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Abstract 

Making a judgment of learning (JOL) during study can 
improve later test performance, a phenomenon called JOL 
reactivity. In paired-associates learning, JOLs improve 
memory for strongly (not weakly) related word pairs. JOLs 
appear to strengthen cue-target associations, enhancing future 
performance on tests sensitive to those associations. We 
investigated whether JOL reactivity would emerge in 
feedback-based category learning, wherein participants learn 
novel stimulus-response associations. We investigated whether 
this effect would be present for novel test items and if it would 
depend upon stimulus-category relatedness. Participants 
completed a category learning task; some performed JOLs 
throughout learning. At test, participants categorized novel and 
previously studied stimuli of varying degrees of stimulus-
category relatedness. We found JOL reactivity for both novel 
and previously studied stimuli, and no effect of relatedness. 
Our experiment provides preliminary evidence that JOL 
reactivity can be produced in feedback-based category 
learning. COVIS theory provides an excellent framework for 
future investigations. 

Keywords: Concepts and categories; Learning 

Introduction 

A learner’s ability to monitor their learning is essential to 

self-guided study. Before an assessment, a learner may 

consider how well they remember the material in deciding 

how to study, what material to study, and the extent to which 

further study is necessary (Metcalfe, 2009). To probe 

learners’ self-monitoring of performance, researchers might 

ask learners to predict how likely they are to correctly 

remember material on a future test. This metacognitive task, 

the judgment of learning (JOL), sees widespread use in a 

variety of learning and memory paradigms. A rapidly 

developing body of evidence suggests that making a JOL can 

have an impact on memory, a finding typically referred to as 

JOL reactivity (see Double et al., 2018 for a meta-analysis). 

JOL reactivity has been observed in word list memorization 

(Hourihan & Tullis, 2015; Kubik et al., 2022; Yang et al., 

2015) and inferential learning (Lee & Ha, 2019), but is 

predominantly examined in paired-associates learning (e.g., 

Chang & Brainerd, 2023; Halamish & Undorf, 2023; Myers 

et al., 2020; Rivers et al., 2023; Witherby et al., 2023). 

JOL reactivity was first experimentally demonstrated by 

Soderstrom et al. (2015). In their paired-associates learning 

task, participants studied a list of 60 cue-target word pairs, of 

which half were strongly related (e.g., blunt-sharp) and half 

were weakly related (e.g., boxer-terrible). Each pair was 

studied for 8s. Halfway through the presentation of a given 

word pair, some participants were asked to make a JOL, 

judging their likelihood of successfully recalling the target 

word on a future cued recall test. After a 3-minute retention 

interval, participants took a cued recall test in which they 

were presented with the cue word and asked to produce the 

associated target word. For strongly related word pairs, 

participants who performed JOLs had higher cued recall 

performance than those who did not. In contrast, the presence 

of JOLs had no impact on cued recall performance for the 

weakly related word pairs. This pattern of results, wherein 

JOLs are beneficial for strongly related but not weakly related 

word pairs, has since been demonstrated repeatedly in the 

paired-associates literature (Chang & Brainerd, 2023; 

Halamish & Undorf, 2023; Mitchum et al., 2016; Myers et 

al., 2020; Rivers et al., 2021, 2023; Witherby et al., 2023). 

The leading hypothesis explaining JOL reactivity is the 

cue-strengthening hypothesis (Soderstrom et al., 2015). This 

hypothesis assumes that when participants make JOLs, they 

call upon an existing cue-target relationship (Halamish & 

Undorf, 2023). This cue-target relationship is strengthened 

by the act of making a JOL, improving later memory 

performance on a test that is sensitive to that relationship 

(Myers et al., 2020). It has been suggested that the cue-target 

relationship must be semantic to benefit from JOLs, as the 

typical pattern of JOL reactivity is not produced when 

participants connect otherwise unrelated cue-target pairs via 

mental imagery (Witherby et al., 2023) or morphological 

similarities (Rivers et al., 2023). It has also been suggested 

that this effect is item-specific and does not lead to general 

changes in learning strategy (Rivers et al., 2021). The cue-

strengthening hypothesis is strongly defined by its 

relationship to the paired-associates learning task. In order to 

develop a comprehensive theory of JOL reactivity, it is 

imperative that the effects of JOLs on learning are assessed 

in a wider variety of learning tasks (Halamish & Undorf, 

2023; Myers et al., 2020; Rivers et al., 2021). Our primary 

research goal is to determine whether feedback-based 

category learning also benefits from JOL reactivity. If so, we 

are interested in whether the cue-strengthening hypothesis 

could be adapted to explain JOL reactivity in this learning 

paradigm. 
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Categorization is a cognitive process by which stimuli are 

sorted into functional equivalence classes using many-to-one 

stimulus-response mappings (Kéri, 2003). Categorization is 

essential to inference making; when the features that define a 

category are learned, it is possible to categorize never-before-

seen (novel) stimuli, and subsequently make inferences about 

them. For example, an animal’s physical features might make 

it possible to classify it as a “dog,” and one can infer various 

non-physical traits of dogs, such as disposition and diet. 

Category learning is often studied using an observational 

learning paradigm, a paradigm in which participants are 

presented with category members and labels for a fixed 

duration of study time, in a similar vein to paired-associates 

learning (e.g., Do & Thomas, 2023; Kang & Pashler, 2012; 

Kornell & Bjork, 2008). 

Lee & Ha (2019) explored JOL reactivity in observational 

category learning. Participants made JOLs at one of three 

levels of granularity: item-by-item (Rate your likelihood of 

correctly identifying new paintings by the given artist at a 

later test), category-level (Rate your likelihood of correctly 

classifying new paintings by Artist X at a later test), and 

global-level (general questions about performance, such as 

Rate your likelihood of correctly identifying who created new 

paintings by the artists you have just studied). At test, 

participants only classified novel stimuli. Participants 

correctly classified stimuli at higher rates following category- 

and global-level JOLs, but not item-by-item JOLs. Critically, 

this study provides evidence that JOL reactivity can occur in 

category learning. Lee & Ha’s (2019) distinction between the 

different levels of JOL granularity falls in line with the cue-

strengthening hypothesis; item-by-item JOLs do not benefit 

categorization test performance because item-by-item 

information is not probed on this type of test (Myers et al., 

2020). However, this study refutes the cue-strengthening 

hypothesis’ prediction that JOL reactivity requires a pre-

existing semantic relationship, as the stimuli presented during 

learning were novel to participants. Moreover, it refutes the 

idea that the effect is item-specific, as it was observed in 

novel test items. 

 In this experiment, we explore JOL reactivity in a 

feedback-based, procedural category learning task. During 

this type of category learning, it is supposed that participants 

gradually learn stimulus-response associations (Ashby et al., 

2003). If JOL reactivity is necessarily item-specific, as 

proposed in the paired-associates literature (Rivers et al., 

2021), then we should only expect JOL reactivity for 

previously studied items at test. However, models of 

categorization generally suppose that it is regions of 

perceptual space, rather than specific stimuli, that become 

associated with novel category labels (e.g., Ashby et al., 

1998; Smith & Minda, 1998). Considering this, as well as Lee 

& Ha’s (2019) results, we expect JOL reactivity for both 

novel and previously studied test items. This is our primary 

prediction in this experiment. 

One model describing categorization comes from general 

recognition theory (Ashby & Perrin, 1988). In this 

multivariate generalization of signal detection theory, it is 

assumed that while learning novel categories, learners draw 

boundaries separating the different regions of perceptual 

space associated with each category. This idea of separating 

stimuli into categories using a boundary in perceptual space 

is a staple of the category learning literature (e.g., Epping & 

Busemeyer, 2023; Roark et al., 2022; Shamloo & Hélie, 

2020). After learning the boundary, items further from the 

boundary may be perceived as more strongly associated with 

their respective category than items close to the boundary 

(Seger et al., 2015). In the paired-associates literature, it has 

been found repeatedly that JOLs enhance memory for 

strongly (but not weakly) related word pairs (Chang & 

Brainerd, 2023; Halamish & Undorf, 2023; Mitchum et al., 

2016; Myers et al., 2020; Rivers et al., 2021, 2023; 

Soderstrom et al., 2015; Witherby et al., 2023). In this 

experiment, we compare stimuli that are strongly and weakly 

associated with their assigned categories by using distance 

from the category boundary as an index of relatedness. We 

are interested in determining whether JOL reactivity depends 

on this index of relatedness. This would provide a potential 

generalization of the cue-strengthening hypothesis to account 

for JOL reactivity in category learning. 

We expect to find reactivity to category-level JOLs in 

feedback-based, procedural category learning. In feedback-

based category learning, participants begin learning by 

randomly guessing the category to which each stimulus 

belongs, gradually learning via immediate corrective 

feedback. This paradigm makes it possible to assess 

participants’ degree of learning throughout the learning 

phase. In observational and paired-associates learning, this is 

not possible. Participants in this experiment learned to 

categorize artificial visual stimuli (sinusoidal gratings) 

varying along continuous dimensions into two categories 

separated by a linear boundary. Throughout learning, some 

participants made category-level JOLs while others did not. 

Unlike Lee & Ha (2019), we included a mix of novel and 

previously studied items at test, allowing us to determine if 

the effect of reactivity would differ between retention and 

generalization. Since participants are presumed to learn to 

associate distinct regions of perceptual space with the 

appropriate category labels, we expected this benefit to be 

present in both novel and previously studied items during the 

test. Our results are in line with this prediction. In an attempt 

to use the cue-strengthening hypothesis to account for these 

results, we assumed that items further from the category 

boundary would be more strongly associated with their 

assigned category, predicting that these items would benefit 

more from JOL reactivity than items close to the boundary. 

Our results did not support this prediction. We discuss future 

directions and implications of our results. 
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Methods 

Data were collected between 27 September 2023 and 31 April 

2024. Participants completed this online experiment on their 

smartphones. There were three between-participant 

conditions: No Pause (NP), Pause (P), and Category-Level 

JOL (CLJ). The CLJ condition served as the experimental 

condition; we expected that participants in this condition 

would outperform those in the remaining conditions. During 

learning, participants learned to categorize 128 stimuli by 

performing six blocks of feedback-based learning. After each 

learning block, some participants took a took a pause (P) or 

performed category-level JOLs (CLJs). The No Pause and 

Pause conditions were both experimental controls, with the 

latter being time-matched to the CLJ condition. At test, 

participants classified a mix of previously studied (retention) 

and novel (generalization) stimuli. 

Participants 

An a priori power analysis was not conducted. Participants 

were 𝑁 = 192 (𝑛𝑁𝑃 = 60, 𝑛𝑃 = 64, 𝑛𝐶𝐿𝐽 = 68) 

undergraduate students compensated with course credit. 

Participants spoke fluent English, owned a smartphone with 

internet access, and had normal or corrected-to-normal 

vision. All experimental procedures and materials were 

approved by Western’s Research Ethics Board. Participants 

were randomly assigned to a learning condition after 

beginning the online experiment. 

Materials 

Stimuli were generated using the GRT package (Matsuki, 

2017) in R version 4.1.1 (R Core Team, 2021). Stimuli were 

grayscale sinusoidal gratings varying in spatial frequency (𝑓) 

and orientation angle (𝜃). Parameters for learning phase 

stimuli were sampled from two multivariate Gaussian 

distributions with identical covariance matrices, such that the 

Pearson correlation between 𝑓 and 𝜃 was 𝑟 = .78 in each 

category. 64 stimuli were generated for each category, 

resulting in 128 unique stimuli for the learning phase. 

Categories were labelled “A” or “B.” To minimize the 

potential effects of the labels or button locations, the stimuli 

that corresponded to each label were counterbalanced across 

participants. Mean 𝑓 (measured in cycles per image) for each 

group was (𝜇𝐴, 𝜇𝐵) = (11,17). Mean 𝜃 (in degrees relative 

to vertical) was (𝜇𝐴, 𝜇𝐵) = (81,64). Categories were 

separated by a linear boundary that perfectly accounted for 

category membership. The deterministic nature of this 

boundary made it possible (albeit unlikely) for participants to 

derive a general, 100% accurate categorization strategy This 

boundary was defined by a linear combination of the stimulus 

dimensions, 𝜃 = 30.89 + 2.54𝑓. Along this boundary, every 

unit increase in spatial frequency is associated with a 2.54 

degree increase in orientation angle. Figure 1 shows the entire 

stimulus space and boundary used in this study. Boundaries 

of this nature, which integrate information from multiple 

stimulus dimensions, are thought to be learned via stimulus-

response association (Ashby et al., 1998; Ashby & Valentin, 

2017). During learning, the maximum possible accuracy 

attainable using single-dimensional rule-based strategies was 

73.44% using an 𝑓-based strategy or 69.53% using a 𝜃-

based strategy. We simulated 20000 random responders in 

this task and defined “above chance” performance as any 

accuracy at or above the 99th percentile of these simulated 

random responders’ accuracies, 60.16%. 

 

 
 

Figure 1: Stimulus space used for pre-learning (A), 

learning (A), and test (B) phases. 

 

Sixteen unique stimuli were generated for the pre-learning 

phase. Stimulus parameters were generated sampled from a 

4x4 grid rotated about the category boundary. The grid was 

centered at the point (𝑓, 𝜃) = (14.5,74.9), a point which lies 

on the category boundary. In a similar manner, parameters for 

novel test phase stimuli were generated by rotating an 8x4 

grid about the category boundary. This grid was centered at 

the point (𝑓, 𝜃) = (16.8,80.5). 32 stimuli generated for the 

learning phase were presented again at test, resulting in a total 

of 64 test phase stimuli. The shortest Euclidean distance 

between each test stimulus and the optimal categorization 

boundary was measured. A cutoff of 5.4 units separated 

“close” and “far” test items. For both the pre-learning and test 

phase, novel stimulus parameters were chosen such that they 

occupied similar regions of perceptual space to the stimuli 

used during the learning phase, and such that they ran parallel 

to the category boundary. Stimuli were 352px x 352px in size 

4673



at a resolution of 96 DPI and were scaled to fill 45% of the 

participant’s smartphone screen width during the experiment. 

See Figure 2 for examples of stimuli used in the experiment. 

 

 
 

Figure 2: Example stimuli. 

Procedure 

Participants completed a Qualtrics form indicating their 

consent to participate and verifying they were using their 

smartphones. Then, participants were redirected to the 

experiment URL, where they were randomly assigned to a 

learning condition. The experimental procedure included a 

pre-learning phase, a learning phase, and a test phase. Pre-

learning consisted of a similarity judgment task, learning 

consisted of six blocks of feedback-based category learning, 

and test consisted of one block of categorization without 

feedback. Participants completed the experiment in one 90-

minute session. The experiment was programmed in jsPsych 

7.1.2 (de Leeuw, 2015) and hosted on Pavlovia.org. 

 

Pre-Learning Phase. The pre-learning phase consisted of a 

similarity judgment task. In one trial, participants saw two 

stimuli side-by-side (in a randomized order) in the center of 

their phone screen and were asked to evaluate how similar 

they appeared to be. Images were programmed to each take 

45% of the width of each participant’s phone screen. 

Participants used a 1-8 Likert scale to provide their responses 

and a 10-second time limit was imposed for each trial. There 

were constant on-screen instructions stating that 8 should 

refer to pairs that are “identical or nearly identical” and 1 to 

pairs that are “extremely dissimilar.” Participants were 

shown all 136 possible pairs of similarity judgment stimuli 

(16 identical, 64 between-category, and 56 within-category). 

Stimuli from this task were not used during learning or test 

but were designed to occupy similar regions of perceptual 

space. This pre-learning task is included to be consistent with 

previous uses of this category learning paradigm (Cruz & 

Minda, 2024). This pre-exposure to the category structure 

may facilitate later learning (Folstein et al., 2009, 2010). 

 

Learning Phase. During the learning phase, participants 

completed 6 blocks of category learning with 128 trials per 

block, resulting in 768 total learning trials. Participants were 

instructed to sort stimuli into Category A or Category B by 

pressing the A and B buttons at the button of the screen with 

their thumb. They were instructed to use only one finger for 

category judgments for the duration of the experiment. To 

minimize the potential effects of the A/B labels or button 

locations, the stimuli that corresponded to each label were 

counterbalanced across participants. Each learning trial 

began with 500ms of fixation. The stimulus would then 

appear until the participant made a judgment or until 10s had 

passed. This was followed by 700ms of corrective feedback 

(“CORRECT!” or “INCORRECT!”). Figure 3 depicts one 

learning trial. If participants failed to provide a response in 

time, they were asked to “Please respond more quickly.” 

There were 128 unique stimuli presented during learning, and 

each was presented once per block in a randomized order. 

 
 

Figure 3: Example of one category learning trial. 

 

The experimental manipulations took place during the 

learning phase. Participants in the No Pause condition did not 

receive breaks between adjacent learning blocks; participants 

in this condition transitioned from one learning block to the 

next with no explicit indication that one block of learning had 

ended. The Pause condition involved a 4.2-second pause after 

each learning block in which participants were told to “Please 

take a moment to pause.” The duration of this pause was 

chosen as the median time it took participants to complete 

category-level JOLs in a pilot study. In the Category-Level 

JOL condition, each block of learning was followed by two 

category-level JOLs (one for each category) presented in a 

random order. Participants were given the following prompt: 

“How likely are you to correctly identify members of 

Category X in the future? Please use the full range of the 

scale.” Responses were made using a 0-100 sliding scale. 

Numerical labels were omitted. Instead, the left- and right-

hand sides of the scale were labelled “Wild Guess” and 

“Certain Correct,” respectively (Jacoby et al., 2010). The 

slider began in the center of the scale (50) but was required 

to be adjusted before participants submitted a response. 

 

Test Phase. The test phase involved a categorization test with 

64 unique trials. Test trials were structured very similarly to 

learning trials. Each trial started with 500ms of fixation. 

Then, a stimulus was shown, and participants had to decide 

whether it belonged to Category A or Category B. In lieu of 

feedback, each trial was followed by 700ms of a blank screen. 

The test immediately followed the final block of category 

learning, with instructions appearing that indicated to 

participants that they were entering the test phase. Of the 64 

test stimuli, 32 were novel (generalization) items and 32 were 

previously studied (retention) items. 
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Results 

Statistical values are reported to three significant digits. 

Analyses were conducted in R version 4.3.1 (R Core Team, 

2023). All data and stimuli from this experiment are available 

upon request. Only participants who reached accuracy 

significantly above chance levels (at least 60.18%) during the 

final learning block were included in analyses, leaving a final 

sample size 𝑁 = 120 (𝑛𝑁𝑃 = 35, 𝑛𝑃 = 39, 𝑛𝐶𝐿𝐽 = 46). 

Learning Phase 

A 3 (learning condition) x 6 (learning block) ANOVA was 

conducted with accuracy as the dependent variable. The main 

effect of learning condition was not significant, 𝐹(2,117) =
0.557, 𝑝 = 0.574, 𝜂𝑝

2 = 0.009. The main effect of learning 

block was significant, 𝐹(5,585) = 20.6, 𝑝 = 5.59 ×
10−19, 𝜂𝑝

2 = 0.15. See Table 1 for accuracy across each block 

of learning. The interaction between learning block and 

learning condition was not significant, 𝐹(10,585) =
1.65, 𝑝 = 0.09, 𝜂𝑝

2 = 0.027. 

 

Table 1: Accuracy by learning block and condition. 

 

 Learning Block 

 1 2 3 4 5 6 

No Pause 

Mean 0.6828 0.7064 0.7018 0.721 0.7185 0.7271 

SD 0.1138 0.1126 0.1074 0.101 0.0882 0.0861 

Pause 

Mean 0.6855 0.7332 0.7370 0.732 0.7394 0.7476 

SD 0.0836 0.0887 0.0855 0.105 0.0934 0.0744 

Category-Level JOL 

Mean 0.6596 0.7120 0.7356 0.735 0.7437 0.7568 

SD 0.0922 0.0979 0.0990 0.114 0.1040 0.0828 

 

Planned contrasts were conducted in the first and final 

blocks of learning. The first set of planned contrasts 

compared accuracy in the Category-Level JOL condition to 

the remaining learning conditions. This contrast was not 

significant in block 1, 𝑡(117) = −1.35, 𝑝 = 0.179, or block 

6, 𝑡(117) = 1.27, 𝑝 = 0.205. The second set of planned 

contrasts compared accuracy in the Category-Level JOL 

condition to accuracy in the Pause condition. This contrast 

was not significant in block 1, 𝑡(117) = −1.23, 𝑝 = 0.221, 

or block 6, 𝑡(117) = 0.521, 𝑝 = 0.604. 

Test Phase 

A 3 (learning condition: NP vs. P vs. CLJ) x 2 (stimulus type: 

Retention vs. generalization) x 2 (distance from boundary: 

Close vs. far) ANOVA was conducted with test accuracy as 

the dependent variable. The main effect of novelty was 

significant, 𝐹(1,69) = 17.9, 𝑝 = 6.91 × 10−5, 𝜂𝑝
2 = 0.206. 

Participants performed better on retention items (𝑀 =

0.755, 𝑆𝐷 = 0.127) than generalization items (𝑀 =
0.702, 𝑆𝐷 = 0.116). The main effect of distance from 

boundary was significant, 𝐹(1,69) = 122, 𝑝 = 7.09 ×
10−17, 𝜂𝑝

2 = 0.638. Participants classified items close to the 

boundary (𝑀 = 0.654, 𝑆𝐷 = 0.114) less accurately than 

items far from the boundary (𝑀 = 0.804, 𝑆𝐷 = 0.125). The 

interaction between stimulus type and distance from 

boundary was significant, 𝐹(1,69) = 14.8, 𝑝 = 2.69 ×
10−4, 𝜂𝑝

2 = 0.176. Among items close to the boundary, 

retention items (𝑀 = 0.703, 𝑆𝐷 = 0.142) were classified 

more accurately than generalization items (𝑀 = 0.605, 𝑆𝐷 =
0.124). Among items far from the boundary, performance 

did not differ by stimulus type (See Figure 4A). All other 

interactions were not significant, 𝑝𝑠 > .4. 

 

 
 

Figure 4: Test accuracy by condition. 

 

The main effect of learning condition was significant, 

𝐹(2,69) = 5.83, 𝑝 = 0.005, 𝜂𝑝
2 = 0.145 (See Figure 4B). 

We followed this significant omnibus test with planned 

contrasts. The first compared accuracy in the Category-Level 

JOL condition to the remaining learning conditions. The 

result was significant, 𝑡(117) = 2.32, 𝑝 = 0.0218. 

Participants had significantly higher accuracy in the 

Category-Level JOL condition (𝑀 = 0.757, 𝑆𝐷 = 0.429) 

than in the remaining conditions (𝑀 = 0.713, 𝑆𝐷 = 0.452). 

The second planned contrast compared the Pause condition 
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to the Category-Level JOL conditions. The result was not 

significant, 𝑡(117) = 0.916, 𝑝 = 0.362. We still note that 

participants in the Category-Level JOL condition (𝑀 =
0.757, 𝑆𝐷 = 0.429) reached higher levels of accuracy than 

those in the Pause condition (𝑀 = 0.736, 𝑆𝐷 = 0.441). 

Discussion 

Our results provide preliminary evidence that feedback-

based, procedural category learning benefits from JOL 

reactivity. As predicted, we found JOL reactivity for both 

novel and previously studied test items, building upon Lee & 

Ha’s (2019) results which also suggested that JOLs could 

improve performance on novel test items. This refutes the 

idea that JOL reactivity is item-specific (Rivers et al., 2021). 

Participants in our experiment classified sinusoidal gratings, 

stimuli without any pre-existing semantic associations.  Thus, 

our results refute the idea that a pre-existing, semantic cue-

target relationship is a pre-requisite for JOL reactivity (Rivers 

et al., 2023; Witherby et al., 2023). Our predicted interaction 

between relatedness and JOL did not emerge. This interaction 

is central to the literature on JOL reactivity in paired-

associates learning (Chang & Brainerd, 2023; Halamish & 

Undorf, 2023; Mitchum et al., 2016; Myers et al., 2020; 

Rivers et al., 2021, 2023; Soderstrom et al., 2015; Witherby 

et al., 2023). Our results suggest that the cue-strengthening 

hypothesis, in its current form, is not able to account for JOL 

reactivity in category learning. 

As an alternative to semantic relatedness, we suggest that 

cues and targets must be connected by some form of 

associative learning. Such a definition would encompass 

semantic associations as well as the results we demonstrate 

here, wherein participants seem to be associating regions of 

perceptual space with distinct category labels. We believe the 

COVIS model provides a strong framework for guiding 

future inquiries on JOL reactivity in category learning. 

According to the COVIS model, procedural category 

boundaries similar to the one we used in this experiment are 

learned via stimulus-response association (Ashby et al., 

1998; Ashby & Valentin, 2017). In contrast, COVIS would 

assume that simple single-dimensional category boundaries 

are learned in a declarative manner. Unlike procedural 

categories, a participant’s ability to learn declarative 

categories is resilient to manipulations of motor responses 

(Ashby et al., 2003) and feedback (Maddox et al., 2003; 

Smith et al., 2014), indicating that stimulus-response 

association is not critical to these categories. Future work 

might attempt to contrast JOL reactivity in declarative and 

procedural category learning. If learned stimulus-response 

associations are strengthened by JOLs, we should expect JOL 

reactivity for procedural, but not declarative categories. 

Additionally, we believe computational models and self-

report measures could provide insight into how JOLs impact 

participants’ categorization strategies. 

Although we demonstrated JOL reactivity at test, this 

effect does not appear at all during learning, despite JOLs 

being performed throughout. Perhaps the knowledge that 

learning has ended and testing has begun is necessary to elicit 

reactivity. We note that the feedback-based category learning 

paradigm is uniquely positioned to assess learning 

throughout the learning phase. This is not possible in paired-

associates or observational category learning, as participants 

in these tasks do not perform cued recall or categorizations 

during learning. It is thus unclear if JOL reactivity has an 

impact during learning in these tasks, which is a large 

limitation given that paired-associates learning comprises a 

great deal of the JOL reactivity literature. This is a further 

reason to continue studying JOL reactivity using feedback-

based category learning. 

We note some limitations of our experiment. This category 

learning task was quite challenging, with a substantial 

number of participants failing to exceed chance-level 

performance. Our results also suggest a substantial role of 

memory in participants’ learning, as they demonstrated much 

higher test accuracy on previously studied items compared to 

novel items. It is unclear how our results would look if the 

task were easier to learn, or more conducive to generalization. 

The data in this experiment were collected on smartphones. 

This approach to data collection is convenient and more 

ecologically valid than traditional lab-based learning. 

However, it means that there is a large amount of variance 

that we are unable to account for. Potential sources include 

viewing distances, viewing angles, screen brightness, and 

external distractions. We may have observed larger effect 

sizes had these sources of variance been controlled. It is also 

possible that participants’ poor performance is, in part, 

accounted for by their low commitment to a smartphone-

based task. Future work will address these limitations. 

Our findings contribute to the existing JOL reactivity 

literature by demonstrating JOL reactivity in a feedback-

based category learning task. This reactivity is seen for both 

retention and generalization items, indicating that the JOL 

benefit is not item-specific. We believe that COVIS theory 

provides an excellent framework for testing further 

predictions related to JOL reactivity. We expect that JOL 

reactivity may be present for procedural, but not declarative 

categories. We also consider the potential for other 

categorization models to play a role, such as prototype (Smith 

& Minda, 1998) and exemplar (Nosofsky, 1986) models. 

Though we do not discuss these models in-depth here, they 

may also prove to be promising subjects in future work. 

Regardless, a stronger theory of JOL reactivity could have 

substantial implications in education. Intermittent testing is 

beneficial to learning (Halamish & Bjork, 2011; Roediger & 

Karpicke, 2006) but is a source of anxiety for many students. 

JOLs could serve as a strong alternative to intermittent 

testing. Despite clear limitations, our results represent a first 

step toward developing a more comprehensive theory of JOL 

reactivity. 
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