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S U M M A R Y
An asymptotic method, valid in the presence of smoothly varying heterogeneity, is used to
derive a semi-analytic solution to the equations for fluid and solid displacements in a poroelastic
medium. The solution is defined along trajectories through the porous medium model, in the
manner of ray theory. The lowest order expression in the asymptotic expansion provides an
eikonal equation for the phase. There are three modes of propagation, two modes of longitudinal
displacement and a single mode of transverse displacement. The two longitudinal modes define
the Biot fast and slow waves which have very different propagation characteristics. In the limit
of low frequency, the Biot slow wave propagates as a diffusive disturbance, in essence a transient
pressure pulse. Conversely, at low frequencies the Biot fast wave and the transverse mode are
modified elastic waves. At intermediate frequencies the wave characteristics of the longitudinal
modes are mixed. A comparison of the asymptotic solution with analytic and numerical
solutions shows reasonably good agreement for both homogeneous and heterogeneous earth
models.

Key words: Transient deformation; Geomechanics; Hydrology, Permeability and porosity;
Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Due to advances in subsurface monitoring, there is an increased
recognition of the importance of coupled fluid flow and deforma-
tion within the Earth. For example, recent studies highlight the
role of pressure changes and associated deformation in observed
time-lapse seismic anomalies below, within, and above a produc-
ing reservoir (Guilbot & Smith 2002; Landro & Stammeijer 2004;
Hatchell & Bourne 2005; Tura et al. 2005; Hawkins et al. 2007;
Hodgson et al. 2007; Rickett et al. 2007; Roste et al. 2007; Schut-
jens et al. 2007; Staples et al. 2007). These studies document both
changes in layer position and thickness as well as seismic velocity
changes due to stress variations. Such observations support con-
ventional geodetic measurements of overburden deformation due
to injection and production (Castle et al. 1969; Colazas & Strehle
1994) as well as newer satellite-based data (Fielding et al. 1998;
Stancliffe & van der Kooij 2001) and also downhole tiltmeter data
(Du et al. 2005; Maxwell et al. 2008). Furthermore, deformation
of the overburden has been used to infer pressure changes and flow
properties within producing reservoirs. For example, Vasco & Fer-
retti (2005) used satellite-based Interferometric Synthetic Aperture
Radar (InSAR) measurements to image pressure changes, and ulti-
mately permeability variations. Using a similar technique Hodgson
et al. (2007) used time-lapse 3-D seismic data to image pressure
changes in a deep-water reservoir in the Gulf of Mexico.

The growing emphasis on geophysical monitoring and the con-
tinuing development of time-lapse seismic and geodetic technology
create a need for efficient techniques for modelling coupled fluid

flow and deformation. At present, the literature on coupled mod-
elling of fluid flow and geomechanics is vast but lacking in some
respects. One difficulty follows from the complexity of modelling
fully general coupled deformation and flow. Simply modelling fluid
flow is a significant undertaking with a large number of processes to
consider, such as multiphase flow, chemical transport and pressure-
dependent flow properties (Bear 1972; Peaceman 1977; de Marsily
1986; Wu & Pruess 2000). And the modelling of deformation can
involve elastic deformation, plastic flow, faulting and fracturing,
as well as pressure and stress dependent moduli (Coussy 2004;
Showalter & Stefanelli 2004; Jaeger et al. 2007). In this paper, I
will narrow the focus to coupled elastic deformation and single
phase flow. Furthermore, the elastic moduli will be assumed to be
time invariant. Even with these restrictions, the problem is a difficult
one (Showalter 2000; Wang 2000), and there is a need for general,
yet efficient, methods for poroelastic modelling.

Typically, there has been a trade-off between generality and effi-
ciency in the modelling of coupled poroelastic processes. Much of
the prior analytic work on both quasi-static and dynamic poroelastic
modelling has been concerned with homogeneous media (Rice &
Cleary 1976; Segall 1985; Booker & Carter 1986, 1987; Rudnicki
1986; Lo et al. 2006; Pride 2005). The next level of complexity in-
volves analytic models for poroelastic modelling in layered (Wang
& Kumpel 2003) and 1-D (Simon et al. 1984; Gajo & Mongiovi
1995) media. Though the resulting 1-D solutions are complete,
they involve special functions and/or numerical integration and are
thus difficult to interpret. The majority of work on full 3-D het-
erogeneous media is based upon purely numerical techniques, such
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as finite elements, finite difference and boundary-elements (Noor-
ishad et al. 1984; Chang et al. 1991; Lewis & Sukirman 1993; Lewis
& Ghafouri 1997; Gutierrez & Lewis 2002; Rutqvist et al. 2002;
Minkoff et al. 2003, 2004; Dean et al. 2006; Masson et al. 2006),
which, while general, do not scale well with problem size and do
not provide great insight into the nature of poroelastic propaga-
tion. Furthermore, the significantly different velocities, and hence
timescales, associated with diffusive and elastic propagation, makes
it difficult to model the coupled processes accurately and efficiently
using numerical methods.

This paper occupies the middle-ground between the analytic and
the numerical work of previous studies. Here I develop a semi-
analytic solution which is valid in a medium with smoothly varying
heterogeneity of arbitrarily large magnitude. The approach, based
upon an asymptotic solution to the equations governing deforma-
tion and flow in a poroelastic medium, is related to ray-based tech-
niques for modelling wave propagation (Friedlander & Keller 1955;
Kline & Kay 1979; Jeffrey & Kawahara 1982; Kravtsov & Orlov
1990; Anile et al. 1993; Bouche et al. 1997; Korsunsky 1997;
Chapman 2004; Vasco 2007). The asymptotic expansion follows
from the application of the method of multiple scales and is ap-
propriate for modelling propagation in a medium with regions
of smoothly varying properties separated by sharp boundaries
(Jeffrey & Taniuti 1964; Anile et al. 1993). The technique differs
from a straightforward expansion in powers of frequency (Fried-
lander & Keller 1955; Keller & Lewis 1995; Chapman 2004) and
from an expansion in the scale parameter of the poroelastic convo-
lution operator (Hanyga & Seredyńska 1999a,b). One advantage of
this methodology is its ability to model propagation over a broad
range of frequencies and to represent behaviour from diffusive to
hyperbolic propagation (Vasco 2007). Furthermore, this technique
is very general and applicable to the modelling of non-linear be-
haviour (Jeffrey & Kawahara 1982; Anile et al. 1993), such as
that due to multiphase flow (Vasco 2004) and pressure-dependent
moduli (Vasco 2009).

2 M E T H O D O L O G Y

2.1 The governing equations

I begin with the equations governing the evolution of the displace-
ment fields of the solid grains us and a fluid uf which are functions
of the spatial coordinates x and time t that follow from Biot’s fun-
damental work (Biot 1956, 1962). These equations are the conse-
quence of a long history of work on deformation in a fluid saturated
solid (de Boer 2000). There is some advantage in considering al-
ternative coordinates: the solid grain displacement u = us and the
differential fluid displacement w = uf − us . Using these variables
one can write the Biot equations for a fluid-saturated porous medium
as

∇ · τ − ∇ pc = ρ
∂2u

∂t2
+ ρf

∂2w

∂t2
(1)

−∇ pf = ρf
∂2u

∂t2
+ η

∂

∂t

(w

k

)
, (2)

where τ is the deviatoric stress tensor, related to the displacement
of the solid grains by the equation (Pride 2005)

τ = G

(
∇u + ∇uT − 2

3
∇ · uI

)
, (3)

where G is the shear modulus of the porous framework and I is the
identity matrix with ones along the diagonal and zeros elsewhere. In
the expression for the deviatoric stress tensor (3) I have employed
the dyadic notation in which ∇u is given by the outer product of the
two vectors

∇u =

⎛
⎜⎝

∂

∂x i
∂

∂y j
∂

∂z k

⎞
⎟⎠(

ux i uyj uzk
)

which can be thought of as a matrix (Spiegel 1959) and (∇u)T is
the transpose of this matrix. The density of the solid matrix and
the pore fluid are given by ρ and ρf , respectively, while the fluid
viscosity and permeability are denoted by η and k(x). The average
total pressure, the ‘confining pressure’, pc(x, t), is given by the
sum of the divergence of the solid displacements and the fluid
displacements

pc = − (Ku∇ · u + C∇ · w) , (4)

similarly for the fluid pressure, pf ,

pf = − (C∇ · u + M∇ · w) , (5)

where Ku(x) is the undrained bulk modulus, C(x) and M(x) are
spatially varying moduli defined by Biot (1962). The modulus M is
known as the fluid-storage coefficient (Pride 2005) and represents
the amount of fluid which can assimulate in a sample at constant
volume. It is the poroelastic modulus most directly involved in fluid
pressure diffusion. The modulus C is associated with the coupling
between the fluid pressure and the elastic deformation of the solid
matrix, referred to as Biot’s coupling modulus.

There are numerous ways of expressing the various moduli char-
acterizing a poroelastic medium (Wang 2000). I shall merely quote
Pride’s (2005) expressions for Ku, C and M in terms of the medium
porosity φ, the drained bulk modulus Kd, the bulk modulus of the
solid grains composing the porous medium Ks and the bulk modu-
lus of the fluid K f ,

Ku = Kd + [1 − (1 − φ)Kd/Ks]Kf/φ

1 + �
, (6)

C = (1 − Kd/Ks)Kf

(1 + �)φ
, (7)

and

M = Kf

(1 + �)φ
, (8)

where � is a dimensionless parameter

� = 1 − φ

φ

Kf

Ks

[
1 − Kd

(1 − φ)Ks

]
(9)

which is always small. The above relationships follow from the work
of Biot & Willis (1957) and Gassmann (1951), and are thus known
as the ‘Biot–Gassmann’ relations (Pride 2005). The relationships
(6), (7), (8) and (9) enable one to express the parameters Ku, C
and M in terms of more commonly measured quantities. Note that
the parameter C, which couples the fluid pressure and the elastic
displacements (eq. 5), vanishes when the drained bulk modulus Kd

equals the bulk modulus of the solid grains Ks .
There is another useful way to express the moduli in terms of

two other parameters, Skempton’s coefficient B and the Biot–Willis
constant α. The Biot–Willis constant is related to the ratio of the
compressibility of the mineral grains to the compressibility of the
rock sample and is always of order 1 (Zimmerman 2000). Skemptons
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coefficient is approximately the ratio of the compressibility of the
pores to the compressibility of the pore fluid and generally lies
between 0 and 1. One can express both C and M in terms of Ku, B
and α,

C = BKu (10)

and

M = BKu

α
. (11)

The product αB is a poroelastic coupling parameter which indicates
if one may neglect geomechanical effects when computing fluid
pressure (Zimmerman 2000)

αB = 1 − Kd

Ku
. (12)

If αB is small one may generally neglect the coupling between
the deformation of the solid matrix when modelling fluid pressure
propagation (Zimmerman 2000).

In eq. (2), I have assumed that the permeability, k(x) is only a
function of spatial position, independent of time. In more general
formulations k also varies with time and the term on the right-
hand side of eq. (2) is actual a convolution between 1/k and w
(Hanyga & Seredyńska 1999a,b; Pride 2005). The approach out-
lined here will work for such a general formulation, though the low
frequency approximation given later must be modified to account
for the frequency behaviour of K. This more general formulation
is easier to represent by transforming the governing equations into
the frequency domain by taking the Fourier or Laplace transform
(Bracewell 1978) of eqs (1) and (2),

∇ · T − ∇ Pc + ω2ρU + ω2ρf W = 0 (13)

−∇ Pf + ω2ρf U + iω
η

K
W = 0, (14)

where the capital letters denote the Fourier transforms of the re-
spective quantities and K may now be a function of the frequency
ω. Thus, U(x, ω) is the Fourier transform of u(x, t), a function of
frequency and similarly for W(x, ω), T(x, ω), Pc(x, ω), Pf (x, ω)
and K (x, ω). Applying the Fourier transform to eqs (3), (4) and (5)
I can write the governing eqs (13) and (14) solely in terms of U and
W

∇ ·
[
G
(
∇U + ∇UT − 2

3
∇ · UI

)]
+∇ (Ku∇ · U + C∇ · W) + ω2ρU + ω2ρf W = 0 (15)

∇ (C∇ · U + M∇ · W) + ω2ρf U + iω
η

K
W = 0. (16)

2.2 An asymptotic solution for deformation and flow

Due to the presence of spatially varying coefficients in eqs (15)
and (16) it is not possible to derive an analytic solution. However,
using an asymptotic approach I can derive a semi-analytic solution
which is valid in the presence of smoothly varying heterogeneity
of arbitrarily large magnitude. The approach, known as the method
of multiple scales, relies on a separation of scales (Anile et al.
1993; Kevorkian & Cole 1996). In this case, I assume that the
heterogeneity varies at a scale length, denoted by L, which is much
larger than the scale length over which the solid displacement and

fluid pressure jump from their initial or background values to the
new values after a poroelastic disturbance passes, denoted by l.
Thus, l � L and the ratio ε = l/L is much smaller than 1. In the
method of multiple scales one considers the problem on a spatial
scale comparable to ε, transforming the problem to new spatial
variables X, where

X = εx (17)

are referred to as the ‘slow’ coordinates’ Also, the solutions to eqs
(15) and (16) are represented as power series in ε

U(X, ω, θ ) = eiθ
∞∑

l=0

εlUl (X, ω) (18)

W(X, ω, θ ) = eiθ
∞∑

l=0

εlWl (X, ω), (19)

where θ (x, ω) is a function, referred to as the phase, related to the
kinematics of the propagating disturbance. Because ε is small, less
then 1, only the first few terms of these power series are significant.
The series (18) and (19) are in the form of generalized plane wave
expansions of U(X, ω, θ ) and W(X, ω, θ ), similar to that used
in modelling electromagnetic and elastic waves (Luneburg 1966;
Kline & Kay 1979; Aki & Richards 1980; Kravtsov & Orlov 1990).
The variable θ (X, ω) is known as the phase and is associated with
the traveltime of the disturbance.

I consider U and W to be functions of the slow coordinates X
and as a consequence the derivatives contained in the differential
operators need to be written in terms of X and not in terms of x.
Using the chain rule, the derivatives may be rewritten as

∂U

∂xi
= ∂ Xi

∂xi

∂U

∂ Xi
+ ∂θ

∂xi

∂U

∂θ
(20)

and hence, making use of eq. (17),

∂U

∂xi
= ε

∂U

∂ Xi
+ ∂θ

∂xi

∂U

∂θ
. (21)

Thus, the differential operators, which are defined in terms of the
partial derivatives with respect to the spatial coordinates, are like-
wise rewritten as

∇U = ε∇XU + ∇θ
∂U

∂θ
(22)

∇ · U = ε∇X · U + ∇θ · ∂U

∂θ
, (23)

where ∇X denotes the gradient with respect to the components of
the slow variable X.

The asymptotic solution of eqs (15) and (16) is obtained by
writing the differential operators in terms of X and θ and substituting
the power series (18) and (19) for U and W, respectively. The
two equations that result contain infinite sequences of terms, each
containing ε to a particular power. Because ε is assumed to be small,
only the terms of lowest order in ε are retained. In the next two
subsections, I shall consider expressions containing terms of order
ε0 ∼ 1 and ε1. In the discussion that follows, I shall suppress the
subscripts on the gradient operators, that is I shall write ∇ in place
of ∇X in order to streamline the equations. It should be understood
that all operators applied to U and W are with respect to the slow
coordinates X.

GJI, 179, 299–318
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2.2.1 Terms of order ε0 ∼ 1: an expression for the phase

The full complement of terms up to order ε is given in Appendix
A, eqs (A8) and (A12). If I only consider terms or order ε0 ∼ 1,
I obtain

G∇θ · ∇θ
∂2U

∂θ 2
+ G∇θ∇θ · ∂2U

∂θ 2
− 2

3
G∇θ ·

(
∇θ · ∂2U

∂θ 2

)

+ Ku∇θ∇θ · ∂2U

∂θ 2
+ ω2ρU0 + C∇θ∇θ · ∂2W

∂θ 2
+ ω2ρf W = 0

(24)

and

C∇θ∇θ · ∂2U

∂θ 2
+ ω2ρf U0 + M∇θ∇θ · ∂2W

∂θ 2
+ ω2ρ̃W = 0,

(25)

where

ρ̃ = iη

ωK
. (26)

In these equations, I have substituted in the power series expansions
(18) and (19). Due to the specific form of the dependence of U and
W on the phase, the derivatives with respect to θ are given by

∂U

∂θ
= iU (27)

∂W

∂θ
= iW (28)

and similarly for higher-order derivatives. Also, let the vector p
denote the gradient of θ

p = ∇θ, (29)

the gradient vector of the phase function. Substituting for the deriva-
tives with respect to θ and for ∇θ in eqs (24) and (25), I obtain
equations for U0 and W0

βpp · U0 − αU0 + Cpp · W0 − ω2ρf W0 = 0 (30)

and

Cpp · U0 − ω2ρf U0 + Mpp · W0 − ω2ρ̃W0 = 0, (31)

where

β = Ku + 1

3
G (32)

and

α = ω2ρ − Gp2 (33)

[see Appendix A, eqs (A14) and (A15)]. I can write eqs (30) and
(31) in matrix form(

αI − βpp · I ω2ρf I − Cpp · I
ω2ρf I − Cpp · I ω2ρ̃I − Mpp · I

)(
U0

W0

)
=

(
0
0

)
. (34)

From linear algebra it is known that the system of eqs (34) has
a non-trivial solution if and only if the determinant of the coeffi-
cient matrix vanishes (Noble & Daniel 1977). The vanishing of the
determinant defines a polynomial equation in the components of
the vector p with coefficients which are functions of the medium
parameters. From the definition of p, eq. (29), one finds that the
vanishing of the determinant also defines a non-linear partial dif-
ferential equation for θ (X, ω), the eikonal equation associated with
propagation in a poroelastic medium (Kravtsov & Orlov 1990).
While it is possible to form the polynomial equation directly from
the determinant of the coefficient matrix of eq. (34), I follow a less
direct route, avoiding some rather tedious algebra.

The approach I take works with the eigenvalues and eigenvec-
tors associated with the coefficient matrix in eq. (34). There is a
connection between the eigenvalues of the coefficient matrix and
the determinant of the coefficient matrix. Specifically, the product
of the eigenvalues, an invariant of the coefficient matrix, equals the
determinant (Noble & Daniel 1977). In this approach, I first observe
that the vectors

e =
(

y1p
y2p

)
, (35)

and

e⊥ =
(

y1p⊥

y2p⊥

)
, (36)

where y1 and y2 are scalar coefficients and p⊥ denotes a vector
perpendicular to p, look like candidate eigenvectors of the system
of eqs (34). That is, vectors which satisfy the equation

�e = λe, (37)

where � is the coefficient matrix in (34) and λ is a scalar to be deter-
mined. A similar equation holds for for e⊥ with a different scalar,
which I will denote by λ⊥. From eq. (29) one observes that the
vector p is perpendicular to the phase front, the iso-surface of con-
stant phase while p⊥ lies within the plane tangent to the iso-surface.
These vectors denote longitudinal and transverse modes of propa-
gation and, as I shall show, propagate with differing velocities. As
such, I consider each mode separately, first examining deformation
in the direction of p, the longitudinal displacement vector.

Longitudinal displacements

If I substitute the vector e, defined in (35) into the eigenvalue
eq. (37), where the matrix � is given by the matrix in (34), I find
that[
(α − βp2)y1 + (

ω2ρf − Cp2
)
y2

]
p = λy1p (38)

[(
ω2ρf − Cp2

)
y1 + (

ω2ρ̃ − Mp2
)
y2

]
p = λy2p, (39)

where p2 = p · p is the square of the magnitude of the vector p. I
may write eqs (38) and (39) as a single matrix equation(

α − βp2 − λ ω2ρf − Cp2

ω2ρf − Cp2 ω2ρ̃ − Mp2 − λ

)(
y1

y2

)
=

(
0
0

)
(40)

for y1 and y2. As noted above, this equation has a non-trivial solution
if and only if the determinant of the coefficient matrix vanishes. This
is a polynomial equation containing the medium parameters, p, and
λ. Now, the medium parameters are assumed to be fixed but p and λ

may both be considered as unknowns in the polynomial. Thus, there
is some freedom in specifying the values of λ and p. I take advantage
of this flexibility and set λ equal to zero in order to simplify the
expression for the determinant and obtain an equation solely in
terms of p

det

(
α − βp2 ω2ρf − Cp2

ω2ρf − Cp2 ω2ρ̃ − Mp2

)

= (α − βp2)(ω2ρ̃ − Mp2) − (
ω2ρf − Cp2

)2 = 0. (41)

Eq. (41) is a quadratic equation for p2

(p2)2 − ω2(ρM + ρ̃H − 2ρf C)

(H M − C2)
p2 + ω4(ρρ̃ − ρf

2)

(H M − C2)
= 0, (42)
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where H is given by

H = Ku + 4

3
G. (43)

The quadratic eq. (42) has the solution

p2 = ω2

2

⎡
⎣γ ±

√
γ 2 − 4(ρρ̃ − ρf

2)

H M − C2

⎤
⎦ , (44)

where γ is the auxiliary parameter given by

γ = ρM + ρ̃H − 2ρf C

H M − C2
. (45)

This expression for the squared ‘slowness’ is similar to that given by
Pride (2005) for a plane wave in a homogeneous medium. However,
eq. (44) is valid for a medium with smoothly varying heterogeneity
of arbitrary magnitude. Factoring γ out from under the radical I can
write eq. (44) as

p2 = γω2

2

[
1 ±

√
1 − 4

γ 2

(ρρ̃ − ρf
2)

H M − C2

]
(46)

or

p2 = γω2

2

[
1 ±

√
1 − ζ

]
, (47)

where

ζ = 4(ρρ̃ − ρf
2)(H M − C2)

(ρ̃H + ρM − 2ρf C)2
. (48)

Expression (46) for the slowness provides a means for tracing
rays and calculating the propagation path for a transient disturbance
(Aki & Richards 1980; Kravtsov & Orlov 1990). Making use of
the definition of p I can write eq. (47) as a differential equation for
θ (x, ω)

∇θ · ∇θ = γω2

2

[
1 ±

√
1 − ζ

]
, (49)

an eikonal equation for the longitudinal mode of displacement in
a poroelastic medium. This scalar partial differential equation is
equivalent to a system of ordinary differential equations for a tra-
jectory X(r ) and the vector p(r ) (Courant & Hilbert 1962)

dX

dr
= p

χ
(50)

dp

dr
= ∇χ, (51)

where χ (X, ω) is the slowness, defined as

χ (X, ω) = ω

√
γ

2

[
1 ±

√
1 − ζ

]
(52)

and r is the distance along the trajectory X(r ). One can integrate
the system of equations using a numerical technique such as a
shooting method coupled to a globally convergent Newton–Raphson
algorithm (Press et al. 1992). In addition, one may derive an integral
expression for the phase θ (r , ω) by writing the eikonal eq. (49) in
ray coordinates, taking the square root and integrating

θ (r, ω) =
∫

X(r )
χ (X(r ′)dr ′ (53)

or, more compactly,

θ (r, ω) = ωτ (r ), (54)

where

τ (r ) =
∫

X(r )

√
γ

2

[
1 ±

√
1 − ζ

]
dr ′. (55)

The coupled differential eqs (50) and (51) are used to construct
trajectories or rays between a source and an observation point. The
trajectories form the basis for efficient forward modelling of poroe-
lastic propagation. Furthermore, they allow for semi-analytic ex-
pressions for model parameter sensitivities and the solution of the
inverse problem (Menke 1984). For example, the rays form the basis
for traveltime tomographic imaging which has proven highly suc-
cessful in seismology (Nolet 1987; Iyer & Hirahara 1993) among
other fields. Note that, in the most general setting the slowness can
be complex and one must resort to complex ray tracing (Kravtsov
et al. 1999; Amodei et al. 2006). Complex eikonals appear when
the propagation behaviour can vary from hyperbolic wave propaga-
tion to diffusive decay, as in broad-band electromagnetic modelling
(Vasco 2007).

An alternative to ray tracing involves solving the eikonal equa-
tion, the non-linear partial differential eq. (49), numerically. This
approach is now well established and has been applied to a number
of practical problems and seems quite stable (Sethian 1999). It was
introduced to seismology by Vidale (1988) and has been general-
ized in various ways. Note that, to date, the method has not yet been
extended to complex eikonal equations. Thus, currently, it can only
be applied to certain regimes of poroelastic propagation.

Transverse displacements

Following a similar procedure, I consider the potential eigenvector
e⊥, given by eq. (36), and the resulting equation

�e⊥ = λ⊥e⊥, (56)

where � is the coefficient matrix in (34) and λ⊥ is a scalar to be
determined. Taking into account the coefficient matrix (34) and
carrying out the matrix–vector multiplications by p⊥ I arrive at the
following linear system of equations[
αy1 + ω2ρf y2

]
p⊥ = λ⊥ y1p⊥ (57)

[
ω2ρf y1 + ω2ρ̃y2

]
p⊥ = λ⊥ y2p⊥, (58)

which may be written as a matrix equation for y1 and y2,(
α − λ⊥ ω2ρf

ω2ρf ω2ρ̃ − λ⊥

)(
y1

y2

)
=

(
0
0

)
. (59)

The linear system of equations has a non-trivial solution if

det

(
α − λ⊥ ω2ρf

ω2ρf ω2ρ̃ − λ⊥

)
= 0 (60)

which, after noting that α = ω2ρ − Gp2, and setting λ⊥ equal to
zero, produces a quadratic equation for p

ω2ρ̃(ω2ρ − Gp2) = (ω2ρf )
2. (61)

Thus, I have produced an equation for p

p2 = ω2

[
ρ −

(
ρf
ρ̃

)
ρf

]
G

(62)

which leads to the eikonal equation for transverse displacements in
a poroelastic medium

∇θ · ∇θ = ω2

[
ρ −

(
ρf
ρ̃

)
ρf

]
G

, (63)
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a simple modification of the eikonal equation for an elastic medium

∇θ · ∇θ = ω2 ρ

G
(64)

(Aki & Richards 1980). As for the longitudinal displacements, I can
define a slowness, χ (X, ω) for the transverse motion,

χ (X, ω) = ω

√√√√[
ρ −

(
ρf
ρ̃

)
ρf

]
G

. (65)

As expected, the transverse displacement depends upon the moduli
ρ and G. In addition, the transverse displacement also depends upon
the properties of the fluid and the permeability through the presence
of ρf and ρ̃ in (62).

Note that, while the longitudinal component is uniquely deter-
mined as the normal to the surface of constant phase, via its defi-
nition (29), the transverse component can lie within the 2-D plane
tangent to this surface. Thus, there is some degree of freedom for
the transverse component to change orientation. Partitioning the
transverse mode of propagation into components leads to the study
of the vertical and horizontal shear waves.

2.2.2 Terms of order ε: an expression for the amplitude

Next, I consider terms of order ε, which gives two sets of equations
containing phase and amplitude terms. My starting point is the set
of eqs (A16) and (A17) in Appendix A. As noted in the previous
subsection, there are two modes of propagation: longitudinal motion
and transverse motion, each with a distinct propagation speed. To
make progress I need to consider the longitudinal and transverse
modes of propagation in greater detail.

Longitudinal displacements

For longitudinal displacements U is a vector in the same direction
as p. For simplicity, I assume that all the contributions in the series
(18) and (19) are proportional to p. Further, assume that U1 and W1

are vectors which satisfy eq. (34). Thus, the terms containing U1

and W1 cancel and I obtain two sets of equations for U0 and W0,
given that the phase θ is found by solving the eikonal eq. (49),

2p (p · ∇G) U0 − 2

3
∇Gp2U0 + ∇Ku p2U0 + ∇Cp2W0

+ G [(∇ · p) pU0 + 2p · ∇ (pU0)]

+ G
[∇ · (pU0)p + U0p · ∇p + p · {∇(pU0)}T

]
− 2

3
G
[∇ (

p2U0

) + p∇ · (pU0)
]

+ Ku

[∇ (
p2U0

) + p∇ · (pU0)
]

+ C
[∇ (

p2W0

) + p∇ · (pW0)
] = 0 (66)

and

∇Cp2U0 + ∇M
(

p2W0

)
+ C

[∇ (
p2U0

) + p∇ · (pU0)
]

+ M
[∇ (

p2W0

) + p∇ · (pW0)
] = 0. (67)

Note that eqs (66) and (67) comprise six equations for the two
unknowns U0 and W0. The system can be reduced to two equations
for two unknowns by projecting onto the vector p̂, a unit vector in
the direction of the vector p. After projecting onto p̂, expanding the
dyadic and differential operators, and grouping like terms, I arrive

at the equations

2pH p̂ · ∇U0 + (H∇ · p + 2H p̂ · ∇ p + pp̂ · ∇ H ) U0

+ 2pC p̂ · ∇W0 + (C∇ · p + 2C p̂ · ∇ p + pp̂ · ∇C) W0 = 0
(68)

and

2pC p̂ · ∇U0 + (C∇ · p + 2C p̂ · ∇ p + pp̂ · ∇C) U0

+ 2pM p̂ · ∇W0 + (M∇ · p + 2M p̂ · ∇ p + pp̂ · ∇M) W0,

(69)

where as defined in (43), H = Ku + 4/3G. Because the gradients
of U0 and W0 are projected onto the trajectory X(r ) in eqs (68) and
(69), they represent the changes along the ray path. Thus, I may
consider eqs (68) and (69) to be a system of differential equations
for U0 and W0 and write all projected gradients as derivatives with
respect to r the position along the trajectory X(r ). Also, because of
the eikonal eq. (47) or (49), I can replace p by the slowness χ (X, ω),
as defined in eq. (52). I can write these equations more compactly
if I define the coefficients

ϒ11 = 2χ H, (70)

�11 = H

[
∇ · p + 2

dχ

dr
+ χ

d(ln H )

dr

]
, (71)

ϒ12 = 2χC, (72)

�12 = C

[
∇ · p + 2

dχ

dr
+ χ

d(ln C)

dr

]
, (73)

ϒ21 = 2χC, (74)

�21 = C

[
∇ · p + 2

dχ

dr
+ χ

d(ln C)

dr

]
, (75)

ϒ22 = 2χ M, (76)

and

�22 = M

[
∇ · p + 2

dχ

dr
+ χ

d(ln M)

dr

]
. (77)

Then, eqs (68) and (69) can be written as

ϒ
dV

dr
+ �V = 0, (78)

where

V =
(

U0

W0

)
(79)

and ϒ and � are matrices with the coefficients given above. Note,
both the matrices ϒ and � are symmetric and the matrix ϒ

ϒ = 2χ

(
H C
C M

)
(80)

has the explicit inverse

ϒ−1 = 1

2χ (H M − C2)

(
M −C

−C H

)
(81)

which is defined as long as χ and HM − C2 do not vanish. Multi-
plying the terms of eq. (78) by ϒ−1 results in the equation

dV

dr
= −�V, (82)
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where

� = ϒ−1�. (83)

Note that for a homogeneous medium

� = ϒ−1� = ∇ · p

2χ
ϒ−1ϒ = ∇ · p

2χ
I (84)

and eq. (82) decouples to produce two equations which may be
solved exactly for U0 and W0

U0(X, ω) = Au
0 exp

[
−
∫

X(r )

∇ · p

2χ
dr

]
(85)

W0(X, ω) = AW
0 exp

[
−
∫

X(r )

∇ · p

2χ
dr

]
, (86)

where Au
0 and AW

0 are the initial amplitudes of the solid and relative
fluid displacements and X(r ) denotes the trajectory which provides
the path of integration. This is simply the amplitude decay due to
the geometrical spreading of the wavefield as it propagates away
from the source (Kline & Kay 1979; Kravtsov & Orlov 1990).

For a heterogeneous medium the first-order system of eqs (82)
can be solved in its present form using a numerical technique or, as
shown in Appendix B, the system can be written as two uncoupled,
second-order differential equations for U0 and W0. The governing
equation for the amplitude of the solid displacement vector is given
by

d2U0

dr 2
+ �1

dU0

dr
+ �2U0 = 0, (87)

a linear, second-order differential equation for U0 with variable
coefficients given in terms of the elements of the matrix �

�1(r ) = �12
d

dr

(
1

�12

)
+ �11 + �22 (88)

�2(r ) = �12
d

dr

(
�11

�12

)
− �12�21 + �11�22. (89)

Similarly, I can derive a governing equation for W0

d2W0

dr 2
+ �1

dW0

dr
+ �2W0 = 0, (90)

where

�1(r ) = �21
d

dr

(
1

�21

)
+ �11 + �22 (91)

�2(r ) = �21
d

dr

(
�22

�21

)
− �12�21 + �11�22. (92)

Such decoupling in the frequency domain was noted by
(Berryman 1983). These two scalar, ordinary differential equations
may be solved efficiently using widely available numerical tech-
niques (Press et al. 1992). Alternatively, an asymptotic technique
may be used to derive semi-analytic solutions (Keller & Lewis
1995).

Transverse displacements

For transverse displacements U is a vector lying in the plane per-
pendicular to p, which I shall denote by p⊥. As noted earlier, there
is some freedom in the orientation of p⊥ as it may lie within a 2-D
plane. Under the same assumptions invoked for the longitudinal dis-
placements, I consider the terms of order ε1, as given in eqs (A16)

and (A17) for the case in which U0, U1, W0 and W1 are oriented in
the direction p⊥. The resulting equations are

p(∇G · p⊥)U0 + p⊥(∇G · p)U0

+ G
[
p⊥(∇ · p)U0 + 2p · ∇(U0p⊥)

]
+ G

[
p∇ · (U0p⊥) + (p⊥ · ∇p)U0 + p · ∇(U0p⊥)T

]
− 2

3
Gp∇ · (U0p⊥) + Kup∇ · (U0p⊥) + Cp∇ · (W0p⊥) = 0

(93)

and

Cp∇ · (U0p⊥) + Mp∇ · (W0p⊥) = 0. (94)

Eqs (93) and (94) represent six equations for the two unknowns U0

and W0. I can reduce the number of equations by projecting the
displacement vectors onto a unit vector in the direction of motion
p̂⊥. In doing so, the terms containing W0 in eq. (93) and all the terms
in eq. (94) vanish, resulting in a single equation for the amplitude
function U0.

p3(p̂ · ∇G)U0 + G
[

p2(∇ · p)U0 + 2p⊥ · p · ∇ (
U0p⊥)]

+ G
[
p⊥ · p⊥ · ∇pU0 + p⊥ · p · ∇(U0p⊥)

] = 0. (95)

Thus, the transverse solid displacement is completely uncoupled
from the fluid displacement vector W. Expanding the dyadic ex-
pressions and combining terms produces a scalar equation for U0

3Gpp̂ · ∇U0 + pp̂ · ∇GU0 + G
[∇ · p + 2p̂ · ∇(p2)

]
U0 = 0.

(96)

Noting again that the projection of the gradient operator onto the
unit vector p̂ signifies the rate of change of the quantity with respect
to distance r along the trajectory X, I can write eq. (96) as

3Gp
dU0

dr
+ G

[
∇ · p + 2

dp

dr
+ p

d(ln G)

dr

]
U0 = 0. (97)

Noting that the eikonal equation allows one to write the magnitude
of the vector p in terms of the slowness χ (X, ω) [see eq. (65)] and
defining

� = 3χG (98)

and

� = G

[
∇ · p + 2

dχ

dr
+ χ

d(ln G)

dr

]
, (99)

I can write eq. (97) as a first-order ordinary differential equation for
U0

�
dU0

dr
+ �U0 = 0 (100)

which may be written

dU0

dr
= −�

�
U0. (101)

Eq. (101) has the explicit solution

U0(X, ω) = Au
0e−ς(X), (102)

where

ς (X) =
∫

X(r )

�

�
dr (103)

and Au
0 is the initial displacement amplitude. Thus, it is possible

to derive an analytic expression for the amplitude of the transverse
displacement. From the coefficients (98) and (99) it is clear the
transverse displacement only depends upon the shear modulus G,
the slowness χ and the geometrical spreading of the trajectories as
measured by ∇ · p.
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2.3 The nature of the longitudinal Biot slow and fast
waves in the limit of low frequency

It is difficult to make definitive statements regarding the nature of
the two solutions in eq. (47) due to the coupling of the fluid flow and
the elastic deformation in the matrix. However, if I consider a low-
frequency solution it is possible to make further progress. I should
point out that in considering lower frequencies the scale length of
the disturbance will lengthen. Hence, I am limiting the solution to
a medium with heterogeneity of a sufficiently long scale length. At
lower frequencies the Biot equations decouple, as noted by Pride
(2005) and Lo et al. (2006), and the numerator and denominator of
ζ are dominated by ρ̃ [see eq. (48)]. As indicated by the definition
(26), if K is not a function of frequency then ρ̃ is proportional to
1/ω, becoming large as ω approaches zero. Thus, as ω approaches
zero ζ approaches

ζ = −i
4ρ(H M − C2)K

ηH 2
ω.

When K is a function of frequency ω, the behaviour of ζ depends
upon the relationship of K to the frequency. For low frequencies, ζ

smaller than 1, I can use the binomial expansion to write the square
root term in eq. (47) as a power series in ζ . Retaining only the first
two terms of the expansion I obtain

p2 = γω2

2

[
1 ±

(
1 − 1

2
ζ

)]
. (104)

The magnitude of the phase gradient vector p is related to the in-
verse of the velocity of the propagating disturbance (Aki & Richards
1980), so that larger values of p correspond to slower moving fea-
tures. Because ζ is taken to be smaller than 1 the first root

p2 = γω2

2

(
2 − 1

2
ζ

)
(105)

is known as the ‘Biot slow wave’, corresponding to a propagating,
diffusive wave, related to a fluid pressure transient (Vasco et al.
2000; Vasco 2008a). The second root results in an expression for
the ‘Biot fast wave’

p2 = γ ζω2

4
(106)

which is the porous medium equivalent of an elastic wave and
propagates with much less attenuation and a much higher velocity
(Pride 2005). Accounting for the exact expressions for γ , eq. (45)
and ζ , eq. (48), I can write the eq. (106) for the fast wave as

p2 = ω2 ρρ̃ − ρf
2

ρ̃H + ρM − 2ρf C
(107)

or as

p2 = ω2
ρ − ρf

ρ̃
ρf

H + ρ

ρ̃
M − 2 ρf

ρ̃
C

. (108)

Comparing the expression for a porous medium (108) to that for a
purely elastic medium

p2 = ω2 ρ

H
, (109)

the modifications required to account for poroelastic processes are
apparent. Note that, while the frequency dependence of an elastic
disturbance (109) is straightforward and represents hyperbolic wave
propagation, the frequency dependence of a disturbance in a poroe-
lastic medium (108) is rather more complicated due to the presence
of the parameter ρ̃, which is defined in (26). This is particularly

true if K is also a function of frequency, leading to more complex
propagation, including dispersion and dissipation. In the next two
subsections I consider these two modes of longitudinal displace-
ment in somewhat more detail. Specifically, I derive the form of the
zeroth-order asymptotic solutions U0 and W0 in both the frequency
and time domains in the limit of low frequency. As noted by (Pride
2005), the boundary of the low frequency regime lies in the kilo-
Hertz to mega-Hertz range and covers the vast majority of seismic
and hydrologic field experiments.

2.3.1 The Biot slow wave

First, consider the Biot slow wave whose slowness is given by
eq. (105), which may written as

p2 = γω2 − γ ζω2

4
(110)

in the low frequency limit. In the limit as ω approaches zero I find
that

lim
ω→0

γ = ρ̃H

H M − C2
= iη

ωK

H

(H M − C2)
(111)

and

lim
ω→0

ζ = 4ρ
ωK

iη

(H M − C2)

H 2
(112)

and eq. (110) takes the form

p2 = iωη

K

H

(H M − C2)
− 4

ρω2

H
(113)

which, for ω near zero, is dominated by the first term on the right-
hand side

p2 = iωη

K

H

(H M − C2)
. (114)

Drawing upon eq. (114) I can write the low frequency approximation
to the eikonal equation for the Biot slow wave as

∇θ · ∇θ = iωη

K

H

(H M − C2)
. (115)

As stated previously in the discussion associated with eqs (49)
through (55), I can define the slowness as the square root of the
right-hand side of eq. (115),

χ (X, ω) =
√

iωη

K

H

(H M − C2)
. (116)

Expressing the eikonal equation in ray coordinates, along the
trajectory X(r ) I arrive at an integral expression for the phase
θ (r , ω)

θ (r, ω) =
∫

X(r )
χ [X(r ′)]dr ′ (117)

or, moving i ω outside the integral and defining

τ (r ) =
∫

X(r )

√
η

K

H

(H M − C2)
dr ′, (118)

the phase may be written in the form

θ (r, ω) = √
iωτ (r ). (119)
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Now consider the zeroth-order term in the power series represen-
tation of U(X, ω, θ ) and W(X, ω, θ ) [eqs (18) and (19)]

U(X, ω, θ ) = eiθ U0(X, ω) (120)

W(X, ω, θ ) = eiθ W0(X, ω) (121)

which provides a suitable approximation to the solid and fluid dis-
placements if ε is small. Substituting the expression for the phase,
θ (r , ω), and the fact that U0 = U0p and W0 = W0p the above
expressions take the form

U(X, ω, θ ) = e
√−iωτ (X)U0(X, ω)p (122)

W(X, ω, θ ) = e
√−iωτ (X)W0(X, ω)p (123)

where X(r ) a point on the trajectory a distance r from the source of
the disturbance. Inverse Fourier transforming eqs (122) and (123)
back into the time domain, using the fact that the inverse Fourier
transform of a product is the convolution of the inverse Fourier
transforms and the inverse transform of e

√−iω is a Gaussian (Spiegel
1990; Virieux et al. 1994)

u(X, t, θ ) = τ

2
√

π t3
e−τ2/4t H (t) ∗ u0(X, t)p (124)

w(X, t, θ ) = τ

2
√

π t3
e−τ2/4t H (t) ∗ w0(X, t)p, (125)

where ∗ signifies a temporal convolution and u0(X, t), w0(X, t) are
the inverse transforms of U0(X, ω) and W0(X, ω), and H(t) is the
Heaviside or step-function which jumps in value from zero to one
at t = 0.

The phase behaviour in (124) and (125) contains a Gaussian
impulse response which is the solution to the diffusion equa-
tion (Carslaw & Jaeger 1959). This form of the solution agrees
with previous studies in homogeneous media where it was found
that the low frequency Biot slow wave satisfies a diffusion-type
equation (see Pride 2005; Lo et al. 2006). Such a solution is also
in agreement with solutions for quasi-static pressure and displace-
ment in a poroelastic medium (Rudnicki 1986; Wang & Kumpel
2003; Vasco 2008a). The solutions (124) and (125) decay rapidly
with propagation distance and do not behave like elastic waves.
However, it is still possible to consider the propagating transient
disturbance as a type of wave and to define an ‘arrival time’ and
to use such arrival times to perform something akin to traveltime
tomography (Virieux et al. 1994; Vasco et al. 2000; Shapiro et al.
2002; Vasco et al. 2008). In order to gain some insight, consider the
solution in the time domain, eq. (124), when the amplitude function
u0(X, t) does not depend upon time. The peak of the displacement
occurs when the temporal derivative vanishes, that is when

∂u(X, t, θ )

∂t
= τ

2
√

π
e−τ2/4t

[
− 3

2
√

t5
+ τ 2

4
√

t7

]
u0(X)p (126)

is equal to zero. This condition is satisfied when the quantity inside
the square brackets vanishes, that is when

t = τ 2

6
(127)

or

τ = √
6Tpeak (128)

where T peak is the time at which the displacement attains a maximum
value. Thus the ‘phase’, τ (X) is proportional to the square root
of the time at which the peak deformation occurs. One can use

this quantity to define an ‘arrival time’ for the diffusive transient
displacement (Virieux et al. 1994). For more a complicated source–
time function u0(X, t) it is necessary to remove it from the recorded
displacement before computing the arrival time. If the source–time
function is known, it may be removed by deconvolution in the time
or frequency domain (Bracewell 1978).

The expressions for the matrix and fluid displacements (124) and
(125) correspond to a delta function source in time. That is, to an
impulsive source in which the displacement is non-zero at a single
point in time. Due to the diffusive nature of the propagation of the
Biot slow wave such an initial pulse will not propagate very far
from the source. Rather, it is more common to have a step function
source in which fluid is introduced at a point for a long period of
time. That is, initially the flow rate is zero and then steps up to some
non-zero value very quickly and is maintained at that rate for a
long period of time. In that way the constant flux of mass or energy
propagates some distance from the source. I can obtain this type of
source by integrating the delta function in time. The integral of a
delta function is a step function (Bracewell 1978), and the integral
of the impulse response is given by

u(X, t, θ ) =
∫ t

0

τ

2
√

πy3
e−τ2/4ydy ∗ u0(X, t)p (129)

w(X, t, θ ) =
∫ t

0

τ

2
√

πy3
e−τ2/4ydy ∗ w0(X, t)p. (130)

The integral is related to the complementary error function (Press
et al. 1992) and so I can write eqs (129) and (130) as

u(X, t, θ ) = erfc

(
τ

2
√

t

)
∗ u0(X, t)p (131)

w(X, t, θ ) = erfc

(
τ

2
√

t

)
∗ w0(X, t)p (132)

which is similar to the solution for fluid diffusion due to constant
fluid injection of withdrawal (Theis 1935).

2.3.2 The Biot fast wave

Now I consider the second possible value for p2 in eq. (104), asso-
ciated with the minus sign, which results in

p2 = γ ζω2

4
(133)

or, considering the limits of eqs (111) and (112),

p2 = ω2 ρ

H
(134)

which is identical to the slowness for an elastic medium [eq. (109)].
The associated eikonal equation, obtained by substituting ∇θ for p
[see the definition of p, eq. (29)], is

∇θ · ∇θ = ω2 ρ

H
. (135)

As was done previously for the Biot slow wave, I can define the
slowness

χ (X, ω) = ω

√
ρ

H
. (136)

Consideration of the eikonal equation in ray coordinates allows one
to write the phase as the integral

θ (r, ω) = ω

∫
X(r )

√
ρ

H
dr ′, (137)
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or as

θ (r, ω) = ωτ (r ), (138)

where

τ (r ) =
∫

X(r )

√
ρ

H
dr ′. (139)

Now consider the zeroth-order approximation to the solid and
fluid displacements given by

U(X, ω, θ ) = eiθ U0(X, ω) (140)

W(X, ω, θ ) = eiθ W0(X, ω). (141)

Substituting in the expression (138) for the phase θ and accounting
for the fact that U0 and W0 are longitudinal displacements (in the p
direction), I arrive at the frequency domain representation

U(X, ω, θ ) = eiωτ (X)U0(X, ω)p (142)

W(X, ω, θ ) = eiωτ (X)W0(X, ω)p. (143)

Applying the inverse Fourier transform to eqs (142) and (143) pro-
duces the time domain expressions

u(X, t) = δ(t − τ ) ∗ u0(X, t)p (144)

w(X, t) = δ(t − τ ) ∗ w0(X, t)p, (145)

where δ(t) is the delta function. The convolution with the delta
function may be evaluated exactly (Bracewell 1978), resulting in

u(X, t) = u0(X, t − τ )p (146)

w(X, t) = w0(X, t − τ )p. (147)

Thus, the waveforms are just shifted versions of the source wave-
form combined with changes due to propagation described by the
amplitude eqs (87) and (90). This is in keeping with previous stud-
ies which indicate that the Biot fast wave is in essence an elastic
wave propagating in the poroelastic medium (Pride 2005; Lo et al.
2006).

2.4 Nature of the transverse displacement in the limit
of low frequency

The squared slowness associated with the transverse displacement
is given by eq. (62)

p2 = ω2

[
ρ −

(
ρf
ρ̃

)
ρf

]
G

. (148)

In order to obtain the exact dependence on the flow properties η and
K and frequency ω, I substitute the expression for ρ̃, eq. (26)

p2 = ω2ρ

G
+ iω3 K (ρf )2

Gη
(149)

which for low frequency, is dominated by the first term on the
right-hand side. Thus, at low frequencies

p2 = ω2ρ

G
(150)

and

χ (X, ω) = ω

√
ρ

G
. (151)

Consideration of the eikonal equation in ray coordinates enables me
to write the phase as

θ (r, ω) = ωτ (r ), (152)

where

τ (r ) =
∫

X(r )

√
ρ

G
dr ′. (153)

The zeroth-order approximation to the solid displacement is given
by

U(X, ω, θ ) = eiωτ (X)U0(X, ω)p⊥ (154)

Applying the inverse Fourier transform to eqs (154) produces the
time domain expression

u(X, t) = δ(t − τ ) ∗ u0(X, t)p⊥, (155)

where δ(t) is the delta function. The convolution with the delta
function may be evaluated exactly (Bracewell 1978), resulting in

u(X, t) = u0(X, t − τ )p⊥, (156)

where τ is the time delay corresponding to the transverse displace-
ment, eq. (153).

2.5 Propagation across an Interface

As with ray theoretical approaches for modelling elastic wave prop-
agation, one can include a discontinuous change in material prop-
erties as a boundary and subject the wavefields to the appropri-
ate boundary conditions (Aki & Richards 1980; Chapman 2004).
Hence, one can use the asymptotic expressions given above in mod-
els containing layering, faults, and other structural and stratigraphic
features. Due to the presence of the Biot slow wave and the fluid
displacement field, the interaction of the wavefield with an inter-
face in a poroelastic medium will be a somewhat richer topic, with
four possible reflected and transmitted waves [fast longitudinal,
fast in-plane transverse (SV), fast out-of-plane transverse (SH), and
slow longitudinal] for each incident wave. The longitudinal mode of
propagation will have two associated displacement fields, one asso-
ciated with the solid displacement U and the other associated with
the relative fluid displacement W. The transverse mode of prop-
agation will only include solid displacements, as indicated by the
equation governing the amplitude (95). A discussion of reflection
and transmission coefficients warrants an entire paper, and will be
the subject of future work. Such a treatment involves a direct ex-
tension of the results for an elastic medium (Aki & Richards 1980;
Chapman 2004).

2.6 Computation of the complete displacement response

Given that there are two modes of longitudinal propagation, the Biot
slow and fast waves, with very different propagation characteristics,
some thought must be given to the computation of the complete re-
sponse at a given point. In particular, the fact that the Biot fast
waves decays slowly, essentially as an elastic wave, means that a
particular station may receive contributions from many different
locations. Stated another way, a large pressure change can gener-
ate a continuous contribution of Biot fast waves as it propagates
(Vasco 2008a). Because the Biot fast waves can travel significant
distances without much decay, one must account for these contribu-
tions in computing the displacement response at a given location.

GJI, 179, 299–318

Journal compilation C© 2009 RAS
No claim to original US government works



Modelling broad-band poroelastic propagation 309

Conversely, a Biot fast wave can generate a Biot slow wave near the
receiver and contribute to the local pressure response. This process
may be responsible to the dynamic triggering of microseismicity by
large, remote earthquakes.

In this subsection, I will touch upon the summation of Biot fast
wave contributions from a pressure source, as generated by the injec-
tion or withdrawal of fluid from a well. This is a particularly common
situation, encountered in groundwater, geothermal, petroleum and
waste disposal activities. I consider an impulsive pressure source,
which will generate both Biot slow and fast waves. The Biot slow
wave will propagate from the source point Xs to an intermediate
location Xi and the disturbance is given by eq. (124),

u(Xi , Xs ; t) = τ (Xi , Xs)

2
√

π t3
exp

[−τ (Xi , Xs)2/4t
]

×u0(Xs, Xi )ps(Xi ), (157)

where u0(Xi , Xx ) represents the amplitude decay of the slow wave
due to propagation from Xs to Xi . Similarly, τ (Xi , Xs) represents the
accumulated phase change as the diffusive slow wave propagates
from the source to Xi . As the Biot slow wave propagates from the
source location Xs to the intermediate point in the medium it will
generate, or shed, Biot fast waves. Once the fast waves are generated,
say at the point Xi , they will propagate to the receiver point Xr

according to eq. (146). I shall denote the accumulated phase due to
the propagation of the Biot fast wave from Xi to the receiver point Xr

by τ (Xr , Xi ) and similarly for the amplitude decay u0(Xr , Xi ). One
consideration in the generation of the longitudinal displacement
for the Biot fast wave is that the trajectories of the outgoing fast
wave may differ from that of the incoming Biot slow wave. Thus,
I include a term accounting for the projection of the displacement
associated with the Biot slow wave onto the displacement direction
of the outgoing fast wave. The contribution to the displacement at
the receiver located at Xr for a wave that travelled as a slow wave
to from Xs to Xi and then as a fast wave from Xi to Xr is

u(Xr , Xs ; t) = τ (Xi , Xs)

2
√

π [t − τ (Xr , Xi )]
3

exp
[−τ (Xi , Xs)2/4(t − τ (Xr , Xi ))

]
× u0(Xr , Xi )u0(Xi , Xs)pf (Xi ) · ps(Xi )pf (Xr ).

(158)

The total displacement at Xr , u(Xr , t), is obtained by summing or
integrating over all intermediate points Xi

u(Xr , t) =
∫

V
u(Xr , Xs ; t)dXi . (159)

One can evaluate this integral directly using numerical methods
or approximate it using an asymptotic technique (Dingle 1973).
The procedure is similar to the quasi-static calculation for the solid
displacement due to a pressure source presented in Wang (2000,
p. 110).

3 A P P L I C AT I O N S

In this section, I implement the methodology described above and
use it to model fluid pressure changes and solid matrix displace-
ments due to fluid injection into a borehole. Two particular cases
are considered: homogeneous and heterogeneous media, and the
results are compared with predictions from a finite difference code
and an analytic solution for a homogeneous medium. I shall only
be concerned with the computation of the direct longitudinal slow
and fast arrivals. That is, I will not compute conversions between

Figure 1. Source function used to generate the pressure pulse for the nu-
merical finite-difference modelling. It was also used in the convolution with
the point source response to generate the analytic and asymptotic solutions.

slow and fast arrivals, as indicated in eqs (158) and (159). An ex-
ample of such a calculation, in the case of quasi-static poroelastic
propagation, was given in Vasco (2008a).

3.1 Propagation in a homogeneous medium

Here, I am interested in modelling the evolution of fluid pressure
and solid displacement in a homogeneous medium induced by a
rapid pressure pulse (Fig. 1). The half-width of the pulse is less
than 0.1 s and the pressure source is activated at 0.2 s. The medium
is a homogeneous porous whole space with a solid bulk modulus
of 30.5 GPa, an undrained bulk modulus of 20.5 GPa, a fluid bulk
modulus of 2.2 GPa, a shear modulus of 8.4 GPa, a solid density
of 2.5 gm cc−1, a fluid density of 1.0 gm cc−1, a porosity of 0.1,
and a hydraulic conductivity of 3.0 × 10−12. In order to reduce the
computation I shall consider a two dimensional problem, modelling
the propagation within a vertical slice of the Earth. A numerically
stable finite difference code (Masson et al. 2006) is used to calcu-
late the pressure and displacements due to the injection. In Fig. 2,
three snap-shots of the pressure variation in the 2-D whole space
are shown. Note that by 1000 s the pressure variation has reached the
boundaries of the model and the predictions of the finite difference
code will be influenced by this interaction.

For a homogeneous medium I can use the expression given in
(Wang & Kumpel 2003) for the quasi-static pressure variation. The
inertial terms are probably not significant in the governing equa-
tion for pressure if the frequency is low. This conjecture is verified
through a comparison of pressure predictions made using the finite-
difference approach of (Masson et al. 2006), the analytic predictions
of (Wang & Kumpel 2003), and the asymptotic expression given
by eq. (125) of this paper (Fig. 3). In general, the agreement be-
tween the three methods is fairly good though the agreement with
the numerical results deteriorate somewhat after the peak pressure
is obtained. The differences after the peak pressure may be due to
the interaction of the pressure with the boundary in the numerical
modelling (Fig. 2). The differences between the asymptotic pres-
sure estimates and the analytic and the finite-difference estimates
are shown in greater detail in Fig. 4 where I plot the absolute error
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Figure 2. Three snapshots from the finite-difference modelling of Biot’s
poroelastic equations. The snapshots display the pressure variation due to
the source pulse, shown in Fig. 1, applied at the center of the simulation grid.
The observation point, the location at which the time variation of pressure
is calculated, is indicated by an open triangle.

Figure 3. A comparison of the numerical calculation of pressure (Numeric),
an analytic solution for pressure (Analytic), and the asymptotic solution
(Asymptotic) given by eq. (125). Each pressure curve has been normalized
such that its peak value is unity.

Figure 4. The difference between the asymptotic solution and the numeric
and analytic solutions. The error is given in terms of the percentage of the
normalized peak value. Thus, in this case, the error never exceeds roughly
2 per cent of the peak value.

as a function of time. In general, the error is less then 2 per cent of
the peak pressure value plotted in Fig. 3.

The inertial terms cannot be neglected when calculating the elas-
tic displacement of the solid matrix. Doing so will give the correct
elastic quasi-static response to the pressure changes near the injec-
tion point, that is the response modelled using eqs (158) and (159).
However, the quasi-static solution does not contain the Biot fast
wave which is generated by the rapid pressure change due to injec-
tion. For an analytic model of the Biot fast wave I use the expressions
provided by (Gajo & Mongiovi 1995). In addition, I generate a nu-
merical solution using the finite-difference code of (Masson et al.
2006). Three snap-shots, generated within the first 0.3 s after the
start of injection, are shown in Fig. 5. Note the interaction of the Biot
fast wave, which is essentially an elastic wave, with the boundaries
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Figure 5. Three snapshots from the finite-difference modelling of Biot’s
poroelastic equations. The snapshots show the radial displacement of the
solid matrix due to the pressure pulse shown in Fig. 1.

Figure 6. A comparison of the numerical calculation of the radial displace-
ment of the solid matrix, an analytic solution for the displacement, and the
asymptotic solution given by eq. (146). Each curve has been normalized the
peak value of displacement.

of the mesh by 0.28 s. The boundaries generate reflections, which
impact the predictions made after that time. This points to some of
the limitations of numerical approaches for modelling poroelastic
processes. The timescale of the pressure variation (Fig. 2) is signif-
icantly different from that for the elastic wave (Fig. 5). Thus, the
elastic wave traverses the entire numerical modelling grid by 300
iterations of the finite difference code. About 1000 000 iterations
are necessary to model the propagation of the pressure disturbance
from the source to the edge of the modelling grid, taking roughly
2 hr of CPU time. If I had doubled the size of the grid to avoid
spurious reflections then the amount of computation increases by
four times, requiring 8 hr of CPU times.

In Fig. 6, I compare the predictions of the numerical code with
those of the analytic solution of (Gajo & Mongiovi 1995) and the
asymptotic solution given for the Biot fast wave, eq. (146). When the
phase term is real, the analytic and asymptotic solutions are shifted
versions of the source function, after we account for the mapping
of pressure into displacement which occurs at the source. The pre-
dictions of the three methods are fairly close until the displacement
peak. Following the peak displacement, the numerical predictions
deviate from the analytic and asymptotic predictions. As with the
pressure, this may be due to the interaction of the finite-difference
results with the boundary of the modelling grid. In addition, one
must be careful when including the source–time function as noted
by (Chapman 1985). For example, for an elastic wave one must
consider the analytic time-series which contains both the source–
time function as well as its Hilbert transform. The disagreement is
shown in more detail is Fig. 7, where one finds exact agreement
between the analytic and asymptotic displacements and increasing
discrepancies between the numerical solution and the analytic and
asymptotic solutions.

3.2 Propagation in a heterogeneous medium

In an effort to examine propagation in a heterogeneous medium I
perturbed the uniform model given above, using linear and quadratic
functions to generate a 2-D velocity model (Fig. 8). The resulting
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Figure 7. The difference between the asymptotic solution and the numeric
and analytic solutions. The differences are given in terms of their percentage
of the peak value of the displacement curves, in this case 1.
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Figure 8. The velocity variation of the Biot slow wave for the calculation of
pressure and displacement in a heterogeneous medium. The model contains
a high velocity layer bounded above and below by low velocity zones. The
velocity of the layer also increases linearly to the right-hand side.

model constrains a high velocity zone bounded above and below
by low velocity regions. The source is located at (0.5 km, 0.5 km),
within the high velocity zone, while the receiver lies at the upper
edge of the high velocity zone. From the results of the finite dif-
ference pressure calculations, one observes that the pressure propa-
gation is very much influenced by the heterogeneities (Fig. 9). The
rather asymmetric pressure distribution contrasts sharply with that
of the homogeneous medium (Fig. 2). Solving the eikonal eq. (49)

Figure 9. A snapshot of the pressure 1000s after the beginning of injection
into the heterogeneous model. The source time function, given in Fig. 1, is
identical to that used in the modelling for the homogeneous medium.

numerically using the fast marching method of (Sethian 1999),
which was introduced in seismology by (Vidale 1988) one can com-
pute the traveltime contours (Fig. 10). The trajectories for asymp-
totic modelling can be generated by marching down the gradient of
the traveltime field (Sethian 1999). Such a trajectory connecting the
source and receiver is shown in Fig. 10. The calculation of the phase
field and the generation of the trajectory took around 5 CPU sec-
onds on a workstation. In Fig. 11, I compare the numerical solution
produced by the finite-difference code with the asymptotic solution
given above. Note that the analytic solution is no longer valid, due
to the presence of heterogeneity. Overall, there is relatively good
agreement between the two predictions. The discrepancy between
the two solutions is shown in more detail in Fig. 12. Generally, the
two solutions lie within 2–4 per cent of each other.

In Fig. 13, I compare the displacement of the solid matrix associ-
ated with the Biot fast wave. As before, the solution was truncated
due to interference from boundary reflections in the numerical mod-
elling. There is general agreement between the two solutions and
most of the differences occur after the peak of the pulse (Figure 14).
As noted above, the numerical solution is influenced by the pres-
ence of the boundary in this time interval. The agreement between
the asymptotic solution and the numerical predictions could be im-
proved by expanding the modelling grid and accounting for the
exact position of the source and receiver within the modelling grid.
Furthermore, using the full frequency response, given in eq. (49),
rather than the low frequency response (146), and the analytic source
function (Chapman 1985), should improve the agreement.

4 C O N C LU S I O N S

An asymptotic approach provides a useful technique for modelling
the propagation of a disturbance in a poroelastic medium with
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Figure 10. The variation of phase associated with the Biot slow wave,
due to the heterogeneous velocity structure. The phase was calculated by
numerically solving the eikonal equation for the velocity variation shown
in Fig. 8 (Vidale 1988; Sethian 1999). The star denotes the location of the
source and the open triangle denotes the location of the observation point.
The trajectory which represents the propagation path of the slow wave is
indicated by the solid curve.

Figure 11. A comparison of the numerical calculation of pressure and the
asymptotic solution given by eq. (125). Both pressure curves have been
normalized such that their peak values are unity.

smoothly varying elastic and flow properties. Because the expan-
sion is in terms of a scale parameter defined by the ratio of the
width of the disturbance to the scale length of the heterogeneity,
the solution should be valid across a range of frequencies as long
as the heterogeneity is sufficiently smooth. The expressions for the
phase and amplitudes of the longitudinal Biot fast and slow dis-
placements and the transverse displacements are simple extensions

Figure 12. The difference between the asymptotic solution and the numeric
solution. The error is given in terms of the percentage of the normalized
peak value.

Figure 13. A comparison of the numerical calculation of the radial displace-
ment of the solid matrix and the asymptotic solution given by eq. (146). Each
curve has been normalized the peak value of displacement.

of expressions for displacements in an elastic medium. In the limit
of low frequency, the expressions capture the diffusive nature of the
Biot slow wave and the hyperbolic wave-like nature of the longi-
tudinal Biot fast wave and the transverse displacement. At higher
frequencies the propagation can contain elements of diffusive and
hyperbolic propagation and the slowness, as given in eq. (47), can
be complex and require complex ray tracing (Kravtsov et al. 1999;
Amodei et al. 2006; Vasco 2007). As noted above, it is possible to
account for interfaces in the methodology, by treating a disconti-
nuity as a boundary condition. An example of the refraction at a
boundary for quasi-static propagation in a poroelastic medium was
given in Vasco (2008a).

The trajectory-based solution derived in the paper provides ad-
ditional insight into the manner in which the properties of the
medium influence the propagation of disturbances within a poroe-
lastic earth model. For example, the three modes of propagation,
the fast and slow longitudinal displacements and the fast transverse
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Figure 14. The difference between the asymptotic solution for radial dis-
placement and the numeric solution.

displacement, are given by the three sets of eigenvalues and eigen-
vectors of the matrix (34). The three additional solutions required
of the 6 × 6 matrix are provided by disturbances propagating in
the reverse direction. The exact combination of the medium pa-
rameters and frequency contributing to the phase velocity of each
mode of propagation follows from eqs (47) and (62). The variation
of amplitude with propagation distance for each mode of propaga-
tion is given by the transport eqs (87) and (90) for the longitudinal
displacements, and the expression (102) for the transverse displace-
ment. These expressions are particularly useful when solving the
inverse problem, in which observations are used to infer properties
within the Earth (Iyer & Hirahara 1993). For example, the expres-
sions allow the inverse problem to be partitioned into a traveltime
inverse problem (Aki et al. 1976) and an amplitude inverse problem
(Thomson 1983). The traveltime inverse problem is quasi-linear in
nature and has better convergence properties to a solution than the
amplitude inverse problem (Nolet 1987). It is also possible to for-
mulate an efficient, low-order waveform inversion algorithm based
upon the asymptotic solution (Vasco et al. 2003). The asymptotic
formalism used here also unifies two classes of inverse problems:
the inversion of displacement and seismic data (Vasco et al. 2003)
and the inversion of fluid flow data (Vasco et al. 2000; Vasco 2008b).

There a number of avenues by which to extend this work. First,
one could generalize the governing equations such that the moduli
depend on the stress field and/or the fluid pressure. Second, one
could consider multiphase fluid flow and the attendant complica-
tions. Third, more complicated rheologies, such as plasticity, could
be invoked for the solid matrix. The method of multiple scales may
be used for such generalizations because it is applicable to non-
linear (Jeffrey & Kawahara 1982; Anile et al. 1993) and coupled
(Korsunsky 1997) processes. There are also a number of possible
applications of the methodology including the study of deforma-
tion accompanying reservoir production mentioned in Section 1.
In addition, it would be of interest to explore the consequences of
the conversion of longitudinal displacements between the Biot fast
and slow waves. As noted by Pride (2005) and illustrated in Vasco
(2008a), in a heterogeneous poroelastic medium, fast waves can
generate slow waves and vice versa. Given the differences in the
nature of propagation of these two modes, this leads to some inter-
esting effects, such as the rapid appearance of elastic deformation

as compared to the appearance the gradual appearance of pressure
change (Vasco 2008a). Such conversions may be a factor in the re-
mote triggering of micro-earthquakes by dynamic strains generated
during a major earthquake (Hill et al. 1993).
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A P P E N D I X A : T H E M E T H O D O F
M U LT I P L E S C A L E S

In this Appendix, I apply the method of multiple scales (Anile
et al. 1993; Kevorkian & Cole 1996) to the equations governing the
evolution of a transient disturbance in a poroelastic medium, eqs
(15) and (16). These coupled linear partial differential equations
depend on the spatially varying parameters G(x), Ku(x), C(x), M(x)
and K (x) as well as on the frequency ω. One approach to solving
this system of equations makes use of a series representation of

the solution in powers of 1/ω and assumes that ω is large. Because
I am interested in modelling disturbances across a wide range of
frequencies I shall not adopt this approach. Rather, I will assume
that the heterogeneity is smoothly varying in comparison to scale
of the disturbance in displacement and pressure. Specifically, if I
denote the scale length of the heterogeneity by L and the scale
length over which the pressure and displacement varies by l. Then,
by assumption, L � l and the ratio ε = l/L is much smaller then 1.
In order to bring out the scale separation I can rewrite the governing
equations in terms of a slow variable X which is given by

X = εx. (A1)

Furthermore, I can represent the Fourier transform of solid matrix
displacement and the pore fluid displacement as power series in ε

U(X, ω, θ ) = eiθ
∞∑

l=0

εlUl (X, ω) (A2)

W(X, ω, θ ) = eiθ
∞∑

l=0

εlWl (X, ω). (A3)

Note that, because ε � 1, only the first few terms of the power series
are significant. The form of the solutions (A2) and (A3) is a variation
of the generalized plane wave expansion used in the study of elastic
and electromagnetic waves (Luneburg 1966; Kline & Kay 1979;
Aki & Richards 1980; Kravtsov & Orlov 1990) where θ (x, ω) is the
phase of the disturbance, a quantity related to the propagation time.
The phase is a rapidly varying quantity which scales as 1/ε (Anile
et al. 1993). After Fourier transforming, the frequency only enters
as part of the coefficients of the governing equations and I shall
treat ω as a parameter. The differential operators in the governing
equations may be written in terms of the slow variable X by noting
that

∂U

∂xi
= ε

∂U

∂ Xi
+ ∂θ

∂xi

∂U

∂θ
. (A4)

Hence, making use of eq. (A1) I can write the gradient operators as

∇U = ε∇XU + ∇θ
∂U

∂θ
(A5)

∇ · U = ε∇X · U + ∇θ · ∂U

∂θ
, (A6)

where ∇X denotes the gradient with respect to the components of
the slow variable X. In the derivation that follows I shall suppress
the X subscript on the differential operator ∇.

The first step involves rewriting the governing equations in terms
of the slow variables. Consider a version of the first eq. (15) in
which I expand the derivative terms

∇G · ∇U

+∇G · (∇U)T

− 2
3 ∇G · [(∇ · U) I]

+ G∇ · ∇U

+ G∇ · (∇U)T

− 2
3 G∇ · [(∇ · U) I]

+∇Ku∇ · U

+ Ku∇ (∇ · U)

+∇C∇ · W

+ C∇ (∇ · W)

+ω2ρU + ω2ρf W = 0. (A7)
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Now I substitute the differential operators as indicated in (A5) and
(A6), only retaining terms containing ε0 ∼ 1 and ε1,

ε∇G ·
(

∇θ
∂U

∂θ

)

+ ε∇G ·
(

∇θ
∂U

∂θ

)T

− ε
2

3
∇G ·

[(
∇θ · ∂U

∂θ

)
I

]

+ εG∇ ·
(

∇θ
∂U

∂θ

)
+ εG∇θ · ∇

(
∂U

∂θ

)
+ G∇θ ·

(
∇θ

∂2U

∂θ 2

)

+ εG∇ ·
(

∇θ
∂U

∂θ

)T

+ εG∇θ · ∇
(

∂U

∂θ

)T

+ G∇θ ·
(

∇θ
∂2U

∂θ 2

)T

− ε
2

3
G∇ ·

(
∇θ · ∂U

∂θ

)
I − ε

2

3
G∇θ ·

(
∇ · ∂U

∂θ

)
I − 2

3
G∇θ

×
(

∇θ · ∂2U

∂θ 2

)
I

+ ε∇Ku

(
∇θ · ∂U

∂θ

)

+ εKu∇
(

∇θ · ∂U

∂θ

)
+ εKu∇θ

(
∇ · ∂U

∂θ

)
+ Ku∇θ

(
∇θ · ∂2U

∂θ 2

)

+ ε∇C

(
∇θ · ∂W

∂θ

)

+ εC∇
(

∇θ · ∂W

∂θ

)
+ εC∇θ

(
∇ · ∂W

∂θ

)
+ C∇θ

(
∇θ · ∂2W

∂θ 2

)
+ω2ρU + ω2ρf W = 0. (A8)

I can write eq. (A8) more compactly if I use the definition of p =
∇θ and the fact that

∂U

∂θ
= iU

and

∂W

∂θ
= iW

which follows from the form of the solutions (A2) and (A3). Making
these substitutions, I can write eq. (A8) as

ε∇G · (ipU)

+ ε∇G · (ipU)T

− ε
2

3
∇G · [(ip · U) I]

+ εG∇ · (ipU) + εGp · ∇ (iU) − Gp · (pU)

+ εG∇ · (ipU)T + εGp · (∇iU)T − Gp · (pU)T

− ε
2

3
G∇ · (ip · U) I − ε

2

3
Gp · (∇ · iU) I + 2

3
Gp · (p · U) I

+ ε∇Ku (ip · U)

+ εKu∇ (ip · U) + εKup (∇ · iU) − Kup (p · U)

+ ε∇C (ip · W)

+ εC∇ (ip · W) + εCp (∇ · iW) − Cp (p · W)

+ ω2ρU + ω2ρf W = 0. (A9)

Some of the terms in eq. (A9) can be expanded to arrive at

iεp (∇G · U)

+ iε (∇G · p) U

− iε
2

3
∇G (p · U)

+ iεG [(∇ · p) U + 2p · (∇U)] − Gp (p · U)

+ iεG
[
(∇ · U)p + U · ∇p + p · (∇U)T ] − Gp2U

− iε
2

3
G [∇ (p · U) + (∇ · U) p] + 2

3
Gp (p · U)

+ iε∇Ku (p · U)

+ iεKu [∇ (p · U) + p (∇ · U)] − Kup (p · U)

+ iε∇C (p · W)

+ iεC [∇ (p · W) + p (∇ · W)] − Cp (p · W)

+ω2ρU + ω2ρf W = 0. (A10)

Considering the second governing eq. (16), expanding the deriva-
tives I arrive at

∇C∇ · U

C∇∇ · U

∇M∇ · W

+ M∇∇ · W

ω2ρf U + ω2ρ̃W = 0.
(A11)

Substituting the differential operators and retaining terms of order
ε0 and ε1,

ε∇C

(
∇θ · ∂U

∂θ

)

+ εC∇
(

∇θ · ∂U

∂θ

)
+ εC∇θ

(
∇ · ∂U

∂θ

)
+ C∇θ

(
∇θ · ∂2U

∂θ 2

)

ε∇M

(
∇θ · ∂W

∂θ

)

+ εM∇
(

∇θ · ∂W

∂θ

)
+ εM∇θ

(
∇ · ∂W

∂θ

)
+ M∇θ

(
∇θ · ∂2W

∂θ 2

)
ω2ρf U + ω2ρ̃W = 0. (A12)

Using the definition of p and the property of the partial derivatives
I can write eq. (A12) as

iε∇C (p · U)

+ iεC [∇ (p · U) + p (∇ · U)] − Cp (p · U)

iε∇M (p · W)

+ iεM [∇ (p · W) + p (∇ · W)] − Mp (p · W)

ω2ρf U + ω2ρ̃W = 0. (A13)

A1 Terms of order ε0 ∼ 1

As noted above, because ε is assumed to be small, the terms of lowest
order are the most significant. To find these terms I substitute the
power series expressions for U and W, given by (A2) and (A3),
into eqs (A10) and (A12). Two equations result, each containing an
infinite progression of terms of various orders in ε. If I consider
terms of the lowest order in ε, ε0 ∼ 1, I arrive at the two equations

Gp2U0 + 1

3
Gpp · U0 + Kupp · U0 − ω2ρU0

+ Cpp · W0 − ω2ρf W0 = 0 (A14)
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and

Cpp · U0 − ω2ρf U0 + Mpp · W0 − ω2ρ̃W0 = 0. (A15)

A2 Terms of order ε1

Now consider terms of the next lowest order in ε, those of first order.
For the first eq. (A10), I have

ip (∇G · U0)

+ i (∇G · p) U0

− i
2

3
∇G (p · U0)

+ iG [(∇ · p) U0 + 2p · (∇U0)] − Gp (p · U1)

+ iG
[
(∇ · U0)p + U0 · ∇p + p · (∇U0)T

] − Gp2U1

− i
2

3
G [∇ (p · U0) + (∇ · U0) p] + 2

3
Gp (p · U1)

+ i∇Ku (p · U0)

+ iKu [∇ (p · U0) + p (∇ · U0)] − Kup (p · U1)

+ i∇C (p · W0)

+ iC [∇ (p · W0) + p (∇ · W0)] − Cp (p · W1)

+ω2ρU1 + ω2ρf W1 = 0, (A16)

where I have substituted in the first two terms U0, U1, W0, and W1

of the power series (A2) and (A3). Similarly, for eq. (A13) I have

i∇C (p · U0)

+ iC [∇ (p · U0) + p (∇ · U0)] − Cp (p · U1)

i∇M (p · W0)

+ iM [∇ (p · W0) + p (∇ · W0)] − Mp (p · W1)

ω2ρf U1 + ω2ρ̃W1 = 0. (A17)

A P P E N D I X B : D I F F E R E N T I A L
E Q UAT I O N S F O R U 0 A N D W 0

In this Appendix, I discuss how to transform the coupled system of
linear, first-order differential eqs (82) into two uncoupled second-

order equations. First, consider two equations in (82)

dU0

dr
= −�11U0 − �12W0 (B1)

dW0

dr
= −�21U0 − �22W0. (B2)

I can solve eq. (B1) for W0 in terms of U0 and its derivative

W0 = − 1

�12

[
dU0

dr
+ �11U0

]
. (B3)

Substituting this expression into eq. (B2) for W0, carrying out the
differentiations, and grouping terms gives

1

�12

d2U0

dr 2
+
[

d

dr

(
1

�12

)
+ �11

�12
+ �22

�12

]
dU0

dr

+
[

d

dr

(
�11

�12
− �21 + �11�22

�12

)]
U0 = 0. (B4)

Multiplying eq. (B4) by �12 and defining the coefficients

�1(r ) = �12
d

dr

(
1

�12

)
+ �11 + �22 (B5)

�2(r ) = �12
d

dr

(
�11

�12

)
− �12�21 + �11�22 (B6)

I can write eq. (B4) as

d2U0

dr 2
+ �1

dU0

dr
+ �2U0 = 0, (B7)

a second-order differential equation for U0 with variable coeffi-
cients. Following a similar procedure I can derive a governing equa-
tion for W0

d2W0

dr 2
+ �1

dW0

dr
+ �2W0 = 0, (B8)

where

�1(r ) = �21
d

dr

(
1

�21

)
+ �11 + �22 (B9)

�2(r ) = �21
d

dr

(
�22

�21

)
− �12�21 + �11�22. (B10)

Rather than solving eq. (B7) and (B8) it might be more efficient to
solve eq. (B7) for U0 and then use eq. (B3) to find W0.
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