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ABSTRACT

Starting from continuum mechanics principles, finite element
incremental formulations for nonlinear static and dynamic analysis
are reviewed and derived. No new formulation is presented. The
aim in this report is a consistent summary, comparison, and evalua-
tion of the two formulations, which are used in the general purpose
nonlinear static and dynamic analysis program NONSAP., The general
formulations include large displacements, large strains, material
nonlinearities and nonconservative forces. For specific solutions
in this report, elastic and hyperelastic materials only are con-
sidered.

The numerical solution of the continuum mechanics equations
is achieved in NONSAP using isoparametric finite element discreti-
zation., The specific matrices which need be calculated in the
formulations are discussed.

To demonstrate the applicability and the important differences
in the formulations, the solution of static and dynamic problems

involving large displacements and large strains are presented.
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NOTATION

All symbols are defined in the text. Important notation is

also listed below. Components are referred to a Cartesian coordi-

nate system;

i,i,...= 1,2,3.

Area of body in configuration m

Component of constitutive tensor referred to configur-
ation n

Component of Green-Lagrange strain tensor using dis-
placements from configuration n to configuration m and
referred to configuration n

Component of Almansi strain tensor in configuration m

Component of strain increment tensor referred to con-
figuration n

Linear part of strain increment nEij

Nonlinear part of strain increment neij

Component of body force vector per unit mass in con-
figuration m referred to configuration n

Finite element interpolation function associated
with nodal point k

Component of surface normal in configuration m
Specific mass of body in configuration m
Total external force applied in configuration m

Component of 2nd Piola-Kirchhoff stress tensor in
configuration m referred to configuration n

. . m
Component of stress increment in nSij

Component of Cauchy stress tensor in configuration m
Component of surface traction vector in configuration
m referred to configuration n

Component of displacement vector from initial position
to configuration m



X.
nil,j

Matrices

n L

=]

"

Increment in displacement component
Displacement component of nodal point k in configuration m

Deriyatiye of displacement component to configuration
m with respect to coordinate “xj

Derivative of displacement increment with respect to
coordinate nxj

Volume of body in configuration m

Cartesian coordinate in configuration m
Cartesian coordinate of nodal point k in configuration m

Derivative of coordinate in configuration m with respect
to coordinate»nxj

Linear strain displacement matrix in configuration m
referred to configuration n

Nonlinear strain displacement matrix in configuration m
referred to configuration n

Tangent material property matrix referred to configura-
tion n

Vector of nodal point forces in configuration m (n = 0
in T.L. formulation and n = m in U.L. formulation)

Linear strain stiffness matrix in configuration m referred
to configuration n

Nonlinear strain stiffness matrix (also called geometric
or initial stress stiffness matrix)in configuration m
referred to configuration n

Mass matrix

Vector of external loads in configuration m

2nd Piola-Kirchhoff stress matrix and vector in config-
uration m and referred to configuration n

vi
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=

Cauchy stress matrix and vector in configuration m

Vector of displacement increments from configuration 1
to configuration 2

vii



1. INTRODUCTION

In nonlinear dynamic finite element analysis inveolving large
displacements, large strains and material nonlinearities, it is
necessary to resort to an incremental formulation of the equations

of motion. Various formulations are used in practice (see references).
Some procedures are general and others are restricted to account for
material nonlinearities only, or for large displacements but not for
large strains, or the formulation may only be applicable to certain
types of elements. Limited results have been obtained in dynamic
nonlinear analysis involving large displacements and large strains.
Currently, the general purpose nonlinear finite element analysis
program NONSAP is being developed at the University of California,
Berkeley[ 2]. An important aspect in the development of the program
is to assess which general finite element formulation should be im-
plemented.

In dynamic analysis numerical integration of the finite element
equations of motion is required. Extensive research is currently
being devoted towards the development of stable and accurate integra-
tion schemes [ 1] [ 3] [17] [26]. However, it need be realized that
a proper evaluation and use of an integration method is only possible
if a consistent nonlinear finite element formulation is used.

The earliest nonlinear finite element analyses were essentially
based on extensions of linear analyses and have been developed for
specific applications (for a comprehensive list of references,see
the books by Oden [28] and Zienkiewicz [38]). The procedures were

primarily developed on an intuitive basis in order to obtain solutions

to the specific problems considered. However, to provide general



analysis capabilities using isoparametric (and related) elements a
general formulation need be used. The isoparametric finite element
discretization procedure has proven to be very effective in many ap-
plications, and lately it has been shown that general nonlinear form-
ulations based on principles of continuum mechanics can efficiently
be implemented.

Basically, two different approaches have been pursued in incre-
mental nonlinear finite element analysis. In the first, static and
kinematic variables are referred to an updated configuration in each
load step. This procedure is generally called Eulerian, moving co-
ordinate or updated formulation. Murray and Wilson [24], Felippal7],
Yaghmai and Popov [34] [35], Farhoomand [6] Sharifi and Popov [30],
Yamada [36], Stricklin et al [33], Heifitz and Costantino [12],
Belytschke and Hsieh [4] have presented some form of this formula-
tion,

In the second approach, which is generally called Lagrangian
formulation, all static and kinematic variables are referred to the
initial configuration. This procedure is used by Oden [27] [28],
Marcal [23], Hibbit et al [13], Larsen [19], McNamara [25], Sharifi
and Yates [31], Stricklin et al [32] [33], Haug and Powell [10]. A
survey paper of the lLagrangian formulation in static analysis was
presented by Hibbit et al [13], where it is stated that additional
research is required for use of an equivalently consistent updated
formulation.

It is apparent that with the different formulations available,
in the development of a general purpose nonlinear dynamic analysis

program a decision need be made on the procedure to be used. An



important consideration is that using any formulation based on con-
tinuum mechanics principles, in which all nonlinear effects are in-
cluded, the same results should be obtained in the analyses. Stricklin
et al discussed a moving coordinate formulation and a Lagrangian
formulation and pointed out that the latter is more general and
computationally more efficient [33]. Yamada compared a Eulerian

and Lagrangian formulation and predicted for a simple truss structure

a maximum difference of about 25% in the displacements [36]. Dupuis

et al analyzed arches using the Lagrangian and an updated formulation
and also calculated a much different response by either formulation[5].

The purpose of this report is to present and compare in detail
the two general formulations that are used in program NONSAP, and to
show their general applicability in nonlinear static and dynamic
analysis. The formulations are termed total Lagrangian and updated
Lagrangian formulations and they are based on the work of the
authors cited above. For specific solutions in this report, only
elastic and hyperelastic materials are considered.

Both procedures are derived from the basic principle of vir-
tual work and are valid for nonlinear material behavior, large
displacements and large strains, It is pointed out that, in theory,
there is no difference in the two formulations. Any difference in
the numerical results arise from the fact that different descriptions
of material behavior are assumed, and if the material constants
are transformed appropriately, identical numerical results are
obtained. Therefore, the question of which formulation should be
used merely depends on the relative numerical effectiveness of the

two methods. In the paper specific attention is directed to the



efficiency of either formulation.

To demonstrate the applicability and the important differences
in the two formulations, the numerical operations required far
solution are studied and a variety of sample solutions are presented.
These include the 1érge displacement and large strain static and
dynamic analysis of a rubber-like material, the static and dynamic
buckling of elastic arches and shells, and the large displacement
analysis of a cantilever with conservative and nonconservative

loading.



2. CONTINUUM MECHANICS FORMULATIONS

Consider the motion of the body in Fig. 1. The aim is to
evaluate the equilibrium positions of the body at the discrete
time points 0, At, 24t, 3at, ..., where At is an increment in time.
Assume that the solution for the kinemati; and static variables for
all time steps from time = 0 to time = t, ihciusive, have been
solved for, and that the solution for time = t + At is required
next. It is noted that the solution process for'the next required
equilibrium position is typical and would be abplied repetitively
until the complete solution path has been solved for. In the der-
ivation of the equilibrium equations, reference is made to the
initial (time = Q), current (time = t) and next unknown (time =
t + At) configurations of the body, which are referred to as
configurations '"0", "1" and "2", respectively.

The motion of the body is considered in a fixed Cartesian
coordinate system, Fig. 1, in which all kinematic and static
variables are defined. The coordinates describing the configura-
o* at time = t are

(o}
X

tion of the body at time = 0 are Ox 2 3

1!

1 .
X and at time = t + At are 2x 2x 2x3, where the

2’ 3’ 1’ 2’
superscript refers to the configuration of the body and the sub-
scripts to the coordinate axes. The notation for the displace-
ments of the body is similarly to the notation for the coordinates;
at time = t the displacements are 1ui, i=1,2,3 and at time =

t + At the displacements are 2ui, i=1,2,3; therefore



W3LSAS 3JLVNIQHOOD
NVIS314vI NI AdO8 40 NOILOW | 3JdNn9ld

®x2%x, ¥x,
<
O 3NIl 1V
O NOILVHNOI4ANOD
{ ANIL LV
I NOILVYHNOI4ANOD
€, 2, I
IV+i JNIL LV
2 NOILVHN9I4NOD
€y sCy 1|

€, «E
xNx

| ol ol
Xz X Xg

-nx



X, = X, + u, k=1,2
i=1,2,3

The increments in the displacements from configurations 1 to 2 are
denoted as

u. = u; - ‘u. i=1,2,3
i i i

The basic aim of the formulation ig to establish an equation
of virtual work from which the unknown static and kinematic varia-
bles in configuration 2 can be solved for. Using the principle of
virtual displacements, because the isoparametric displacement based
finite element procedure shall be employed for numerical solution,
the equilibrium of the body in configuration 2 requires that [22],
2/ 2Tij 5,4 4y = zfgtk su, “da + 2/ % 25 ou fav (D)
v A V
where ?Tij = Cartesian components of the Cauchy stress tensor, i.e.

actual physical stresses referred to unit area in configuration 2,

2 .
oty = surface force component, ;fk = body force component per unit
mass, 2p = mass density, 6 u, = virtual variation in current dis-

k

placement components and § eij = the corresponding virtual varia-

2
tions in strains, dzeij =& %(Zui,j + 2uj,i)) . It should be
noted that the GZeij are kinematic quantities which arise by
transforming the right hand side of Eq. (1), and which are identi-
fied to be of the form of a variation of a small strain expression.
In Eq. (1) and the equations to follow the summation convention

of tensor notation is implied and the integrations are performed

over the volume 2V and area 2A of the body. A left superscript



denotes the configuration in which the quantity occurs and a left
subscript denotes. the configuration with respect to which the
quantity is measured. Noting that Cauchy stresses are always
referred to the configuration in which they do occur,

(21 = STij)’ in Eq. (1) all quantities exist and are measured

ij

with respect to configuration 2.

Equation (1) cannot be solved directly since the configuration
2 is unknown. An approximate solution can be obtained by referring
all variables to a known previously calculated equilibrium config-
uration. For this purpose, in principle, any one of the already
calculated equilibrium configurations could be used. In practice,
however, the choice lies essentially between two different formula-
tions, namely, the total Lagrangian formulation (T.L.) and the
updated Lagrangian (U.L.) formulation which are presented in the

following sections.

2.1 Total Lagrangian Formulation

The formulation called here total Lagrangian (T.L.) formula-
tion is generally referred to as Lagrangian formulation and has
been used a great deal in static analysis [11] [13] [23] [33].

In the formulation all variables in Eq. (1) are referred to
the initial configuration 0 of the body. The applied forces in

Eq. (1) are evaluated using

dv (2)

where it is assumed that the direction and magnitude of the forces

gtk and gfk are independent of the configuration 2, i.e. conserva-

tive loading only is considered. Nonconservative loading conditions



are discussed in a later section.’
The yolume integral of Cauchy stresses times virtual varia-
tions in small strains in Eq. (1) can be transformed to give [22]

2 2 _ ./P 2 2 o} -
2\'[ TS 62e.. dv = J osijé dv (3)

€.,
ij o] 0 1)

where isij = Cartesian components of the 2nd Piola - Kirchhoff
stress tensor corresponding to configuration 2 but measured in
configuration 0, and § seij = virtual variations in the Cartesian
components of the Green - Lagrange strain tensor in configuration 2

referred to configuration O,

o]
23 . & 0, 2. 0, (4)
"1 T 7 2%, Tsr 2r
2 i 1.2 2 2 2
$of15 = 8 ZhU 5t ou s o, oY%, ) (5)

A comma denotes differentiation with respect to the coordinate fol-
lowing, where the left subscript indicates the configuration in
which the coordinate is measured, i.e. in Eq. (5) all differentia-
tions are with respect to oxi, i=1,2,3. It need be noted that
the integral of Piola - Kirchhoff stresses times virtual variations
in the Green-Lagrange strains is defined over the initial config-
uration 0 of the body.

Substituting the relations in Eqs. (2) and (3) into Eq. (1),
the following equilibrium equation of the body in configuration 2

but referred to configuration 0 is obtained,



or

J/ﬁ 25 5 %c.. %v = %R 7
o] 0713 © ofij

where 2R is the total force applied in configuration 2.

. 2 . 2
Since the stresses osij and strains oeij are unknown, for

solution, the following incremental decompositions are used

o°ij = o%ij * o°ij (8)
2€.. = 1e.. + €. . {9)
0 ij 0ij 0 ij

where ésij and ;Eij are the known 2nd Picla - Kirchhoff stresses

and Green-Lagrange strains in configuration 1. Using the displace-
ment definition of the Green-Lagrange strain tensor, it follows
2

from Eq. (9) that ¢ oeij =8 ogij and

0fij T 0%ij T o"ij (10)

10



where

= %ﬁ u + u, .+ 1u u + u lu < (11)
j 0"i,j 0 j,i ok,i ok,j oKk, o0Kk,j

0Mij - b o'k,i o"k,j (12)
The incremental 2nd Piola - Kirchhoff stresses osij are
related to the incremental Green-Lagrange strains oeij using
the constitutive tensor C.._ , 1i.e.
o ijrs
S.. = C.. € (13)
0 1ij 0o ijrs o'rs .
Equation (7) can now be written as
f .. 8 Odv + fl .. y ®dv
o o'ijrs o rs o ij of © 13 Todj
v \%
= %R - fls.. 5 °dy (12)
o ij To7ij
v

which represents a nonlinear equation for the incremental displace-

ments u. .
1

2.2 Updated Lagrangian Formulation

Most updated formulations previously used are approximate in

that they are restricted to small strains or even constant strain

11



conditions within each finite element used for numerical solution
[41[24]. However, Yaghmai introduced a general procedure, and the
U.L. formulation given here is largely based on his work [34].  The
use of the U.L. formulation in NONSAP was also presented in [2].
In the U.L. formulation all variables in Eq. (1) are referred
to configuration 1, i.e. the updated configuration of the body. By
an analogous procedure to the derivation in Section 2.1, Eq. (1) is

in this case transformed to

2 2 1 2
llr lsij 61€ij dv. = "R (15)
where 25.. = Cartesian components of the 2nd Piola-Kirchhoff stress

171

tensor and feij = Cartesian components of the Green-Lagrange strain
tensor increment from configuration 1 to configuration 2 and referred
to configuration 1. Since conservative loading is considered 2R is
evaluated as in the T.L. formulation. The incremental stress decom-

position used in this case is
(16)

1
where Tij = Cauchy stresses and Sij = 2nd Piola-Kirchhoff stress

1
increments, referred to configuration 1. Considering the strain in-

2
crements .e.., the following relations hold

1713

E.. = [E.. (173

12



1€ij = 1855 Y 1Ty (18)

where

1845 = Jf(lui,j * 1uj,i> (19)
145 © t 1Yk,i 1Y, (20)

The constitutive relation between stress and strain increments used

now is

lsij = 1Cijrs 1515 (21)

and Eeq. (15) can be rewritten as

1 1 1
lf 1%5rs 15rs %1515 V¢ f T35 %Ny
| 1y

\

- %R - f L s.e.. ldv (22)
1 1j 1713
Vv

which, as Eq. (14), is a nonlinear equation in the incremental

displacements u, .

2.3 Linearization of Equilibrium Equations

It should be noted that Eqs. (14) and (22) are, theoretically,
equivalent and provided the appropriate constitutive relations are
used, the equations yield identical solutions. However, as will
be seen, the finite element matrices established for solution are

different.

13



The solution of Eq. (14) and of Eq. (22), which are equivalent
to Egs. (7) and (15), respectively, cannot be calculated directly,
since they are nonlinear in the displacement increments. Approxi-

mate solutions can be obtained by assuming that in Eq. (14) e =

o ii
e.. and in Eq. (22), .e.. = .e.. This means that, in addition
01ij 171} 171j.
to using § €.. = § e,. and §.e.. = §.e.., respectively, the incre-
0 1ij 0 1j 1717 171)

mental constitutive relations employed are

S.. = C e.. (23)
0 1ij 0 jjrs o ij

and

1515 % 1%jrs 1% (24)

where 1Sij and leij are considered to be approximately equal to an
. . . . 1
increment in the Cauchy stress 1Tij and Almansi strain Eij, res-

pectively {see Section 3.4).

14



3. FINITE ELEMENT SOLUTION

In the T.L. formulation the approximate equilibrium equation to

be solved is

o 1 0
. S.. &n.., dv
oJ/.ocijrs o%rs soelj dv. + oy/fo ij Onlj

v )\ .

- %R -Ofls.. s e.. Zdv (25)
o°ij o ij .

whereas in the U.L. formulation the equation is

d/f C.. e e, ldv +
17ijrs 17°rs "171j 1

1y

< \
s
—~
[N
Cde
[o2]
—
i}
=
ww
—
o
<

2 1 1
= ‘R - / Tyy 68y v (26)
15

Equations (25) and (26) are linear equations in the incremental dis-
placements and are used as the basis for isoparametric finite element
analysis[28] [38]. Referring to the standard procedures for assem-
bling the structure matrices, attention need only be given to the
derivation of the matrices corresponding to a single element.

3.1 Finite Element Matrices

In the isoparametric finite element solution the coordinates

15



and displacements of an element are interpolated using

i . ik .
x; =2 by xS en

i ik
uj —; hk uj (28)

where ix? = coordinate of nodal point k corresponding to direction j
and in configuration 1i, iu? is defined similarly to ix? and hk =
interpolation function associated with nodal point k.

Using Eqs. (27) and (28) to evaluate the displacement deriva-

tives required in the integrals, Eq. (25) becomes, considering a

single element

1 1 2 1
<oKL ' oKNL> =R - F (29)
where éKL u, l u and F are obtained from the finite element
evaluation of / C. S e.. Odv, /IS.. § n,. %dv
o"ijrs o°rs ‘o ij of © 13 Toij
°y v
d lS Odv respectivel
an 0°1j O » Tesp Y,
oy .
i.e.
1 _ 1.T 1 o}
K foBL B %av (30)
)
v
1 1. T 1 1 o
K =
o NL foBNL o> ofnL @V (31)
v

16



1 1., T 1z o
JF = O[OBL oS dv (32)
v
In the equations ;BL and éBNL are linear and nonlinear strain dis-

placement transformation matrices, 0C is the material property matrix,

1~

éS is a matrix of 2nd Piola - Kirchhoff stresses, and 0S is a vector
of these stresses. All matrix elements correspond to configuration
1 and are defined with respect to configuration 0.

Similarly, the finite element solution of Eq. (26), which was

obtained using the U.L. formulation, results into

1 ] 2 1
(1KL+ lKNL) u = R - F (33)
where
1, 1.T 1.
1Ky = /1BL ¢ By v (34)
1y
1 1T 1. 1. 1
1K = /1BNL T By v (35)
1
v
and
g . T IT 1y (36)
] 18,
15

In Eqs. (34) to (36) the elements of the linear and nonlinear strain-
. . 1 .
displacement transformation matrices iBL and lBNL’ respectively, and

the elements of the material property matrix 1C correspond to and are

17



defined with respect to configuration l,lT is a matrix and 1? is a
vector of Cauchy stresses in configuration 1. It should be noted
that the matrix elements are functions of the natural element ‘co-
ordinates and that the volume integrations are performed using a
coordinate change from Cartesian to natural coordinates [38]. As
an example, Table 1 shows the strain displacement and stress mat-
rices used for two-dimensional analysis (plane stress and plane
strain) in the U.L. and T.L, formulations.

3.2 Dynamic Analysis

In dynamic analysis, the applied body forces include inertia
forces. Assuming that the mass of the body considered is preserved,
the inertia forces are conservative and can in both formulations be
evaluated using the initial configuration 0 as reference. Using
the standard finite element formulation to evaluate the element
mass matrix [38], the incremental equilibrium equation for a single

element in the T.L. formulation is

1 1 2 1 2.
<0KL + OKNL) u= R- F-M% (37)

and in the U.L. formulation this equation is

1 1 2 1 2.,
(lKL + lKNL> wu= R- JF-M% (38)

where zﬁ is a vector of the element nodal point accelerations in
configuration 2, and M is the element mass matrix calculated using
the original configuration of the body. In Eqs. (37) and (38),

damping effects usually defined by a matrix C have been ignored [2].

18
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3.3 Equilibrium Iteration

It is important to realize that Eqs. (37) and (38) are only
approximations to the actual equations to be solved in each time
step, i.e. Eqs. (7) and (15), respectively. Depending on the non-
linearities in the system, the linearization of Eqs. (14) and (22)
may introduce errors which ultimately result into solution instab-
ility. For this reason it may be necessary to iterate in each
load step until, within the necessary assumptions on the variation
of the material constants and the numerical time integration, Eqs. (7)
and (15) are satisfied to a required tolerance. The equation

used in the T.L. formulation is

1 L1 (1) _ 2 2_(1) 2, (1)
<0KL + oKN;> Au = R - OF -MT
i = 1,2,3... (39)
where 2u(1+1) = zu(l) + Au(l), zu(l) = lu + u, and Zﬁ(l), iF(l) are
accelerations and internal resisting forces obtained using the dis-
. . 2 (1) . . . 2..(1)
placement approximation "u . The acceleration approximation "u
depends on the numerical integration scheme used; and iF(l) is the
finite element evaluation of ./f gsg;) siei;) odv, where the super-
)
v 2 (i)

script i shows that stresses and strains are evaluated using "u
In the U.L. formulation the equation used for equilibrium iter-
ation is

1 1 (i) _ 2 2_(i) 27 (1) (40)
( 1KL lKNL) Au = R - 1F - M "u
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where the i'th displacement and acceleration approximations are cal-

(i) ,
culated as above, and fF is the finite element evaluation of

2 (1) (1)2 (i)_ 2.(1) 2 (1)1
f‘ Tij dzeij dv J lsij dlsij dv.
2v(1) . ¢

It may be noted that the equilibrium iterations correspond to
a modified Newton iteration within each load step [38]. Table 2 sum-
marizes the step-by-step algorithm used in NONSAP. For details on

the derivation of the algorithm reference is made to [ 2] [ 3].

3.4 Constitutive Relations

Since the T.L. and U.L, formulations are, mathematically, equiv-
alent but the constitutive relations used are defined differently,
the choice between the use of either formulation depends to a large
degree on the available material definition. If a T.L. constitutive
relation is available, then in order to use the U.L. formulation the
material tensor must be transformed, and vice versa [22]. In the
T.L. formulation the material property tensor Ecijrs relates the

2nd Piola - Kirchhoff stress tensor Esij to the Green-Lagrange

strain tensor Eers with the reference configuration 0O
k k k
S.. = .
0 1] OClJrS o%rs (41)

where k is the configuration in which the stresses and strains
occur. In the U.L. formulation the equivalent constitutive rela-

tion is [ 8],

“ij kcijrs ®rs (42)
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TABLE 2 SUMMARY OF STEP-BY-STEP INTEGRATION

(For notation used and the derivation
of the algorithm, see Reference 2)

INITIAL CALCULATIONS - - -

.. Form lincar atiffness matrix K, mass matrix M and damping matrix C; initialize u (lo. ﬁ'o

. ©nlculate the frllowing conatants:

8 z1.237 s T2 At : tol £ 0.01 B nitem 2 3
2 =
s, = €/7 a, = 3/ 8, = 2-1 L T/2 = 10/9
2
a, 2 -a,’'8 ng = 1-3/6 8y = 8t/2 ag = M7/G

3. Form effective linear atiffness matrix: K = K + .n" + -lc

4. In linear analysis triangularize ?

POR EACH TIMESTEP - ~ -
A. IN LINEAR ANALYSIS

(1) Form effective loadvector:

R, = R ¢+ B(RNM - Rt) - H(lou' + agh, 4 20") - C('lue + 20 -:‘u')
(11) Bolve for displacement increments: - -
Ku .. =R i R
{111) Go to C,
B. [IN NONLINEAR ANALYSIS
1) Update K for nonlinear atiffnoas effects to obtein ?t and triangularize
(L) Foim effective loadvector
-~ - . I . - s
Ry = Re * e(RNAt nt) * '“'2“( * 2"‘) * L“"t * .3"Q) b
(111) Bolve for diaplacement incrementa: -~
fod
X, b, = R

(1v) 1f required, iterate for dynamic equilibrium; then initislize Au‘“) = o, 1 20

(a) 1 =1 +1

(b) Cnlculate 1'th mpproximation to accelerations, velocitiea, and displacemente:

() o) ) . S [T .
Uyyp = Bpduy - mph, -2l ‘ Upaq 7 mpluy 0 - 20 - agn
(i) _ )
u“T = ut + Bl'
. cage : . ar(i) I ) B ¢ ) N {3
(c) Calculste i'th out-of-bslance losds: Roar = By * O(R“M R Iﬁ‘" AR SN
’ -~ (1) r(i)
(d) Bolve for 1’th correction to displacement increments: K‘M\n‘ = Rtn
(¢) Calculate new diaplacemeonl incrementns: Aut“d) = N‘(“ + A&lt(n
1
(f) Iteration convorgence 1f \Inpu‘(”]]z/ Ilwf” ', ull, <to1
1f convergence: Mt - m‘(““ and go to C;

If no convergonce and i < nitem:

g0 to (a); otherwise restart uvaing a amaller time atep nize,

C. CALCULATE NEW ACCELERATIONS, VELOCITIES, AND DISPLACEMENTS
Gy ™ gy, * 150‘ sa U, atﬁ\t il 17(ut‘m + U‘) f

=u, o+ ptO, + ln((l'

"tobt ¢ + Iﬁ'()

t AL
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[

where kT.j and kErs are Cauchy stress and Almansi strain tensors in
1

£3 ton k tivel (k _k k I ) and
configuration k, respectively, Tij = kTij, €s ¥ 1 Srs
k _ °p ) 0 k 0 o} .
oCmnpq h F;' kK*m,i k™n, ] Kcijrs K, r k'q,s (43)
k k k k k k k
C = 2 % k. .. x X (44)
k “mnpq % om,i o' n,j oijrs o p,r 0q,s

The incremental relations in Eqs. (13) and (21), and therefore the
constitutive approximations in Eqs. (23) and (24) need be derived
from Egqs. (41) and (42), respectively. The derivation will depend
on if the material is elastic, hyperelastic or hypoelastic [ 8].

In the case of elasticity and hyperelasticity, the incremental
constitutive relations Eqs. (23) and (24) are obtained from the in-
stantaneous derivatives of the total stress-strain relations in con-
figuration 1, i.e. k = 1 in Eqs. (41) and (42), respectively. It
should be noted that the derivative of the T.L. stress-strain relation
in Eq. (41) yields Eq. (13) whereas the derivative of the U.L.
stress-strain relation in Eq. (42) relates Cauchy stress increments
to Almansi strain increments, and therefore the exact incremental
U.L. stress strain relation in Eq. (21) is not obtained. However,
with the necessary assumptions pointed out in Section 2.3 the re-
quired incremental constitutive relation is obtaiuned in either case.
It is important to note that to evaluate the current stresses, in
elasticity and hyperelasticity, the total stress-strain relations,
Egs. (41) and (42), are used.

Considering hypoelastic materials, e.g. plasticity using the

flow theory, the incremental stress-strain relations only are given

R AN



and total stresses must he calculated by adding increments in
stresses [ 8] [34].

Because the transformations in Eqs.(43) and (44) would be
required, it may be of advantage to use the formulation in which

the constitutive relations are given. In case of elasticity, either

k k . . .
olijrs or kCijrs may be given and in hyperelasticity the T.L. con-
stitutive relation is commonly used [16] [28]. The question of which
formulation to use in large strain plastic analysis has not been

resolved [12] [13] [19] and is further being investigated.
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4. NONCONSERVATIVE LOADING

So far it has been assumed that the loads are independent of
the configuration of the body. In practice, therefore, the external
loads for each step can be calculated and stored on back-up storage
before the actual time integration is carried out. However, when
the structure undergoes large displacements or large strains it may
be necessary to consider the externally applied loads to be config-
uration dependent.

An important type of loading, which may need to be considered
as nonconservative, is pressure loading [28]. In this case the

loading to be used in the T.L. formulation is

2, o 0 2 o o )
= £
otk da = - P 2xi,k n, da (45)
p

2, 1 b2 1. 1. 1
P
ltk da = = P in,k n, da (46)
p
where Jni = component i of the normal n in configuration j, and

2p = surface pressure in configuration 2. Equation (45) can be

written in' the form

0
2, o _ p 2 o o o
otk da = - 5~ P lxl,k n. da
p
Op 2 o o o}
R S G 0% I da (47)

and similarly Eq. (46) becomes
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1
_ p 2.1 1 p 2 1 1
: ig- P 2ui,k ni da (48)

where in both formulations the first integral enters the load vector

L

and, assuming that Yk * the second integral contributes to
’

1ui,k’
the system tangent stiffness matrix. It should be noted that this

is a nonsymmetric contribution to the stiffness matrix, and is there—
fore in practice computationally inefficient to handle. Since
equilibrium iterations are probably requiredﬁin any case, it appears
more efficient, at least when pressures are reasonably small, to

neglect the contribution of the pressure load to the stiffness

matrix. In the iteration the loads are then evaluated as

o
o) 3 X, . .

- P 2 —_ On. Oda and - 2 2n (3) zda(J)
6D LGOI P

in the T.L. and U.L. formulations, respectively, where the right
superscript (j) indicates the configuration of the iteration. It is
seen that although the same approximations are involved in both
formulations, the U.L. formulation requires less numerical opera-

tions and seems more natural to use.
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5. SAMPLE SOLUTIONS

The analyses presented in the following have been performed
using 4-node or 8-node isoparametric two-dimensional elements. The
order of Gauss integration has been 2 for the 4-node and 3 for the

8-node elements, respectively. Figure 2 shows a typical 4-node and

8-node element.
The solution algorithm used in NONSAP is summarized in Table 2,

where the specific parameters used were @ = 1.4, tol = 0.001, nitem = 20.
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1. Large Displaceément Static Analysis of a Cantilever

The cantilever in Fig. 3 under uniformly distributed load was
analyzed using the T.L. and U.L. formulations. The cantilever was
idealized using five 8-node plane stress elements.

A solution was obtained for the loading retaining its vertical
direction, i.e. conservative loading, and with the loading remaining
perpendicular to the top and bottom surfaces of the cantilever, i.e.
nonconservative follower loading. In the finite element solution
the nonconservative loading is defined by specifying the direction of
the nodal loads to pass through two nodal points, the coordinates of
which are updated in each load step. In this specific analysis, the
top and bottom surface nodal points of the cantilever have been
used to define the direction of the loading. The deflection load
curves are presented in Fig. 4. The solution obtained from NONSAP
for the conservative loading condition is compared with an analyti-
cal solution provided by Holden [14]. Excellent agreement has been
obtained.

This example was also used to study the influence of the step
size when no equilibrium iterations are performed. Figure S shows
the displacements obtained for different numbers of load steps

without equilibrium iteration (see Table 2).
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2. Large Displacement Static Analysis of a Shallow Arch

The shallow circular arch shown in Fig. 6 was analyzed for
buckling due to a concentrated load at the midpoint of the arch.
Six 8-node plane stress elements were used to idealize one half
of the arch with symmetric boundary conditions at the arch crown.
The arch was analyzed using the T.L, and U.L. formulations, with
equilibrium iterations. Figure 7 shows the crown displacement of
the arch as calculated by NONSAP. An analytical solution obtained
by Schreyer and Masur is also shown [29].

The small difference in results between the T.L. and the U.L.
formulations is due to using the same Young's modulus and Poisson
ratio in both analyses. Figure 7 shows that the results of the
analyses using NONSAP are close to the solution of Schreyer and

Masur.
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3. Large Displacement Static Analysis of a Spherical Shell

A clamped shallow spherical shell subjected to pressure load
was analyzed using the T.L. and the U.L. formulations, Fig. 8. Axi-
symmetric analyses using eight 8-node elements have been performed.
The load deflection curve predicted by NONSAP using the T.L. formula-
tion is shown in Fig. 8. The results are compared with an analytical
solution of Kornishin and Isanbaeva [18], and a finite element
solution of Yeh [37]. Since equilibrium iterations were performed
in NONSAP, the oscillating behavior at the beginning of the post-
buckling range in Yeh's solution was not obtained.

The U.L. formulation gave almost indistinguishable results to

those of the T.L. formulation.
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4. Large Strain and Large Displacement Static and Dynamic Analysis
of Rubber Sheet with Hole,

The rubber sheet shown in Fig. 9 was analyzed assuming a Mooney-
Rivlin type material for which the incremental stress-strain relations

are derived in Appendix A. The specific material constants used for

the hyperelastic incompressible material are ¢, = 25 psi, C, = 7 psi.
These constants are based on an analytical and experimental investi-
gation of the rubber sheet by Iding [16]. The finite element mesh
used in the plane stress analysis is shown in Fig. 10. Thirty 4-node
elements have been employed. In the static analysis 3 (and 9) equal-
sized load increments have been used to reach the final load position,
Fig. 11. At this stage, Green-Lagrange strains up to more than 4.5
are measured. Fig. 12 shows the load deflection relations of some
characteristic points. These results are in excellent agreement
with those of Iding. The results of Iding have been obtained with
the computer program developed in Ref [16], but are not given in
the reference.

A dynamic analysis was performed for the step load shown in
Fig. 13. The selected time step At was 0.0015 sec , which is
approximately 1/120 of the fundamental period of the sheet. No
physical damping was considered. The variation of some displace-
ments as a function of time are shown in Fig. 13 and compared with
the corresponding static load deflections.

In all analyses equilibrium iterations have been performed.
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5. Large Displacement Static Analysis of a Second Shallow Arch

The clamped circular arch shown in Fig. 14 was analyzed for
buckling due to a single static load using the T.L. and U.L. formu-
lations with equilibrium iterations. Considering the symmetry
of the structure and loading, half of the arch was idealized by
twelve 8-node plane stress elements. Figure 15 shows the calculated
load-deflection curve of the arch., The differences in the displace-
ments calculated using the U.L. and T.L. formulations were less than
2 percent.

The same arch was also analyzed by Mallet et al. who used four
"equilibrium - based" elements {21]. Dupuis et al. analyzed the
arch with curved beam elements, and used this example to demonstrate
the convergence of their Lagrangian and 'updated' formulations [5].
In the latter formulation only the nodal points were updated, but
not the geometry within the elements. As shown in Fig. 15, the
results are very sensitive to the number of elements used and are
not satisfactory. Dupuis et al. also compared the calculated results
with experimental results by Gjelsvik and Bodner [ 9], whose pre-
dicted buckling load is about ten percent lower than calculated by
Mallet. However, it need be realized that an arch with a parameter
A = 11.6 is already influenced by antisymmetric buckling modes,
which, although possible in the experiment, have not been taken
account of in the analyses. The results obtained using NONSAP are

therefore satisfactory.
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6. Dynamic Snap Buckling of a Shallow Arch

A dynamic buckling analysis of the circular arch shown in Fig. 16
was carried out using six 8-node plane stress elements to ideglize
half of the symmetric structure. In the analysis the T.L. formulation
was used. The uniformly distributed pressure load was‘applied as a
step load. The timestep At was selected eﬁuar to 3.315 x 10_5 sec,
which is approximately 1/70th of the fundamental period of the
structure. No physical damping was considered. .

The arch is an example of Humphreys'analytical And experimental
investigation, who solved the governing differential equation
using an analog computer [15]. Humphreys concluded that the buckling
load of this arch is not influenced by antisymmetric modes.

Figure 17 shows the displacement response calculated using
NONSAP and obtained by Humphreys. In the figure, the deflection

ration A defined as

average normal deflection w
average rise of arch= H/2

A =

is used. The dynamic buckling of the arch occurs at that load level
at which a sudden increase in the deflection ratio A is measured.
Figure 17 shows that at P, = 0.190 the arch oscillates about a
position of approximately A = 0.25, and that at Py = 0.200 the arch
first snaps through, and then oscillates about a postion of approxi-
mately A = 2.5. Therefore, the buckling load predicted using NONSAP
lies between P, = 0.190 and Py = 0.200, which is about 5% lower than

predicted by Humphreys.
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It should be noted that for a load larger than the buckling
load, i.e. for P, = 0.25, the maximum response increases only
little. The results using NONSAP for P, = 0.250 are in essential
agreement with Humphreys' results, where the slightly larger res-
ponse agrees with the observation that NONSAP predicted a smaller
buckling load. The discrepancies in the results can arise from ap-
proximations in either analysis. Humphreys' series solution is based
on the assumption of shallowness, i.e. q and w are measured vertically,
and in the series solution only a finite number of terms have been
included.

It is noted that in a practical analysis damping should be in-

cluded and a longer time range may be considered as well.
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6.,COMPARISON OF TOTAL LAGRANGIAN AND

UPDATED LAGRANGIAN FORMULATIONS

An ipmportant obseryation, which was already stated earlier, is
that both the T.L. and the U.L. formulations include all nonlinear
effects due to large displacements, large stains and material nonlin-
earities. If the constitutive tensor is defined appropriately, as
discussed in Section 3.4,the same numerical results are obtained.
The only advantage of using one formulation rather than the other,
is its better numerical efficiency,

It should be noted that the U.L. formulation is quite different
from the moving coordinate formulation presented in the survey paper
by Stricklin et al. [33], and the updated formulation, which was
used in the comparative study by Dupuis et al. [ 5].

The incremental moving coordinate formulation presented by
Stricklin et al.[33] was stated to be restricted to small strains
and have distinct computational disadvantages. These conclusions
do not apply to the U.L. formulation used in NONSAP. |

The "updated' formulation employed by Dupuis et al. in their
comparative study of this formulation versus a Lagrangian formula-
tion, did not give satisfactory results[5]. However, using the U.L.
formulation with isoparametric elements as presented in this report,
the results are as good as obtained using the T.L. formulation.

The only errors are due to the numerical solution of the governing
continuum mechanics equations.

It should be noted that, in general, using both the T.L. and

the U.L. formulations equilibrium iterations should be performed
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in order to insure an accurate solution. If no equilibrium iterations
are carried out, the linearization in each time step can introduce un-
controlled large errors. In the elastic and hyperelastic analyses
presented here, it was possible to calculate the stresses in config-
uration 2 directly from the total strains, i.e. in the T.L. formula-
tion total 2nd Piola-Kirchhoff stresses are obtained from total Green-
Lagrange strains, and in the U.L. formulation total Cauchy stresses
are obtained from total Almansi strains. Therefore, the nonlinear
finite element equations have been solved ”exactiyﬂ within the assump-
tions of the time integration scheme and the convergence limit of the
iteration. In path dependent problems this is not possible and total"
stresses are calculated by adding increments in stresses (which, in
the U.L. formulation, requires a transformation of isij in Eq. (16)
to 21..).

1)

The choice between the T.L. and U.L. formulations essentially
depends on their relative numerical effectiveness. Table 1 shows
that éBL is a full matrix whereas iBL is sparse, and that all other
matrices of the two formulations have corresponding patterns of zero
elements. The strain-displacement transformation matrix iBL is full
because of the initial displacement effect in the linear strain
terms, Eq. (11). Therefore, the calculation of the element matrices
requires less time in the U.L. formulation.

An advantage of the T.L. formulation is that the derivatives
of the interpolation functions are with respect to the initial

configuration, and therefore need only be formed once, if they are

stored on back-up storage for use in all load steps. However, in

55



practice, the use of tape or disc to store and retrieve the required
deriyatiyes in each step may be more costly than to simply recalculate
them, and, in particular, the required storage is a problem size
governing factor since saturation of back-up storage may be reached.

It appears that the choice for the T.L. or U.L. formulation will
largely depend on the definition of the material constants, i.e.
whether the constitutive law is given corresponding to the T.L. or
the U.L. formulation. In reasonably small strain, elastic analysis
the differences which arise by using the same material constants in
both formulations--because, for instance, a clear definition of the
constants may not be available--can be expected to be small (see
Examples 2,3,5). In the analysis of hyperelastic materials the con-
stitutive law is commonly defined corresponding to the T.L. formula-
tion (see Example 4).

For (small and) large strain elastic-plastic analysis Hibbit
et al. [13], Heifitz and Costantino [12] and Lee [20] suggest a def-
inition of the material constants which lends itself to the use of
the U.L. formulation. Heifitz and Costantino have actually used an
updated formulation and analyzed metal forming problems in which up
to 40% strains are measured. However, Hibbit et al. transformed
the constitutive matrix established for the current configuration
(configuration 1) to the initial configuration (configuration 0) in
order to use the T.L. formulation.

Larsen suggests the use of the T.L. formulation and assumes
that in large strain analysis increments in Kirchhoff stresses are

related to increments in Green-Lagrange strains by essentially the
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same constitutive matrix which is used in small strain elastic-
plastic analysis [19]. However, he does not present solutions
to large strain problems.

The use of the U.L. and the T.L. formulations for elastic-
plastic analysis is currently under investigation and will be

the subject of a separate report.
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CONCLUSIONS

The objective in this report was to present and compare the two
general incremental formulations, which are used in the computer
program NONSAP for nonlinear static and dynamic analysis. Both
formulations have been derived from general principles of continuum
mechanics and include material, large displacement and large strain
nonlinearities.

The implementation of the formulations was discussed for elastic
and hyperelastic materials only. Additional considerations are neces-
sary in path dependent problems.

For the solution of problems in elasticity (and hyperelasticity)
both formulations are, theoretically, equivalent and differences in
results of analysis arise only due to different definition of the
constitutive laws. The choice between the formulation is, therefore,
only governed by their relative numerical efficiency discussed in
the report.

To indicate the effectiveness of the solution procedures the
analysis of large displacement static and dynamic buckling of arches
and shells and the static and dynamic large strain response of a hy-

perelastic material was presented.
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APPENDIX A

DERIVATION OF THE INCREMENTAL STRESS-STRAIN MATRIX
FOR HYPERELASTIC INCOMPRESSIBLE MATERIAL (PLANE STRESS)

In plane stress analysis the constitutive relation for a hyper-

elastic incompressible isotropic material can be expressed as [16]

clasu-1 1 €22 E C22
(1)522 = 2c )| 1] - 02 cpy |V 2c, fufr]+ [1-;12(c11 + C, 01 | ¢
_cl)slz_‘ 0 'C12J 0 “C12
[ L - L ]

(A1)

where the plane stress condition éss = 0 has already been used to

3

eliminate the hydrostatic pressure. Further the incompressibility

condition
2
has to be satisfied. 1In Eqs. (Al) and (A2)
i i = components of the 2nd Piola-Kirchhoff
J stress tensor
1 .
.= 2 e, + 8., = components of the deformation tensor
ij 0ij ij ‘ .
related to the Lagrange strain tensor
le.. , 6.. = Kronecker delta
07ij ij
o= C33 = deformation measure normal to the plane
C,, C = material functions defined by C W
17 -2 Y 17T,
i
(W = strain energy function
I.= strain invariants)

1

The following expression for the strain energy function W can be
assumed for some rubber like materials

W=C(I-3) +C, (I, - 3) (A3)

2

where C1 and C2 are constants.
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For the incremental T.L. formulation the required stress-strain

matrix C defined hy

- B 7

011 o011

0522 - oC 0%22 (A4)

0512 2 of12

A L -

is found by forming the gradient of Eq. (Al), i.e.
BIS..
C -2 AS

o ijkl = g3lg (AS)

o

k1l

(Note that first Eq. (A2) is used to eliminate the additional un-

known u.) This leads to

0 -1 OT
C=4C¢C 2 2u C + 1-1 0 0
o = 1“ u
0 0 +1
- el
0 -2 0
2

+ 4 C2 H 2u (C11 + C22) C + (Cll + C22) -2 0 0

1
m 2C 7 G T
u
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7 11 Ci2
u
C o (A6)
L Gy, 12 7 -
2y

where
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In other than plane stress analysis the hydrostatic pressure cannot
be eliminated, and has to be included as an additional variable.
The incompressibility condition yields the additional equations

for the unknown hydrostatic pressure.
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