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Network-Constrained Reinforcement Learning for
Optimal EV Charging Control

Tong Wu, Member, IEEE, Anna Scaglione, Fellow, IEEE, Adrian Petru Surani,
Student Member, IEEE, Daniel Arnold, Member, IEEE, Sean Peisert, Senior Member, IEEE

Abstract—This paper introduces a comprehensive control
model that integrates aggregate electric vehicle (EV) charging
demand with power grid systems operations, capitalizing on
the flexible nature of EV charging. This innovative approach
allows us to model and manage electrical loads in a scalable
manner. The main contribution is the study of a constrained
reinforcement learning (CRL) method for the predictive control
of optimal power flow, paired with EV charging control. The
CRL-based control method operates with the understanding that
future EV arrivals are uncertain, while ensuring the feasibility of
control actions. Our case studies, conducted on IEEE standard
systems, highlight the superior performance of our approach
that dynamically adapts to the evolving EV environment while
consistently upholding safety constraints.

I. INTRODUCTION

A. Background and Motivation

The transition to electric vehicles (EVs) plays a critical
role in combating climate change by reducing greenhouse
gas emissions that contribute to global warming [1]. As the
electricity used to charge EVs is generated from renewable
energies such as wind or solar power, they emit zero tailpipe
pollutants, thereby significantly reducing carbon emissions [2].
In addition, EV charging offers a significant degree of spatio-
temporal flexibility, allowing for adaptable charging locations
and times [3]. Furthermore, the batteries within EVs can
also be leveraged to offer grid services, enhancing power
grid stability and security [4]. This potential is unlocked
through the deployment of Vehicle-to-Grid (V2G) technology,
which enables bidirectional power transfer, thereby transform-
ing electric vehicles into dynamic energy resources that can
contribute to a more resilient and reliable power grid [5].

B. Related Works

a) Control of EVs in Power Grids: In the domain of EVs,
research on controlling them by leveraging their flexibility for
the electricity market bifurcates into two primary directions.
The first stream delves into harnessing the aggregated EVs for
participation in demand response (DR) within the wholesale
market [4, 6, 7]. Such methodologies illuminate various traits
of DR device populations, including aggregate energy demand,
flexibility, and ramping capabilities. The second area centers
on real-time pricing with demand response, as seen in [8–
10]. Here, studies target households with appliances, Plug-in
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hybrid electric vehicles (PHEVs), and batteries. They high-
light a utility-maximization framework for demand response,
linking appliance utility to power consumption. By adjusting
power consumption, households maximize benefits within
consumption limits. Dynamic pricing, with its time-varying
nature, aligns individual and societal benefits, guiding demand
responses for overall system efficiency.

Harnessing the flexibility of EVs in the power grid on a
large scale poses challenges. Traditional optimization methods
are not ideal for real-time EV control due to their reliance
on future data like EV arrivals [11]. Reinforcement learning
offers a solution by enabling agents to make decisions based
on environment interactions [12]. With V2G technology and
deep reinforcement learning (DRL), it is possible to optimize
both EV charging and power generation. This approach aims
to reduce fuel costs through optimal power flow methods that
account for EV charging, leading to a more efficient and eco-
friendly energy system [11].

b) Constrained Reinforcement Learning: DRL tech-
niques, as emphasized by [13, 14], are promising for dy-
namic optimization. However, they sometimes yield unfeasible
results, especially regarding power flow and EV charging
limits. Addressing this, Constrained Reinforcement Learning
(CRL) is emerging as a pivotal approach to ensure feasibil-
ity in power systems decision-making [15, 16]. Techniques
like Lagrangian relaxation are especially noteworthy in this
context, as mentioned in [15]. Furthermore, [17] explored
chance-constrained learning, and [18] proposed an innovative
algorithm delineating regret and constraint boundaries. While
much CRL research for EV charging, such as [12], focuses on
voltage magnitude, it often overlooks vital network constraints.
It’s essential to understand that power grid safety norms
require consistent adherence, given their immediate nature.

C. Contributions and Organization

In this study, we leverage the potential of a network-
constrained reinforcement learning framework for optimal
control of EV charging and power flow. The primary con-
tributions of this paper can be summarized as follows:

• We capitalize on the inherent flexibility of aggregated
EV charging models for real-time control. We treat this
as a stochastic control problem, given the uncertainties
in future EV arrivals, renewable energy generation, and
demand patterns.

• Building upon our previous research [16], we employ
constrained reinforcement learning for the predictive con-
trol of aggregated EV charging demands. These demands
can subsequently be disaggregated into specific control
actions through slack-charging models. This approach en-
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sures scalability for large-scale EV charging applications
and adheres to network and EV charging constraints.

The rest of the paper is organized as follows. Section
II presents the aggregated EV charging models and Section
III introduce the V2G model for EV control. Section IV
reviews the constrained reinforcement learning method. We
then implement our primal-dual constrained reinforcement
learning method for a specific case study in Section V. Finally,
Section VI draws some conclusions.

II. AGGREGATE EV CHARGING MODEL

In this section we show how the flexibility of a population
of EVs can be expressed through an integer linear model, fol-
lowing the ideas in [4, 6]. In the context of Demand Response
(DR), EV charging models demonstrate inherent flexibility
with various potential energy consumption profiles. Using
these models we describe a novel approach for managing
optimally the charging decisions for the population.

Before delving deeply into the slack-charging EV model
details, it is useful to present some of the conventions in
our notation. We use the italic font for discrete variables,
symbolized as z(t) and boldface for vectors or matrices,
indicated as z. We denote time-dependent finite differences
as ∂z(t) = z(t+ 1)− z(t). The unit step is marked by u(t),
and the Kronecker delta function is expressed by δ(t), which
is 1 when the argument is zero and 0 in other cases. Consider
t ∈ T = {0, · · · , T} as the set of T equally spaced. Discrete
time indices distanced by δT allow us to use the index t ∈ Z
such that t = tδT . We refer to the feasible set L, that will be
defined in (6) as containing different instances of ℓev(t) with t
as the argument, where each instance is a unique set element.

Each EV has attributes: (tp, Xp, Ep, χp, ρp), where tp is
the charging start time, Xp is the initial energy units, Ep is
the maximum charge capacity, χp is the deadline for battery
p, and ρp is the fixed charge rate based on the charging
site’s voltage level. We standardize the quantization step to
δT = 1. Expressing these five parameters directly requires
complex clustering to form the aggregated EV demand models.
In the next subsection, we aim to reform this model with
fewer clusters while retaining sufficient flexibility to manage
EV charging demands.

Before introducing the aggregate EV charging model, we
first introduce two elements for EV user: the charging time,
which is when the EV car is effectively charged at the rate ρp,
and the slack time, during which the EV car remains at the
charging station without receiving any charge. Let Rp be the
total time required to fully charge an EV p when it arrives at
the charging station, given by:

Rp = (Ep −Xp)/ρp. (1)

Let Sp denote the slack time or laxity of EV p, defined as

Rp + Sp = χp − tp. (2)

where tp indicates the arrival time of the p-th EV and ρp
represents the charging rate, which we presume is constant for
all EVs within a specific cluster. The feasible set defined by

(tp, Xp, Ep, χp, ρp) can be represented using a set of parame-
ters: (Rp, Sp, ρp). For any quantized charging time, [Rp] can
range from 0 to Nr − 1, denoted as [Rp] ∈ {0, . . . , Nr − 1}.
Similarly, the quantized slack time [Rs] can range from 0 to
Ns − 1, expressed as [Rs] ∈ {0, . . . , Ns − 1}.

This common characteristic forms the foundation for creat-
ing a unified model. Within this model, the status of a load at
any given time, symbolized as t ∈ T , is denoted by the pair
(r, s) ∈ Urs = {0, . . . , Nr − 1} × {0, . . . , Ns − 1} ⊂ N2

+. In
this context, r indicates the remaining service time needed,
while s represents the remaining slack time. We want to make
it clear to the reader that in the following discussions, we will
be using x = (r, s) ∈ Urs. x represents a two-dimensional
EV state. Our main goal is to regulate the dynamics of nx(t),
representing the count of EVs in state x = (r, s) at a specific
time t. To achieve this, we consider a step function that details
the arrival of EV t at the moment tap:

ap(t) = u(t− tap) (3)

As such, we can define an arrival process that increments the
count by adding new cars in a particular state nt

x:

ax(t) =
∑
p∈Px

δ ([Rp]− r) δ ([Sp]− s) ap(t), where x = (r, s),

(4)
where the process ax(t) is typically defined as a non-stationary
Poisson process, and Px represents the set of EVs that uni-
formly share the same state x = (r, s). Given the discretization
of time, the number of arrivals within the time span from t to
t+ 1 follows a Poisson distribution:

P(ax(t) = n) =
λx(t)

n!
e−λx(t) (5)

where λx(t) is non-uniform, as the average number of cars
charging varies at different hours.
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Figure 1. An illustration of the slack-charging EV model.

The symbol ∂dx,x′(t) represents the count of EVs transi-
tioning from state x to state x′ at time t. Hence, the term(
(x′ − x) ∂dx,x′(t)

)
r

signifies the quantity of EVs charging
(without slack) from state x to state x′ at time t. Moreover,
the expression ρ

(
(x′ − x) ∂dx,x′(t)

)
r

symbolizes the aggre-
gated charging power, which corresponds to the consolidated
demands of the electric vehicles. Additionally, the total count
of EVs transitioning from state x, i.e.,

∑
x′∈Ux

∂dx,x′(t),
accounting for both charging and slack choices, is equal to the
existing number of EVs at state x, i.e., nx(t). This equality
is a consequence of the persistent reduction in the total time,
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indicated by χi − ti. Therefore, the aggregate feasible set for
EVs with the same rate ρ:

L =
{
ℓev(t) | ℓev(t) =

∑
∀x

∑
x′∈Ux

ρ
(
(x′ − x) ∂dx,x′(t)

)
r
,

0 ≤ ∂dx,x′(t) ≤ dx,x′ , ∂dx,x′(t) ∈ Z+,∑
x′∈Ux

∂dx,x′(t) = nx(t),∀t ∈ T
}

(6)
where (·)r represents the charging-related dimension value,
dx,x′ is the maximum capability and the set of Ux is defined
as

Ux =
{
x′ | ∥x′ − x∥1 = min (∥x∥1, 1) ,

(x− x′)r ≥ 0, (x− x′)s ≥ 0
} (7)

where the EV charging only has two choices, i.e., charging
or slack. As illustrated in Fig. 1, Ux demonstrates that each
EV car has only two choices at any given moment: either
to charge or to wait (slack). In this scenario, the equality
constraint mainly focuses on transitions to states at a distance
of 1, unless we are close to the origin with the distance less
than one. On the other hand, the inequality constraints ensure
that we stay within the upper right quadrant of the state space.
These constraints also stipulate that any movement can only
be directed towards one of the two axes.

The state population tensor nx(t) and dx,x′(t) are:

nx(t) = ax(t) +
∑

x′∈Ux

[dx′,x(t)− dx,x′(t)] ,∀x

∂dx,x′(t) = dx,x′(t)− dx,x′(t− 1),∀x,x′ ∈ Ux.
(8)

where nx(t) also indicates the control capacity to monitor the
number of EVs that exist in the system at time t with state
x. Let N denote the set of all buses with cardinality N , G
represent the set of all buses with generators installed (having
G generators), Gs and Gn stand for the sets of slack and non-
slack buses with generation, respectively, and B be the set of
all EV stations with a cardinality of B. In the notation that
follows, we define the vector z such that z ≜ (zi)∀i, where zi
represents each individual element. In this context, we employ
the notation di

x,x′(t) to signify the vector representing the
cumulative state of EV charging for every pair of vectors x,x′

belonging to the set Ux, located on bus i ∈ N at time t.
Similarly, ni

x(t) is used to denote the vector of all available
x, aggregated EVs.

III. PROBLEM FORMULATION

We consider a stochastic optimal control problem:

min
π(s(t−1))

Eℓd(t) [ς(s(t),A(t), ℓd(t))] (9a)

s(t) = ft(s(t− 1),A(t− 1), ℓd(t)), (9b)
A(t) = π(s(t− 1)), (s(t),A(t)) ∈ χ(t), (9c)

where s(t) represent the state vector at a given time t, and
A(t) symbolizes the control vector at that same time, encapsu-
lating all controllable components within power networks. The
dynamic function is represented by f(·), while ℓd(t) signifies
the combined demands and sustainable energy sources. The

expression ς(s(t),A(t), ℓd(t)) captures the associated cost
function, and χ(t) encapsulates the limits for the network and
its devices. The term π(x(t− 1)) corresponds to a stochastic
policy. Our study’s primary objective is to optimize the dis-
tribution of power within network boundaries by effectively
managing power generation, EVs, and energy storage devices.

To further elaborate, s(t) = [ϑ(t), soc(t), (ni
x(t))∀i)∀i]

⊤

comprises voltage angles, denoted by ϑ(t), and the col-
lective state of charge (SOC) vector soc(t) pertaining
to every battery in the infrastructure. The control vector
A(t) = [g(t); ℓev(t),pch(t);pdis(t)]

⊤ encompasses power
outputs represented by g(t) = (gi(t))∀i∈G , consolidated EV
energy ℓev(t) = (ℓiev(t))∀i∈B, and the battery charge and
discharge velocities given by pdis(t) = (pidis(t))∀i∈B and
pch(t) = (pich(t))∀i∈B.

We consider the coupling of EVs with the power grids,
taking into account both power flow constraints and slack-
charging EV models. The objectives of OPF with aggregated
EVs include the fuel costs as follows:

ςf (t) =
∑
i∈G

(αig
2
i (t) + βigi(t) + γi), (10)

where αi, βi and γi are positive. We aim to leverage demand
response to facilitate a smoother power demand curve and
reduce peak loads. To accomplish this objective, we introduce
two additional loss function:

ςs(t) =
∑
i∈B

∥∥ℓiev(t)− ℓiev(t− 1)
∥∥2
2
, (11)

where [x]+ = max(0, x). The reward for action is the
complement of the objectives in (11):

r(t) = −ςf (t)− ςs(t). (12)

In this study, we employ the DC power flow approximation
to uphold the power-flow constraints. The OPF issue, when
considering aggregated EVs, is defined as follows:

max
A(t)

Eℓd(t) [r(t)] (13a)

Mb(ℓev(t) + pdis(t)− pch(t)) +Mgg(t)− ℓd(t) = Bϑ(t),
(13b)

g ≤ g(t) ≤ g, |Kϑ(t)| ≤ smax (13c)

ℓiev(t) =
∑
∀x

∑
x′∈Ux

(
ρ (x′ − x) ∂dix,x′(t)

)
r
, (13d)

socmin ≤ soc(t) ≤ socmax, 0 ≤ pch(t),pdis(t) ≤ pb

(13e)

soc(t) = soc(t− 1) +
∆t

Ecap

(
ηchpch(t)−

pdis(t)

ηdis

)
(13f)

ℓiev(t) ∈ (6),∀i,∀t (13g)

Here, we consider the demand vector, inclusive of renewable
energy, as d(t) = [d1(t), · · · , dN (t)]⊤. The susceptance
matrix is represented by B. We define the matrix K as
K ≜ BI, with I ∈ Rm×n being the directed graph incidence
matrix for the network, where m denotes the number of
network lines. The grid state within the DC power flow
approximation is represented by ϑ(t) = [ϑ1(t), · · · , ϑN (t)]⊤.



4

Lastly, Mg , a {0, 1}N×G matrix, associates the generation
vector g(t) ∈ R|G| to RN , and is described as:

[Mgg]i = 0, ∀i ∈ N \ G
[Mgg]i = gj , ∀i ∈ G, ∀j ∈ [1, · · · , G]

(14)

and similarly Mb the matrix that maps the vectors ℓev(t)
(and pch(t) and pdis(t)) onto the entire network, adding
zero in the buses that do not have EV charging stations.
Specifically, Eq. (13b) describes power flow constraints that
enable the integration of power grids, aggregate EV demands,
and battery storage, with each EV demand assumed to have
battery storage. Concurrently, Eq. (13c) encapsulates power
flow limit constraints.

IV. CONSTRAINED REINFORCEMENT LEARNING

The task of directly resolving the optimization problem in
Eq. (13) is highly complex. This complexity arises due to
the engagement of multiple aggregate EV demands across
different buses, with each aggregate EV demand incorporating
integer variables. To address the above challenge, in this
section, we apply our CRL methodology in [16] for real-time
predictive control of the OPF problem, incorporating aggregate
EVs as described in equation (13).

A. Constrained Twin Delayed Deep Deterministic Policy
Gradient (TD3)

Within the actor-critic structure, the TD3 approach modifies
policy function parameters, guided by an approximate value or
critic function [19]. The actor, symbolized as πθ, determines
actions, and the critic, represented by Qξ, assesses them.
Temporal difference learning in Q-learning [20] extracts the
value function based on the Bellman equation [21].

1) Critic Design: In the framework of deep reinforcement
learning, the critic section is fundamental. It comprises the tar-
get network, which has been meticulously designed in pursuit
of two primary objectives: ensuring stability and significantly
reducing the error associated with function approximation.
Alongside the target network, there are Critic Networks. These
Critic Networks actively engage in the regular updating of pa-
rameters pertinent to their individual networks, as highlighted
in the study by [16].

a) Target and Critic Networks: We integrate two target
networks, specifically Qξ′1

and Qξ′2
, determining y by taking

the minimum between the two value estimates:
y = r + γ min

i=1,2
Qξ′i

(s,A), (15)

where actions are chosen from a target actor network πϕ, and
r is as defined in (12). Using this y, the critic networks update
their parameters:

ξi ← argmin
ξi

1

N

∑
(y −Qξ1(s,A))2,∀i = 1, 2, (16)

where N denotes the batch size. The weights of these target
networks are then adjusted:

ξ′i ← τξi + (1− τ)ξ′i,∀i = 1, 2, (17)

with ξ1 and ξ2 indicating critic network parameters and ξ′1
and ξ′2 signifying target network parameters. The networks
reciprocally update one another.

2) Constrained Actor Design: After appropriately configur-
ing the critic, the actor network can be set up, incorporating the
constrained action space. Traditionally, the aim is to train the
action network to optimize the output from the critic network.

ϕ← argmax
ϕ

Qξ1(s(t− 1), πϕ(s(t− 1))). (18)

where ϕ denotes the parameters of the action network. Either
Qξ1 or Qξ2 can be utilized to guide the updates in ϕ via πϕ(·).
An action, represented as A(t) = πϕ(s(t− 1)), is considered
valid when it aligns with its constraints, denoted by χ(t). Thus,
the policy πϕ is framed by optimizing the critic network and
concurrently respecting χ(t).

max
ϕ

Qξ1(s(t− 1), πϕ(s(t− 1))) s.t. A(t) ∈ χ(t). (19)

where A(t) is taken by policy A(t) = πϕ(s(t− 1)).

B. Primal-Dual OPF Formulation

In this subsection, we aim to develop the constrained policy
function, denoted as πϕ(·), for the OPF issue. We detail the
normalized power generations as g(t), the normalized powers
for both discharging and charging as pdis(t) and pdis(t), and
the standardized aggregated EV demand represented by ℓev(t).
These are delineated using the actions a(t) in the subsequent
manner:

A(t) ≜ πϕ(s(t− 1)), A(t) ≜ [g(t), ℓev(t),pch(t),pdis(t)]
⊤,

ℓ̂ev(t) ≜ ℓev(t)Lmax, ĝ(t) ≜ (1− g(t))g + g(t)g,

p̂ch(t) = pch(t)pb, p̂dis(t) = pdis(t)pb
(20)

where the original power generation, in addition to the raw
discharging and charging powers and the initial aggregated
EV demand, influence the environment.

We present dual variables, denoted as λ and µ, associated
with Eq. (13), and include the enhanced penalty parameters:

λ =

λ1

λ2

λ3

 ,µ =

µ1

µ2

µ3

 ,αλ =

α1

α2

α3

 ,αµ =

α5

α6

α7

 , (21)

Additionally, we condense the equality and inequality con-
straints from Eq. (13) for brevity:

ωλ(t) =Mb(ℓev(t) + pdis(t)− pch(t)) +Mgg(t)− ℓd(t)−Bϑ(t)(
ℓiev(t)−

∑
∀x

∑
x′∈Ux

(
ρ (x′ − x) ∂dix,x′(t)

)
r

)
∀i

soc(t)− soc(t− 1) + ∆t
Ecap

(
ηchpch(t)−

pdis(t)

ηdis

)


(22)

ωµ(t) =

 |Kϑ(t)| − smax

soc(t)− socmax

socmin − soc(t)


+

(23)

With the definition of (20), the augmented Lagrangian is:

min
ϕ
Lϕ =−Qξ′1

(s(t− 1), πϕ(s(t− 1))) +

(
λ⊤ωλ(t)+

µ⊤ωµ(t) +

∥∥∥∥[diag(αλ) 0
0 diag(αµ)

] [
ωλ(t)
ωµ(t)

]∥∥∥∥2
2

)
(24)
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where λ and µ represent the vectors of dual variables, while
αλ and αµ are positive scalars penalizing the augmented
terms.

To perform the primal-dual update, one must first minimize
the Lagrangian function followed by maximizing the dual
function. Based on the definition provided in (20), the update
for the dual variables’ gradient is as follows:

λk+1 ← λk + diag(αλ)ωλ(t),

µk+1 ← µk + diag(αµ)ωµ(t),
(25)

whereλk+1 and µk+1 are refined using batch samples. We al-
ternate between primal and dual updates to hone the ϕ of πϕ(·),
ensuring adherence to both equality and inequality constraints.
A convergence proof is available in our earlier research [16],
which also examines the Lagrangian function’s attributes and
local optimality. The time and memory requirements for the
suggested method are elaborated upon in the same study [16].

C. Projection of Aggregated EV Demands

The CRL predicts control actions for EVs, represented as
ℓev(t+ 1), given the state s(t). To achieve the disaggregation
of the EV charging control, denoted as ∂dix,x′(t),∀x,∀x′ ∈
Ux, it is feasible to address a small-scale dis-aggregation
problem individually for each i. More specifically, ∀i, t, the
corresponding dis-aggregation problem is independently re-
solved.

min

∥∥∥∥∥ℓiev(t)−∑
∀x

∑
x′∈Ux

(
ρ (x′ − x) ∂dix,x′(t)

)
r

∥∥∥∥∥
2

2

s.t. ∂dix,x′(t) ∈ (6)

(26)

Simultaneously, during batch training, we ensure that the
forecasted ℓev(t+ 1) closely approximates the value of∑

x′∈Ux

(
ρ (x′ − x) ∂dix,x′(t)

)
r

)
∀i through the dual process

as defined by equation (22). Here, ∂dix,x′(t) represents the
dis-aggregated feasible solutions provided by equation (26).

D. Constrained Reinforcement Learning Algorithm

The above-described constrained reinforcement learning al-
gorithm is encapsulated in Algorithm 1. Initially, in Steps 1-3,
we set the parameters for both the double critic (Qξ1 , Qξ2 )
and target networks (Qξ′1

, Qξ′2
), as well as the actor network

(πϕ). The procedure from Steps 5-8 pertains to data collection
and transition tuple storage, capturing (s(t− 1), A(t), r(t),
s(t)). The critic networks are revised in Steps 9-11, the actor
network in Steps 12-13, and the dual variables in Steps 15-16.
Steps 17-24 focus on refining ∂dx,x′ , constraining it according
to (6).

V. CASE STUDIES

Experiments use the IEEE 14-bus system with an EV station
on Bus 8. The Poisson parameter, λ(t), is set as λ(t) =
12 ∗ (1 + 0.5 ∗ sin(2π ∗ t/24)). Charging and slack times are
limited to 6 hours. Time is considered in hourly increments,
and constrained DRL training uses PyTorch. As shown in Figs.
2 and 3, demand data comes from the Texas power grid, with
three scaled wind sources integrated into the 14-bus system.

Algorithm 1: Constrained Reinforcement Learning for
OPF with aggregate EVs

1 Begin by setting the critic network Qξ1 , Qξ2 , and actor
network πϕ with random parameters ξ1, ξ2, and ϕ;

2 Set the target networks: ξ′1 to ξ1, ξ′2 to ξ2, and ϕ′ to ϕ;
3 Initiate the replay buffer as B and determine the primal and

dual update frequencies as pu and du;
4 for t = 1 : T do
5 Select action based on policy: A(t) ∼ πϕ(s(t− 1));
6 Compute the reward using Eq. (12);
7 etermine the new state by taking the action:

s(t) = env(A(t)) by taking action A(t);
8 Store the transition tuple: (s(t− 1),A(t), r(t), s(t)) in

B;
9 Sample a mini-batch of N transitions from B:;

10 y ← r(t) + γmini=1,2 Qξ′i
(sn, πϕ(s

n));
11 Update critics: ξi=1,2 ←

argminξi=1,2
1
N

∑
(y −Qξi=1,2(s

n−1,An))2;
12 if t mod pu then
13 Update ϕ using the deterministic policy gradient:

ϕ← ϕ− η∇Lϕ(s
n−1, sn), where η denotes the

learning rate and Lϕ is elaborated in Eq. (24);
14 Update target networks as per Eq. (17);

15 if t mod du then
16 Update the dual variables by (25).

17 Function env (A(t))
18 Choose the action, i.e.,

A(t) = [g(t), ℓev(t),pch(t),pdis(t)]
⊤;

19 for i ∈ B do
20 ℓ̂iev(t) is mapped to the set (6) by Eq. (26);
21 Compute the aggregated EV demands

ℓiev(t) =
∑

x

∑
x′∈Ux

ρ
(
(x′ − x) ∂dx,x′(t)

)
r
;

22 Update ni
x(t) and di

x,x′(t) by using the projected
∂di

x,x′(t) ∀x,x′ ∈ Ux ;

23 Obtain ϑ(t) by solving the DC power flow equation
with g(t) and ℓev(t) fixed;

24 Return s(t) = [ϑ(t), soc(t), (ni
x(t))∀i]

⊤

A tri-layer neural network with 512 neurons/layer forms our
critic, target, and actor networks. Parameters are updated using
Adam optimization with a learning rate of 10−3. After each
step, networks train on a mini-batch of 128 transitions from
the agent’s entire history, shown as tuples (s(t− 1), A(t),
r(t), s(t)).

Figure 2. The power demands over 14
buses.

Figure 3. The wind power generations over
3 buses.

In Fig. 4, we display the learning curves derived from our
experiments. The vertical axis represents rewards, as described
in Eq. (12), observed at each point in time, while the horizontal
axis corresponds to the time step. As evident in Fig. 4, the
learning policy adheres closely to the optimal curve, thereby
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Figure 4. The training curves of the Con-
strained DRL and its corresponding optimal
rewards by the optimization method.

Figure 5. The testing curves of the Con-
strained DRL and its corresponding optimal
rewards by the optimization method.

Figure 6. A comparison of the aggregate
EV demand prediction curves generated by
the CRL method with demand responses,
juxtaposed without demand responses.

Figure 7. Power generations of slack buses
by the proposed constrained DRL and DRL
without constraints. The red line represents
the upper and lower bounds.

suggesting that our method is adept at forecasting optimal
actions even in the absence of future information. In fact, the
average Normalized MAE (NMAE) between the DRL solution
and the oracle optimization method is a mere 1.8779e − 02.
Using the policy trained by the constrained DRL, we test it
against future demands for 1000 samples. Comparing with
baseline optimal results and globally optimal results with
future demand knowledge, we observe in Fig. 5 that our policy
closely approximates optimal actions, even without future
information regarding the demands and EV arrivals.

As illustrated in Fig. 6, we conduct a comparative evaluation
between the forecasted aggregate EV demand with demand
response strategies and the same without these strategies.
The results demonstrate that the CRL method can effectively
regulate the demands, resulting in smoother power usage and
significantly reduced peak loads. We conducted tests on the
average fuel cost, given by

∑1000
t=1

∑
i∈G(αig

2
i (t)+βigi(t)+γi)

1000 .
By introducing the DRL with control EV demand response,
we observed a reduction of 31.35% in the fuel cost when
compared to scenarios without DRL demand response. The
demand response of EVs significantly reduces the average
fuel cost, as the control policy leverages renewable energy
to meet EV consumption, thereby minimizing fuel expenses.
We evaluate the feasibility of our policy, emphasizing the risk
of infeasibility without dual updates. For instance, extremely
small gi(t), i ∈ Gn predictions by RL can lead to upper bound
violations for gi(t), i ∈ Gs. Fig. 7 showcases a comparison
between the violation rates of CRL and RL. Our constrained
DRL consistently achieves 100% feasibility, surpassing the
traditional DRL’s rate of 83.87%. Additionally, within Fig.
7, the wind powers are fully utilized, making gi(t) appear
conservative, which aids in minimizing fuel generations.

VI. CONCLUSION

Our study proposed an advanced control model that adeptly
integrates collective EV charging demands into power grid

systems. By leveraging the flexibility of EV charging and
slack times, our model efficiently manages electrical loads
in a scalable fashion. Our use of CRL techniques demon-
strates their effectiveness in handling unpredictable future
EV arrivals while ensuring control actions’ feasibility. Our
numerical studies on IEEE standard systems underscore our
approach’s outstanding performance as it dynamically adapts
to the changing EV environment while always maintaining
safety constraints.
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