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Long-read subcellular fractionation and sequencing
reveals the translational fate of full-length mRNA
isoforms during neuronal differentiation

Alexander J. Ritter,1,3 Jolene M. Draper,2,3 Christopher Vollmers,1

and Jeremy R. Sanford2

1Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA;
2Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California
Santa Cruz, Santa Cruz, California 95064, USA

Alternative splicing (AS) alters the cis-regulatory landscape of mRNA isoforms, leading to transcripts with distinct locali-

zation, stability, and translational efficiency. To rigorously investigate mRNA isoform-specific ribosome association, we

generated subcellular fractionation and sequencing (Frac-seq) libraries using both conventional short reads and long reads

from human embryonic stem cells (ESCs) and neural progenitor cells (NPCs) derived from the same ESCs. We performed de

novo transcriptome assembly from high-confidence long reads from cytosolic, monosomal, light, and heavy polyribosomal

fractions and quantified their abundance using short reads from their respective subcellular fractions. Thousands of

transcripts in each cell type exhibited association with particular subcellular fractions relative to the cytosol. Of the

multi-isoform genes, 27% and 19% exhibited significant differential isoform sedimentation in ESCs and NPCs, respectively.

Alternative promoter usage and internal exon skipping accounted for the majority of differences between isoforms from

the same gene. Random forest classifiers implicated coding sequence (CDS) and untranslated region (UTR) lengths as im-

portant determinants of isoform-specific sedimentation profiles, and motif analyses reveal potential cell type–specific

and subcellular fraction–associated RNA-binding protein signatures. Taken together, our data demonstrate that alternative

mRNA processing within the CDS and UTRs impacts the translational control of mRNA isoforms during stem cell differ-

entiation, and highlight the utility of using a novel long-read sequencing–based method to study translational control.

[Supplemental material is available for this article.]

Accurate eukaryotic gene expression requires messenger RNA
(mRNA) assembly from precursor transcripts. Protein coding and
regulatory sequences (exons) are distributed across expansive pre-
cursor mRNA transcripts. The spliceosome excises intervening
noncoding sequences (introns) from pre-mRNA and ligates the
exon sequences together to generate translation-competentmRNA
(Wang et al. 2015). Conserved sequences at exon–intron boundar-
ies (splice sites) direct spliceosome assemblyon eachnewly synthe-
sized intron. The spliceosomecanassembledifferent combinations
of exon sequences to generatemRNA isoforms fromacommonpre-
mRNAtranscript (Konarska1998;Wuet al. 1999).Alternative splic-
ing (AS) generates isoforms not only with distinct protein coding
potential but alsowith different post-transcriptional regulatory ca-
pacity. For example, AS decisions that introduce premature termi-
nation codons (PTCs) induce nonsense-mediated decay (NMD),
whereas other splicing events generate transcripts with distinct
subcellular localization or translational control. In addition to gen-
erating alternative isoformswith unique coding sequences (CDSs),
AS can produce isoforms that differ only in their untranslated re-
gions (UTRs). Elements in the UTRs of mature mRNA play pivotal
roles in post-transcriptional regulation. In the 5′ UTR, regulatory
sequences like upstream open reading frames (uORFs) and inter-
nal ribosome entry sites (IRESs) influence translation initiation

efficiency (Morris andGeballe 2000; Hellen and Sarnow 2001;We-
ber et al. 2023). The 3′ UTR contains various elements such as
microRNA binding sites and RNA-binding protein (RBP) recogni-
tion sites that modulate mRNA stability, localization, and transla-
tion (Ciolli Mattioli et al. 2019; Mayya and Duchaine 2019).
Regulatory elements in the CDS can also influence the fate of
mRNAs. For example, the RBP ELAVL1 stabilizes target mRNAs by
binding to AU-rich elements (AREs) within the CDS, preventing
their degradation.Conversely, RBPs like ZFP36 canpromotemRNA
degradation by binding to AREs in coding regions, leading to
mRNA decay (Otsuka et al. 2019). Proteins like IGF2BP1 can bind
to coding region instability determinants in the CDS of target
mRNAs to enhance their stability (Weidensdorfer et al. 2009). By
and large, AS confers complex andmultidimensional consequenc-
es to the fate of mRNAs through shaping the cis-regulatory land-
scape of alternative isoforms (Castle et al. 2008; Pan et al. 2008;
Wang et al. 2008).

Isoform-specific cytosolic fates are evidenced by poor correla-
tion between steady-state mRNA and protein levels in eukaryotic
systems (Lian et al. 2001; Griffin et al. 2002; Cox et al. 2005;
Schmidt et al. 2007; Fu et al. 2009). And although factors like
mRNA stability and translation initiation efficiency play a role in
this disparity, the influence of AS on translational control is often
overlooked. A number of methods exist to study translational con-
trol, which is the regulatory mechanism in eukaryotic cells that
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governs the efficiency and timing of protein synthesis from
mRNA. A well-established method called Ribo-seq offers ge-
nome-wide insights into ribosome occupancy and translation
dynamics by capturing single-nucleotide-resolution ribosome
footprints, but it can be vulnerable to artifacts and signal biases
(Ingolia et al. 2009). RNC-seq captures ribosome nascent-chain
complex-bound mRNAs to characterize the translatome, but it
does not provide ribosome footprints or ribosome density infor-
mation (Wang et al. 2013). TRAP-seq utilizes epitope-tagged ribo-
somes to enable cell type–specific translation profiling, which
generates data similar to RNC-seq, which can be modified to pro-
duce ribosome footprints, but it relies on transgenic models and
may not fully replicate endogenous ribosome behavior (Heiman
et al. 2014; Reynoso et al. 2015). Frac-seq, which our proposed
method builds on, isolates actively translating ribosomes and as-
sesses translation efficiency by stratifying transcripts by the num-
ber of ribosomes with which they are associated (Sterne-Weiler
et al. 2013). However, it has the potential for selective bias toward
highly abundant transcripts, and it lacks single-nucleotide resolu-
tion of ribosome positions on mRNA. Although each method has
its strengths and weaknesses, one shared disadvantage is that they
all involve the sequencing of short mRNA fragments from ribo-
some-protected or ribosome-associated mRNAs.

Short-read RNA sequencing methods struggle to accurately
capture the complete structures of complex RNA isoforms (Steijger
et al. 2013). In contrast, long-read RNA sequencing provides
full-length reads that span entire transcripts, enabling precise
characterization of intricate isoforms and annotation-agnostic
detection of novel structures. The primary shortcoming of long-
read sequencing is its relatively lower throughput compared with
short-read sequencing platforms, limiting the depth of coverage
for a given budget. To address this limitation and to maximize

the benefits of both long-read and short-read methods, we em-
ployed a complementary approach. Here we introduce the devel-
opment of long-read Frac-seq to obtain full-length transcript
isoforms with intact records of ribosome association, structural
variation, and long-range interactions. We complement these
data with short-read Frac-seq to compensate for the loss of
throughput and to provide amore complete and accurate represen-
tation of the translated transcriptome.

Results

Characterization of a transcriptome supplemented

with long-read-derived novel transcripts

To investigate the relationship between alternative pre-mRNA
splicing and isoform-specific mRNA translation, we capitalized
on the capability of long-read sequencing to capture complete
transcript structures of polyribosome-associated mRNA, without
sacrificing throughput by generating both long-read and short-
read Frac-seq libraries (Sterne-Weiler et al. 2013). We used human
embryonic stem cells (ESCs) andneural progenitor cells (NPCs) as a
model system to characterize the translated transcriptome during
early neuronal differentiation. The resulting samples were the
cytosol, monosome (Mono), light polyribosome (LPR; two to
four ribosomes), and heavy polyribosome (HPR; five or more ribo-
somes) fractions (Fig. 1A). By utilizing the R2C2 method (Volden
et al. 2018), our long-read libraries, with a mean read length of 2
kb and a mean library size of 500,000, were reinforced with im-
proved base-calling accuracy (93%) and with high-confidence
transcript starts and ends. Fractionation of the long reads was em-
ployed to enhance the likelihood of detecting transcripts that may
be preferentially associated with distinct subcellular fractions. All
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Figure 1. Experimental overview and characterization of the comprehensive transcriptome and the cytosol. (A) Schematic of the experiment and sub-
sequent bioinformatic analysis workflow of the resulting cytosolic extract and fractionated, ribosome-associated short and long reads from ESCs and NPCs.
(B) The transcriptome classified by SQANTI3-defined structural categories of spliced transcripts, including: full splice match (FSM), incomplete splice match
(ISM), novel in catalog (NIC), novel not in catalog (NNC), and intergenic or fusion transcripts (other). FSM and ISM transcripts match annotated splice sites
and junctions (in GRCh38.p13 release 41), whereas NIC transcripts comprise novel combinations of annotated splice sites and junctions, and NNC tran-
scripts contain at least one unannotated splice site. (C) The transcriptome classified by productivity based on the detection of complete or incomplete open
reading frames (productive or noncoding respectively), premature stop codons (NMD), and retained introns (RIs). (D) Stratification of the transcriptome by
the number of isoforms and unique coding sequences per gene. (E,F ) Gene-level (E) and transcript-level (F) differential expression between NPC and ESC
cytosolic fractions. (G) Top 12 enriched Metascape pathways in differentially expressed genes between NPC and ESC cytosolic fractions.
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long-read libraries were pooled for de novo transcriptome assem-
bly using Mandalorion (Volden et al. 2023). Mandalorion assem-
bled a transcriptome consisting of transcripts with long-read
support of five or more. We then used SQANTI3 to quality control
and filter the initial transcriptome, resulting in a long-read-derived
transcriptome containing only those transcripts with 20 or more
total mean normalized short-read counts across all fractions for
each cell type. To this, we applied functional annotation using
all three modules of the Functional IsoTranscriptomics analysis
suite (de la Fuente et al. 2020). The resulting long-read-derived
transcriptome was then merged with GENCODE’s GRCh38.p13
release 41 primary assembly annotation (Harrow et al. 2012) to
account for transcripts that were not captured by long-read se-
quencing. The following analyses were done in the context of
this “comprehensive transcriptome” containing both annotated
and long-read-derived novel transcripts.

The comprehensive transcriptome had short-read coverage
meeting a one count per million reads (CPM) cutoff for 37,755
transcripts with 33,561 unique CDSs, arising from 13,161 genes
(Fig. 1D). Of these, 5875 and 4590 transcripts from 4095 and
3176 genes were uniquely expressed in ESCs or NPCs, respectively.
Transcripts were organized into SQANTI3-defined structural cate-
gories based on their fidelity to transcript structures in the
GRCh38.p13 release 41 primary assembly annotation (Harrow
et al. 2012): 91.2% of transcripts matched the annotation; 8.7%
were considered novel (containing either novel combinations of
known splice sites and junctions or at least one novel splice site);
and 0.1% were categorized as either genic or fusions (Fig. 1B).
Additionally, transcripts were categorized based on their produc-
tivity. We define productive transcripts as those encoding a full-
length, canonical protein. Unproductive classes include noncod-
ing (lacking a complete open reading frame), NMD, and retained
intron (RI): 66.1% of transcripts were considered productive;
0.7% were predicted to be noncoding; 18.1% were classed as
NMD based on the presence of a PTC; 11.5% had a RI; and the re-
maining 3.6% met both NMD and RI conditions (Fig. 1C).

We used Salmon (Patro et al. 2017) to pseudoalign the frac-
tionated short reads, with an average library size of 71.5 million
reads, to the comprehensive transcriptome, producing transcript-
level quantification across the gradient. Using the cytosolic frac-
tion,which represents the rawoutputof thenucleus,wenext tested
the baseline transcriptomic differences in NPCs relative to ESCs at
the gene level (Fig. 1E) and at the transcript level (Fig. 1F) to reveal
upregulation of NPCs and neuronal differentiation markers and
downregulation of pluripotencymarkers. Twenty-two and 24 tran-
scripts from genes that are PSC or NPCmarkers or that are associat-
ed with neuronal differentiation had distinct ribosome association
profiles in ESCs and NPCs, respectively. Only three of those tran-
scripts had distinct ribosome association profiles in both cell types,
and theyall associatewith theMono regardless of expressiondiffer-
ences. In these few examples, we did not observe a compensatory
relationship between ribosome association and expression levels.
Metascape (Zhou et al. 2019) pathways further encapsulated these
observations (Fig. 1G). Taken together, these results present the
framework for an approach to integrate fractionated long and short
reads to study translational control at isoform-level resolution.

Thousands of transcripts exhibit distinct association

with particular subcellular fractions

To discover if mRNA transcripts have distinct ribosome association
profiles, we clustered transcript-level expression trajectories across

the gradient using tappAS (de la Fuente et al. 2020), revealing sub-
populations of transcripts with clear enrichment in one subcellu-
lar fraction over the others (Fig. 2A; Supplemental Tables 4, 5). A
subpopulation of transcripts enriched in both the Mono and LPR
fractions stood out as one of the most populous subsets, making
up ∼30% of transcripts with enrichment in subcellular fractions
in both cell types. Thus, subsequent analyses class Mono-associat-
ed transcripts and LPR-associated transcripts as those that are ex-
clusively enriched in those fractions, leaving the set of Mono and
LPR-associated (M+L) transcripts as a standalone subpopulation.
Thousands of transcripts were considered significantly enriched
(log2FC≥1.0, P-value≤0.05) in subcellular fractions relative to
the cytosol (Fig. 2B).Overall, 7.5%and 6.8%of transcriptswere sig-
nificantly associated with a subcellular fraction in ESCs and NPCs,
respectively. In the context of nonmutually exclusive enrichment
in subcellular fractions, subpopulations of transcripts were gener-
ally dissimilar across fractions within cell type, with the exception
of the Mono and LPR fractions with Jaccard similarity of 0.41 and
0.33 in ESCs and NPCs, respectively (Supplemental Fig. 1), owing
to the substantial M+L transcript subpopulations.When stratified
by productivity, Mono- and LPR-associated transcript subpopula-
tions exhibited pronounced incorporation of unproductive classes
relative to the cytosol. HPR-associated transcripts displayed a rela-
tive reduction of unproductive classes relative to the cytosol in
ESCs,whereas an increase is observed inNPCs (Fig. 2C). These find-
ings support the hypothesis that levels of ribosome association
may correlate with levels of translatability.

AS confers functional consequences to the stability

and translation of mRNAs

Because we observed transcript subpopulations with distinct ribo-
some association profiles, we postulated that alternative mRNA
isoformsmay likewise sediment discretely. To test this hypothesis,
we calculated the expression of individual isoforms relative to all
isoforms from the same gene andmeasured the difference between
their gene fractions in subcellular fractions relative to those in the
cytosol (Supplemental Tables 6, 7). TMEM59 is an example of a
gene with three isoforms, two of which exhibit differential sedi-
mentation in ESCs (Fig. 2D). TMEM59 expression in ESCs is com-
posed of a M+L-associated isoform, an HPR-associated isoform,
and a cytosol-associated (not differentially sedimenting) isoform.
Endogenous post-transcriptional silencing of TMEM59 by miR-
351 in murine neural stem cells has been implicated to promote
neuronal differentiation (Li et al. 2012), although the two differen-
tially sedimenting isoforms share all but the last base of their 3′

UTRs. But along similar lines, it may be the case that cis-regulatory
differences in their 5′ UTRs andCDSs influence the isoform-specif-
ic nature of their sedimentation.

We found 3321 (26.5%) and 2254 (19.2%) genes in ESCs and
NPCs, respectively, exhibiting differential isoform sedimentation
(|Δ gene fraction|≥0.1 andQ-value≤0.05) in a subcellular fraction
relative to the cytosol (Fig. 3A).Within those genes, 4906 and 3229
transcript isoforms preferentially sedimented (Δ gene fraction
≥ 0.1) with a subcellular fraction in ESCs and NPCs, respectively.
These instances substantiate AS as an architect of isoform-specific
translational control. We observed decreasing concordance of
gene fraction changes across the gradient between cell types,
with a Pearson correlation coefficient of 0.59, 0.54, and 0.09 in
Mono, LPR, and HPR, respectively. In fact, 3085 transcripts in
1506 genes exhibit divergent patterns of isoform sedimentation
(Supplemental Fig. 2). Together, these findings suggest that
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isoform-specific sedimentation is likely cell type specific, possibly
owing to differences in the composition and environment of trans-
acting factors.

Additionally, Figure 3A illustrates that isoforms associated
with the Mono and LPR fractions have a greater magnitude of
gene fraction differences than the HPR fraction relative to the cy-
tosol. This finding suggests that theMono, LPR, and HPR fractions
gradate toward increasing similarity in transcript abundance and
isoform ratios with the cytosol, which is consistent with findings
from other groups (Floor and Doudna 2016). Considering these re-
sults, we posit that the average number of ribosomes per mRNA in
the cytosolic fractions of our ESC and NPC samples may be similar
to that of the HPR fraction. Among genes displaying differential
isoform sedimentation, pathways involved in chromatin organiza-
tion, organophosphate biosynthesis, and phosphorylation were
enriched in ESCs specifically, whereas DNA damage, stress re-
sponse, and cell cycle pathways were enriched in NPCs (Fig. 3B).
Genes demonstrating divergent isoform sedimentation across
cell types were enriched in similar pathways, with the addition
of RNA metabolism. When comparing the Gene Ontology of cog-
nate subpopulations of subcellular fraction–associated transcripts
across cell types, we observed that cell cycle, translation, and
mRNAprocessing–related pathwayswere consistently represented,
whereas cell type–specific pathway enrichment was much more
apparent in the cytosolic fraction (Supplemental Fig. 3).

To examine the types of AS that give rise to the diversity of
the transcriptome, we categorized AS events as AS (0.1≤Ψ≤
0.9, adjusted P-value≤0.05 within condition), ASTC (|ΔΨ|≥0.1,
Q-value≤0.05 across subcellular fractions), NMD (events that
introduce a PTC), and ASTC+NMD (NMD events that adhere to
the mentioned cutoffs for significant ASTC events) (Fig. 3C;

Supplemental Tables 8, 9); 11.8% and 7.0% of significant AS
events were classified as either ASTC or ASTC+NMD in ESCs and
NPCs, respectively. We found that alternative first exon, RI, and
skipped exon (SE) events feature most prominently among ASTC
events, whereas SEs and RIs comprise the majority of ASTC+
NMD events; 2456 and 1257 CDS-altering events (A3, A5, MS,
MX, and SE event types) and 526 and 359 terminal events (AF
and AL event types) were linked to translational control (either
ASTC or ASTC+NMD) in ESCs and NPCs, respectively. Because
of the mentioned similarity between the HPR fraction and the cy-
tosol, the majority of ASTC/ASTC+NMD events were Mono
(79.1% in ESCs, 62.1% in NPCs) and LPR associated (42.5% in
ESCs, 54.8% in NPCs).

In our data set, SRSF7 contained one complete and one partial
RI event associated with NMD via induction of a PTC in the highly
conserved SRSF7 intron 3 locus, which has been previously de-
scribed to contain a conserved poison exon (Fig. 3D; Lareau et al.
2007; Königs et al. 2020). Preferential association of PTC-contain-
ing isoforms with theMono, as well as modestly with the LPR frac-
tion, is consistent with our understanding of NMD’s effect on
translation (Maquat et al. 1981; Celik et al. 2017; Nickless et al.
2017). ATRAID, a relatively poorly understood gene implicated
to play roles in all-trans retinoic acid–induced apoptosis, osteoblast
differentiation, and some cancer types (Ding et al. 2015; Zhang
et al. 2023), demonstrates marked patterns of alternative first
exon usage across the gradient (Fig. 3E). The proximal first exon
ofATRAIDwas preferentially spliced into theMono-associated iso-
form,whichmay indicate its reduced translation. Indeed, aRenilla-
firefly luciferase assay comparing Renilla incorporating either the
proximal or the distal 5′ UTR of ATRAID in HEK293 cells exhibited
significant differences in fluorescence (Fig. 3F). The two isoforms
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Figure 2. Establishing transcript ribosome association profiles. (A) Clustering of transcripts by their expression trajectories across the gradient relative to
the cytosol. (B) Extraction of fraction-associated transcripts based on significant enrichment (log2FC≥1.0, P-value≤0.05) in the Mono, LPR, or HPR frac-
tions relative to their abundance in the cytosol. Fractions: (C) cytosol, (M)Mono, (L) LPR, and (H) HPR. (C) Categorization of fraction-associated transcripts
by productivity. (D) Differential sedimentation of three isoforms in TMEM59. Above spliced isoform models, histograms of short-read support at exons are
colored by fraction. The stacked barplot summarizes the proportion of total gene expression each isoform contributes in each subcellular fraction.
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Figure 3. Differential isoform sedimentation across the gradient and functional outcomes of alternative splicing (AS). (A) Volcano plots representing dif-
ferential isoform sedimentation by changes in isoform gene fraction relative to the cytosol; 3321 and 2254 genes in ESCs and NPCs, respectively, exhibit
significant differential isoform sedimentation (|Δgene fraction|≥0.1, Q-value≤0.05). The central plot shows changes in isoform gene fraction, with Q-val-
ue≤0.05, of isoforms expressed in both ESCs and NPCs. (B) The first two bar plots show the top six enriched Metascape pathways in genes containing
significant instances of differential isoform sedimentation exclusively in ESCs or NPCs. The third bar plot, labeled “divergent,” depicts enriched
Metascape pathways in genes displaying contrasting patterns of isoform sedimentation between ESCs and NPCs. (C) The first stacked bar plot categorizes
significant AS events (|ΔΨ|≥0.1, adjusted P-value or Q-value≤0.05) as AS; AS coupled with translational control (ASTC), meaning splicing events that are
differentially included across the gradient; NMD; and AS coupled with both translational control and nonsense-mediated decay (ASTC+NMD). The fol-
lowing two bar plots show the breakdown of event types comprising each category in ESCs and NPCs. (D,E) UCSC Genome Browser snapshot of long-read
and short-read coverage at SRSF7 (D), exhibiting subcellular fraction–associated inclusion of a conserved retained intron, and at ATRAID (E), exhibiting sub-
cellular fraction–associated alternative first exon usage. Fractions: (C) cytosol, (M) Mono, (L) LPR, and (H) HPR. (F) Luciferase assay measuring the trans-
lational impact of using either the distal or the proximal ATRAID 5′ UTR in HEK293 cells.
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of ATRAID may potentially be functionally different, as the distal
first exon contains an uORF, which may encode a signal peptide
with potential importance to its localization with lysosomes
(Ding et al. 2015). Collectively, these results demonstrate thewide-
spread functional impacts of AS to the cytosolic fate of mRNAs.

Intrinsic features and cis-elements correlate with transcript

polyribosome profiles

Given that AS defines the cis-regulatory landscape of mature
mRNAs, we sought to identify intrinsic transcript features that
may encode the underlying regulatory grammar of ASTC. We
define intrinsic transcript features as measurements and function-
al elements that are native to the sequence of a spliced transcript.
To extract the relative predictive weight of features on ASTC, we
employed random forest classifiers (RFCs) to perform feature selec-
tion. Across the transcriptome, we measured the length and GC-
content of the transcript, CDS, andUTRs. Additionally, our feature
set included 5′ and 3′ UTRmotifs, uORFs, repeat sequences, coding
capacity, codon frequency, the presence of PTCs, and RIs (Supple-
mental Table 3). Given these features, RFCs were assigned binary
classification tasks to predict the correct subcellular fraction for
transcripts between every combination of subcellular fraction–as-
sociated transcript subpopulations at an 80:20 train:test split using
300 estimators. From the results, we extracted permutation feature
importance, with 50 repeats, and found that the number of exons,
length of the CDS andUTRs, and theGC-content of the UTRswere
important features for our models to correctly classify transcript
polyribosome profiles. We note, however, that although our RFC
models outperformed unskilled models/chance levels, the combi-
nation of generally adequate receiver operating characteristic
curves with suboptimal Precision-Recall performance highlights
class imbalances and the need formore data points in each fraction
and further indicates the requirement of additional features be-
yond those included in this study (Supplemental Fig. 4).

Our findings that CDS and 3′ UTR length positively correlate
with association with heavier polyribosome fractions is consistent
with previous reports (Fig. 4A; Floor andDoudna 2016). This is not
to be confused with ribosome density, which other groups have
shown to be inversely correlated with CDS length (Arava et al.
2003; Zhao et al. 2017). Although a longer CDS can theoretically
accommodate a greater number of ribosomes, the increased poten-
tial for incorporation of nonoptimal or rare codonsmay trigger co-
don usage-dependent negative impacts to translation initiation
and elongation (Lyu et al. 2021). Additionally, longer CDS and
transcript lengths have been observed to be negatively correlated
with translation initiation rates in the context of intra-polysomal
ribosome reinitiation (Rogers et al. 2017). Also, although CDS
length and 3′ UTR length, individually, positively correlate with ri-
bosome association, we did not observe clear instances of linkage
between SE and AL event inclusion. En masse, inference of ribo-
some association based on the CDS alone is likely too simplistic
to make accurate predictions.

To more clearly understand changes in feature length that
may impact ribosome association, we also measured the change
in CDS, 5′ UTR, and 3′ UTR length relative to the dominant
cytosolic isoform among isoforms belonging to genes with differ-
entially sedimenting isoforms (termed, gene-linked isoforms).
Mono- and LPR-associated isoforms displayed a clear signal of
relatively shorter CDS and longer 3′ UTR, whereas HPR-associated
isoforms remained largely similar or equivalent to the dominant
cytosolic isoform (Fig. 4B). Relatively longer 3′ UTRs in gene-linked

isoforms are connected to strong effects on ribosome association,
and isoforms with 5′ UTRs≥1000 nt in length have been observed
to be relatively poorly ribosome associated relative to their shorter
5′ UTR-containing counterparts within the same gene (Floor and
Doudna 2016). These phenomena could be owing, in part, to the
potential increased inclusion of cis-regulatory elements in UTRs
including miRNA target sites, uORFs, and iron-responsive ele-
ments, which can negatively impact mRNA stability and transla-
tion. Our summary analyses of GC-content measurements
yielded less clear patterns in relation to ribosome association
(Fig. 4B). Nonetheless, ∼30% of isoforms preferentially sediment-
ing in lowly ribosome-associated fractions (Mono and LPR) exhib-
ited decreasing 3′ UTR GC-content relative to the dominant
cytosolic isoform, which may support findings that relate lower
3′ UTR GC-content to increased association with P-bodies and en-
hanced susceptibility to miRNA targeting (Courel et al. 2019). The
other 70% of lowly ribosome-associated isoforms showed the op-
posite characteristic regarding 3′ UTR GC-content, which is con-
cordant with reports that suggest an inverse relationship
between 3′ UTR GC-content and mRNA stability (Litterman et al.
2019). Overall, broad measurements like length and GC-content
were predictive of ribosome association to some degree but appear
to lack the granularity required to definitively elucidate the mech-
anisms underlying instances of ASTC. Comparisons between cell
types regarding feature measurements also reveals cell type–specif-
ic differences in trends that indicate further layers of complexity
(Supplemental Figs. 5, 6).

To look beyond length and GC-content measurements, we
identified sequencemotifs that are associatedwith subcellular frac-
tions. To do this, we took fraction-associated skipped exons
(FASEs), exons that were determined to be significantly enriched
in a subcellular fraction (ΔΨ≥0.1,Q-value≤0.05 across subcellular
fractions) relative to the cytosol, and sliced them into 30 nt win-
dows. Each set of windows was complemented with a background
set consisting of windows made from SEs that were not signifi-
cantly enriched in their given subcellular fraction. The HPR frac-
tion was tested for enrichment against the Mono and LPR
fraction (HvM and HvL, respectively) to produce HPR FASE sets
owing to a dearth of HPR-enriched exons relative to the cytosol.
The resulting sets of FASEs included about 415 and 240 exons on
average for each subcellular fraction in ESCs and NPCs,
respectively.

Using HOMER (Heinz et al. 2010) on each set of windows, we
discovered 111 de novomotifs, in total, that were significantly en-
riched (P-value≤0.05, FDR≤0.2) in the target sequences over their
respective background sets. We used Tomtom (Gupta et al. 2007)
to identify the best matches (P-value≤0.05) between the de
novo motifs and known RBP motifs in the Homo sapiens data set
(Ray et al. 2013). We next combined the set of motifs with the
CISBP-RNA H. sapiens RBP motif set (Ray et al. 2013) and used
SEA (Bailey and Grant 2021) to measure their enrichment (P-val-
ue≤0.05, enrichment ratio≥1.1) in each set of FASEs (Fig. 4C;
Supplemental Table 10). Several motifs exhibited enrichment in
at least one fraction, withmotif enrichment bisecting into clusters
ofMono and LPR FASE sets and ofHPR-associated FASE sets regard-
less of cell type.

We applied the same approach to theCDS, 3′ UTR, and 5′ UTR
of divergently sedimenting isoforms between ESCs and NPCs to
identify cell type–specific motifs that may underlie the differences
in their sedimentation (Supplemental Table 11). Target sequences
were generated from isoforms preferentially sedimenting with
each given fraction in one cell type versus those preferentially
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sedimenting with the same fraction in the other cell type. Motif
enrichment in these sets of sequences clustered more distinctly
by cell type than by fraction, andmost motifs were exclusively en-
riched in one cell type and not the other. We acknowledge, how-
ever, that motif analyses are limited by the fact that RBP binding

specificities are often multivalent and difficult to predict.
Nonetheless, we report the presence of statistically significant se-
quencemotifs enriched in FASEs, as well as those that are differen-
tially enriched and utilized between divergently sedimenting
isoforms. Altogether, 19 of the 43 known RBPs identified as

A

C

D

B

Figure 4. Analysis of features correlatedwith ribosome association profiles. (A) The number of exons and summaries of length andGC-content, with 90%
confidence interval, of the CDS, 5′ UTR and 3′ UTR of transcripts associatedwith subcellular fractions. Fractions: (C) cytosol, (M)Mono, (ML)Mono+ Light,
(L) LPR, and (H) HPR. (B) Measurement of the change in isoform gene fraction relative to the cytosol and differences in CDS, 5′ UTR and 3′ UTR length, and
GC-content of differentially sedimenting isoforms relative to the dominant isoform in the cytosol. Kernel densities for all coding isoforms are drawn with a
0.2 threshold. Subplots in the bottom left of each plot summarize the relative abundance of observations in each quadrant of their respective main plot,
colored by fraction. (C) HOMER-derived de novo sequencemotif and known RBPmotif enrichment ratios in skipped exons enriched in subcellular fractions
versus skipped exons not enriched in each given fraction. “M” and “L” refer to the Mono and LPR-associated FASE sets, whereas “HvM” and “HvL” refer to
the HPR-associated FASE sets relative to the Mono and LPR fractions, respectively. (D) Enrichment of motifs using the same approach as in C, but in 30 nt
windows of the CDS, 5′ UTR, and 3′ UTR of isoforms exhibiting divergent sedimentation profiles across cell types. The target sets were made from isoforms
that preferentially sediment with each given subcellular fraction in one cell type, and the background sets were made from isoforms exhibiting the same in
the other cell type. The standard-scaled enrichment ratio colorbar is shared by C and D.
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fraction or cell type specific have been previously implicated in
translational control or observed to associate with polyribosomes
(Supplemental Tables 10, 11; Paronetto et al. 2006; Smart et al.
2007; Markus and Morris 2009; Jin et al. 2011; Svitkin et al.
2013; Aviner et al. 2017; Ueno et al. 2019; Rizzotto et al. 2020;
Sévigny et al. 2020; Zhang et al. 2021; Anisimova et al. 2023).
Additional studies are necessary to test the role of these potential
factors in ASTC. Because we were specifically interested in motifs
related to ribosome association, we did not performmotif analysis
on introns. As a whole, these results suggest that ribosome associ-
ation is impacted by the composition of intrinsic transcript fea-
tures, likely with combinatorial effects.

Discussion

Here, we report the first integration of long-read RNA sequencing
with a translatomic method, which we call LR Frac-seq, and we
describe an approach to integrate long-read and short-read Frac-
seq to characterize the translated transcriptome in human ESCs
and NPCs. We took a complementary approach to capitalize on
the major strength of long-read sequencing in capturing complete
transcript structures, while leveraging short-read sequencing’s sig-
nificantly higher throughput for accurate quantification. Many
examples of hybrid sequencing approaches have previously been
applied to complex biological problems by other groups (Puglia
et al. 2020; Leshkowitz et al. 2022; Reese et al. 2023). For the
long reads, we employed the R2C2 method to generate high-con-
fidence consensus sequences with high base-calling accuracy and
well-defined transcript start and end sites. With these, we per-
formed de novo transcriptome assembly to generate the set of
full-length transcripts detected in the system, deemed the long-
read-derived transcriptome. Indeed, the long-read-derived tran-
scriptome does not comprehensively capture the entirety of the
expressed transcriptome in ESCs and NPCs, as indicated by
short-read transcript-level mapping rates: On average, 87% of
short reads mapped to the genome, whereas 42% mapped to the
long-read-derived transcriptome (Supplemental Table 1). The
high quality of the short reads and the high mapping rate of the
long reads to the genome (Supplemental Table 2) suggest that
the lower short-read transcriptomic mapping rate is owing to the
incomprehensive nature of the long-read-derived transcriptome,
which can likely be improved by deeper sequencing; ideally at 1
million or greater reads per long-read library. To account for tran-
scripts potentiallymissed by long-read sequencing, wemerged the
long-read-derived transcriptome annotation with GENCODE’s
GRCh38.p13 release 41 primary assembly annotation (Harrow
et al. 2012) to produce a nonredundant, “comprehensive” tran-
scriptome annotation for downstream analyses. The much deeper
fractionated short-read libraries were utilized to quantify the com-
prehensive transcriptome across the gradient, consisting of the cy-
tosol, Mono, LPR (two to four ribosomes), and HPR (five or more
ribosomes) fractions. Highlighting one of the major benefits of
long-read sequencing, we found 3281 transcripts with either novel
combinations of known splice sites or one or more novel splice
sites, accounting for 8.7% of the expressed (≥1 CPM) comprehen-
sive transcriptome.

We compared transcript abundances in subcellular fractions
to their cognate cytosolic fractions to identify transcripts with en-
richment in particular fractions relative to the cytosol, which rep-
resent the raw output of the nucleus. We found that 7.5% and
6.8% of transcripts, in ESCs and NPCs, respectively, preferentially
associatewith subcellular fractions (Fig. 5A,C) and that the propor-

tion of productive transcripts associated with a given fraction
directly correlates with ribosome association (Fig. 5B,D).
Isoforms observed to preferentially sediment in subcellular frac-
tions accounted for 13% and 9.8% of transcripts in multi-isoform
genes (Fig. 5A,C). We trained RFCs to select features at the tran-
script level, and we found that the number of exons and the
CDS, 5′ UTR, and 3′ UTR length along with 5′ UTR and 3′ UTR
GC-content were the most important features in our feature set
for the accurate prediction of transcript polyribosome profiles in
our data set.

Among multi-isoform genes expressed in both ESCs and
NPCs, gene-linked differences in isoform sedimentation relative
to the cytosol were largely cell type specific, although patterns of
intrinsic transcript feature differences between fractions were sim-
ilar between cell types (Supplemental Figs. 2, 5, 6). We found that
isoformswith a shorter CDS and longer 3′ UTR relative to the dom-
inant isoform in the cytosol corresponded most clearly to the
Mono and LPR sedimentation profiles. Additionally, motif analy-
ses revealed potential RBP motifs in FASEs and in divergently sed-
imenting isoforms. These motifs cluster by fraction and by cell
type, respectively (Fig. 4C,D). In total, binding sites for 43 unique
RBPs exhibited fraction-specific enrichment, and nearly half
(44%) have previously established roles in translational control
or demonstrated association with polyribosomes (Supplemental
Tables 10, 11). For example, proteomic analysis of polyribosomes
revealed numerous splicing factors, including HNRNPC, SRSF10,
and SRSF7 as polyribosome associated (Aviner et al. 2017). Many
of these factors have distinct sedimentation profiles across sucrose
gradients, an observation that is consistent with the fraction-spe-
cific enrichment of RBP binding sites observed here. As a whole,
our results present intrinsic feature measurements and potential
RBP motifs that likely enact combinatorial effects on translation,
providing both previously reported and novel insights into the un-
derlyingmechanisms of ASTC. Because the most predictive intrin-
sic features were rather broad, we hypothesize that inter-isoform
differences in length and GC-content more likely vaguely encap-
sulate changes to the isoform-specific cis-regulatory landscape.
Several factors may affect an mRNA’s translational output, includ-
ing intrinsic and trans-acting influences to mRNA stability, post-
transcriptional modifications, and combinatorial interactions
with multiple RBPs. Therefore, it may be difficult to distill trends
in transcript-level features across polyribosome fractions without
also measuring transcriptome-wide mRNA half-life and capturing
RBP–mRNA interactions, for example.

Because the LPR and HPR fractions were pooled sets of indi-
vidual polyribosome fractions, we could not assess features in
the context of ribosome density. To be clear, LR Frac-seq can be
performed without pooling individual polyribosome fractions,
which would enable analyses at the level of ribosome density.
We note that the HPR fraction is likely composed of both efficient-
ly and inefficiently translated transcripts depending on their ribo-
some density and that trends of feature length andGC-content are
subject to exceptions in each subcellular fraction. Additionally,
Frac-seq differs from ribosome profiling methods in that it does
not capture single-nucleotide resolution ribosome footprints.
Rather, it stratifies the translated transcriptome in terms of the
number of ribosomes associated with full-length mRNAs.
Therefore, it is not intended to replace ribosome profilingmethods
and is instead an alternative approach that benefits from retaining
UTRs. We recommend LR Frac-seq for the study of translational
control in cases in which complete isoform structures and detec-
tion of novel isoforms are desired.
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A major implication of LR Frac-seq in the field of translatom-
ics is that its library preparation can be modified to enable direct
RNA sequencing after fractionation to detect post-transcriptional
modifications that are understood to significantly influence trans-
lation. For instance, RNAmethylation, specifically N6-methylade-
nosine (m6A), can alter translation efficiency. Pseudouridylation
can affect translation dynamics by influencing ribosome stalling
and pausing during protein synthesis. RNA editing events, such
as adenosine-to-inosine (A-to-I) editing, can modify regulatory se-
quences, altering the fate of mRNAs. These post-transcriptional
modifications exemplify some of the multifaceted ways in which
RNA modifications can impact translational control. By coupling
accurate positions of post-transcriptional modifications with poly-
ribosome profiles at isoform resolution, LR Frac-seq could enable
more direct correlation ofmodificationswith their effects on trans-
lation. Because we used R2C2, which is a cDNA method, to
strengthen the confidence of isoform structures, we did not cap-
ture modification information beyond RNA editing events. But fu-
ture adopters of LR Frac-seq can employ direct RNA sequencing
methods after fractionation to gain that additional layer of data.

In conclusion, LR Frac-seq enables polyribosome profiling at
isoform resolution, retaining complete information about UTRs
and novel transcript structures. We tested this method in the con-
text of neuronal differentiation, revealing thousands of transcripts
enriched in subcellular fractions relative to the cytosol and largely
cell type–specific patterns of isoforms-specific sedimentation be-
tween ESCs and NPCs. Our results present intrinsic transcript fea-
tures and known and novel RBP motifs that may be important
determinants of ribosome association, and this work presents a
promising new approach to study translational control without

the information loss suffered by ribosome profiling and short-
read sequencing–based methods.

Methods

H9 cell culture and differentiation to NPCs

H9 cells in feeder-free culture were disaggregated using Accutase
and resuspended in hESC medium (StemMACS) containing
10 µM ROCK inhibitor (Y27632). Cells were then seeded on a
Matrigel-coated 12-well plate at 50,000 live cells per well. ROCK in-
hibitor was withdrawn the next day, and the cells were cultured in
hESCmedium for 3 days. Neural differentiation was then induced
over 7 days using KSR medium (for 500.5 mL stock: 415 mL KO-
DMEM, 75 mL KSR, 100× Glutamax, 100× NEAA, 1000× bME, 10
µM SB431542, 100 nM LDN-193189). A subset of differentiated
cells were stained for PAX6 to confirm neural differentiation.

Short-read Frac-seq

Cytosolic extracts from monolayer-cultured H9 cells and H9-
derived NPCs, both in triplicate, were separated on sucrose gradi-
ents as described in the original Frac-seq publication (Sterne-
Weiler et al. 2013). From these, the Mono fraction (RNAs associat-
ed with one ribosome), LPR fraction (two to four ribosomes), and
HPR fraction (five or more ribosomes) were isolated using
Gradient Station (Biocomp). RNA was extracted with TRIzol, poly
(A)-selected, and converted to directional RNA-seq libraries
(BIOOScientific qRNA) from these fractions in addition to total cy-
tosolic RNA. Biological and technical replicates were sequenced us-
ing HiSeq 4000 PE150 (50million to 100million reads per library).

A

DB

C

Figure 5. Summary of transcriptomic ribosome association profiles. (A,C) We identified thousands of transcripts in ESC and NPC whose expression was
significantly higher (log2FC≥1.0, P-value≤0.05) in a subcellular fraction relative to the cytosol. We also identified thousands of isoforms in multi-isoform
genes whose gene fraction was significantly higher (Δgene fraction≥0.1,Q-value≤0.05) in a subcellular fraction relative to its gene fraction in the cytosol.
(B,D) The proportion of productive and unproductive transcript classes in each subpopulation of transcripts enriched and/or preferentially sedimenting in
subcellular fractions. (T) Whole expressed transcriptome in the given cell type. Fractions: (C) cytosol, (M) Mono, (ML) Mono+ Light, (L) LPR, and (H) HPR.
(C∗) The subset of transcripts comprising multi-isoform genes specifically, in the cytosol.
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Long-read Frac-seq

From the same fractionated mRNA used prior for Illumina se-
quencing, full-length cDNA was prepared using the rolling circle
amplification to concatemeric consensus (R2C2) method (Volden
et al. 2018). Librarieswere pooled and sequenced on anONTProm-
ethION, generating 12.11 million reads with read length N50 of
17.6 kb.

De novo transcriptome assembly from long reads

R2C2 long reads were base-called with Bonito v0.0.1 (https
://github.com/nanoporetech/bonito). Subsequent poly(A) tail
and adapter trimming followed by definition of high-confidence
isoform consensus sequences was carried out using Mandalorion
v4.0.0 (Volden et al. 2023) with all sample FASTAs (from ESCs
andNPCs, all subcellular and cytosolic fractions in duplicate) as in-
put. The resultant transcriptome was filtered for redundant tran-
scripts using GFFCompare v0.12.6 (Pertea and Pertea 2020)
against the GRCh38.p13 release 41 primary assembly annotation
(Harrow et al. 2012) and then further filtered and annotated using
SQANTI3 v5.1.1 and IsoAnnot Lite v.2.7.3 (de la Fuente et al.
2020). SQANTI3 filtering was done using themachine learning fil-
ter with a training set proportion of 80% and a correct classifica-
tion probability threshold of 70%. The final, filtered long-read
transcriptome was then merged with the GRCh38.p13 release
41 primary assembly annotation (Harrow et al. 2012), producing
a “comprehensive transcriptome,” to account for transcripts that
were potentially missed by long-read sequencing.

Short-read data analysis

Short readswere adapter-trimmedwith cutadapt and thenmapped
to the GRCh38.p13 primary assembly genome with the compre-
hensive transcriptome annotation using STAR v2.7.8a (Dobin
et al. 2013). Transcript-level quantification was performed from
the alignments using Salmon v1.9.0 (Patro et al. 2017) in align-
ment-based mode. Differential expression analysis at the gene,
transcript, and isoform levels was carried out using tappAS
v1.0.7 (de la Fuente et al. 2020), which utilizes maSigPro v1.72.0
with the following analysis parameters: polynomial degree of
three, significance level of 0.05, R2 cutoff of 0.7, fold change of
two, and 9000 clusters. Differential expression analyses were per-
formed for each subcellular fraction against its cognate cytosolic
fraction (all in triplicate) for each cell type, as well as between sub-
cellular and cytosolic fractions across ESC and NPC. Pathway anal-
yses were done using Metascape (Zhou et al. 2019).

AS analysis was performed using junctionCounts (Supple-
mental Codes 4, 5; Ritter et al. 2024; https://github.com/
ajw2329/junctionCounts), which identifies and quantifies binary
splicing events from RNA-seq data, including alternative 5′ and
3′ splice sites (A5SSs and A3SSs), alternative first and last exons
(AFEs and ALEs), SEs, RIs, and mutually exclusive exons (MXEs).
cdsInsertion (Supplemental Code 1) and findSwitchEvents (Sup-
plemental Code 3) were used to call NMD events. junctionCounts
and its partner utilities are publicly available on GitHub (https
://github.com/ajw2329/junctionCounts, https://github.com/
ajw2329/cds_insertion), and the versions of the executables used
are available as Supplemental Codes 5, 1, respectively. Events
with any junction read support were included for dispersion esti-
mates and to determine significance of event differences between
conditions, with significant eventsmeeting a requirement of 15 or
more total junction read support across fractions for each cell type.
AS events were statistically tested by comparing the dispersions of
junction support for their included and excluded forms using
DEXSeq v1.46.0 (Supplemental Code 2; Anders et al. 2012). Events

were considered significant if they had 0.1≤Ψ≤0.9 and adjusted
P-value≤0.05 when assessing splicing within a condition or had
|ΔΨ|≥0.1 and Q-value≤0.05 when assessing changes in splicing
across conditions.

Feature analysis

Transcript features were collected from the transcriptome IsoAn-
not Lite annotation and by using custom Python scripts (available
as Supplemental Code 6 and at GitHub (https://github.com/
ajw2329/cds_insertion), including length measurements of tran-
script, CDS, uORF, and 5′ and 3′ UTRs. Total counts were of 5′

UTR (TOP and UNR_BS) and 3′ UTR (BRD-BOX, CPE, DMRT1_RE,
GY-BOX, K-BOX,MBE, andUNR_BS)motifs, uORFs, and repeat se-
quences (DNA/hAT-Charlie, DNA/TcMar-Tigger, LINE/L1, LINE/
L2, low complexity, LTR/ERVL-MaLR, retroposon/SVA, simple re-
peat, SINE/Alu, SINE/MIR, and srpRNA). Binary features include
coding/noncoding, proximal/distal poly(A) tail usage, predicted
NMD/no NMD, and intron retention/no intron retention. And,
lastly, codon frequencies and GC-content of the transcript, CDS,
and 5′ and 3′ UTRs were included. Feature selection for binary clas-
sification between transcripts belonging to subcellular fractions
was performed using the RFC method from the sklearn.ensemble
module of scikit-learn v1.2.2 (https://scikit-learn.org/stable) and
evaluated using permutation importance from the sklearn.inspec-
tionmodule. RFCmodels were generated with the interest of iden-
tifying predictive features of ribosome association and were
limited by the relatively small subsets of transcripts classed as asso-
ciated with a particular subcellular fraction.

Motif analysis was performed using HOMER v4.11 (Heinz
et al. 2010). Target sequences were produced by slicing FASEs (in
the Mono relative to cytosol, the LPR fraction relative to cytosol,
and the HPR relative to the Mono and the LPR separately) into
30 nt windows. Each set was subjected to de novo motif discovery
against background sets of 30 nt windows produced from SEs that
were not enriched in their given fraction. Significantmotifs (P-val-
ue≤0.05, FDR≤0.2) plus a set of known RBP motifs—CISBP-RNA
H. sapiens (Ray et al. 2013)—were then tested for enrichment across
all sets of windows in each fraction using SEA v5.5.4 (Bailey and
Grant 2021). Motif enrichment scores were filtered for P-value≤
0.05. De novo motifs enriched in at least one set of windows
were compared with RBP motifs in the Ray 2013 H. sapiens data
set (Ray et al. 2013) for potential matches using Tomtom v5.5.4
(Gupta et al. 2007). The best RBP motif match (P-value≤0.05, Q-
value≤0.2) for each de novo motif was assigned accordingly.

The same approach to motif analysis was taken with tran-
scripts exhibiting divergent isoform sedimentation between cell
types; 30 nt windows were generated for the CDS, 3′ UTR, and 5′

UTR of each such isoform. De novo motif discovery and enrich-
ment were performed on windows from sets of isoforms preferen-
tially sedimenting with each fraction in each cell type versus those
preferentially sedimenting with the same fraction in the other cell
type. These isoforms had inverse sedimentation profiles, meaning
that those that preferentially sedimentwith a fraction in ESC show
the opposite sedimentation in the same fraction in NPC.

Luciferase reporter assays

Luciferase reporters designed to test translational control by
alternative first exon sequences were assembled from gene
blocks (IDTDNA) and cloned into pLightSwitch 5′ UTR report
(Switchgear Genomics). HEK293 cells, grown on six well plates
in DMEM supplemented with 10% FCS, were transfected with
2.5 µg pLightswitch reporter plasmid and pMIR (Ambion).
Twenty-four hours after transfection, cells were lysed with passive
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lysis buffer and analyzed by dual luciferase assay (Promega).
Experiments were performed in triplicate. Relative luciferase activ-
ity (Renilla vs. firefly) was plotted in Graphpad and analyzed by
paired t-test.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE244655.
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