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ABSTRACT: Temporal proteomics data sets are often con-
founded by the challenges of missing values. These missing data
points, in a time-series context, can lead to fluctuations in
measurements or the omission of critical events, thus hindering the
ability to fully comprehend the underlying biomedical processes.
We introduce a Data Multiple Imputation (DMI) pipeline
designed to address this challenge in temporal data set turnover
rate quantifications, enabling robust downstream analysis to gain
novel discoveries. To demonstrate its utility and generalizability,
we applied this pipeline to two use cases: a murine cardiac
temporal proteomics data set and a human plasma temporal
proteomics data set, both aimed at examining protein turnover rates. This DMI pipeline significantly enhanced the detection of
protein turnover rate in both data sets, and furthermore, the imputed data sets captured new representation of proteins, leading to an
augmented view of biological pathways, protein complex dynamics, as well as biomarker−disease associations. Importantly, DMI
exhibited superior performance in benchmark data sets compared to single imputation methods (DSI). In summary, we have
demonstrated that this DMI pipeline is effective at overcoming challenges introduced by missing values in temporal proteome
dynamics studies.
KEYWORDS: data imputation, multiple imputation, protein turnover rate, longitudinal data

■ INTRODUCTION
Missing values, absence of observations for one or more
variables in the data set, is a common challenge across a wide
range of biomedical data sets,1−4 including proteomics data
sets.5,6 Missing values can adversely impact data quality,
subsequent downstream analysis and/or modeling, resulting in
biased outcomes, and incomplete conclusions.7 Overcoming
missing data points is essential for rendering a data set to be
“AI-ready”, which refers to the data operations performed to
meet the requirements of AI models.8 To appropriately address
missing values, it is necessary to explore the factors
contributing to them, including the conditions under which
data sets were collected (e.g., experimental equipment2,9,10). In
particular, missing values in temporal data sets, i.e., data sets
with repeated measurements at multiple time points are further
complicated by (1) the continuity of time series data, which
might be hampered due to the proportion of missing values;
and (2) any intrinsic temporal patterns, which are yet to be
revealed. Ostensibly, addressing these complexities in temporal
data sets requires context specific solutions.

The advancement of proteomics technologies, e.g., tandem
mass spectrometry (MS),11,12 has rendered proteome-wide
examinations and measurements of protein dynamics feasible
with unprecedented detail.13,14 Despite significant advance-

ments in technology, MS-based proteomics often grapples with
the issue of missing values. Missing values in proteomics can
arise from a variety of factors, including peptide abundances
that fall below the detection limit, error from laboratory
preparation or instrumentation and/or data processing.15,16

When/if a significant portion of peptide data are absent, the
subsequent quantification of protein expressions as well as
measurements of protein turnover rates will be affected.17

Accordingly, missing turnover rates and inaccurate turnover
rate estimation may occur with incomplete time series when
the number of peptides quantified across time points is
insufficient for model fitting. This issue introduces biases in
subsequent analyses, thus hindering biological discovery and
understanding.5,6,18 Seminal works have been implemented to
tackle these issues in protein expression data,2,5,6,19−23 whereas
effective approaches specifically addressing missing values in
the context of temporal dynamics profiling are lacking.

Received: April 9, 2024
Revised: July 21, 2024
Accepted: July 29, 2024
Published: August 27, 2024

Technical Notepubs.acs.org/jpr

© 2024 The Authors. Published by
American Chemical Society

4151
https://doi.org/10.1021/acs.jproteome.4c00263

J. Proteome Res. 2024, 23, 4151−4162

This article is licensed under CC-BY 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yu+Yan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Baradwaj+Simha+Sankar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bilal+Mirza"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dominic+C.+M.+Ng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+R.+Pelletier"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarah+D.+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sarah+D.+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karol+Watson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ding+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peipei+Ping"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jproteome.4c00263&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00263?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00263?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00263?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00263?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00263?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jprobs/23/9?ref=pdf
https://pubs.acs.org/toc/jprobs/23/9?ref=pdf
https://pubs.acs.org/toc/jprobs/23/9?ref=pdf
https://pubs.acs.org/toc/jprobs/23/9?ref=pdf
pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jproteome.4c00263?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jpr?ref=pdf
https://pubs.acs.org/jpr?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Accurate estimation of protein turnover rate is contingent
upon a complete time-series data set and is more vulnerable to
missing values.24,25

Generally, data imputation methods can be classified into
single- and multiple imputation approaches. Most imputation
methods applied in proteomics are single imputation
techniques, where each missing value is filled by one imputed
value.2,5,6 Although single-imputation approaches are widely

adopted, estimates from single imputation are treated as
observed values, making them indistinguishable in downstream
analyses. Single imputation falls short of capturing the
uncertainty associated with missing values, often resulting in
unrealistically narrow standard errors.26 In contrast, Data
Multiple Imputation (DMI) methods address these challenges
and have been applied on nontemporal proteomics data set.23

DMI generates multiple imputations for each missing value,

Figure 1. Data imputation workflows. (A) Data Single Imputation (DSI) and Data Multiple Imputation (DMI). In the DSI approach, each missing
value (white cell) in the incomplete data matrix is replaced with a single estimate (yellow cells). Imputed values are treated as observed values in
the imputed data matrix for downstream analysis. In the DMI approach, multiple values are imputed for each missing value in the incomplete data
matrix. Consequently, there are multiple imputed data matrices with the same observed values but different imputed values (green cells). Analysis
of each imputed data matrix is performed separately, and the final estimates are obtained by pooling the results from multiple analyses. (B) DMI for
missing values in Proteome turnover Data set. The DMI pipeline computed protein turnovers from an incomplete temporal data set (peptide
isotope intensities). As data preprocessing, we included peptides detected at ≥2 time points. The missing values were imputed using Fully
Conditional Specification (FCS). DMI generated 10 imputed data sets in which peptide isotope intensity values are imputed at each of the time
points (t1 − tn) when/if the data was missing. Each data set has the same observed values but slightly different imputed values. Kinetic analysis25

was performed on each imputed data set independently, and the protein turnover rates were obtained by averaging the results of multiple analyses.
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allowing for the aggregation of these imputations to derive a
final imputed value. DMI considers variability across imputed
data sets, thereby reflecting the inherent uncertainty in missing
values, an aspect not addressed by single imputation methods.
Moreover, DMI methods can be seamlessly integrated with
downstream analysis. For example, for protein turnover rate
estimation, imputed values will not be distinguished from
observed values, leading to potential overreliance on the
imputed data and skewing estimates. DMI imputes multiple
values for the same missing values via sampling from posterior
distributions of the parameters, better capturing the
uncertainty during the process. Then the protein turnover
rate can be inferred from each imputed data set individually
and then pooled to derive final parameter estimates, therefore
better addressing the potential variation from the imputation.
In addition, DMI utilizes time series from other peptides to
capture the potential temporal dependency via Fully Condi-
tional Specification (FCS).27 Therefore, the DMI integrated
workflow takes into consideration temporal dependencies,
uncertainties at single time point, as well as time series levels to
address the multilevel challenges introduced by missing data in
temporal proteomics studies.

We have developed a DMI pipeline to effectively address
missing values in estimating protein turnover rates from time
series proteomics data. Our workflow (Figure 1B) showcased
its effectiveness and generalizability on a cardiac temporal
proteomics data set from mice and a temporal plasma
proteomics data set from humans.

■ EXPERIMENTAL PROCEDURE

Data Sets
Murine Data Set. A temporal proteomics data set

characterizing large-scale cardiac protein turnovers across
multiple mouse strains.28 To summarize, this study is divided
into two groups: Isoproterenol (ISO) treated mice and
Controlled (Ctrl) mice were metabolically labeled with
deuterium water. Within each group, six mouse strains were
used: A/J, BALB/cJ, C57BL/6J, CE/J, DBA/2J, and FVB/NJ.
From each experimental group, two mice were euthanized on
each day: 0, 1, 3, 5, 7, 10, and 14 to collect heart and plasma
samples. In the cardiac hypertrophy groups, surgical implanted
subcutaneous micro-osmotic pumps (Alzet) were calibrated to
deliver 15 mg·kg−1·d−1 of isoproterenol over 14 days.

Human Data Set. A human temporal proteomics data set
that performed high-throughput quantification of protein
turnover in ten human subjects.29 This proteomics data was
acquired from healthy human plasma samples collected at ten
defined intervals: days 0, 1, 2, 4, 5, 8, 9, 10, 12, and 14.

The peptide samples from both data sets were analyzed by
liquid chromatography-tandem mass spectrometry (LC-MS/
MS) to discern peptide abundance, isotope incorporation, and
sequences. Protein turnover kinetics and estimated fitting
errors were analyzed through “Proturn”.30 Additional details of
the data set can be found in previous publications.24,25

Construction of the Data Multiple Imputation (DMI)
Pipeline
We incorporated FCS in our pipeline using the R package
“MICE”.31 We formatted the data from both data sets as a
proteome-wide time series of A0 (the fraction of the zeroth
isotopomer of a peptide isotope envelope, which is used to
estimate the protein turnover rate). For the murine data set,
this was done for each mouse strain in each condition (ISO/

CTRL), and for the human data set, for each healthy subject.
Missing A0 values at any given time point were imputed based
on the remaining time points.26 If multiple A0s from different
peptides in the same proteins exist, the median of the A0s was
used. The imputation was performed on the peptides that have
at least two observed time points; this is not to be confused
with the requirement of four time points to perform the
turnover rate estimation. We used FCS to reproduce the
correlations over time and set the number of imputed data sets,
m, to 10. Subsequently, we performed half-life computation
with “Proturn” on the 10 resulting data sets separately, with
identical settings. For any given protein, the final turnover rate
constant k is the average rate constant estimated from 10 runs
of half-life analyses. This process is repeated for each of the 12
samples, i.e., 6 samples under both ISO-treated and CTRL
conditions, in the murine data set and for each of the 10
healthy subjects in the human data set. Compared to previous
work, this pipeline is flexible to accommodate other types of
DMI techniques and larger m, and provides a platform for
comparing different approaches for missing data.
“Proturn” for Computing Protein Turnover Rates

“Proturn” was used to calculate protein turnover kinetics and
estimated fitting errors as previously described.30,32 “Proturn”
automatically retrieved identified peptides that were uniquely
assigned to proteins for the area integration. The “Proturn”
parameters were set as follows: area-under-curve integration
width: 60 ppm, extracted ion chromatogram smoothing:
Savitzky−Golay filter over 7 data points. To further control
against peptide false positive identifications, only peptides that
were explicitly identified (1% FDR) and integrated in ≥4 time
points were accepted for the calculation of protein abundance
and turnover.
Evaluation Framework for Missing Data Imputation

To simulate missing data scenarios, we first retrieved peptides
from the murine cardiac temporal proteomics data set that
contained a complete time series in A0 with no missing values,
such that we can ensure that the turnover rate is estimated
without missing values and can serve as a ground truth for
evaluating the imputation methods. To simulate the different
levels of missingness, we create five masked data sets where 1
up to 5 time points out of the complete 7 time points were
randomly masked. On each of these masked data sets, we
applied three imputation methods: (1) DMI; (2) Single
imputation with mean; and (3) Single imputation with k-
nearest neighbor (KNN) using 30 neighbors. Each masked
data set that underwent the Data Single Imputation (DSI)
workflow produced one imputed data set. Each masked data
set that underwent the DMI workflow produced 10 imputed
data sets for each of the masked configurations. Subsequently,
we conducted kinetic analysis to quantify the turnover rates on
each masked data set for each imputation method
independently. The accuracy of the imputation methods was
quantified using the normalized root-mean-square error
(NRMSE)22 comparing the actual values versus the imputed
values for A0 and turnover rates.
Impact of DMI on Biomedical Insights

Summary of Number of Samples Available for
Turnover Calculation with a Barplot. For each time series
of a specific protein from different experimental conditions (6
strains × 2 treatments = 12 conditions), the number of
nonmissing data points were counted (ranging from 0 to 7) by
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picking the peptide with the least missing values in the time
series. The counts from different experimental conditions for
the same protein are then aggregated to yield the total number
of observations and the number of missing observations
imputed for that protein. Proteins are sorted by the number of
observations in the barplot. The barplot showing the numbers
of proteins recovered by DMI under different conditions
follows the same procedure.

Protein Expression Comparison on Proteins Quantifi-
able with or without DMI. Violin plots compare the
abundance value (normalized spectral abundance factor,
NSAF) and turnover rates between proteins only quantifiable
by DMI and those quantifiable without DMI. The area of each
violin is adjusted to reflect the number of proteins. A two-
sample two-sided Wilcoxon test is performed, and the p-value
is shown in the figure. The Wilcoxon test is performed in R
using wilcox.test.

Figure 2. DMI improves coverage of the proteome turnover rates. Supporting evidence from two independent data sets are presented here. (A)
The mouse data set contains 84 samples (6 strains × 2 treatments × 7 time points). The individual proteins are represented in the x-axis in
decreasing order of samples, where their turnover rates were quantifiable without (blue) DMI and with DMI (red). Without DMI, the turnover rate
of 3,214 proteins (in dark blue) were quantified. With DMI, the turnover rates of 1,236 (38%) additional individual proteins were quantified (in
light blue), capturing a total of 4,450 protein turnover rates. Only a small fraction of samples (in gray, 2,907 proteins) did not satisfy our minimum
requirement for imputation. (B) The human plasma data set consists of 100 samples (10 subjects × 10 time points). Similarly, without DMI, the
turnover rates of 515 proteins (in dark blue) were quantified. With DMI, the turnover rate of 405 (78%) additional individual proteins were
quantified (in light blue), capturing a total of 920 protein turnover rates.
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Reactome Pathway Enrichment Analysis. Reactome
database was used to analyze the biological processes
associated with the identified proteins, including those

recovered through imputation methods.33 We performed
Reactome Pathway enrichment analysis with the following
settings: Mus musculus genes as the reference list; biological

Figure 3. Impact of DMI on protein expression and turnover rate. (A) Violin plot shows the protein relative abundance of those with DMI
(orange) and those without (blue), indicating that DMI has a more pronounced impact on proteins of lower abundance. (B) Violin plot shows the
protein turnover rate computed from the data set with or without DMI, illustrating the DMI has a bigger influence on proteins with faster turnover
rates. Statistical significance between groups in both violin plot is determined using the Wilcoxon test (***p-value <0.001). (C) Bar chart compares
the quantifiable protein turnover rates with and without data imputation across six mouse strains. Data imputation leads to a 40−50% increase
(orange) in the quantifiable turnover rates in each strain.
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process complete as the annotation data set; Fisher’s Exact test
and calculate FDR. The analysis was specifically designed to
pinpoint biological processes that are significantly enriched in
our data set of proteins, with an emphasis on contrasting those
proteins identified through DMI with those not subjected to
DMI. Biological processes that are only enriched in the protein
list subjected to DMI are shown.

Protein Complex Stability Analysis. Protein complex
information was retrieved from Complex Portal.34 We selected
complexes for which all protein interactors in the complex
were represented in the proteomics data set and focused on
heterocomplexes, i.e., complexes with multiple protein
interactors. Stability is calculated as the standard deviation of
the average protein turnover rates within the protein complex.
To compare against proteins sampled from the proteome, we
account for the number of proteins in the complex by sampling
from the proteome with the empirical frequency of the number
of proteins in complexes. A Wilcoxon Test was performed to
calculate the p-values. We also analyzed the dynamics of
individual protein complexes across the experimental groups.
Using one-way Analysis of Variance (ANOVA), we examined
differences in the mean turnover rates of protein interactors in
four complexes.

Biomarker Analysis on Human Temporal Proteomics
Data set. MarkerDB is a professionally curated database of
preclinical biomarkers.35 From this database, we identified 137
unique protein biomarkers and retrieved their UniProt IDs
using UniProt KB API.36 We identified the intersection of
these biomarkers and proteome quantified with and without
imputation in the human temporal proteomics data set. We
then queried MarkerDB to map the biomarker lists of each
human subject to their disease associations in order to identify
new or corroborated disease associations revealed by the
additional imputed proteins.

■ RESULTS AND DISCUSSION

The DMI Pipeline to Recover Temporal Proteomics Data
with Flexibility
We developed a DMI pipeline capable of imputing missing
values in temporal proteomics data, rendering greater coverage
of protein turnover rates. Our workflow (Figure 1B) first
preprocesses the temporal proteomics data set to fit the format
required by DMI. DMI is then performed to impute missing
values for m rounds, where m is predefined. The resulting m
imputed data sets allow quantification of protein turnover rates
for all identified proteins, a task that would have been
challenging, and sometimes infeasible, with incomplete data
sets. Kinetic analyses are performed on these data sets
separately, leading to M estimates of protein turnover rates.
Finally, all estimates are pooled to generate the final turnover
rates, proteome wide.
The DMI Pipeline Enhances the Final Determination of
Protein Turnover Rates
Our DMI pipeline is able to fully utilize the information that
can be extracted about proteome dynamics from the temporal
proteomics data sets. In the previous analysis, peptides
identified at least 4 times were selected to control false
discovery rate of protein turnover quantification.28,29 The
requirement for a minimal number of time points is to ensure
adequate information for accurate turnover rate estimation.
Our DMI pipeline captures a more complete proteome-wide
turnover rate in both data sets. Thus, proteins that were

previously quantifiable (>4 time points) but not present in the
full time points also benefit from inclusion of DMI-imputed
data for more accurate kinetic analysis. A detailed number of
imputed samples and original samples for both data sets are
shown in Figure 2.

We evaluated the performance of DMI on imputing missing
values in comparison to single imputation methods (DSI). We
developed an approach to introduce missing values by masking
experimentally observed values for peptides’ with a complete
time-series. To examine the temporal aspects of the
imputation, we evaluated how well each imputation method
can recover masked values and subsequently estimate turnover
rates from the imputed time series. Across various levels of
missingness, DMI consistently outperformed k-nearest neigh-
bor (KNN) imputation and mean imputation in accurately
imputing experimentally observed A0 values and turnover rates
as measured by NRMSE (please see Supporting Information,
Figure S1).
The DMI Pipeline Ensures a Comprehensive View of
Protein Turnover Rates

A detailed number of proteins quantifiable after imputation in
each mouse strain under two conditions is shown in Figure 3C.
Around 50% improvement of coverage is shown in all strains
under both conditions. With the improved coverage, we have a
more comprehensive view of the proteome dynamics landscape
during cardiac hypertrophy pathogenesis.

As previously demonstrated with proteomics data, missing
values are correlated with low abundances of the protein, i.e.,
proteins with low abundance were prone to contain missing
values.9 We investigated whether low abundance also
correlates with the missing values in the protein turnover
rate. We further explored this relationship in the context of
protein turnover rates. Specifically, we compared the
abundance levels and turnover rates of proteins that can be
quantified without DMI to those that are only quantifiable with
DMI (Figure 3A and 3B). A significant difference in both the
abundance and turnover rate between these two groups in all
strains and two treatments suggests that the proteins with
lower abundance and higher turnover are prone to be missing
in the turnover rate calculation. Thus, DMI enables proteins
with lower expression to be captured, ensuring a more
comprehensive view of proteome wide protein dynamics
(Figure 3B).
The DMI Pipeline Captures a Broad Representation of
Biological Processes

To investigate how an imputed data set can better capture the
comprehensive biological processes of the proteome, we
performed the Reactome Pathway enrichment analysis on
both the protein sets before and after imputation to determine
the potential loss of biological processes if no imputation is
performed. There were 199 and 238 biological processes
enriched from the proteins recovered with imputation in health
and disease, respectively (Figure S2). In the healthy group,
biological processes related to localization, autophagy, splicing
and so on are enriched. In the disease group, biological
processes related to transportation, splicing, and autophagy are
enriched. While the recovered biological processes in the two
groups were not the same, they share common pathways in
terms of high-level processes such as splicing, localization and
autophagy.
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Figure 4. Impact of DMI on protein complex dynamics. (A) Scatter plot of proteome turnover rates from top to bottom based on the absolute
impact of DMI on turnover rate estimations: enhancement (on the top), agreement (in the middle), reduction (in the lower part), or the
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The DMI Pipeline Reveals a Dynamic Landscape on
Protein Complexes

The turnover rate of individual proteins within protein
complexes offers insights into their stability, regulatory
mechanisms, and functional lifespans, enhancing our under-
standing of cellular biology.14,24,37 We investigated the
turnover rate landscape of multiple heterocomplex interactors,
revealing the dynamic view of protein complexes.

We first explored the impact of DMI on proteome-wide
turnover rates, revealing that DMI elucidates a detailed
proteome turnover landscape (Figure 4A). While the majority
of proteins show relatively consistent turnover rates before and
after DMI, we observed increases and decreases of turnover
rates as a result of increased time points imputed by DMI. The
proteins that have lower turnover rates after imputation seem
to have a large discrepancy before and after DMI. This
discrepancy likely arises because these protein turnover rates,
when quantified without DMI, are challenging to measure due
to the high proportion of missing values that lead to fewer data
points and greater variation across replicates. Subsequently, we
investigated the turnover rates of proteins within hetero-
complexes, characterized by the Complex Portal database.34

We defined a metric, the standard deviation of turnover rates,
as a measure of the synchronization of turnovers within protein
complexes. A lower standard deviation signifies a more
coordinated complex, characterized by similar level protein
turnover rates. Our analysis demonstrated that the synchroni-
zation of protein complexes was significantly greater than that
observed for proteins sampled from the proteome, suggesting a
coordinated regulation of turnover within the complexes
(Figure 4B).

The turnover landscape offered by DMI allowed for an
understanding of how individual complex dynamics may be
coordinated across experimental groups (Figure 4C). Im-
portantly, the ability to assess the dynamics of all protein
interactors in certain heterocomplexes is only made possible by
DMI (e.g., CPX-5868, 4921, 3035, 3027). We observed that, in
some cases, DMI quantified turnover rates demonstrate
alignment with the quantified turnover rates obtained without
DMI in terms of the synchronization among heterocomplex
interactors in the ISO and CTRL conditions (e.g., CPX-2055,
16).

We also observed DMI quantified turnover to provide
insight into the change in complex synchronization between
the ISO and CTRL conditions. We zoomed in to analyze a
select number of these complexes where turnover exhibited
incoherence in the ISO experimental group, yet suggested
coherence in the CTRL group: (1) UBC13-UEV1A ubiquitin-
conjugating enzyme E2 complex; (2) Mitochondrial NIAUFX
iron−sulfur cluster (ISC) assembly complex; (3) AP-2
Adaptor complex, alpha1 variant; (4) Laminin-211 complex

(Figure 4D). We further compared the change in coherence
(one way ANOVA). The analysis indicated a decrease in
coherence across all four complexes, suggesting that mis-
matches in turnover rates within complexes critical to cardiac
function could play a role in the pathophysiology of heart
failure: (1) The ubiquitin-conjugating enzyme complex plays a
key role in the process of eliminating damaged and/or
misfolded proteins in response to cardiac stress;38 (2) The
Mitochondrial NIAUFX iron−sulfur cluster (ISC) assembly
complex is required for the de novo synthesis of iron−sulfur
(Fe−S) clusters within mitochondria. Defects in ISC bio-
genesis are associated with disorders of mitochondrial import,
export, and translation and have been linked with cardiomyo-
pathies;39,40 (3) AP2, a membrane-bound complex, interacts
with clathrin in the plasma membrane to form clathrin-coated
vesicles, controlling intracellular trafficking in endocytosis and
playing a crucial role in autophagy and lysosomal protein
degradation;41 (4) Laminin 211, an extracellular matrix
protein, functions to stabilize the basement membrane and
muscle fibers during cardiac contraction.42 This analysis
underscores the utility of DMI in proteomics, providing
preliminary insights into protein dynamics that merit further
investigation.
The DMI Pipeline Recovers Dynamics of Potential
Biomarkers

To further demonstrate the capabilities and effectiveness of our
Data Multiple Imputation (DMI) pipeline, we applied our
workflow to a human plasma temporal proteomics data set.29

Similarly, DMI significantly enhanced the number of proteins
that can be quantified in each subject by an additional ∼60%
(Figure 5A). This substantial improvement in protein coverage
allows for an improved understanding of the proteome
dynamics landscape, thereby broadening the scope of potential
clinical applications.

To illustrate a clinical application, we investigated whether
additional DMI recovered biomarkers can be quantified. A list
of biomarkers from MarkerDB35 was retrieved and compared
with the protein list generated with and without the application
of DMI. Our analysis revealed that DMI successfully recovered
an additional 2−3 biomarkers per subject on top of the original
∼10 biomarkers (Figure 5B). To assess the potential of the
additionally identifiable biomarkers to impact diagnostic and
prognostic assessments, we obtained biomarker−disease
associations curated from MarkerDB. We observed that certain
biomarkers can be highly specific to particular diseases when
outside their normal ranges. However, most biomarkers can be
less specific and indicative of a family of diseases (e.g., C-
reactive protein can be associated with any host of
inflammation-related diseases, while human growth hormone
can be linked to growth deficiency or acromegaly). Therefore,
the ability of imputation to capture additional plasma

Figure 4. continued

assignment of an imputed value, previously unquantifiable in the absence of DMI. Each row represents a protein, and the rows are organized in a
descending order of the difference between protein turnover rates estimated after and before imputation. Error bars represent standard error mean
(SEM); they are 0 if n < 2. (B) A violin plot shows a pronounced synchronization of turnover rates among proteins within complexes, as evidenced
by the standard deviation of the turnover rates quantified post-DMI compared to the broader proteome. “***” indicates a p-value <0.001. (C) A
scatter plot of protein turnover rate within individual complexes, showing the impact of DMI on assessing the dynamic behavior of proteins within
the same complex. A color bar indicates the protein complex the protein interactors belong to. Detailed examples are given in panel D. (D) A zoom
in view of four protein complexes selected from panel C: UBC13-UEV1A ubiquitin-conjugating enzyme E2 complex; Mitochondrial NIAUFX
iron−sulfur cluster assembly complex; AP-2 Adaptor complex, alpha1 variant; Laminin-211 complex, where DMI provides insight into the
synchronized protein turnover behavior in CTRL which was disrupted in ISO.

Journal of Proteome Research pubs.acs.org/jpr Technical Note

https://doi.org/10.1021/acs.jproteome.4c00263
J. Proteome Res. 2024, 23, 4151−4162

4158

pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.4c00263?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 5. DMI pipeline enhances protein quantification in human samples. The bar chart presents a comparison of protein turnover rates
quantified with and without Data Imputation (DMI) across 10 human subjects when examining both the plasma proteome (A) and the biomarkers
it carries (B). The application of data imputation results in a significant increase in quantifiable protein turnover rates, with a 60−70% improvement
observed in the proteome and a 10% enhancement noted in individual biomarkers. (C) We elucidate biomarker−disease associations in the data set
gained with DMI, it reveals three patterns: (1) new disease associations (e.g., HS8: C-reactive protein → Hypertension); (2) new evidence
supporting existing disease association (e.g., HS3: Lysozyme C and IL-2 receptor subunit alpha → Pulmonary Sarcoidosis); and (3) adding to the
list of markers pre-DMI (e.g., HS3: Ferritin or HS8: Fibrinogen). Biomarker-disease associations across all human subjects are detailed in Figure S3
(please see Supporting Information).
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biomarkers has high clinical utility. It can provide additional
corroboration for a specific disease differential, confirm the
absence of disease, or indicate the potential of other disease
(Figure 5C and S3). This comprehensive biomarker profile
helps strengthen the overall differential diagnosis and directs
the clinician toward further clinical investigation.

Temporal cardiovascular proteome dynamics studies often
suffer from missing data problems, and it hinders our ability to
gain insights from these valuable data resources. In many cases,
mechanisms contributing to missing values are complex and
typically stem from a combination of Missing Completely at
Random (MCAR), Missing at Random (MAR), and Missing
Not At Random (MNAR).22 Therefore, methods that can
accommodate various combinations of missing data patterns
are necessary. The DMI method discussed herein is effective
for handling MCAR and MAR data but can also accommodate
MNAR patterns followed by some sensitivity analysis,26 thus
addressing various types of missing data scenarios. However, it
is advisable to select specific imputation methods tailored to
the nature of the missing mechanism when such information is
known or strongly assumed.

Our DMI pipeline allows users to adjust the parameters of
imputation to meet the demands of their proteomics data
analysis in the following aspects: it provides a default
regression model but allows users to choose preferred
regression methods in the multiple imputation process; allows
users to specify the minimum samples required for imputation,
which depends on the specific experimental design; allows
selection of the number of data sets, m, for multiple
imputation, which should be chosen based on the computa-
tional resources available and reliability desired.

As demonstrated in our study, a primary advantage of the
DMI pipeline is to better address uncertainties in handling
missing data compared with ad hoc or single imputation
methods. We showed the benefit of our DMI pipeline for
protein turnover rates inference by applying it to the cardiac
temporal data sets.

■ CONCLUSION
Missing values is a common issue in MS-based proteomics
studies and especially in proteome dynamics data sets. Our
DMI pipeline successfully addressed missing data challenges
and demonstrated its utility on two distinct existing temporal
proteomics data set. In brief, the DMI pipeline captured
additional protein turnover rates. These recovered protein
dynamics enable a more detailed view of biological pathways,
protein complexes, and plasma biomarkers previously
obscured, thereby enhancing our understanding of biological
insights into the underlying protein dynamics in cardiovascular
diseases. In summary, our DMI pipeline can expand the scope
of proteome characterization in temporal data sets.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00263.

(1) We simulate a data set with missing values and
evaluate the performance of imputation methods (DMI
and DSI) on imputing the missing values, the result is
presented in Figure S1; (2) we performed pathway
enrichment on proteins quantified with and without
imputation to determine all biological processes

captured with DMI in the proteome, the result is
presented in Figure S2; and (3) we investigated patterns
of biomarker−disease associations for biomarkers
contained in human plasma proteome with DMI, the
result is presented in Figure S3 (PDF)
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