid is removed from consideration, and the attacker’s bid becomes the most recent one.

Consequently, the seller ends up accepting the bid placed by the attacker instead of the

initial bid B placed by the victim buyer. Note that this attack is only possible if the

marketplace protocol does not include any unique identifier corresponding to the victim

bid B in Tab. Rather, Tab bid-agnostically accepts the highest bid at any point, which is

exploited by the attacker. Unlike other cases where the victim transaction fails as the

side-effect of the frontrun, here it is necessary that both transactions execute successfully

for the attack to work.

Identifying frontrunning attacks. To quantify the prevalence of the frontrunning

attacks presented above, we apply the following set of rules to detect past instances of

successful frontruns.

Let T1, T2 ∈ T be two transactions, such that T1.ts ≤ T2.ts. Then, we say that T1

frontruns T2, if:

Rule 1. They involve the same NFT, and the same marketplace, but come from different

senders. Formally, T1.n = T2.n, and T1.m = T2.m, and T1.s 6= T2.s.

Rule 2. The transactions are “competing” with each other. Either T1 appears before

T2 in the same block, i.e., T1.b = T2.b and T1.ind < T2.ind, or T1 appears in the block
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Acquire
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Buy–Buy 274,129 1,459 53 40,623 3,549
Buy–Cancel 4,640 0 2 7 33
Accept bid–Cancel bid 167 654 3 0 0
Place bid–Accept bid 0 0 200 0 0

Backrunning
Listing–Buy 0 0 130 0 181

Loss minimization
Cancel–Buy 1,396 83 8 356 25

Table 4.1: Frontrunning and backrunning instances found in different marketplaces

immediately before T2, i.e., T2.b = T1.b + 1. In both cases, gas price offered for T1 is

higher than that of T2, i.e., T1gp > T2gp.

Rule 3. The transactions represent appropriate type of trade required by the type of

frontrun in question. For example, if we are looking for a Buy–Cancel frontrun, then

TradeType(T1) = cancel listing and TradeType(T2) = buy.

Rule 4. As discussed earlier, for all types of frontrun categories except the last one

(Place bid–Accept bid), the victim transaction fails, while the attack transaction succeeds.

Therefore, we perform appropriate checks on T1.st and T2.st status values.

Limitations. Our mechanism detects competing transactions by comparing the gas prices

of the victim and attack transactions (Rule 2). In PoS Ethereum, MEV Boost [149]

offers a frontrunning-protection service through private mining. In effect, the users can

now make direct on-chain payments to the validator to incentivize the inclusion of a

transactionin a block, instead of participating in the usual gas-auction. Attackers can use

MEV Boost or similar protocols not only to bypass the mempool, but also to evade
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Figure 4.4: Total number of front-running instances detected per exchange

frontrunning-detection during a post-mortem analysis. Since our detection relies on the

gas prices of the victim and the attack transactions being close to each other, we will fail

to detect frontrunning attempts through such private mining protocols.

Results and observation. We detected 330, 238 front-running instances across 5 differ-

ent NFT marketplaces. OpenSea being the largest marketplace in-terms of transaction

volume, out of 330, 238 instances, 282, 747 instances occurred through OpenSea—which

is around 85%. Also, out of four different types of front-running categories, we found

fbuy buy to be the most prevalent one. Figure 4.4 and Figure 4.5 depict the results of our

findings.

Moreover, our analysis discovered that during this process the total number of NFTs

bought had valuation of around 183M USD. Out of that buyers could sell only 129, 439

NFTs afterwards, and earned a profit of around 89M USD. However, due to the inherent

risk associated with NFT buying and selling, some buyers also incurred a loss 23M USD

when they sold their acquired NFTs afterwards.
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Figure 4.5: Distribution of different types of front-running instances.

Back-running.

In backrunning, the transaction sender A gets their transaction Ta ordered immediately

after a target transaction Tv sent by V . In the same way as frontrunning, backrunning

exploits the knowledge of the pending transactions as well. In this case, the backrunner A

offers slightly lower gas price in Ta than in Tv so that their transaction gets deprioritized

w.r.t.the target transaction during inclusion in the block. Since backrunning does not

actively alter the order of the target transaction, it, alone, is not considered harmful

unless paired with another frontrunning to mount a sandwich attack [32]. We identified

the following type of opportunistic trading that leverages backrunning to acquire an NFT.

Listing–Buy. In this type of trade, the target user V is a seller, and the backrunner

A is a buyer. When V submits a listing transaction Tv for a highly desirable NFT, A

immediately spots this opportunity, and backruns Tv with a buy transaction Ta to acquire

the NFT before others have a chance to do so. In effect, a regular user will not be

able to see the NFT listed in the marketplace, and make an informed purchase decision,
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Table 4.2: Back-running results.

Exchange name Number of instances

CryptoKitties 181
CryptoPunks 130

Table 4.3: Number of back-running instances

since the item already got “sold” before even it became available for the general public.

For the backrunning to be successful, it is crucial that both the seller’s and the buyer’s

transactions get executed successfully.

Cornering.

Cornering is the act of obtaining and holding/owning enough assets, NFTs in this

case, so that the holders can effectively control the market price of the items. In order

to corner the market, the buyers buy a large amount of tokens as soon as a collection

is launched, and hoards them until the appropriate time comes. In the regular money

market, cornering the market is illegal, because it’s completely unfair and manipulative.

In fact, the Securities and Exchange Commission (SEC) usually monitors how many

shares of a specific security are purchased by the same party.

We rely on the transfer logs emitted by the NFT contracts to identify when an NFT

is sold, who the buyer is, and how many NFTs that buyer is holding at that point in time.

Specifically, given a collection, we enumerate the the transfer logs emitted by the collection

contract sequentially, ordered by block, and within each block, ordered by the log index.

This ensures that the temporal relation between any two logs remains intact, i.e., we

process the transfer events chronologically. A transfer log L is of the form {sender,

receiver, tokenId}. When a buyer purchases an NFT, the NFT is transferred to them,

which, in turn, emits a transfer log. While iterating over the logs, we keep track of the
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tokenId s received by the receiver. To understand if a purchase corners the market,

we also need to know how many NFTs of that collection is in circulation at that point.

Therefore, when we see a tokenId that we have not seen before, we consider that as a

minting event, and update (increase) the totalSupply accordingly. A transfer event

decrements and increments the number of tokens held by the sender (seller) as well as

the receiver (buyer) by one, respectively. Each time someone purchases an NFT, we

check what fraction f of the total number of available tokens (totalSupply) they own

at that point. If both f and totalSupply are above some pre-defined threshold, that

indicates that a significant portion of the tokens are under the control of that buyer. We

consider that an instance of market cornering.

4.4 Profit generation

This strategy involves an experienced trader executing trades across different NFT

marketplaces or a combination of NFT marketplaces and NFT/ERC-20 liquidity pools

simultaneously to generate profits within a single transaction. Unlike the Acquire strategy,

this approach focuses on executing transactions only if there is a potential profit remaining

after accounting for transaction fees. It is not unusual for a trader to pay substantial fees

to miners to expedite the trade and capitalize on a profitable opportunity before others

do.

During our analysis, we found two different types of instant profit generation strategies

adopted by the traders as outlined below.

4.4.1 Arbitrage

Arbitrage in crypto trading refers to the practice of taking advantage of price dis-

crepancies for a specific cryptocurrency or asset across different exchanges or markets.
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The goal is to buy the asset at a lower price on one platform and sell it at a higher price

on another, profiting from the price difference. It is important to note that arbitrage

opportunities in crypto trading can be short-lived and highly competitive. Traders often

employ advanced trading algorithms and automated bots to quickly identify and execute

trades, maximizing their chances of profiting from these fleeting opportunities. Arbitrage

is a well-researched area in terms of ERC20 trading, primarily focusing on exchanges

that facilitate the trading of ERC20 tokens or native currencies. The process involves

capitalizing on price discrepancies between these exchanges.

On the other hand, arbitrage in NFTs is a more complex endeavor. It encompasses

various protocols, exchanges, and marketplaces, such as liquidity pools and dedicated

NFT marketplaces. Identifying a profitable arbitrage opportunity in the NFT space can

be challenging. It often requires navigating multiple exchanges, executing different types

of trade actions, and dealing with diverse currencies or tokens. In order to detect possible

NFT arbritaging opportunities, we consider the following set of rules to compute profit

from such a transaction.

Rule 1. For every transaction T , T should involve at-least one NFT sale. We consider

the address that buys an NFT as the address of a potential trader t.

Rule 2. For every transaction T , we compute the amount of incoming and outgoing

tokens (ERC-20 and NFT) and Ethers for each address.

Rule 3. At the end we check, whether t involves both ERC-20 and NFT transfers. If

that satisfies, then we compute the difference of incoming Ethers into the address t and

out of the address t. We denote this as profit p.
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Type Profit (ETH) Profit (NFT)

Arbitrages 4570 -
Non-arbitrages - 2460

Table 4.4: Total profit generated in instant profit generation

4.4.2 Non-arbitrage MEV extraction

In this strategy, the utilization of flash loan pools plays a crucial role. The trader,

referred to as t1, initiates a flash loan transaction, borrowing an amount of p1 ETH. With

the borrowed funds, t1 proceeds to purchase an NFT of type n1. Subsequently, by utilizing

the acquired n1 NFT, t1 is eligible to receive an additional NFT of type n2 as a reward.

After obtaining the reward NFT, t1 executes a sale of the initially purchased n1 NFT.

The proceeds from this sale are then used to repay the borrowed funds obtained through

the flash loan. In summary, this strategy involves the strategic use of a flash loan to

acquire an NFT, which in turn enables the trader to receive a different type of NFT as a

reward. By selling the initially purchased NFT, the trader can generate the necessary

funds to repay the flash loan and complete the transaction.

Our analysis has yielded results showcasing the detection of instant profit generation

strategies, as presented in Table Table 4.4. These strategies have proven to be highly

effective in generating immediate profits for the trader. Specifically, the total profit

accumulated through arbitrage trades amounts to 4, 570 Ether, equivalent to approximately

13.7M USD. Furthermore, our analysis has also identified a significant number of non-

arbitrage transactions where the trader has acquired NFTs as profits. In total, the trader

has gained 2460 NFTs through these transactions.
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Exchange name Number of instances

CryptoKitties 25
CryptoPunks 8
LooksRare 83
OpenSea 1396
X2Y2 356

Table 4.5: Number of cancel buy front-running instances

4.5 Loss minimization

In this particular category, the focus is on how traders employ strategies to minimize

or prevent impending losses. For example in a scenario where a seller, referred to as s1,

unintentionally lists an NFT for sale at a price of p1 ETH. However, the actual average

price for such an NFT is much higher, let’s say p2 ETH. Given the significant price

difference, it becomes evident that buyers will initiate transactions to take advantage

of this highly lucrative opportunity. However, upon realizing the mistake, the seller, s1,

decides to cancel the listing to avoid incurring substantial losses. At this point, s1 observes

that there are already pending transactions from potential buyers looking to acquire the

NFT at this mistakenly listed price. In an effort to minimize the potential loss, s1 employs

a strategy known as front-running, whereby they promptly execute their own transaction

to preemptively outpace and override the pending transactions from other buyers. By

front-running the existing transactions, the seller aims to minimize their potential loss by

preventing the buyers from acquiring the NFT at the mistakenly listed price.

The results of our analysis to detect such front-running instances is shown in Table 4.5.

Our results show that this practice is not uncommon across marketplaces, and quite

intuitively OpenSea has the highest occurrence of such front-running instances.
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4.6 Related work

This work focuses on the opportunistic trading of NFTs. Previous work on the

high-frequency trading in the crypto market and market manipulation are closest to our

research.

High-frequency trading. Arbitrage leverages the price discrepancies between cryp-

tocurrency exchanges, and makes profit by buying cryptocurrency at a lower rate from

one exchange and selling it on another. Unfortunately such opportunities may involve

hundreds of tokens and exchanges, and to make the matter worse, remain open for a

short amount of time. Sophisticated algorithms [120, 35, 121] have been proposed to

exploit such opportunities at scale in real-time. In DeFi lending protocols, liquidation

is equivalent to margin calls [150] in tradition finance. It is the process of selling off

collateralized assets at a discounted price to cover outstanding debts to maintain the

solvency of the protocol. In such protocols, users can borrow funds by locking up their

crypto assets as collateral. However, if the value of the collateral falls below a certain

threshold, or if the borrowed funds cannot be repaid, liquidation is triggered. Liquidation

is open to public, but it is challenging to spot a profitable opportunity. Previous work

has not only thoroughly studied the incentives and risks [151] of participating in this

system, but also discovered that liquidators’ efficiency has improved significantly over

time, with over 70% of liquidable positions getting immediately liquidated. While typical

lending protocols are collateralized, a flashloan is a DeFi lending mechanism that allows

users to borrow funds without providing any collateral. Flashloans are borrowed and

repaid within a single transaction—meaning that borrowers must execute the loan, and

repay it in the same transaction, or the entire transaction is reverted. Since flashloan

provides unconditional access to large funds, Qin et. al. [34] has shown how it can be

leveraged to maximize arbitrage profits. High-frequency trading is even more competi-
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tive due to the presence of frontrunning in Ethereum. Pending transactions and their

gas bids are visible in the mempool. An attacker can be outsmarted by a frontrunner

who can replay the original transaction with a higher gas price to get their transaction

mined early and pocket the profit [30]. FlashBoys [31] has demonstrated that arbitrage

bots often engage in a reactive bidding against each other until the system attains an

equilibrium. A2MM [124] proposes a DEX design that mitigates the risk of predatory

frontrunning attacks. Sandwich attacks, as the name suggests, is about extracting value

from a victim transaction by both frontrunning and backrunning it at the same time.

Quite shockingly, such attacks have been shown [32] to generate a daily revenue of over

several thousand US dollars just from Uniswap, a popular DEX. Blockchain extractable

value (BEV) is an umbrella term that refers to all those different ways, such as sandwich,

liquidation, and arbitrage, to make illicit or harmful profits from the blockchain. A body

of work [33, 122, 123] has studied the prevalence of such trades, their impact, and the

revenue they generate in depth.

Existing work focuses on native cryptocurrency and ERC-20 token markets. To our

knowledge, we are the first to explore the presence of similar opportunistic trades in the

NFT space, which brings unique challenges associated to speculative pricing, diverse trade

actions, and real-time detection of profitability. In this work, not only do we show how

some of the trades we have seen before are manifested differently in the NFT market, but

also we uncover instances of NFT-specific, novel opportunistic trading techniques.

Manipulation of token markets. An NFT rug pull refers to a fraudulent practice

where the creator or seller of an NFT abruptly abandons the project, leaving investors

with worthless or significantly devalued tokens. Previous work has shown the prevalence

of rug pulls [125, 126, 127], and proposed models for detection based on early symptoms.

Analysis models [128, 129, 130, 131] have been proposed to detect ponzi schemes, which is

is a fraudulent investment scheme where the operator promises high and consistent returns
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to participants by using funds from new investors to pay returns to earlier investors.

Pump-and-dump [132, 133, 134] is a manipulative practice, where attackers artificially

inflate the price of a particular cryptocurrency (pump), and then quickly sell off their

holdings at the inflated price (dump), leaving other investors with significant losses. Other

forms of market manipulations, like, wash trading, shill bidding, and bid shielding have

also heavily been researched [135, 136, 137, 138, 139, 140, 141].

4.7 Conclusion

In this chapter, we shed light on the evolving landscape of cryptocurrency (CC) trading

with respect to fungible/non-fungible tokens (NFTs). While the financial ecosystem built

on blockchain technology is expected to be fair for all participants, the reality is that

sophisticated actors leverage their domain knowledge and market inefficiencies to gain

strategic advantages, often extracting value from trades that are not accessible to others.

The under-regulated nature of the cryptocurrency market exacerbates these issues, further

amplifying concerns related to fairness and transparency. While previous research has

explored various aspects of unfairness in CC trading, the economic intricacies of NFT

trades remain largely unexplored, making this study particularly significant. The findings

reveal several noteworthy observations. Firstly, sophisticated actors employ automated,

high-frequency NFT trading strategies, often exhibiting malicious, illicit, or unfair behavior.

Secondly, many strategies applicable to traditional CC or fungible token trading also apply

to NFTs. Lastly, the unique nature of the NFT market creates specific opportunities for

threat actors to exploit. In conclusion, this study contributes to the growing body of

knowledge on CC trading by examining the dynamics of the NFT market and highlighting

the presence of unfair practices.
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Chapter 5

Conclusion and future research

In this dissertation, we presented novel approaches to study the security and usability issues

of event-driven applications with respect to different types of event-driven applications,

such as, Android apps, smart contract, etc.

In particular, we proposed Columbus, a callback-driven Android app testing technique

that improves over the state-of-the-art in three aspects: (i) systematically identifying the

callbacks present in an app, (ii) inferring coverage maximizing primitive arguments, while

generating object arguments in an Android API-agnostic manner, and (iii) providing

data dependency and crash-guidance as ‘feedback’ to increase the probability of triggering

uninitialized data related crashes, and preventing the tool from rediscovering the same

bugs, respectively. In our evaluation, Columbus outperformed state-of-the-art model-

driven, checkpoint-based, and callback-driven testing tools both in terms of crashes and

coverage.

Next, we propose Sailfish, a scalable hybrid tool for automatically identifying SI

bugs in smart contracts. Sailfish leverages lightweight exploration phase followed by

symbolic evaluation aided by our novel VSA. On the Etherscan dataset, Sailfish

significantly outperforms state of the art analyzers in terms of precision, and performance,
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identifying 47 previously unknown vulnerable (and exploitable) contracts.

Also, we analyze how sophisticated actors employ automated, high-frequency NFT

trading strategies, often exhibiting malicious, illicit, or unfair behavior. Many strategies

applicable to traditional cryptocurrency or fungible token trading also apply to NFTs.

The nature of the NFT market creates unique opportunities for threat actors. Building

upon these insights, we delve into three broad classes of ”opportunistic” trading strategies:

acquire (buy-and-hold), instant profit generation, and loss minimization. By studying and

understanding these trading strategies, we contribute to shedding light on the dynamics

and challenges within the NFT market. It emphasizes the need for further exploration,

regulation, and measures to promote fairness and integrity in NFT trading.

Lastly, this thesis serves as a valuable foundation for future research directions in

the field. The following areas can be explored to further advance the understanding and

improvement of security and usability in event-driven applications.

A promising research direction involves improving Sailfish’s symbolic execution

engine to handle live transactions. This includes devising methods to handle dynamic

data and interactions in real-time, ensuring compatibility with dynamic transactions,

and addressing scalability concerns to enable symbolic execution on live blockchain

transactions.

Another research opportunity lies in enhancing the object argument generation module

of Columbus. This entails improving the initialization of nested object arguments,

resulting in increased precision and reduced false positives. Research efforts can focus on

tackling the complexities associated with object structures and enhancing the accuracy of

identifying coverage-maximizing primitive arguments while generating object arguments

in an Android API-agnostic manner.

By pursuing these research directions, further advancements can be made in the fields

of security and usability in event-driven applications.
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[41] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, Time-travel testing of
android apps, in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pp. 481–492, IEEE, 2020.

[42] J. Palsberg and M. I. Schwartzbach, Object-oriented type inference, in Conference
on Object-Oriented Programming Systems, Languages, and Applications, 1991.
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