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1 TIntroduction

Finite deformation contact problems are associated with large sliding in the contact area.
Thus, during an analysis a slave node can slide over several master segments within the
actual finite element discretization.

The standard contact discretization in these cases is based a master-slave formulation
in which the slave node contacts a straight master segment. Due to this treatment the
normal changes from segment to segment without a smooth transition when passing from
one segment to the next. Since this may lead to convergence problems and furthermore may
initiate jumps in the velocity field in dynamic solutions, it is preferable to have a smooth
contact discretization with a continuous normal field. To have a continuous surface with no
slope discontinuities between segments, a C*—continuous interpolation of the master surface
is necessary. To achieve this, one can use different forms of discretizations. Among these
are Bezier, Hermitian or other types of spline interpolations. In this paper we compare
two formulations and discresizations which can be used to obtain smooth normal fields for
contact of two deformable bodies.

Work regarding smooth contact has first been devoted for finite deformations to the
contact of deformable bodies with rigid surfaces, see e.g. [1] or [2] or [3]. For the contact of
two or more deformable bodies see [4] or [5]. :

2 Formulation of frictionless contact problems

We consider (wo elastic bodies B*, a = 1,2, each occupying a bounded domain Q% C R,
that means we restrict ourselves in this paper to two dimensional contact problems. The
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Figure 1: Large deformations and contact of two bodies.

mapping ® maps points in the initial configuration, described by the position vector X to
points in the deformed configuration x* = *(X%), see Figure 1.

The boundary I'* of a body B* consists of three parts: I'Y with prescribed surface loads,
I'® with prescribed displacements and % where the two bodies B! and B? come into contact.
In the contact area we have to formulate the constraint equations for the normal contact as
well as the kinematical relations for the tangential contact. Here on the deformed contact
surface T, two distinct points in the initial configuration, X! and X2, will have the same
position x* = x2, see Figure 1.

Furthermore we will state the weak form for bodies undergoing large elastic deformations
which leads in case of contact to a variational inequality.

2.1 Contact kinematics

Since the deformation of two bodies in space can be arbitrary (see Figure 1) and may consist
of finite rotations and large deflections a global search procedure is needed to find parts of
the bodies, denoied by I'; which come into contact. This search process can be based on
methods like bucket search or binary tree algorithms, but it will not be discussed here in
detail.

Once the contact surface T, is known, the local geometrical contact conditions can be es-
tablished. For this purpose we describe the surface on the bodies by convective coordinates.
Furthermore, we define one the surface of one of the contacting bodies, B!, as the master
surface which means that this surface is the reference surface for the subsequent deriva-
tions. The other surface of body B? is called the slave surface. This choice is arbitrary and
completely interchangeable since in the final solution of the contact problem all geometrical
quantities of both surfaces (e.g., the normal vectors) coincide.




)

Ni
X! /\ o (BY)
B! Vo ——
C i ]
C i ]

Figure 2: Definition of the gap in finite deformations.

Figure 2 shows the parameterization of the contact surface for the two—dimensional case.
x® = p%(X®) denotes the coordinates of the current configuration of body B*: x* = X% u®
where X% is related to the reference configuration and u® is the displacement field. The
normal vector ny is associated with the master body Bt. Assuming that the contact boundary
describes, at least locally, a convex region we can relate to every point x* on I a point
%! = x!(£) on I'! via the minimal distance problem, see Figure 2,

2 1

| =mind'(¢) = min [x"—x' (&I, (1)

Xicr

x*— %
where £ denotes the parameterization of the boundary I'', sec e.g. [6]. The minimization
process vields the condition {x? — %!) - &' = 0 which means that (x* — X') points in the
direction of fil, see Figure 2. We will use in the following the notation X' = x'(£)._#

Once the point X' is known, we can write the geometrical contact constraint inequality
which prevents penetration of one body into the other

gy ={x*—xY-al >0 (2)

In view of the penalty formulation which will be applied here to solve the contact problems
we introduce a penetration function to allow for a small penetrations on I

[ -%Y)-at i x-x)-at <0
N = ] otherwise .

(3)

- Function gy indicates a penetration of one body into the other and shows in which parts of
T the constraint equations preventing penetration have to be activated. Thus (3) can be
used to determine the contact area I'S C I'?.




Remark I: In the case of contact between a rigid surface and a deformable body equation
(3) also holds. Then X" are the coordinates and f' is the normal of the rigid body.

Remark IT. Due to the closest point projection we can write

x*~ % =gya'. (4)

2.2 Weak form for solids in finite elasticity

Sinee the weak form for elastic bodies is quite standard, we only want to discuss here the con-
tact contributions. As introduced above the contact conditions are given by the geometrical
non-penetration condition (2)

gy 20 (5)
Furthermore we do not consider adhesion on the contact interface thus tension stresses cannot
occur on the contact area, thus the normal traction inequality is given as

DN S 0. (6)

For a numerical solution of the nonlinear boundary value problem associated with finite
elasticity we will use the finite element method. If W is the strain energy function of the
elastic bodies B* then we can write the total energy as

KZfW“dV ffagadV/tacpdA (7)
o
There are several methods to solve (7) when contact constraints are present. A common
approach is an active set strategy combined with the penalty method, see e.g. ODEN [7] or
KIKUCHI, ODEN (8], which also is employed in this paper. Introducing a penalty constraint
for the normal contact leads, by assuming that the contact surface is known, instead of (7)
to the minimization problem

I+, = MIN (8)
where the part regarding the contact constraints is given by
ﬁsm/e:g?vdf £>0 (9)
Te

and ¢ denotes the penalty parameter. In the discretization that we will use, the contact
constraint is enforced for each slave node. Hence the integral in (9) can be written as a sum

Z Q'Vs (EG)

Here n, is the number of active constraints and A is an area related to the contact node s.

" The minimum of (8) is found when the first variation is zero. Since we are mainly
interested in the contact formulation, we omit in the following the contribution IT related to
the solids.




2.2.1 Form A

The first variation of TI, is

e

dH';1 = Z edgw, gn, As (11)

s=1

Within this formulation we need to compute the variation dgy, which follows from (4} as
dgw, A' + g, A" = 0%] — 6%° — X 6€ (12)

where the last term denotes the variation of the surface coordinate £ The notation is
chosen such that dg(x{¢),£) = {(8g / 0x) dx% + 0y / 8¢ 5¢ denotes the total variation whereas
Sg(x(£),€) = (8¢ / 0x) 6x is the variation with respect to the variable (x).

Taking the scalar product with fi' yields the final result for the variation of the normal
gap

dgn, = (6x% —6%") - @' (13)

Since we want t0 use Newton’s method to solve the nonlinear equations the linearization of
the variation dII, is necessary. To obtain a symmetric tangent matrix we start from (11)
and get

e
DAI! =~ s dgn, Dan, As + gn, Ddgn, A (14)
s=]
The linearizasion of the gap. Dgy,, in the first term has the same structure as dgy,, thus we

have
Dgy, = (Ax2 — Az - & (15)

Again D stands for the total linearization and A for the linearization with respect to the
variable x. The term Ddgy, is obtained from the linearization of (12)

Ddgy, i +dgy, DA+ Dy, ditt + gy, DA = 65, AE — AR, 66 — &gy 66 A — ATK (16)
Noting that &' - Dii' = @' - dait = 0, the scalar product with n' yields
Ddgy, = —gw, D’ - 01" — 6!, - 0" AL — AR), 5! 6 — X/ -0t SEAL — ASXT - (17)
where the first term on the right hand side can be rewritten, since
D[da' - &' ] = Dda' - &' + da'- DA’ = 0= Dda' - n* = —dn* - Di’
So finally we have
Ddgy, = gy, dii* - DR — 6%}, - £ AL — AR, - 011 66 — % -0 SEAE — Adx' 0t (18)

Tn: this formulation we now have to compute the variation and linearization of the normal
fi! and the surface coordinate £ and express these in terms of the variables x? and x'.

Since il

-5(1:5 = 0 the variation of this product vields
da'- %% +nl-dxl, =0
55 3&—

6




With the definition of the unit tensor

1
1= |8'®n' + g X ® X,

[ %1
we obtain from (2.2.1) after some algebra
_ 1 _ _ -
dal = — B (xe@n']dxl,. (19)

Note that in this expression the variation of %! involves also the change of the surface

coordinate
dx’ = dx* +x, 6¢. (20)
1

Since however X' -0’ = 0 we can neglect the second term in (19).

The variation of the surface coordinate, needed in (18}, can be computed from the change

of gap in tangent direction, (x7 — X'} - X, = 0, which yields after some manipulations

_ 1 2 =1 =1 —1 =1
= xl, XY — gy, Bl Xl [(6xF — 0%) - X e + g, A - 6% ] (21)

Ll

By using the sam formalism to derive A£ and by inserting {21) and (19) into (18) we obtain
the final expression for the linearization of the gap variation wkich is given in terms of the
primary variables xZ and %'.

Before proceeding to the smooth contact discretization we investigate a different deriva-
tion of the penalty formulaiion for the contact constrainis.

2.2.2 Form B
Note that the penalty term (10) can also be written with (4) as

e E: ~ _
H? = ZigNsnl'gNsnlAs

s=1
e
s=1

where now the normal no longer appears. The variation of this expression vields
e
dIl? =3 " e (6x2 — o%' — %', 86) - (x] — %) 4, (23)
=1

Again, since (x2 — X'} = g, n? the third term in the first bracket disappears and we have
g 9N,

for the variation of I,
dITt =" e (%2 — d%') - (x2 —x1) 4, (24)

s=1




The linearization DATI? starts from {23) and leads to the symmetric form
DAY = > oA, [(5x2 - %" — %' 68) - (Ax] — AR — % Af)
s=1

+ (2 —xY) - (AKX — 6% AL — AR SE - R, - BT EAL) ] (25)

This expression can be put into a mixed form by using vector notation. After collecting
terms we arrive at

Tle § —I _iif AX?
DATT: = Z g AJ{ox2, 0%} 6gy | —I 1 Z AxT Y — (x2 —xNYT Asx']  (26)
s=1 —il,g EZIT H&r Ag
where the abbreviations
Hye = (®)7x} —gn, (1) %
7 = X —gn, @

have been used. Since the variation (24) does not depend on §€ we can use 2 static conden-
sation to eliminate A¢ in (26). This yields

Tle B 2
DAMT? = Z g Af(6x2, 5% ) A(€) {ﬁz_{ci} — (x2 — &7 Asx! (27)
g=1
where the matrix

—1 =1 1T -1zl 17
I-Hy ®x %y —I+Hp %X,2 ] (28)

A(f} = _I+H—1 ii)—cl’T I#H 151 ilT
&8 £ 43

has been introduced.

Note that we recover in this elimination process also the formula for the variation of the
surface coordinate (21).

Now we have to discretize the master surface of body B which then yields the matrix
form for the smooth contact element.

3 Smooth contact discretization

Here we discuss two different interpolations which yield a C' continuous surface interpola-
tion of the master surface. The first is a Hermitian interpolation and the second is a Bezier
interpolation. These two interpolations lead to different results as discussed later. There
are many more possibilities to derive C! continuous contact interpolations, like splines or
B-splines. However these are not considered here.

An interpolation which provides a normal field which does not have jumps when going
from one segment o the next has to be C'-continuous. There are different possibilities to
set up the interpolation. The first one investigated is the Hermitian interpolation, then we
will present the matrix formulation for a C'-continuous Bezier interpolation.

8
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Figure 3: C" — continuous interpolation of contact surface.

3.1 Smooth Hermitian interpolation

Since Hermitian polynomials are cubic functions we need four nodal points on the master
surface, see Figure 3, to define the interpolation.

To obtain continuous tangents from one segment to the next — the one under consideration
here is denoted by the nodes x; and x; — we define the tangent vectors t, = xp — Xo and
ts = X3 — X1

Let us furthermore introduce a tangent and a normal vector which form a local frame for
the segment under consideration

th =X —x3 and ng=—e3 X ty= Tty (29)

where e; is the unit base vector perpendicular to the plane, thus the cross product can be
expressed by the skew matrix T
1
[

-1 0

Now we can define the surface interpolation as a linear interpolation between nodes 1 and 2
and a cubic Hermitian interpolations with respect to the local frame

x(£) = Ni(&) x1 + No{€) %0 + w({) mo (31)

where the cubic interpolation is given by w(f) = Hy{£) By + H2(£) Ba. N,(£} being the




standard linear shape functions and H,(£) being the Hermitian polynomials defined as

N(© = 50-9

M) = 30+8) (32)
B = ;E-1E-1)

H(e) = 7€ -1E+1)

The angle B, is given in terms of the tangent vectors t, as

_ 1tlng

—_ a0 33
“ 2 ¢4 (33)

and denotes the angle between the tangent t, and the local frame defined by (tg,ny). With
this we can summarize the interpolation of the surface within the segment between node 1
and 2 as

2

X(€) = Y [ Na(€) %o + Hal£) Bang] (34)

a=1
Now we have to express the variation and the linearization of the gap associated with one
slave node x,. For this, the derivative of x(£) with respect to the surface coordinate £ is also
needed and hence given next

2

x(€) ¢ = 5 (x2 —x1) + > H. (&) Bang (35)
=1
The variation of x(£) yields
2
5x(8) = [ Na(£)0%a + Hal€) (6Bano + Bodn)] (36)
=1
.. 1. [/tIng .
By exploiting the structure of 6B, = 5 ] T3 we arrive at the final form for 0B,
a o
1 :
0Ba = 5 [(¢2TT — B, tT ) dtg + (nf — B t] ) 6ts ] (37)
ato

Now we can write the variation of B, in matrix form. For this we define

(@) He i gy

Py 2tgt0[ fo & a]

(@ —Ha — Byt

P2 zt’gto [1’19 @ G] (38)

10




and obtain
p(a)
6B, = {6ty 0ta) %a) (39)
P:

Since Jto = 0x» — dx; and with (36), (37) and (38) the variation (§x7 — 6%') needed in (24)
can be expressed in matrix form as (§x2 — §%!) = 6% B,(£) where

~N(E T+, [ HalE) B.TT — pi* nf |
555 B (€) = (8%, ,6%1,0%5,6b1, 8t ) { ~No(§) I — Y, [ Ha(&) BoTT —p{Pnf ]} (40)

Thus, finally the matrix form of the variation of the penalty form of all contact contribution
for the active contact constraints in (24) is given by

drt = Za [e A, B,(€) (x2 — &Y (41)

The linearization follows with (40) from (27) as
Tig B _ _
DALl = > £ 4, [6x] B,(€) A(§) BT (§) A%, — (x — x')T Adx'] (42)
s—1
where the last term now has to be derived as a function of the unknown variables. Not that
in (42) the linearization (Ax2 — Ax!) = BT (£) A%, has been used according to (15).
The last term in (42} results from the linearization of the variation (36) with regard o
the variables. This yields

2
(62— )T AR = (6 — x0T Y Ha(€) [ASBang + ABy dng + 0B, Ang|  (43)

In this expression the term §B, is already known and AB, has the same structure. Thus
the term which has to be investigated in detail is AdB,.

1
217t

AéBa:A{ [T — B, tL) 6to + (nf — Bat] ) 0ta ]} (44)

Using the results already obtained in (39) and by defining the matrices

a H,
m{® = 3 [(Ttat? +t,t5 TT — 2B, t,t7]
0
o H,
mgz) = QT §n0t —tgtTTT—ZB tt ] (é5)
tT 4,
R H,
m = TN (ngtl +tynd — 2B, tot] ]
0

11




we arrive at

H, A6B, = {Stg, 8t ) My { ﬁfﬂ} (46)
In: this expression the matrix M, has the structure
o} T
M{Q) — 1 m&f _Ha (Baz - T) - mizj (47)
2 tg to *Hoc (BaI - TT) - mg‘;) _m.(??

Furthermore let us define with (38) the 2 x 2 matrices which are needed to describe the last
two terms in (43)

P = T(d-xYpl
Py = T(x-xpl” (48)
Now all terms have been derived and the final matrix form of the linearization can be stated
FAX 7
(X? - }_Cl)T Adx = ( 513(} P étl B tg > M Atl (49)
Ato

Here the matrix M is given with (47) and (48) as

MY+ M@ 4+ PE PP L p® PP P LMY PP MY
T Y -
M = P+ M) MY 0 (50)
T
Py M 0 M)

Finally, we have to express the vectors tg,t: and {2 in terms of the nodal values xy,%:, X
and x;. For this we define the transformation

dx,
8ty 6 0 -1 10 dxg
st =10 -T 0 I 0] {éx (51)
5t o0 0 -101 %o

X3

where §%; has been added for completeness. This transformation can now be applied in (49)
and yields together with (50) the final matrix form for the linearization of the normal gap
in (42).

3.2 Smooth Bezier interpolation

Bezier polynomials which are introduced here to obtain a continuous normal field are cubic
functions. As the Hermitian functions these are defined by four points on the master surface,
however in a differeni manner, see Figure 4,

The Begzier interpolation for the segment described by node 1 and 2 yields

x(&) = Bi(§)xy + Ba(§)x14 + Ba(§)xa- + Ba()xe (52)

12
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Figure 4: ' — continuous Bezier interpolation of contact surface.

where the Bezier interpolation functions are defined as

B = S(1-¢)

Baf) = S(1-€)7(1+¢)

Ba() = S(1-8)(1+6) (53)
Bie) = $(1+8)°

Observe that the interpolation lies in the convex hull spanned by the nodes x1 ,%;4 ,Xs— and
Xo.

Our main requirement for the interpolation is, that the tangent vectors of adjacent seg-
ments have to be equal to maintain € continuity over segment boundaries. This condition
can be applied to compute the interior points of the segment x;; ,%,_. By defining the
tangent vectors at nodes 1 and 2 as in the previous section we obtain

€ o
ty == 5 (xo —%p) and ty= 5 (X3 — X1) (54)

Now we take the derivative of (52} and evaluate this at the end points £ = —1 and £ = +1.
By setting this equal to the tangent vectors t, we obtain

Q
X4 = X1 — 3 (Xz - xa)
o
Xp.. = o+ 3 (x5 —x1) (55)

Here « is a parameter which specifies how far nodes x;4 and x,_ are away from nodes x; and
x5, respectively. For different o the shape of the surface interpolation changes. In the limit
for @ — 0 we obtain an almost flat segment, however the corner region between adjacent
segments is still C' continuous. Since the shape of the surface changes during the finite

13




deformation process, & might be adapted within the calculation. However a good choice for
o is o = 3, see also [3].

With (55) we can rewrite the interpolation (52). This leads to

x(€) = Z Bi()x (56)
with
Bo(§) = %Bz(ff)
Bi(§) = Bui(§)+Ba(§) - 3 Bslt)
B6) = Ba(®)+Bal6) — 5 Ba(8) (57)
Ba¢) = 5 B:(©)

Now we compute the first and second derivative of x(£) with respect to the surface coordinate
£ for later use

x (&) = Z B; (&) x

=0

xgl€) = Y, B (58)

i=0

The expression for the variation of the gap (13} using this interpolation is now

dgy, = [&scs > B } n' (59)
i=0

which easily is expressed in matrix form as

n
. ) _}E}g (é) ﬁl
dgy, = 65T B, (£) = (6xT ,dx5 ,6xT ,0x5 ,0%5 } 4 —B:(&)n (60)
~B,() 7
~Bs(g)a'

Thus the residuum connected with the smooth Bezier contact formulation yields
ATt =" %] [ A, gn, Bald)] (61)
s=1

The linearization of the variation of the gap function needed in {14) can be derived from
(18). For this we have to express d¢ and AZ , see (21), in matrix form as well as <§}'c1,t. and
A%,

3
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Let us first compute the variation of X', which yields

Y
. _ , By ((6) &'
55{1{ = 55\(3 B, :5(5) = ( 5Xg— : 5}[5 ) 5x’{ s &X.g : 5}{? ) 'E_))l 13 (é) n' (62)
By g(6) 1
B; g€ n
Now we can express the first term in (18). Using (19) we obtain
gy, dn’- Dn! f’f S6x - [R @Dt AR,
1%l
= 057 | DB, (D) Bas(d)T | A% 63
= 0X; “ %1 Elz n,f(&) n,f(g) Xs ( }
£

Furthermore we define the matrix form of (§x? — 6%') - X!, which is needed to compute 6§

(%) — x1) - Rl = 6% B(€) = (6x] , dx7 ,0x] , 03 ,6%5 ) { —

)X

) ilg (64)
)

)

The variation of the surface coordinate follows now with (64) and (62) from (21) in matrix
notation _
| 8¢ = 6%7 | Hee (By(E) + g, Bu g ) | = 0%} B(§) (65)
where Hee = 1 / (%', - %' — g, &' - %lg, ).

The matrix form of the linearization of the gap function (18) can be expressed with (63)
and (65). Thus we obtain finally for (14)

T

DAY = Y 24,087 [Ba(§) Ba()"

~ gv. (B, @) Be(E)" +Be(€) By ¢ () + (e - 0) Be() Be())"  (66)

O, = = .
— =i B g(€) Bu g ()T ] A%,
| = £ |
which denotes the tangent matrix of the smooth Bezier contact formulation. Note that the
last term in (18) disappears since the interpolation is linear in the variables %!

4 Numerical examples

The above derived interpolations have been implemented in the finite element analysis pro-
gram FEAP, see [9]. To show the performance of the two different smooth contact discretiza-
tions, we make a comparison with the classical node—to-segment contact formulations with
straight segments. For the derivation of residuum and tangent matrix for the frictionless
case, see €. g. (10},

15
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Figure 5: Finite element mesh.

4.1 Sliding of a hemisphere along a parabolic surface

Geometry and mesh of the first example is shown in Fig. 4.1. Here a half of a hemisphere
{Radius r = 1, bulk modulus K = 100 and shear modulus p = 100} is first pressed onto the
parabolic surface (bulk modulus K = 1000 and shear modulus p = 1000} and then slid up
the slop.

The final configuration is reached after 36 load steps. It can be seen in Fig. 4.1 which
also depicts the principal stresses due to contact in the hemisphere.

The comparison of the smooth interpolation (SNTS) and the standard node—to—segment
approach (NTS) yields the following results.

e The total number of iterations to complete 36 load steps plus the initial step is for the
smooth contact 181 and for the straight segment contact 207 which means 10 % less
computational effort for the smooth contact.

e There are two load steps at which the node—to—segment approach does not converge
using standard penalty without special corner treatment. This is due to the jump in
the normal in between two adjacent segments.

e The curve of the total horizontal reactions depicted in Fig. 4.1 is smoother when using
the SNTS interpolation. This obvious result stems from the better interpolation of the
surface geometry.

In total, the smooth contact interpolation is more robust and also more sufficient than
the interpolation using straight segments.

16
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Figure 6: Principal stresses in the hemisphere.
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Figure 7: Horizontal reaction force of smooth (SNTS) and non-smooth (NTS) interpolation.
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