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HORTON‘S LAW OF STREAM NUMBERS 
FOR TOPOLOGICALLY RANDOM CHANNEL NETWORKS 

CHRISTIAN WERNER 

University of California, Irvine 

ACCORDING to Horton’s law of stream numbers, the bifurcation ratio in a drainage 
network is fairly constant with an average value between 3.5 and 4, so that the stream 
numbers tend to form a geometric progression. This paper investigates drainage net- 
works whose structure is controlled by chance only. The mathematical analysis shows 
that the expected stream numbers also approach a geometric progression, and that 
the corresponding bifurcation ratios approximate the value 3.6  18. 

INTRODUCTION 

A scientific investigation of real world phenomena usually concentrates on selected 
properties and disregards all others. An example is the sequential pattern of merg- 
ing rivers in a drainage network. The apparent hierarchy of their mergers can be 
studied disregarding all other components (topography, hydrology, morphometry). 
What remains is the information regarding the number of tributaries the system 
contains, and how they are interconnected, i.e., the topological structure of the net- 
work. This structure is the subject of Horton’s famous law. To understand its content, 
a few network parameters have to be defined. 

Since the original concept of stream order introduced by Horton (1945, p. 281) 
still contains a geometrical element (angles), the refined version of Strahler (1952, 
p. 1120) will be used here. The stream segments starting from a source are called 
streams of first order, and the stream segments starting from the confluence of two 
streams of ith order are called streams of order i + 1 .  The end of each stream is 
defined as the point where a higher-order stream starts. The bifurcation ratio of 
streams of order m is defined as the ratio between the number of streams (stream 
numbers) of order m and the number of order m + 1 .  An example is shown in 
Figure 1. 

To avoid the problem of ambiguity, only rivers with a “mature” topography will 
be considered here; i.e., rivers with lakes and islands are excluded. We further assume 
that no more than two rivers merge in one point. 

1 

FIGURE 1. Stream orders in a river net- 
work (after Strahler, 1952). 
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FIGURE 2. The set of topologically different channel networks having four sources. 

According to Horton (1945, p. 291), “the numbers of streams of different orders 
in a given drainage basin tend to closely approximate an inverse geometric series in 
which the first term is unity and the ratio is the bifurcation ratio.” This “Law of 
Stream Numbers,” which describes an observed regularity in nature but does not 
explain it, has been reaffirmed in many surveys. But empirical investigations have 
failed to produce a satisfactory explanation for the “law,” nor have they been able 
to establish any major correlation between the variation of topological network 
measures (magnitude, order, bifurcation ratio of streams) and geomorphic or hydro- 
logic variables by statistical analysis’ (Shreve 1966, p. 18). Scheidegger (1968) has 
reviewed the various attempts to establish a rational explanation for the Horton law. 
Most recently, Woldenberg (1969) has tried to derive it from the premise that the set 
of basin areas in a drainage system somehow corresponds to a hierarchy of nesting 
hexagons. But, aside from the speculative nature of his assumptions and subsequent 
reasoning, his method permits the generation of such a vast number of numerical 
sequences that a “good fit” can easily be found for almost any geometric progression. 

The low correlation between observed bifurcation ratios and environmental 
variables lends itself to the hypothesis that the topological patterns of natural channel 
networks are the result of a random process, or that these networks are a random 
sample from the population of all possible network configurations, at least with 
regard to their topological structure. A general definition and test of topological 
randomness in line patterns have been suggested by the author (Werner, 1969b). By 
means of computer simulation Shreve (1966) and later Scheidegger (1967) and Liao 
and Scheidegger (1 968) have studied large numbers of theoretically possible network 
configurations, and a statistical comparison with the empirically observed network 
patterns produced encouraging results. Shreve (1967) and Smart (1968) proceeded to 
calculate the parameters of the theoretical network distribution. Their deductions are 
based on the assumption that all channel networks having the same number of sources 
occur with equal likelihood. Although this seems to be an intuitively appealing 
approach, it bears implications which might be difficult to accept, if the final goal 
is to simulate a drainage pattern under random conditions. To demonstrate this 
point a single example is sufficient. Given four sources producing a single drainage 
network, all five configurations shown in Figure 2 would have the same chance to 
occur. Consequently, the merger of the first-order streams B and c would be twice 
as probable as any of the other three alternatives (A + B / c + D / A + B and c + D). 
In contrast, this paper assumes that all possible mergers among streams of the same 
order have the same probability of occurrence. Hence, “topologically random 

‘Statistically significant dependences have, however, been established between morphornefric and 
geologic/hydrologic variables. See, for example, Morisawa (1962). 
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channel networks” will be defined here as networks in which the mergers among 
streams of equal order are controlled by chance only; all other mergers are disre- 
garded.’ It is the purpose of this paper to  derive general expressions and numerical 
values for the expected stream numbers and bifurcation ratios of channel networks, 
which are topologically random in the predefined sense, and to  test them against 
empirical observations. 

COMBlNATORIAL ANALYSlS OF STREAM NUMBERS UNDER RANDOM CONDlTlONS 

Assume that there are n streams of order m in a given channel network. The number 
of streams of order m + 1 in the same network is equal to the number i of mergers 
of streams of order m. The following theorems determine the number of ways in 
which n streams of order m can produce i streams of order m + I ,  and, based on the 
resulting frequency distribution, the expected value of i, En, assuming that all possible 
patterns are equally probable. The expected bifurcation ratio is then immediately 
obtained as the ratio of the numbers of streams of mth and of (rn + 1)th order, 
i.e., nlE,. 

Channel networks are only one example of a wide variety of phenomena resulting 
from or represented by binary branching processes. The formal structure they share 
in common is one of the subjects of graph theory and set theory. The theorems will 
therefore be stated in general mathematical terms before they are applied to the specific 
case of channel networks. 

THEOREM I :3 Let S be an ordered set of n elements. The number P(i, n)  of different ways 
in which one can select i mutually exclusive pairs (1 5 i i n/2) of adjacent elements 
from S is given by 

1 I i 5 n/2. 

COROLLARY: The number S,, of different ways in which mutually exclusive pairs of 
adjacent elements can be selected from a given sequence of n elements is 

s,= i =  c 1 ( “ T i ) .  

THEOREM 1 1 : ~  The integers S,, + 1 = F,,, n = 0, 1 ,  2, ..., are the Fibonacci  number^.^ 
ZObviously, this definition focuses on Horton’s law and is insufficient for topological network 

problems in general. 
3Although there are many related binomial identities I have been unable to locate this theorem in 

the literature. A proof is given in the Appendix. My attention has been drawn to a similar lemma by 
Kaplansky (Ryser, 1963, p. 33), from which Theorem I could be derived: Let f ( n ,  k) denote the 
number of ways of selecting k objects, no two consecutive, from n objects arranged in a row. Then 

f ( n ,  k )  = (” - + ’). 
4I am grateful to the reviewer who identified this theorem as a special case of a generalized relation- 

ship reported by Riordan (1968, p. 89): 

where f n ( k )  is the kth convolved Fibonacci number. In our case k = 1. 

F.-I + Fn--2 (hence, Fz = 2, F, = 3, F4 = 5 ,  Fs = 8, etc.). See, for example, Hall (1967, p. 26). 
’The Fibonacci numbers F,, are defined by Fo = 1, Fl = 1, and the recursion formula F,, = 
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A short proof of Theorems 1 and 2 is given in the Appendix. 
Assume that all possible combinations in which mutually exclusive pairs (at least 

one) can be selected from a given sequence of n elements are equivalent (equally 
"likely"). Then the number i of pairs can be interpreted as a random variable, and 
the expected value of i, En, is given by 

(3) 
E,, = c i(" T '),/x (" T i, = Sn* --. 

i = l  i =  1 Sn 

To determine the value of Sn* we prove the following recursion formula: 

LEMMA 1: s,,* = s,,-,* + s,,-,* + Fn+, where n 2 2. 
PROOF : 

= '2' - - i) + "i2 i((" - - i )  
i =  1 i =  1 

+ y ('" - - i )  + 1* 
i =  1 

Lemma 1 allows the calculation of Sn* explicitly in terms of the Fibonacci numbers 
F,  : 

( 5 )  
PROOF by induction. 

(a) For n = 2, 

LEMMA 2: 
S,* = f{(n - l)Fn + (n + l)Fn-z}, n 2 2. 

2 

i =  1 
s,* =, c i(' T i, = 1, 

and 
Sz* = *(Fz + 3Fo) = +(2 + 3) = 1 .  

(b) Applying the recursion formula for Fibonacci numbers repeatedly to Lemma 1 
we obtain by induction: 

S,* = f ( ( n  - 2)Fn-, + (n + 2)F,-z + (n - l)Fn-2 + F n - 3 }  

= f { ( n  - 2)Fn-, + (2n)F,,-, + Fn-l} 

= +{(n - l)Fn + (n + l)Fn-2}, 
which proves the lemma. 

THEOREM IN: The expected number En of (mutually exclusive) pairs of adjacent elements 
selected from a given sequence of n elements is given by 

(n - l )Fn + ( n  + l)Fn-2 
5(F, - 1) 

I 

E n  = 
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For large n, 

(7) 
2 

E,, x ~ ( n  - $) = 0.2764n - 0.1236. 
J 5  + 5 

PROOF: The first part of the theorem follows directly from equation (3), Theorem 11, 

and Lemma 2. The second part can be shown by using the explicit representation of 
the Fibonacci numbers (see, for example, Hall, 1967, p. 23): 

(8 )  
where 

F,, = (1/J5)(al"+' + aZn+'), 

a, = +(I + 4 5 )  and a2 = +(I - J5) .  

For large n the expression in ctz approaches zero. Hence 

( n  - l)Fn i- ( n  + l)Fn-z n - 1 n + 1 x - + 7  
5 5% 

En x 
5Fn 

(9) 

n 1 2 2 - 
a5 - 501, - F 5  It - 5 + 5J5 

which proves the theorem. 

With the last findings we are now prepared to state the main result of this paper. 

THEOREM IV (Horton's Law of Stream Numbers for Random Channel Networks): 
Assume that in the development of a channel network all possible mergers among 
streams of equal order have the same chance of occurring; hence, the final outcome is 
the result of a random process. Let n be the number of streams of order m. Then: 

1. The expected value R, of the bifurcation ratio for streams of order m and m + 1 is 

n n*5(F,, - 1) 
E,, 

R = - =  
( n  - 1)F, + ( n  + l)Fn-z ' m 

2. For large n, 

n(5 + 54.5) 
R ,  x 

2(nJ5 - 1) * 

3. With n approaching infinity, the value of the expected bifurcation ratio becomes 

R, = t (J5 + 5) = 3.618 

and with decreasing order m the number of streams in the network will approach a 
geometrical progression with constant factor R = 3.618. 

PROOF: The first and second parts of the theorem follow directly from Theorem III 
and the definition of the bifurcation ratio. The limit in the third part is easily obtained 
by making use of equation ( 8 ) :  

= + 2 = 3.618. 



62 THE CANADIAN GEOGRAPHER 

3 . 8  

3.6 

3 . 4  

3 . 2  

3 . 0  

2 . 8  

2 . 6  

2 . 4  

2 . 2  

2.0 

L 

0‘ 
I 
I 

,‘ R = f(n) 
I 

P 
‘ 

I 
0 
I 

I 
1 

I 

I 
I 

I 

0 

t n  
2 4 6  8 1 0  15 20 2 5  30  3s 40 

FIGURE 3. The bifurcation ratio R as a function of stream number n (n = number 
of streams of equal order). 

COMMENTS AND CONCLUSIONS 

(a) As one would expect intuitively, the bifurcation ratio depends only on the 

(b) As is evident from Figure 3, the bifurcation ratio approaches its limiting value 

(c) The curve in Figure 3 can be used to calculate the expected sequence of the 

number n of streams of a given order involved, not on the order itself. 

R = 3.618 quite rapidly with growing number of streams. 

numbers of streams with equal order: 

Stream order m m-1 m-2 m-3 m-4 m--5 m-6 m-7 ... 
Expected number 

of streams 1 3 11.2 41 .1  149.1 539.8 1953.3 7067.5 ... 
The numbers in this table have been calculated “upstream,” starting with one single 
stream of the highest order m. One can, of course, start with any number IZ of first- 
order streams and calculate the expected figures for the higher orders by using the 
first equation in  Theorem IV. 

(d) It has been observed repeatedly that real world channel networks show a 
systematic deviation from Horton’s law, in that the bifurcation ratios for their highest 
stream orders tend to be distinctively lower than those for all other orders. Figure 3 
shows that the same statement holds for the expected bifurcation ratios in topologi- 
cally random channel networks. This congruence of theory and empirical observation 
obviously provides strong support for the hypothesis that randomness is often the 
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FIGURE 4. Expected values (dashed line) and observed distribution of stream numbers. 

main “force” in the topological design of natural channel networks. At least in 
topologically random channel networks, a second deviation of the stream numbers 
from a strict geometric progression has to be expected. This deviation is positive; 
it starts with that stream order for which there are at least n = 7 streams, and has 
its maximum for n = 10 or 11 (see Fig. 3). But in view of the smallness of the deviation 
this result is probably of theoretical interest only. 

(e) There is further support for the hypothesis that the natural channel networks 
can be considered to be at  least partially the result of a random process. The expected 
value of the bifurcation ratio - i.e., the average for all mathematically possible 
combinations - approaches 3.61 8. The empirically observed average varies between 
3.5 and 4, depending on the sample taken (Leopold et al., 1964, p. 138; Strahler, 
1957, p. 914). Figure 4 shows the expected stream numbers of order j  plotted against 
the expected stream numbers of order j  - 1 (dashed line), together with a pattern of 
observed values. (For example, the Strahler stream numbers of Home Creek, eastern 
Ohio, are 70, 17, 6, 2, 1. In Figure 4 these values are represented by the four points 
with coordinates (70, 17), (17, 6), (6, 2), (2, l).) Points with equal coordinates have 
been plotted in adjacent positions so as to keep the ratio of the coordinates unchanged. 
Data are from Horton (1945, pp. 288, 290, 297, 302,303, 306), Schumm (1956, p. 606), 



64 LE GBOGRAPHE CANADIEN 

Smith (1958, p. 1003), and Morisawa (1962, pp. 1036-7). These data do not constitute 
a random sample and could therefore not be analysed by inferential statistics. 

APPENDIX 

Proof of Theorem I (by induction) 
1. The theorem can easily be verified for n = 2 and i = I .  
2. Since equation (1) is a function in two variables, the second part of the induction 

will have to treat both i and n independently. 
(a) Assume that (1) holds for P(i, m),  where m < n. Let S = {Pl, . . . , p , }  be a 

sequence of n elements and i the number of (mutually exclusive) pairs of adjacent 
elements to be selected from S. The set of all possible combinations in which this 
can be done can be subdivided into the cases where P, forms a pair with Pn- l ,  and 
all other cases. According to the principle of induction, the first subset consists of 

combinations, and the second of 

('" - - i> 
P(i, n - 1) = 

combinations. Hence, 

(10) P(i,  n) = P(i - 1, n - 2) + P(i,  n - 1) 

= (" - i - 1) + (" - j - 1) = ; i) i - 1  

(b) Assume that (1) holds for P(j,n),  where j < i. Let S = { P I ,  ..., P,} be a 
sequence of n elements and i be the number of pairs of adjacent elements to be selected 
from S. Let K be the set of all possible combinations in which this selection can be 
done. K can be decomposed into classes c k ,  where C, consists of all combinations 
in which the pair farthest to the left is formed by the elements Pk, Pkfl .  Obviously, 
the classification is exhaustive and exclusive. The number of combinations which 
constitute the class C, is 

where k 5 n - 2 i  + 1. 
Consequently, the number of combinations in all classes is given by 

n-?+l (,, i n - - 2 i + l  ( n  - k - i)! 
(12) P(i, !Z) = ) =  k = l  c ( i  - I)! (n - k - 2Z + I)! h =  1 

n - - 2 i + t  ( n  - i - k + l)! - ( n  - i - k ) !  ( n  - 2i - k + 1) 
. _ _ _ _ ~ _ _ _ _  = c  k =  1 i! ( n  - 2i  - k + I)! 
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1.e. 

P( i ,n )  = (” ; i )  - ( i - 1  ) .  
Since the last of the two binomial coefficients is zero, the proof is completed. 

Proof of Theorem II (by induction) 

(a) Since (“ i, is defined as zero for n = 0, 1 and is 1 and 2 respectively for 
i =  1 

n = 2 and 3, then F,, = S,, + 1 for values of IZ from 0 to 3. 

(b) . ,  

(14) S ,  + 1 = i =  C 1 (” ; i, + 1 = (” - ; - 1 )  + iil (” ;: ; 1) + 1. 

Since all terms are zero for i > (n - 1)/2 in the first sum and for i > n/2 in the 

second sum on the right side of (14), and since 0 ’> = 1,  we have 

= ( & - I  + 1) + (Sn-2 + l ) ,  

which proves the theorem. 
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