
UC Irvine
UC Irvine Previously Published Works

Title
Myrmec: FPGA-Accelerated SmartNIC for Cost and Power Efficient IoT
Sensor Networks

Permalink
https://escholarship.org/uc/item/0nx254pj

ISBN
9783031460760

Authors
Chen, J
Jun, SW

Publication Date
2023

DOI
10.1007/978-3-031-46077-7_5

Copyright Information
This work is made available under the terms of a Creative Commons
Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0nx254pj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Myrmec: FPGA-Accelerated SmartNIC
for Cost and Power Efficient IoT Sensor

Networks

Jeffrey Chen and Sang-Woo Jun(B)

University of California, Irvine, CA 92697, USA
jeffrc2@uci.edu, swjun@ics.uci.edu

Abstract. Battery-powered wireless sensor nodes are one of the fun-
damental components of IoT-style wide-scale data collection and pro-
cessing, but their capabilities are often restricted by the limited wireless
transmission bandwidth achievable under the stringent power envelope
imposed by the battery or power harvesters. Extreme edge computing
attempts to mitigate this issue by offloading some computation to the
sensor nodes with the aim of reducing the wireless data transfer require-
ments, and it has shown great promise especially using application-
specific hardware acceleration on reconfigurable fabrics such as FPGAs.
However, simply attaching an FPGA accelerator as a peripheral to the
embedded microcontroller requires microcontroller software to move data
between the accelerator and network interface, which can quickly become
the bottleneck for high-speed data collection and processing. In this work,
we present Myrmec, a SmartNIC architecture which mitigates this bur-
den by placing a low-power FPGA on the datapath between the micro-
controller and NIC. We present a carefully optimized architecture for
wireless data collection, and use three important application scenarios
to show that it can improve effective bandwidth by up to almost 3×
compared to a standalone accelerator, which is on top of the order of
magnitude reduction in wireless data transfer thanks to extreme edge
computing. Thanks to reduction of wireless data transfer, Myrmec can
reduce the overall power consumption of the node, despite the addition
of acceleration which significantly improves data collection performance.

Keywords: Wireless Sensor Network · FPGA · SmartNIC · IoT

1 Introduction

Driven by the popularity of the Internet-of-Things (IoT) or Cyber-Physical Sys-
tems (CPS) paradigms, we are expecting explosive sustained growth of ubiqui-
tous data collection with wireless sensor nodes, as well as their processing for
deep insight. The number of edge-enabled IoT devices is expected to grow to
almost eight billion by the year 2030 [32], and the size of the IoT market is
expected to grow to over $650 billion by the year 2023 [23]. Wireless sensing and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Silvano et al. (Eds.): SAMOS 2023, LNCS 14385, pp. 57–71, 2023.
https://doi.org/10.1007/978-3-031-46077-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46077-7_5&domain=pdf
https://doi.org/10.1007/978-3-031-46077-7_5

58 J. Chen and S.-W. Jun

IoT technologies are being successfully deployed for a wide range of applications
spanning personalized health, infrastructure monitoring, agriculture, security,
and more [26,27,30].

One of the most prominent limitations to improving the scalability of such
data collection is the limited computation and networking capabilities of the sen-
sor node, imposed by its restricted power budget. Sensor node deployment often
involve scenarios without access to a reliable power infrastructure, such as physi-
cal distribution across remote areas [1,10,15] or carried by people in unintrusive
manner [2,17]. In such situations, the nodes are expected to operate for long
amounts of time powered either by small batteries or by power harvesters. Such
restricted power availability limits the rate of data collection because high-speed
wireless data transmission is notoriously power-hungry, making it the primary
performance bottleneck for battery-powered sensor nodes [4,6,20].

Edge processing, specifically extreme edge processing, is a prominent
paradigm for reducing the network transmission requirements at the cost of
more computation. Edge processing offloads some computation nearer to where
data is collected, to distill data to smaller sizes before transmission. Extreme
edge processing have shown to reduce wireless data transfer by over 95% per-
cent [12]. This is done either at an intermediate edge server, on the path between
the sensor nodes and the central server [31,35], or by placing more computation
on the sensor devices themselves, on the so-called extreme edge [25]. Unfortu-
nately, extreme-edge computing is not always useful in increasing data collection
performance within the provided power budget. This is because while it can sig-
nificantly reduce the data transmission requirements of the sensor node, it also
increases its computation overhead, which comes with its own power budget
requirements. On the other hand, edge processing while limiting computation
within the original power budget may cause computation to become the bottle-
neck [8].

Application-specific hardware acceleration, especially using reconfigurable
fabrics such as Field-Programmable Gate Arrays (FPGA), is a promising tech-
nology for low-power, low-cost edge processing, and there is great interest into
how they should be integrated into the overall system. Hardware accelerators
add an immense amount of computational capabilities to the system, allowing
previously unavailable functionalities such as cryptography [9] or machine learn-
ing inference [8]. Furthermore, the sudden increase of computational throughput
brought by FPGAs can often move the performance bottleneck to other sys-
tem components, such as the communication between the microcontroller and
FPGA [9]. For systems with sensor, accelerator, and network modules indepen-
dently connected to the host microcontroller, the software overhead of moving
data between these three components often became the prominent bottleneck
instead of even the network bandwidth, since the FPGA accelerator can effi-
ciency reduce the network bandwidth requirements.

In this paper, we address the performance issue of data movement for extreme
edge acceleration with SmartNICs, where an FPGA accelerator is located on the
datapath between the host microcontroller and the network module. We use the
term SmartNIC (Smart Network Interface Card), even though our network is

Myrmec 59

(a) FPGA accelerator as a separate module

has higher latency and

higher bandwidth requirements.

(b) FPGA accelerator as a SmartNIC

has lower latency and

lower bandwidth requirements.

Fig. 1. The SmartNIC architecture results in much fewer data movement as well as
lower bus bandwidth requirement.

not in a card format, since the term is commonly used in the datacenter context
to describe a very similar architecture. Figure 1 illustrates the difference in data
movement requirements between a conventional, independently connected accel-
erator and a SmartNIC-style accelerator. For the SmartNIC system, the host
software is only responsible for transferring the sensor data to the SmartNIC
accelerator, unlike the conventional system where it needs three separate data
movement operations until it can be transmitted over the network.

We present the design and evaluation of our SmartNIC architecture, Myrmec,
which is optimized for using very low-cost, low-power FPGAs in the extreme
edge. To make the best use of FPGA resources with useful application-specific
work, Myrmec’s design does not use precious FPGA resource to handle network
protocols, instead maintaining most of protocol handling in the software libraries
just like non-accelerated systems. Instead, the accelerator interface transmits
data by injecting accelerated output into the output stream generated by the
software libraries. This way, the vast majority of FPGA resources can be allo-
cated to application-specific acceleration.

To demonstrate that this architectural approach can effectively accelerate
important applications, we construct a physical prototype to evaluate three
prominent applications for edge processing. Our Myrmec prototype uses a low-
cost (< $ 5), low-power (¡ 20mW) Lattice iCE40 UP5K FPGA integrated into an
embedded system consisting of an Arduino microcontroller and low-power LoRA
communication, connected over SPI busses. We used three important applica-
tions for edge processing: Spike detection from time series information [7], Dif-
ferential privacy [34], and Time series distance calculation using Dynamic Time
Warping [33]. Using this prototype, we demonstrate two benefits of our system:
First, the SmartNIC configuration can improve effective system throughput by
almost 3× for some applications compared to an independently installed accel-
erators. Second, aided by the effective resource usage of the Myrmec architec-
ture, the low-power UP5K FPGA can effectively accelerate the important, select

60 J. Chen and S.-W. Jun

benchmark applications, showing that this is a reasonable resource to allocate
for real-world scenarios.

The rest of this paper is organized as follows: We present some relevant
background and existing research in Sect. 2. Then, we present the design of the
Myrmec architecture as well as the specifications of our prototype implemen-
tation in Sect. 3. We then present our evaluation results with important edge
acceleration applications in Sect. 4. We conclude with discussions in Sect. 5.

2 Background and Related Works

Edge processing in the extreme edge, especially using power-efficient FPGA
accelerators, is a popular paradigm for reducing the power-hungry wireless net-
work transmission. Extreme-edge FPGAs have been used of offload many appli-
cations including video processing [19,36], posture and fall detection [22], time
series mining [18], neural networks [3,8] and more. Many such accelerators result
in over 95% reduction in wireless transmission, resulting in proportional power
reductions [12].

In the datacenter, FPGA accelerators are often installed as a SmartNIC,
where the FPGA is integrated into the network module itself [11,21]. This app-
roach is gaining popularity since it can enable zero-latency acceleration in a
bump-in-the-wire fashion as packets move over the network. It also supports
low-latency access to remote accelerators over the network, enabling efficient
distributed accelerator development [28].

Such accelerators, as well as conventional sensor nodes and wireless network-
ing modules, are typically connected over a simple system bus such as I2C and
SPI [13,16]. These buses are low power, and also inevitably low performance.
But they are still the popular choice for even relatively high-performance con-
trollers such as the Raspberry Pi [5]. As a result, there is significant research
into faster, low-power system bus technologies as well [29].

A wide selection of wireless communication technologies exist for our sen-
sor nodes [14,24]. There is typically a trade-off between bandwidth and power
consumption, spanning from low-power, low-bandwidth WAN technologies like
LoRa to faster ones with significantly higher power consumption such as MB-
IoT. Slower LoRa can support tens of kbps of performance at tens of mW of
power, compared to faster MB-IoT and LTE-M technologies which can support
an order of magnitude higher bandwidth but also suffers proportionally larger
power consumption.

3 SmartNIC Architecture for Embedded Systems

Myrmec places an FPGA accelerator on the data path between the microcon-
troller and the network interface, in order to remove the microcontroller over-
head of having to transmit data to and from the accelerator. Figure 2 describes
this configuration using a photo and architectural illustration of our prototype.
Once the microcontroller transmits the collected sensor data to the SmartNIC,

Myrmec 61

consisting of the FPGA and the network interface, further data movement to
the network interface (e.g. LoRA) is taken care of by the FPGA accelerator
via a separate interconnect directly between the FPGA and the network. Nei-
ther microcontroller cycles nor its interconnect bandwidth needs to be spent on
transmitting the accelerator-processed data to the network.

Fig. 2. A Myrmec prototype augmented with an FPGA on the wireless transmission
datapath.

We note that our design is optimized for wireless sensor data collection,
where the vast majority of data communication happens in a single direction,
from the sensor nodes to the central host. We take advantage of this knowledge
to optimize the hardware exclusively for data transmission.

3.1 Myrmec Accelerator Architecture

Figure 3 illustrates the internal architecture of the Myrmec system, and how the
accelerator fits into the network datapath. Our Myrmec prototype facilitates
communication between the microcontroller, network, and the FPGA over SPI
links, but in principle other communication fabric such as I2C or UART can be
used as well.

Like existing datacenter-scale SmartNIC designs, Myrmec also provides a
shell on which user accelerators are programmed. By implementing user acceler-
ators on top of the shell, Myrmec is able to provide a consistent interface to the
host software. The interface between the shell and the user accelerator is care-
fully designed to minimize communication overhead, as well as minimize FPGA
resource utilization in the shell. All input to the shell comes in through a single
SPI link, and this stream is address-mapped to either a register map of param-
eters, or one of three queues: The data stream queue, command queue, and the
bypass queue. The bypass queue is the normal path for software to communicate
with the network interface. The software can also use the command and stream
queues in concert with the parameter map to invoke accelerator kernels, and
inject accelerator output into the bypass queue as payload.

62 J. Chen and S.-W. Jun

Fig. 3. Myrmec accelerator architecture exposes a common interface to the host soft-
ware across all user accelerators.

– Parameter map: The lowest few addresses of the memory map points to
the parameter register map. These registers can be random-accessed by the
user accelerator to receive execution parameters from the host software, such
as length of the incoming stream, window size, scale, and others. Because the
parameter map is a randomly accessible register file, its size needs to be kept
small to minimize the chance of timing closure issues in the user logic. The
prototype shell reserves eight registers for the parameter map.

– Command queue: The command queue is used to initiate the user accel-
erator operations, as well as send commands to the other components of the
shell. For example, the command queue is used to program the burst size
parameters for the Stream queue described below, as well as program the
MUX to interleave data from the accelerator output and the bypass queues
for the single output queue to the network interface.

– Stream queue: Since all communication is now address-mapped, every
byte of communication now incurs an additional byte of address overhead.
To remove this overhead in typical cases, Myrmec also provides a DMA-like
burst transfer over the stream queue. Once a stream burst is initiated via
the command queue, the requested number of subsequent bits are sent to the
stream queue without any additional address parameters. More details about
the burst process is described in Sect. 3.2.

– Bypass queue: Input data is sent directly to the network interface without
going through the accelerator. This stream can be merged and interleaved
with the output stream from the accelerator according to the host software
control. More details about the interleaving process is described in Sect. 3.2.

3.2 Software Interface

As described in Sect. 3.1, Myrmec provides an address-mapped interface into the
SmartNIC shell, which enables different user accelerators to be invoked using a
consistent software interface.

Myrmec 63

Figure 4 shows the stream of software commands involved in a very simple
filtering accelerator. We note that while the input stream is illustrated as two
separate streams for better visibility, they both arrive over the same SPI interface
in sequence.

Fig. 4. Communication involved in a simple filtering accelerator call.

Instead of implementing the network controllers directly within the FPGA
accelerator, Myrmec uses the accelerator bypass queue to use existing software
libraries to control the network module. This approach bypasses the complexities
of the network controller libraries in hardware design, as well as take advantage
of the existing software libraries. Only the payload (if any) is emitted by the
accelerator, which is then merged with the bypassed stream to construct the
complete stream of control and data for the network device. In Fig. 4, such
control data is depicted as prefix and postfix streams, which are sent to the
accelerator bypass queue using its memory-mapped address.

The computational heavy lifting by the accelerator is initiated by a combi-
nation of commands over the command queue, as well as the burst of sensor
data over the stream queue. First, a stream command is sent to the command
queue to initiate a burst into the stream queue. Once the stream is ingested, the
software can send the accelerator initiation command over the command queue,
and then specify the interleaving pattern via a number of interleave commands.
While Fig. 4 shows only one interleave command, in reality we need as many
commands as there are bursts to merge. For the example in the figure, we would
need three interleave commands for the prefix, payload, and postfix.

This simple example omits the use of parameters via the parameter map,
but its addition should be a straightforward addition of more address-data pairs
directed to the parameter map.

64 J. Chen and S.-W. Jun

4 Evaluation

We construct a prototype Myrmec system using an Arduino Uno equipped
with an ATMega328 microcontroller, a low-cost, low-power Lattice iCE40 UP5K
FPGA, as well as a LoRA network module. All of these components were selected
for their low cost and low power, meaning inevitably they are also low capability
among their categories. However, we demonstrate using important real-world
applications that even these devices are sufficient to maintain high rates of data
collection.

We evaluate five different system configurations:

– RPiZ: Raspberry Pi Zero, one of the more power-efficient offerings of the
Raspberry Pi single-board computers, equipped with a 1 GHz ARMv6 CPU.

– Teensy4: Arduino Teensy 4, one of the more powerful Arduino embedded
systems, equipped with a 600 MHz ARM Cortex-M7.

– Mega: An arduino Mega, equipped with an embedded ATmega2560 micro-
controller running at 16 MHz.

– Ours: Our Myrmec equipped with a low-performance ATmega328P running
at 16 MHz, as well as a low-power Lattice UP5K FPGA. The FPGA can either
be independent from the network, or integrated into a SmartNIC according
to the Myrmec design.

4.1 Application Details

We evaluate three applications on the Myrmec prototype:

– Time series spike detection: This application detects when a spike exists
in the time series data from a sensor. A spike is detected by calculating a
running average and variance over a window of input data, and raising a flag
whenever a data elements is larger than the average by a certain multiple of
the variance [7].
The user accelerator has a hard-coded window size, and the current window is
stored in a BRAM FIFO. A running sum is maintained by adding every new
input, and subtracting the old input being evicted from the window BRAM
FIFO. This value is used to calculate the running average, which is fed into
the variance calculation module which uses a similar strategy to calculate the
variance.
The accelerator consumes 21% of the UP5K LUT resources.

– Differential privacy: This application injects randomness into each sensor
data in a principled fashion, in order to maintain statistical accuracy over
many data samples, but hides personally identifiable information from the
data stream by providing plausible deniability from randomness [34].
The user accelerator implements a simple per-element Laplace mechanism,
where a random noise is generated by subtracting two samples from the
Laplace distribution. The user accelerator implements a linear congruential
pseudo-random number generator seeded via a user-input parameter, as well
as the integer logarithm modules required for the Laplace distribution.
The accelerator consumes 23% of the UP5K LUT resources.

Myrmec 65

– Time series distance calculation: This application compares a window
of input data against an application-provided reference series. For accurate
comparisons we use the widely popular Dynamic Time Warping as the dis-
tance metric [33].
We only focus on calculating the distance value, without keeping track of
point-by-point backtracking information. This simplifies the calculation for
both software and hardware implementations since the whole dynamic pro-
gramming matrix does not need to be store in memory. Instead, only two
rows of the dynamic programming matrix at a time need to be maintained
to calculate the next row based on the previous one.
The accelerator implements multiple Processing Elements (PE), and con-
sumes 94% of the UP5K LUT resources.

Table 1 describes the changes in the data transmission for the three applica-
tions, as a result of edge acceleration. Spike detection and distance calculation
both have a significant benefit in terms of data transmission reduction, since we
no longer have to transmit the original collected data. On the other hand, differ-
ential privacy has no effect on the data transmission rate, because the amount
of differentially privatized data is of same size compared to the original. While
this means the differential privacy acceleration does not reduce network trans-
mission, it is still an important application for the extreme edge since it can
insure privacy before transmitting data from the sensor node into the untrusted
network.

Table 1. Data filtering characteristics of the evaluated applications.

Application Spike Detection Differential Privacy Distance Calculation

Data rate ↓ = ↓

The three applications have differing data filtering characteristics, as well
as widely varying computational requirements. For example, the spike detection
algorithm has very low computational requirements, needing only a handful of
arithmetic operations per input element, and drastically filtering the data for
transmission. On the other hand, dynamic time warping has relatively compex
computational requirements, needing O(N) computation for each new sample,
and also does not filter the data at all. Based on our evaluations on such varying
applications, it should be possible to realistically assess the potential benefits of
Myrmec on other applications of interest.

4.2 Performance Evaluation

Figure 5 shows the performance evaluations of Myrmec using our prototype.

66 J. Chen and S.-W. Jun

Streaming Accelerators: Figure 5a and 5b show the performance comparisons
for the streaming algorithms, Differential privacy and Spike detection. Thanks
to efficient pipelining, our accelerator is capable of maintaining a consistent
throughput of 1 byte per cycle, resulting in a constantly high 25 MB/s band-
width on a 25 MHz clock on both applications. The performance benefits of such
effective pipelining is most prominent with the differential privacy results in
Fig. 5a. The complex computation involved in the differential privacy applica-
tion, including random number generation and the laplace distribution sampling,
can be done in a completely pipelined manner. This is in contrast to software
systems, which must expend multiple instructions to process each sample.

As a result, Myrmec is much faster than all other systems, except for Spike
detection on the RPiZ. In this particular example, the computation requirements
per sample byte is so low that even with the multiple cycles per byte of processing
required by software, the high clock speed (1 GHz) of RPi Zero is able to achieve
higher bandwidth than the fully pipelined FPGA running at 25 MHz. A single
SPI link on our system is able to sustain 500 to 600 KB/s. Since all of the fastest
systems for each application are much faster than what the SPI connection
supports, both applications are bound by SPI performance, and communication
bandwidth becomes valuable for performance.

Fig. 5. Comparative performance evaluations.

Myrmec 67

This is emphasized in Fig. 5d, which compares the performance of Myrmec,
the SmartNIC system, and a conventional node with an independently attached
accelerator. Since there is no filtering for the differential privacy application, the
three data movement operations (to FPGA, from FPGA, and to network) must
all share a single SPI link as well as host software cycles. This results in an almost
3× gap in performance between the independent accelerator and Myrmec. On
the other hand, Spike detection has significant amount of data filtering by the
accelerator, so the overhead of the two latter data movement operations are
minimal. As a result, the performance gap is much smaller compared to the
differential privacy application.

Dynamic Time Warping Accelerator: Figure 5c shows the performance of the
Dynamic Time Warping implementations. While Myrmec shows the best per-
formance thanks to its multiple PEs, all measured systems are actually slower
than the SPI, since the algorithm requires multiple passes over the whole data.
Furthermore, since all systems are slower than the SPI bandwidth, bandwidth-
saving SmartNIC approach has no benefits over the conventional systems. As
a result, Fig. 5d shows that the Neighbor application (DTW) does not become
faster on the SmartNIC device.

4.3 Power-Efficiency Evaluation

Figure 6 compares the power efficiency of different processing units on the three
applications. Power consumption was measured via USB power monitors for each
systems, and power efficiency was measured by dividing the bandwidth by the
measured power. Note that the performance numbers we used were those not
limited by SPI bandwidth, to illustrate the processing power efficiency of the
computation units themselves.

Even when the raw performance was lower with Myrmec compared to more
powerful systems like RPiZ, these figures show that thanks to the low power
consumption of FPGAs, the power efficiency of Myrmec is much higher. The
same is true for a non-SmartNIC FPGA-accelerated sensor node.

Since extreme edge acceleration can drastically reduce wireless transmission
requirements, leading to reduction in network power consumption, the power
consumption of the overall sensor node actually decreases despite the addition
of an FPGA accelerator. In Fig. 7, we present the power consumption break-
down of the Spike detection application, which demonstrates end-to-end lower
power consumption despite the addition of an FPGA accelerator. Since the max-
imum bandwidth of the LoRa module in our prototype is lower than the SPI
bandwidth, we assume LoRa cannot sustain the necessary bandwidth without
edge filtering. To reflect this, we use the published power consumption numbers
for a higher-performance NB-IoT network interface for the conventional system.
Other, even faster network fabrics exist (e.g., 5G, WiFi), but those also have
proportionally larger power consumption.

We also note that this benefit is only available when edge processing has a
filtering benefit. For non-filtering applications like differential privacy, the node

68 J. Chen and S.-W. Jun

Fig. 6. Power efficiency comparisons.

will consume more power compared to the original system, by the amount of
power the FPGA consumes. However, this will likely be still valuable if differ-
ential privacy is required for the target deployment, since the SmartNIC-based
system has much higher performance and power-efficiency compared to software
implementations.

Fig. 7. Edge acceleration results in net reduction of power consumption.

5 Conclusion and Discussion

In this paper, we presented our work on Myrmec, which uses a SmartNIC-like
FPGA-accelerated network interface to perform extreme edge acceleration with-
out further stressing the system bus. Myrmec employed an interesting design
choice of having the software still manage the network transmission protocol
handling via widely available software libraries. This allowed Myrmec to min-
imize the FPGA resource overhead of networking, instead investing the vast
majority of the precious reconfigurable logic for actually useful algorithm execu-
tion. We show that our prototype device with a low-power Lattice UP5K FPGA
is actually capable of effectively offloading a select list of important benchmark

Myrmec 69

applications. We also show that the SmartNIC architecture can achieve higher
bandwidth compared to the conventional, independently installed accelerator
since the SPI system bus bandwidth, as well as the host microcontroller cycles,
do not need to be shared for data movement between the accelerator and the
network. Similarly to datacenter-scale SmartNICs, Myrmec is an effective tool
for improving the performance and scalability of wide-scale data collection via
wireless sensor nodes.

References

1. Ahmed, N., De, D., Hussain, I.: Internet of things (IoT) for smart precision agricul-
ture and farming in rural areas. IEEE Internet Things J. 5(6), 4890–4899 (2018)

2. Alam, M.M., Malik, H., Khan, M.I., Pardy, T., Kuusik, A., Le Moullec, Y.: A survey
on the roles of communication technologies in IoT-based personalized healthcare
applications. IEEE Access 6, 36611–36631 (2018)

3. Anand, S., RK, K.M.: FPGA implementation of artificial neural network for forest
fire detection in wireless sensor network. In: 2017 2nd International Conference
on Computing and Communications Technologies (ICCCT), pp. 265–270. IEEE
(2017)

4. Baddeley, M., Nejabati, R., Oikonomou, G., Sooriyabandara, M., Simeonidou, D.:
Evolving SDN for low-power IoT networks. In: 2018 4th IEEE Conference on Net-
work Softwarization and Workshops (NetSoft), pp. 71–79. IEEE (2018)

5. Calvo, I., Gil-Garćıa, J.M., Recio, I., López, A., Quesada, J.: Building IoT applica-
tions with raspberry pi and low power IQRF communication modules. Electronics
5(3), 54 (2016)

6. Casals, L., Mir, B., Vidal, R., Gomez, C.: Modeling the energy performance of
lorawan. Sensors 17(10), 2364 (2017)

7. Chan, P.K., Mahoney, M.V.: Modeling multiple time series for anomaly detection.
In: Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 8.
IEEE (2005)

8. Chen, J., Hong, S., He, W., Moon, J., Jun, S.W.: Eciton: Very low-power LSTM
neural network accelerator for predictive maintenance at the edge. In: 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL),
pp. 1–8. IEEE (2021)

9. Elnawawy, M., Farhan, A., Al Nabulsi, A., Al-Ali, A.R., Sagahyroon, A.: Role of
FPGA in internet of things applications. In: 2019 IEEE International Symposium
on Signal Processing and Information Technology (ISSPIT), pp. 1–6. IEEE (2019)

10. Farooq, M.S., Riaz, S., Abid, A., Umer, T., Zikria, Y.B.: Role of IoT technology
in agriculture: a systematic literature review. Electronics 9(2), 319 (2020)

11. Firestone, D., et al.: Azure accelerated networking: Smartnics in the public cloud.
In: 15th {USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18), pp. 51–66 (2018)

12. Gaura, E.I., Brusey, J., Allen, M., Wilkins, R., Goldsmith, D., Rednic, R.: Edge
mining the internet of things. IEEE Sens. J. 13(10), 3816–3825 (2013)

13. Gia, T.N., et al.: IoT-based fall detection system with energy efficient sensor nodes.
In: 2016 IEEE Nordic Circuits and Systems Conference (NORCAS), pp. 1–6. IEEE
(2016)

70 J. Chen and S.-W. Jun

14. Goudos, S.K., Dallas, P.I., Chatziefthymiou, S., Kyriazakos, S.: A survey of IoT key
enabling and future technologies: 5G, mobile IoT, sematic web and applications.
Wireless Pers. Commun. 97, 1645–1675 (2017)

15. Heble, S., Kumar, A., Prasad, K.V.D., Samirana, S., Rajalakshmi, P., Desai, U.B.:
A low power IoT network for smart agriculture. In: 2018 IEEE 4th World Forum
on Internet of Things (WF-IoT), pp. 609–614. IEEE (2018)

16. Jafarzadeh, M., Brooks, S., Yu, S., Prabhakaran, B., Tadesse, Y.: A wearable sen-
sor vest for social humanoid robots with GPGPU, IoT, and modular software
architecture. Robot. Auton. Syst. 139, 103536 (2021)

17. Kang, J.J., Yang, W., Dermody, G., Ghasemian, M., Adibi, S., Haskell-Dowland,
P.: No soldiers left behind: an IoT-based low-power military mobile health system
design. IEEE Access 8, 201498–201515 (2020)

18. Kang, S., Moon, J., Jun, S.W.: FPGA-accelerated time series mining on low-power
IoT devices. In: 2020 IEEE 31st International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 33–36. IEEE (2020)

19. Latha, P., Bhagyaveni, M.: Reconfigurable FPGA based architecture for surveil-
lance systems in WSN. In: 2010 International Conference on Wireless Communi-
cation and Sensor Computing (ICWCSC), pp. 1–6. IEEE (2010)

20. Lauridsen, M., Krigslund, R., Rohr, M., Madueno, G.: An empirical NB-IoT power
consumption model for battery lifetime estimation. In: 2018 IEEE 87th Vehicular
Technology Conference (VTC Spring), pp. 1–5. IEEE (2018)

21. Li, J., Sun, Z., Yan, J., Yang, X., Jiang, Y., Quan, W.: DrawerPipe: a reconfigurable
pipeline for network processing on FPGA-based SmartNIC. Electronics 9(1), 59
(2019)

22. Mahdi, S.Q., Gharghan, S.K., Hasan, M.A.: FPGA-based neural network for accu-
rate distance estimation of elderly falls using WSN in an indoor environment.
Measurement 167, 108276 (2021)

23. Marketsandmarksets: Internet of Things (IoT) Market Size, Global Growth
Drivers amp; Opportunities. https://www.marketsandmarkets.com/Market-
Reports/internet-of-things-market-573.html (2022). Accessed 30 Mar 2023

24. Mekki, K., Bajic, E., Chaxel, F., Meyer, F.: Overview of cellular LPWAN tech-
nologies for iot deployment: Sigfox, lorawan, and NB-IoT. In: 2018 IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops (Per-
com Workshops), pp. 197–202. IEEE (2018)

25. Merino, P., Mujica, G., Señor, J., Portilla, J.: A modular IoT hardware platform
for distributed and secured extreme edge computing. Electronics 9(3), 538 (2020)

26. Modieginyane, K.M., Letswamotse, B.B., Malekian, R., Abu-Mahfouz, A.M.: Soft-
ware defined wireless sensor networks application opportunities for efficient net-
work management: a survey. Comput. Electr. Eng. 66, 274–287 (2018)

27. Mohamed, R.E., Saleh, A.I., Abdelrazzak, M., Samra, A.S.: Survey on wireless
sensor network applications and energy efficient routing protocols. Wireless Pers.
Commun. 101, 1019–1055 (2018)

28. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accel-
erating deep convolutional neural networks using specialized hardware. Microsoft
Res. Whitepaper 2(11), 1–4 (2015)

29. Pahlevi, R.R., Abdurohman, M., et al.: Fast UART and SPI protocol for scalable
IoT platform. In: 2018 6th International Conference on Information and Commu-
nication Technology (ICoICT), pp. 239–244. IEEE (2018)

30. Rashid, B., Rehmani, M.H.: Applications of wireless sensor networks for urban
areas: a survey. J. Netw. Comput. Appl. 60, 192–219 (2016)

https://www.marketsandmarkets.com/Market-Reports/internet-of-things-market-573.html
https://www.marketsandmarkets.com/Market-Reports/internet-of-things-market-573.html

Myrmec 71

31. Ray, P.P., Dash, D., De, D.: Edge computing for internet of things: a survey, e-
healthcare case study and future direction. J. Netw. Comput. Appl. 140, 1–22
(2019)

32. Statista: Number of edge enabled internet of things (IoT) devices worldwide
from 2020 to 2030, by market. https://www.statista.com/statistics/1259878/edge-
enabled-iot-device-market-worldwide/ (2021). Accessed 30 Mar 2023

33. Varatharajan, R., Manogaran, G., Priyan, M.K., Sundarasekar, R.: Wearable sen-
sor devices for early detection of Alzheimer disease using dynamic time warping
algorithm. Clust. Comput. 21, 681–690 (2018)

34. Xu, C., Ren, J., Zhang, D., Zhang, Y.: Distilling at the edge: a local differential
privacy obfuscation framework for IoT data analytics. IEEE Commun. Mag. 56(8),
20–25 (2018)

35. Yu, W., et al.: A survey on the edge computing for the internet of things. IEEE
Access 6, 6900–6919 (2017)

36. Zhiyong, C.H., Pan, L.Y., Zeng, Z., Meng, M.Q.H.: A novel FPGA-based wireless
vision sensor node. In: 2009 IEEE International Conference on Automation and
Logistics, pp. 841–846. IEEE (2009)

https://www.statista.com/statistics/1259878/edge-enabled-iot-device-market-worldwide/
https://www.statista.com/statistics/1259878/edge-enabled-iot-device-market-worldwide/

