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This thesis studies scaling critical Strichartz estimates for the Schrödinger flow on compact

symmetric spaces. A general scaling critical Strichartz estimate (with an ε-loss, respectively)

is given conditional on a conjectured dispersive estimate (with an ε-loss, respectively) on

general compact symmetric spaces. The dispersive estimate is then proved for the special

case of connected compact Lie groups. Slightly more generally, for products of connected

compact Lie groups and spheres of odd dimension, the dispersive estimate is proved with an

ε-loss.
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CHAPTER 1

Introduction

We start with a complete Riemannian manifold (M, g) of dimension d, associated to which

are the Laplace-Beltrami operator ∆g and the volume form measure µg. Then it is well

known that ∆g is essentially self-adjoint on L2(M) := L2(M,dµg) (see [Str83] for a proof).

This gives the functional calculus of ∆g, and in particular gives the one-parameter unitary

operators eit∆g which provides the solution to the linear Schrödinger equation on (M, g). We

refer to eit∆g as the Schrödinger flow. The functional calculus of ∆g also gives the definition

of the Bessel potentials thus the definition of the Sobolev space

Hs(M) := {u ∈ L2(M) | ‖u‖Hs(M) := ‖(I −∆)s/2u‖L2(M) <∞}.

We are interested in obtaining estimates of the form

‖eit∆gf‖LpLr(I×M) ≤ C‖f‖Hs(M) (1.0.1)

where I ⊂ R is a fixed time interval, LpLq(I ×M) is the space of Lp functions on I with

values in Lq(M), and C is a constant that does not depend on f . Such estimates are often

called Strichartz estimates (for the Schrödinger flow), in honor of Robert Strichartz who first

derived such estimates for the wave equation on Euclidean spaces (see [Str77]).

The significance of the Strichartz estimates is evident in many ways. The Strichartz

estimates have important applications in the field of nonlinear Schrödinger equations, in

the sense that many perturbative results often require a good control on the linear solution

which is exactly provided by the Strichartz estimates. The Strichartz estimates can also

be interpreted as Fourier restriction estimates, which play a fundamental rule in the field
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of classical harmonic analysis and have deep connections to arithmetic combinatorics (see

[ Lab08]). Furthermore, the relevance of the distribution of eigenvalues and the norm of

eigenfunctions of ∆g in deriving the estimates makes the Strichartz estimates also a subject

in the field of semiclassical analysis and spectral geometry.

Many cases of Strichartz estimates for the Schrödinger flow are known in the literature.

For noncompact manifolds, first we have the sharp Strichartz estimates on the Euclidean

spaces obtained in [GV95, KT98]:

‖eit∆f‖LpLq(R×Rd) ≤ C‖f‖L2(Rd) (1.0.2)

where 2
p

+ d
q

= d
2
, p, q ≥ 2, (p, q, d) 6= (2,∞, 2). Such pairs (p, q) are called admissible. This

implies by Sobolev embedding that

‖eit∆f‖LpLr(R×Rd) ≤ C‖f‖Hs(Rd) (1.0.3)

where

s =
d

2
− 2

p
− d

r
≥ 0, (1.0.4)

p, r ≥ 2, (p, r, d) 6= (2,∞, 2). Note that the equality in (1.0.4) can be derived from a

standard scaling argument, and we call exponent triples (p, r, s) that satisfy (1.0.4) as well

as the corresponding Strichartz estimates scaling critical. An essential ingredient in the

derivation of (1.0.3) is the dispersive estimates

‖eit∆f‖L∞(Rd) ≤ C|t|−
d
2‖f‖L1(Rd). (1.0.5)

Similar dispersive estimates hold on many noncompact manifolds, which are essential in

the derivation of Strichartz estimates. For example, see [AP09, Ban07, IS09, Pie06] for

Strichartz estimates on the real hyperbolic spaces, [APV11, Pie08, BD07] for Damek-Ricci

spaces which include all rank one symmetric spaces of noncompact type, [Bou11] for asymp-

totically hyperbolic manifolds, [HTW06] for asymptotically conic manifolds, [BT08, ST02]

for some perturbed Schrödinger equations on Euclidean spaces, and [FMM15] for symmetric
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spaces G/K where G is complex and K is a maximal compact subgroup of G.

For compact manifolds, however, dispersive estimates that are global in time such as

(1.0.5) are expected to fail and so are Strichartz estimates such as (1.0.2) (see [AM12] which

shows (1.0.2) fails for any p, q with p = q). The Sobolev exponent s in (1.0.1) are expected

to be positive for (1.0.1) to possibly hold. And we also expect sharp Strichartz estimates

that fail to be scaling critical and thus are scaling subcritical, in the sense that the exponents

(p, r, s) in (1.0.1) satisfy

s >
d

2
− 2

p
− d

r
.

For example, from the results in [BGT04], we know that on a general compact Riemannian

manifold (M, g) it holds that for any finite interval I,

‖eit∆gf‖LpLr(I×M) ≤ C‖f‖H1/p(M) (1.0.6)

for all admissible pairs (p, r). These estimates are scaling subcritical, and the special case of

which when (p, r, s) = (2, 2d
d−2

, 1/2) can be shown to be sharp on spheres of dimension d ≥ 3

equipped with canonical Riemannian metrics. The proof of (1.0.6) in [BGT04] hinges on a

semiclassical analogue of the dispersive estimate (1.0.5): given any bump function ϕ on R,

there exists α > 0 such that

‖eit∆gϕ(h2∆g)f‖L∞(M) ≤ C|t|−
d
2‖f‖L1(M) (1.0.7)

for every t ∈ (−αh, αh).

On the other hand, scaling critical Strichartz estimates have also been obtained on com-

pact manifolds. On spheres and more generally Zoll manifolds, it holds that

‖eit∆gf‖Lp(I×M) ≤ C‖f‖
H
d
2−

d+2
p (M)

(1.0.8)

for p > 4 when d ≥ 3 and p ≥ 6 when d = 2 (see [BGT04, BGT05, Her13]). We also

have that on a d-dimensional torus Td equipped with a rectangular metric g = ⊗di=1αidt
2
i

where the αi’s are positive numbers and the dt2i ’s are the canonical metrics on the circle
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components of Td, Strichartz estimates of the form (1.0.8) hold for all p > 2(d+2)
d

(see

[Bou93, Bou13, BD15, GOW14, KV16]). In [Bou93], the author was able to obtain (1.0.8)

for p ≥ 2(d+4)
d

on tori that are square in the sense that the underlying metric is a constant

multiple of ⊗di=1dt
2
i , by interpolating a distributional Strichartz estimate

λ · µ{(t, x) ∈ I × Td : |eit∆gϕ(N−2∆g)f(x)| > λ}1/p ≤ CN
d
2
− d+2

p ‖f‖L2(Td). (1.0.9)

for λ > Nd/4, p > 2(d+2)
d

, N ≥ 1, with the trivial subcritical Strichartz estimate

‖eit∆gf‖L2(I×Td) ≤ C‖f‖L2(Td). (1.0.10)

(1.0.9) is a consequence of an arithmetic version of dispersive estimates:

‖eit∆gϕ(N−2∆g)f‖L∞(Td) ≤ C(
N

√
q(1 +N‖ t

T
− a

q
‖1/2)

)d‖f‖L1(Td) (1.0.11)

for ‖ t
T
− a

q
‖ < 1

qN
, where ‖ · ‖ stands for the distance from 0 on the standard circle with

length 1, a, q are nonnegative integers with a < q and (a, q) = 1, q < N . Here T is the

period for the Schrödinger flow eit∆g . Then in [Bou13], the author improved (1.0.10) into a

stronger subcritical Strichartz estimate

‖eit∆gf‖
L

2(d+1)
d (I×Td)

≤ C‖f‖L2(Td) (1.0.12)

which yields (1.0.8) for p ≥ 2(d+3)
d

, which is further upgraded to the full range p > 2(d+2)
d

in

[BD15]. Then authors in [GOW14, KV16] extend the results to all rectangular tori.

The understanding of Strichartz estimates on compact manifolds is far from complete.

The sublime goal is to understand how the exponents (p, r, s) in the sharp Strichartz estimates

are related to the geometry and topology of the underlying manifold. This thesis picks up

a modest goal, that is to explore scaling critical Strichartz estimates on the special case of

compact Lie groups and more generally compact Riemannian globally symmetric spaces. By

the previous discussion, for such spaces, the cases already solved in the literature are

1. Euclidean type, i.e. tori;
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2. Symmetric space of compact type of rank one, which are Zoll manifolds, i.e. manifolds

such that the geodesics are all closed and have the same length (see Proposition 10.2 of Ch.

VII in [Hel01]).

Symmetric spaces are equipped with rich tools of harmonic analysis, which provide a possible

general approach to Strichartz estimates. In this thesis, scaling critical (with an ε-loss,

respectively) Strichartz estimates will be proved for general compact Riemannian globally

symmetric spaces with canonical rational metrics, conditional on a conjectured scaling critical

(with an ε-loss, respectively) dispersive estimate associated to the spherical functions. This

scaling critical dispersive estimate will be proved for the special case of connected compact

Lie groups. More generally, for products of connected compact Lie groups and spheres of

odd dimension, the dispersive estimate will be proved with an ε-loss.

1.1 Statement of the Main Theorem

1.1.1 Rational Metric and Rank

Throughout the thesis, a compact symmetric space always means a compact Riemannian

globally symmetric space. Let M be a compact symmetric space. It can be shown that M

is finitely covered by M̃ = Tn × N where Tn is the n-dimensional torus and N is a simply

connected Riemannian globally symmetric space of compact type1. As a simply connected

Riemannian globally symmetric space of compact type, N is a direct product U1/K1 ×

U2/K2×· · ·×Um/Km of irreducible simply connected Riemannian globally symmetric space

of compact type (see Proposition 5.5 in Ch. VIII in [Hel01]).

1This fact can be proved as follows. Let M = U/K be a compact symmetric space and u, k be respectively
the Lie algebras of U,K. Then u = c + u′ where c is the center of u and u′ is the semisimple part of u. Let
u = k + m be the Cartan decomposition. Then k = ck + k′ for ck = c ∩ k, k′ = u′ ∩ k, and m = cm + m′ for
cm = c ∩ m, m′ = u′ ∩ m. Let U ′,K ′ be the subgroups of U associated to u′, k′ respectively. Then U ′/K ′

is a symmetric space of compact type and let Ũ ′/K̃ ′ be its universal cover, the covering map induced from
the universal covering π : Ũ ′ → U ′. Let Cm be the toric subgroup of U associated to cm. Then the map
Cm × Ũ ′/K̃ ′ → U/K, (c, uK ′)→ cπ(u)K is a finite covering map.
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Definition 1.1.1. We call such M̃ = T×U1/K1×U2/K2×· · ·×Um/Km a universal covering

compact symmetric space, and say that M is universally covered by M̃ .

Now let U/K be a simply connected Riemannian globally symmetric space of compact

type. We consider the dual symmetric space G/K with G and U analytic subgroups of the

simply connected group GC whose Lie algebra is the complexification gC of the Lie algebra

g of G. Let u, k be respectively the Lie algebra of U and K. Then we have the Cartan

decomposition

g = k + p, (1.1.1)

u = k + ip. (1.1.2)

The negative of the Cartan-Killing form −〈 , 〉 defined on u (as well as on g and gC) restricts

to ip as a positive definite bilinear form invariant under the adjoint action of U , which induces

a Riemannian metric on U/K invariant under the left action of U .

We equip each irreducible factor Ui/Ki with such a metric gi defined above. Then we

equip M̃ ∼= Tn × U1/K1 × · · · × Um/Km the metric

g̃ = (⊗ni=1αidt
2
i )⊗ (⊗mj=1βjgj), (1.1.3)

where dt2i is the canonical metric on a circle of perimeter 2π, and αi, βj > 0, i = 1, · · · , n,

j = 1, · · · ,m. Then g̃ induces a metric g on M .

Definition 1.1.2. Let g be the metric induced from g̃ in (1.1.3) as described above. We

call g a rational metric provided the numbers α1, · · · , αn, β1, · · · , βm are rational multiples

of each other. If not, we call it an irrational metric.

Provided the numbers α1, · · · , αn, β1, · · · , βm are rational multiples of each other, the

periods of the Schrödinger flow eit∆g̃ on each factor of M̃ are rational multiples of each

other, which implies that the Schrödinger flow on M̃ as well as on M is still periodic (see

Proposition 2.2.1 and Section 4.1).
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Next, we define the rank of a Riemannian symmetric space U/K of compact type as the

dimension of any maximal abelian subspace a of p. In general, let M be a compact symmetric

space with a universal covering compact symmetric space M̃ = Tn×U1/K1× · · · ×Um/Km.

We define the rank of M as well as M̃ to be n+ r1 + · · ·+ rm, where rj is the rank of Uj/Kj,

j = 1, · · · ,m.

Example 1.1.3. Any compact connected Lie group M is a compact symmetric space. M is

covered by a universal covering compact Lie group M̃ = Tn×M1×· · ·×Mm, where the Mi’s

are compact simply connected simple Lie groups (see Theorem 4, Section 7.2, Chapter 10 in

[Pro07]). Suppose M is a compact simply connected simple Lie group with Lie algebra m.

Then M ∼= U/K where U = M×M and K = {(x, x) : x ∈M}, of which the Lie algebras are

u = m × m and k = {(X,X) : X ∈ m} respectively, and the complement of k in the Cartan

decomposition (1.1.2) is ip = {(X,−X) : X ∈ m}. We have the identifications

U/K ∼= M, (x, y)K 7→ xy−1,

ip ∼= m, (X,−X) 7→ 2X. (1.1.4)

Under the above identification, the Cartan-Killing form on ip is half the value of the Cartan-

Killing form on m, and any Cartan subalgebra (i.e. maximal abelian subspace) ia of m

corresponds to a maximal abelian subspace of ip.

1.1.2 Main Conjecture and Main Theorem

Inspired by the result of Strichartz estimates on tori and Zoll manifolds, we have the following

conjecture.

Conjecture 1.1.4. Let M be a compact symmetric space equipped with a rational metric g.

Let d be the dimension of M and r the rank of M . Let I ⊂ R be a finite time interval. Then

the following scaling critical Strichartz estimates

‖eit∆gf‖Lp(I×M) ≤ C‖f‖
H
d
2−

d+2
p (M)

(1.1.5)
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hold for all p > 2 + 4
r
.

This thesis proves some special cases of this conjecture.

Theorem 1.1.5. Let M be a compact symmetric space universally covered by M̃ = Tn ×

U1/K1 × · · · × Um/Km. Equip M with a rational metric g and let d, r be respectively the

dimension and rank of M . Let I ⊂ R be a finite time interval.

Case 1. [Zha17] If each Uj/Kj is a compact simply connected simple Lie group, in other

words, by Example 1.1.3, if M itself is a connected compact Lie group, then the following

scaling critical Strichartz estimates

‖eit∆gf‖Lp(I×M) ≤ C‖f‖
H
d
2−

d+2
p (M)

(1.1.6)

hold for all p ≥ 2 + 8
r
.

Case 2. If each Uj/Kj is either a compact simply connected simple Lie group or a sphere

of odd dimension ≥ 5, then

‖eit∆gf‖Lp(I×M) ≤ Cε‖f‖
H
d
2−

d+2
p +ε

(M)
(1.1.7)

hold for all p ≥ 2 + 8
r
, ε > 0.

Note the different ranges for the value of the exponent p in the above conjecture and

theorem. The framework of the proof of Theorem 1.1.5 will be based on [Bou93], in which

the author proves it for the special case of tori.

1.2 Organization and Notation Conventions

The organization of the thesis is as follows. In Chapter 2, several reductions will be made to

reduce the conjectured Strichartz estimate (1.1.5) into a spectrally localized form posed on a

universal covering compact symmetric space. This reduction in particular dissolves the issue

of convergence of the Schrödinger kernel. In Chapter 3, basic facts of harmonic analysis on

compact symmetric spaces that are crucial in the sequel, including spherical Fourier series,

8



reduced root systems, and functional calculus of the Laplace-Beltrami operator, will be

reviewed, which are used to give the explicit formula of the Schrödinger kernel. In Chapter

4, a conjectured dispersive estimate will be posed on a general compact symmetric space,

and we will show that it implies the Strichartz estimates, by the method of Stein-Tomas type

interpolation. In Chapter 5, the conjectured spectrally localized dispersive estimate will be

proved on a general symmetric space of compact type for a neighborhood of diameter . N−1

of any corner in the space. Special approaches to this result for the case of compact Lie

groups will also be given. Chapter 5 ends with proving with an ε-loss the dispersive estimate

on spheres of odd dimension and remarking on the difficulty for the general case. In Chapter

6, the dispersive estimate for connected compact Lie groups will be proved. We will first

make a crucial observation that the Schrödinger kernel can be rewritten as an exponential

sum over the whole weight lattice instead of just a Weyl chamber of the lattice, which is

unique among symmetric spaces of compact type. We will decompose the maximal torus

into regions according to the distance from the cell walls, and prove the dispersive estimate

for each region. The most difficult case is when the variable in the maximal torus stays away

from some cell walls but close to the other cell walls. These other walls will be identified as

those of a root subsystem, which induces a decomposition of Schrödinger kernel that makes

the proof work.

Throughout the paper:

• A . B means A ≤ CB for some constant C.

• A .a,b,... B means A ≤ CB for some constant C that depends on a, b, . . ..

• ∆, µ are short for the Laplace-Beltrami operator ∆g and the associated normalized

volume form measure µg respectively when the underlying Riemannian metric g is

clear from context.

• Lpx, Hs
x, L

p
t , L

p
tL

q
x, L

p
t,x are short for Lp(M), Hs(M), Lp(I), LpLq(I ×M), Lp(I ×M) re-

spectively when the underlying manifold M and time interval I are clear from context.

9



• Let T = R/TZ. For f ∈ L1(T), let f̂ denote the Fourier transform of f such that

f̂(n) = 1
T

∫ T
0
f(t)e−int dt, n ∈ 2π

T
Z.

• p′ denotes the number such that 1
p

+ 1
p′

= 1.
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CHAPTER 2

First Reductions

2.1 Littlewood-Paley Theory

Let (M, g) be a compact Riemannian manifold and ∆ be the Laplace-Beltrami operator. Let

ϕ be a bump function on R. Then for N ≥ 1, PN := ϕ(N−2∆) defines a bounded operator

on L2(M) through the functional calculus of ∆. These operators PN are often called the

Littlewood-Paley projections. We reduce the problem of obtaining Strichartz estimates for

eit∆ to those for PNe
it∆.

Proposition 2.1.1. Fix p, q ≥ 2, s ≥ 0. Then the Strichartz estimate (1.0.1) is equivalent

to the following statement: Given any bump function ϕ,

‖PNeit∆f‖LpLq(I×M) . N s‖f‖L2(M), (2.1.1)

holds for all N ∈ 2N. In particular, (1.1.5) reduced to

‖PNeit∆f‖Lp(I×M) ≤ N
d
2
− d+2

p ‖f‖L2(M). (2.1.2)

We quote the following Littlewood-Paley theory from [BGT04].

Proposition 2.1.2 (Corollary 2.3 in [BGT04]). Let ϕ̃ ∈ C∞c (R) and ϕ ∈ C∞c (R∗) such that

ϕ̃(λ) +
∑
N=2N

ϕ(N−2λ) = 1

for all λ ∈ R. Then for all q ≥ 2, we have

‖f‖Lq(M) .q ‖ϕ̃(∆)f‖Lq(M) + (
∑
N=2N

‖ϕ(N−2∆)f‖2
Lq(M))

1/2. (2.1.3)
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Proof of Proposition 2.1.1. The implication of (2.1.1) from (1.0.1) is immediate by letting

f in (1.0.1) be PNf , and noting that PN and eit∆ commute, and that ‖PNf‖Hs . N s‖f‖L2 .

For the other direction, assume that ϕ and ϕ̃ is given as in Proposition 2.1.1 and define

PN = ϕ(N−2∆) and P̃1 = ϕ̃(∆). Let ˜̃ϕ ∈ C∞c (R) and define ˜̃PN = ˜̃ϕ(N−2∆) such that

˜̃ϕϕ = ϕ and thus ˜̃PNPN = PN . By (2.1.3), we have that

‖eit∆f‖LptLqx =
∥∥‖eit∆f‖Lqx∥∥Lpt

.

∥∥∥∥∥‖P̃1e
it∆f‖Lqx + (

∑
N=2N

‖PNeit∆f‖2
Lqx

)1/2

∥∥∥∥∥
Lpt

. ‖P̃1e
it∆f‖LptLqx +

∥∥∥∥∥(
∑
N=2N

‖PNeit∆f‖2
Lqx

)1/2

∥∥∥∥∥
Lpt

. ‖P̃1e
it∆f‖LptLqx +

∥∥∥∥∥(
∑
N=2N

‖PNeit∆ ˜̃PNf‖2
Lqx

)1/2

∥∥∥∥∥
Lpt

which by the Minkowski inequality and the estimates (2.1.1) for both PN and P̃1 implies

‖eit∆f‖LptLqx . ‖f‖L2
x

+ (
∑
N=2N

(N s‖ ˜̃PNf‖L2
x
)2)1/2

. ‖f‖Hs
x
.

The last inequality uses the almost L2 orthogonality among the ˜̃PN ’s.

We also record here the Bernstein type inequalities that will be useful in the sequel.

Proposition 2.1.3 (Corollary 2.2 in [BGT04]). Let d be the dimension of M . Then for all

1 ≤ p ≤ r ≤ ∞,

‖PNf‖Lr(M) . Nd( 1
p
− 1
r

)‖f‖Lp(M). (2.1.4)

Remark 2.1.4. Note that the above proposition in particular implies that (2.1.2) holds for

N . 1 or p =∞.
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2.2 Reduction to a Finite Cover

Proposition 2.2.1. Let π : (M̃, g̃) → (M, g) be a Riemannian covering map between com-

pact Riemannian manifolds (then automatically with finite fibers). Let ∆g̃, ∆g be the Laplace-

Beltrami operators on (M̃, g̃) and (M, g) respectively and let µ̃ and µ be the normalized vol-

ume form measures respectively, which define the Lp spaces. Let π∗ be the pull back map.

Define C∞π (M̃) := π∗(C∞(M)), and similarly define Cπ(M̃), Lpπ(M̃) and Hs
π(M̃). Then the

following statement hold.

(i) π∗ : C(M) → Cπ(M̃) and π∗ : C∞(M) → C∞π (M̃) are well-defined and linear isomor-

phisms.

(ii) For any f ∈ C(M), we have
∫
M
f dµ =

∫
M̃
π∗f dµ̃. This implies π∗ : Lp(M)→ Lpπ(M̃)

is well-defined and an isometry.

(iii) ∆g̃ maps C∞π (M̃) into C∞π (M̃) and the diagram

C∞(M) π∗ //

∆g

��

C∞π (M̃)

∆g̃

��

C∞(M) π∗ // C∞π (M̃)

commutes.

(iv) eit∆g̃ maps L2
π(M̃) into L2

π(M̃) and is an isometry, and the diagrams

L2(M) π∗ //

eit∆g

��

L2
π(M̃)

e
it∆g̃

��

L2(M) π∗ // L2
π(M̃)

L2(M) π∗ //

PN
��

L2
π(M̃)

PN
��

L2(M) π∗ // L2
π(M̃)

(2.2.1)

commutes, where PN stands for both ϕ(N−2∆g) and ϕ(N−2∆g̃).

(v) π∗ : Hs(M)→ Hs
π(M̃) is well-defined and an isometry.

Proof. (i)(ii)(iii) are direct consequences of the definition of a Riemannian covering map.

For (iv), note that (i)(ii)(iii) together imply that the triples (L2(M), C∞(M),∆g) and

(L2
π(M̃), C∞π (M̃),∆g̃) are isometric as essentially self-adjoint operators on Hilbert spaces,

13



thus have isometric functional calculus. This implies (iv). Note that the Hs(M) and Hs
π(M̃)

norms are also defined in terms of the isometric functional calculus of (L2(M), C∞(M),∆g)

and (L2
π(M̃), C∞π (M̃),∆g̃) respectively, which implies (v).

Combining Proposition 2.1.1 and 2.2.1 and Remark 2.1.4, the Main Conjecture 1.1.4 is

reduced to the following.

Conjecture 2.2.2. Let M̃ be a universal covering compact symmetric space as in Definition

1.1.1, equipped with a rational metric as in Definition 1.1.2. Then

‖PNeit∆f‖Lp(I×M̃) . N
d
2
− d+2

p ‖f‖L2(M̃) (2.2.2)

holds for p > 2 + 4
r

and N & 1.

2.3 Littlewood-Paley Projections of the Product Type

Let (M, g) be the Riemannian product of the compact Riemannian manifolds (Mi, gi), i =

1, · · · , n. Any eigenfunction of the Laplace-Beltrami operator ∆g on M with the eigenvalue

λ ≤ 0 is of the form
∏n

i=1 φλi , where each φλi is an eigenfunction of ∆gi on Mi with eigenvalue

λi ≤ 0, i = 1, · · · , n, such that λ = λ1 + · · ·+ λn.

Given any bump function ϕ on R, there always exist bump functions ϕi’s, i = 1, · · · , n,

such that for all (x1, · · · , xn) ∈ Rn
≤0 with ϕ(x1 + · · ·+xn) 6= 0,

∏n
i=1 ϕi(xi) = 1. In particular,

ϕ ·
n∏
i=1

ϕi(xi) = ϕ.

For N ≥ 1, define

PN : = ϕ(N−2∆),

PN : = ϕ1(N−2∆1)⊗ · · · ⊗ ϕn(N−2∆n),

as bounded operators on L2(M), where ϕ1(N−2∆1) ⊗ · · · ⊗ ϕn(N−2∆n) is defined to map∏n
i=1 φλi to

∏n
i=1 ϕi(N

−2λi)φλi . We call PN a Littlewood-Paley projection of the product type.
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We have

PN ◦ PN = PN .

This implies that we can further reduce Conjecture 2.2.2 into the following.

Conjecture 2.3.1. Let M = T1× · · · ×Tn×U1/K1× · · · ×Um/Km be a universal covering

compact symmetric space equipped with a rational metric. Let ∆1, · · · ,∆n+m be respectively

the Laplace-Beltrami operators on T1, · · · ,Tn, U1/K1, · · · , Um/Km. Let ϕi be any bump func-

tion for each i = 1, · · · , n+m, N ≥ 1, and let PN = ⊗n+m
i=1 ϕi(N

−2∆i). Then

‖PNe
it∆f‖Lp(I×M) . N

d
2
− d+2

p ‖f‖L2(M) (2.3.1)

holds for p > 2 + 4
r

and N & 1.

On the other hand, similarly, for each Littlewood-Paley projection PN of the product

type, there exists a bump function ϕ such that PN = ϕ(N−2∆) satisfies PN ◦ PN = PN .

Noting that ‖PNf‖L2 . ‖f‖L2 , (2.1.4) then implies

‖PNf‖Lr(M) . Nd( 1
2
− 1
r

)‖f‖L2(M). (2.3.2)

for all 2 ≤ r ≤ ∞.
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CHAPTER 3

Harmonic Analysis on Compact Symmetric Spaces

In this chapter, we review harmonic analysis on compact symmetric spaces. Most of the

material can be found in [Hel84], [Hel01], [Hel08], [HS94], [Kna01], [Tak94], [Var84].

3.1 Spherical Fourier Series

Let U/K be a symmetric space of compact type, equipped with the push forward measure

of the normalized Haar measure du of U . Let (δ, Vδ) be an irreducible unitary representation

of U and let V K
δ be the space of vectors v ∈ Vδ fixed under δ(K). We say δ is spherical if

V K
δ 6= 0. Let δ be such an irreducible spherical representation of U . Then V K

δ is spanned by

a single unit vector e, and let

Hδ(U/K) = {〈δ(u)e, v〉Vδ : v ∈ Vδ}. (3.1.1)

Let ÛK be the set of equivalence classes of spherical representations of U with respect to K.

The theory of Peter-Weyl gives the Hilbert space decomposition

L2(U/K) =
⊕
δ∈ÛK

Hδ(U/K).

Define the spherical functions

Φδ(u) := 〈δ(u)e, e〉Vδ ∈ Hδ(U/K),
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then the L2 projections Pδ : L2(U/K)→ Hδ(U/K) can be realized by convolution with dδΦδ,

so we have the L2 spherical Fourier series

f =
∑
δ∈ÛK

dδf ∗ Φδ =
∑
δ∈ÛK

dδΦδ ∗ f.

Here the convolution on U/K is defined by pulling back the functions to U and then applying

the standard convolution on U .

Example 3.1.1. Let M be a compact simply connected simple Lie group and continue the

notations in Example 1.1.3. Then the set M̂ of irreducible unitary representations of M

correspond to the set ÛK of irreducible spherical representations of U with respect to K, by

M̂ 3 δ 7→ δ ⊗ δ∗ ∈ ÛK ,

where δ∗ is the contragradient representation associated to δ. Let χδ be the character of δ.

We have

Φδ⊗δ∗ =
1

dδ
χδ,

dδ⊗δ∗ = d2
δ .

Note that convolution operations with respect to M and U/K do not necessarily match, but

we always have f ∗Φδ⊗δ∗ = 1
dδ
f ∗χδ, thus the spherical Fourier series reduces to the Fourier

series

f =
∑
δ∈M̂

dδf ∗ χδ =
∑
δ∈M̂

dδχδ ∗ f.

More generally, let M = Tn × U1/K1 × · · · × Um/Km be a universal covering compact

symmetric space. Define the Fourier dual M̂ of M

M̂ = Zn × Û1K1
× · · · × ÛmKm .
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Let δ = (k1, · · · , kn, δ1, · · · , δm) ∈ M̂ , (t1, · · · , tn, x1, · · · , xm) ∈M , and let

Φδ(t1, · · · , tn, x1, · · · , xm) = eik1t1+···+ikntnΦδ1 · · ·Φδm ,

dδ = dδ1 · · · dδm .

Then the spherical Fourier series reads

f =
∑
δ∈M̂

dδΦδ ∗ f =
∑
δ∈M̂

dδf ∗ Φδ,

where the convolution is defined component-wise. This gives the Plancherel identity

‖f‖2
L2(M) =

∑
δ∈M̂

d2
δ‖Φδ ∗ f‖L2(M).

The Young’s convolution inequalities hold on compact symmetric spaces

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq ,
1

r
=

1

p
+

1

q
− 1, 1 ≤ r, p, q ≤ ∞.

This implies the Hausdorff-Young type inequality

‖f ∗ Φδ‖L2 ≤ ‖f‖L1‖Φδ‖L2 = d
− 1

2
δ ‖f‖L1 , ∀δ ∈ M̂. (3.1.2)

Let g =
∑

δ∈M̂ cδdδΦδ, then f ∗ g =
∑

δ∈M̂ cδdδf ∗ Φδ, which implies

‖f ∗ g‖2
L2 =

∑
δ∈M̂

|cδ|2d2
δ‖f ∗ Φδ‖2, (3.1.3)

‖f ∗ g‖L2 ≤ (sup
δ∈M̂
|cδ|) · ‖f‖L2 . (3.1.4)

3.2 Restricted Root Systems

Let U/K be a simply connected Riemannian globally symmetric space of compact type. Let

G/K be the dual symmetric space of noncompact type, and GC be the complexification of

U and G, and gC, g, u, k be the Lie algebra of GC, G, U,K respectively. Let g = k + p be

the Cartan decomposition and a be the maximal abelian subspace of p. Then we have the
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restricted root space decomposition

g = a + c +
∑
λ∈Σ

gλ

where c = {X ∈ k : [X,H] = 0, ∀H ∈ a}, and Σ consists of nonzero real-valued linear

functions λ on a such that gλ := {X ∈ g : [H,X] = λ(H)X, ∀H ∈ a} 6= 0. Let b be the

maximal abelian subspace of c, then h = ia + b is a Cartan subalgebra of u, and then the

complexification hC of h becomes a Cartan subalgebra of gC. We also have the root space

decomposition

gC = hC +
∑
α∈Φ

gCα

where Φ consists of nonzero complex-valued linear functionals α on hC such that gCα := {X ∈

gC : [H,X] = α(H)X, ∀H ∈ hC} 6= 0. For α ∈ Φ, α|a is either 0 or belongs to Σ. For each

λ ∈ Σ, define the multiplicity function mλ := |{α ∈ Φ : α|a = λ}|. gCα is of one complex

dimension for any α ∈ Φ and gλ = g ∩ (
∑

α|a=λ g
C
α), which implies gλ is of real dimension

equal to mλ.

Let hR = a + ib. The Cartan-Killing form on gC induces an inner product on a∗ and

hR
∗ respectively, under which both Σ and Φ become root systems respectively. We state the

axiomatic description of a root system which will be needed in the sequel. A root system is

a finite set ∆ in a finite dimensional real inner product space (V, 〈 , 〉) such that
(i) ∆ = −∆;

(ii) sα∆ = ∆ for all α ∈ ∆;

(iii) 2 〈α,β〉〈α,α〉 ∈ Z for all α, β ∈ ∆.

(3.2.1)

Here sα : V → V is the reflection

sα(x) := x− 2
〈x, α〉
〈α, α〉

α, ∀x ∈ V.
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If in addition it holds

(iv) α ∈ ∆, k ∈ R, kα ∈ ∆⇒ k = ±1, (3.2.2)

then we call it a reduced root system. Φ is reduced but not necessarily for Σ.

For α ∈ V , let α⊥ := {β ∈ V : 〈α, β〉 = 0}. Then the Weyl chambers are defined to be

the connected components of V \ ∪α∈Φα
⊥, and each α⊥ is called a Weyl chamber wall. The

sα’s generate the Weyl group W , which acts simply transitively on the set of Weyl chambers,

the set of positive roots, and the set of simple roots respectively. Note that the identification

V ∼= V ∗ by the inner product 〈 , 〉 induces an isomorphic root system in (V ∗, 〈 , 〉), for which

we have the isomorphic objects of Weyl chambers, Weyl group, positive roots, and simple

roots.

Let Σ+ denote a set of positive restricted roots in Σ. Then we have the Iwasawa decom-

position

g = n + a + k (3.2.3)

where n =
∑

λ∈Σ+ gλ. Let r and d be the rank and dimension of U/K respectively. Recall

that the real dimension of gλ is mλ for λ ∈ Σ, then the Iwasawa decomposition implies that

∑
λ∈Σ+

mλ = d− r. (3.2.4)

Let

Σ∗ := {α ∈ Σ : 2α /∈ Σ}. (3.2.5)

Then Σ∗ is a reduced root system. Define the weight lattice Λ by

Λ := {λ ∈ a∗ :
〈λ, α〉
〈α, α〉

∈ Z, for all α ∈ Σ∗}. (3.2.6)

Let Γ be the restricted root lattice generated by the root system 2Σ. Then Γ ⊂ Λ. Let
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Σ+
∗ = Σ+ ∩ Σ∗ be the set of positive roots in Σ∗. Let

Λ+ := {λ ∈ a∗ :
〈λ, α〉
〈α, α〉

∈ Z≥0, for all α ∈ Σ+
∗ }

be the set of dominant weights. Given any irreducible spherical representation of δ ∈ ÛK ,

the highest weight of δ vanishes on b and restricts on a as an element in Λ+. This gives the

isomorphism

Λ+ ∼= ÛK . (3.2.7)

We can also express Λ,Λ+ in terms of a basis. Let {α1, · · · , αr} be the set of simple roots

in Σ+
∗ . Let {w1, · · · , wr} be the dual basis to the coroot basis { α1

〈α1,α1〉 , · · · ,
αr

〈αr,αr〉}. Then

Λ = Zw1 + · · ·+ Zwr,

Λ+ = Z≥0w1 + · · ·+ Z≥0wr.

w1, · · · , wr are called the fundamental weights. Then

C = R>0w1 + · · ·+ R>0wr

is the fundamental Weyl chamber, and we have the decomposition

a∗ = (
⊔
s∈W

sC)
⊔

(
⋃
α∈Σ

{λ ∈ a∗ : 〈λ, α〉 = 0}), (3.2.8)

where
⊔

stands for disjoint union.

Consider the map ia → U/K, iH 7→ exp(iH)K. Let A denote the image of the map,

then

A ∼= ia/Γ∨

where Γ∨ = {iH ∈ ia : exp(iH) ∈ K} is a lattice of ia. We call A a maximal torus of U/K.

21



It can be shown that

Γ∨ = 2πiZ
Hα1

〈α1, α1〉
+ · · ·+ 2πiZ

Hαr

〈αr, αr〉
.

Here Hαi ∈ a corresponds to αi under the the identification a
∼−→ a∗ by the Cartan-Killing

form. This implies the isomorphism between Λ and the character group Â of A

Λ
∼−→ Â, λ 7→ eλ.

Note that the Weyl group W on a naturally falls on A also. Define the cells in A to be the

connected components of A \ ∪α∈Σ{[iH] ∈ A : 〈α,H〉 ∈ πZ}, and each {[iH] ∈ A : 〈α,H〉 ∈

πn} for n ∈ Z is called a cell wall. Let

Q =
⋂
α∈Σ+

{[iH] ∈ A : 〈α,H〉 ∈ (0, π)},

be such a cell (often called the fundamental cell), the closure of which is Q̄ =
⋂
α∈Σ+{[iH] ∈

A : 〈α,H〉 ∈ [0, π]}. It can be shown that the Weyl group W acts simply transitively on

the set of cells (see Theorem 9.2 and its Corollary of Chapter II in [Tak94]), and WQ̄ covers

A. Moreover, it can be shown that the K-orbits of A cover the whole space U/K, combined

with the fact that the K-actions on A preserving A coincide with W , we then have that the

values of any K-invariant function, for example any spherical function, are determined by

its restriction on Q̄.

Example 3.2.1. Let M = U/K be a simply connected compact symmetric space of rank 1.

Then the restricted root system Σ is either {±α} or {±α
2
,±α}. In both cases, the weight

lattice Λ = Zα. Let A = R/2πZ be the maximal torus, then enα = einθ, θ ∈ A. The two cells

of A are (0, π) and (π, 2π). Let mα and mα
2

be respectively the multiplicity of α and α
2

(if

the restricted root system is {±α}, then let mα
2

= 0). Then for n ∈ Z≥0
∼= Z≥0α ∼= Λ+, the

spherical function Φn restricted on A is (see Theorem 4.5 of Chapter V in [Hel84])

Φn =

(
n+ a

n

)−1

P (a,b)
n (cos θ),
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where {P (a,b)
n : n ∈ Z≥0} is the set of Jacobi polynomials (see [Sze75]) with parameters

a =
1

2
(mα

2
+mα − 1), b =

1

2
(mα − 1).

The cases when mα
2

= 0 correspond to spheres of dimension d = mα+1, mα ∈ N. If d is odd,

we have explicit formulas for the Jacobi polynomials and thus for the spherical functions. Let

{Φ(λ)
n , n ∈ Z≥0} denote the spherical functions on the (2λ + 1)-dimensional sphere, λ ∈ N,

then (see Equation (4.7.3) and (8.4.13) in [Sze75])

Φ(λ)
n (θ) = 2

(
n+ 2λ− 1

n

)−1

αn

λ−1∑
ν=0

αν
(1− λ) · · · (ν − λ)

(n+ λ− 1) · · · (n+ λ− ν)

· cos((n− ν + λ)θ − (ν + λ)π/2)

(2 sin θ)ν+λ
(3.2.9)

where αn :=
(
n+λ−1

n

)
.

Example 3.2.2. Continue Example 1.1.3 and 3.1.1. Fix a Cartan subalgebra ia of m. The

root system ∆ for mC is reduced, and can be realized as a subset of a∗ by restriction on a.

We say ∆ is the root system associated to the compact Lie group M . Then the root system

for uC = mC ×mC can be realized as ∆×∆. Let α ∈ ∆. Identifying by 1.1.4

ip ⊃ {(iH,−iH) : H ∈ a} ∼−→ ia,
1

2
(iH,−iH) 7→ iH,

then

(α, 0)|a = (0, α)|a =
1

2
(α,−α),

thus the set of restricted roots is

Σ =

{
λα :=

1

2
(α,−α) : α ∈ ∆

}
,

with mλ = 2 for all λ ∈ Σ. Note that 2λα(1
2
(H,−H)) = α(H) for all H ∈ a, and in this

sense we identify 2Σ and ∆ as isomorphic reduced root systems, with the identical Weyl

group. The restricted root lattice coincides with the root lattice Γ generated by ∆. Note that
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by (3.2.4),

|∆+| = |Σ+| = d− r
2

. (3.2.10)

The maximal torus corresponding to ia is A = exp(ia). The character χλ and dimension

dλ associated to the irreducible representation with highest weight λ ∈ Λ+ is given by Weyl’s

formulas

χλ|A =

∑
s∈W (det s)es(λ+ρ)∑
s∈W (det s)esρ

, (3.2.11)

dλ =

∏
α∈∆+〈λ+ ρ, α〉∏
α∈∆+〈ρ, α〉

, (3.2.12)

where

ρ =
1

2

∑
α∈∆+

α =
r∑
i=1

wi. (3.2.13)

We also record here the Weyl integral formula that will be useful in the sequel. Let f ∈ L1(M)

be invariant under the adjoint action of M . Then∫
M

f dµ =
1

|W |

∫
A

f(a)|DP (a)|2 da, (3.2.14)

where the Weyl denominator DP =
∑

s∈W (det s) esρ, and dµ, da are respectively the normal-

ized Haar measures of M and A.

Continue the discussion of a general simply connected symmetric space U/K of com-

pact type. Recall that Φ denotes the root system associated to U . Apply (3.2.12) to any

irreducible spherical representation λ ∈ Λ+ ∼= ÛK , we have

dλ =

∏
α∈Φ+,α|a 6=0〈λ+ ρ′, α〉 ·

∏
α∈Φ+,α|a=0〈ρ′, α〉∏

α∈Φ+〈ρ′, α〉
, for ρ′ =

1

2

∑
α∈Φ+

α. (3.2.15)

Example 3.2.3. Let M = SU(2). SU(2) is of dimension 3 and rank 1. Let ia = iR be

the Cartan subalgebra and A = R/2πZ be the maximal torus. The root system is {±α},

where α acts on ia by α(iθ) = 2iθ. The fundamental weight w = 1
2
α. We normalize the
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Cartan-Killing form so that |w| = 1. The Weyl group W is of order 2, and acts on ia as

well as a∗ through multiplication by ±1. For m ∈ Z≥0
∼= Z≥0w = Λ+, the dimension and

character corresponding to m are given by

dm = m+ 1, (3.2.16)

χm(θ) =
ei(m+1)θ − e−i(m+1)θ

eiθ − e−iθ
=

sin(m+ 1)θ

sin θ
, θ ∈ R/2πZ. (3.2.17)

3.3 Functional Calculus of the Laplace-Beltrami Operator

Continue the discussion of the last section. The eigenvalues of the Laplace-Beltrami operator

on U/K are computed as follows.

Lemma 3.3.1. Let λ ∈ Λ+ ∼= ÛK and Hλ(U/K) be the space of matrix coefficients associated

to λ as in (3.1.1). For any f ∈ Hλ(U/K), we have

∆f = (−〈λ+ ρ, λ+ ρ〉+ 〈ρ, ρ〉) · f, (3.3.1)

where

ρ =
1

2

∑
α∈Σ+

mαα. (3.3.2)

Proof. Let λ′ be the extension of λ to hR = a + ib by making it 0 on ib. Since Hλ(U/K)

consists of matrix coefficients of the irreducible representation of U with highest weight λ′,

by Lemma 1 in Section 6.6 in [Pro07], we have for f ∈ Hλ(U/K),

∆f = (−〈λ′ + ρ′, λ′ + ρ′〉+ 〈ρ′, ρ′〉) · f,

where ρ′ = 1
2

∑
α∈Φ+ α. Noting that ρ′|a = ρ, λ′|a = λ, λ′|ib = 0, and that a and ib are

orthogonal with respect to 〈 , 〉, we get (3.3.1).

Using the spherical Fourier series, we now have the functional calculus of ∆ as follows.

Let f ∈ L2(U/K) and consider the spherical Fourier series f =
∑

λ∈Λ+ dλf ∗ Φλ. Then for
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any bounded Borel function F : R→ C, we have

F (∆)f =
∑
λ∈Λ+

F (−|λ+ ρ|2 + |ρ|2)dλf ∗ Φλ.

In particular, we have

eit∆f =
∑
λ∈Λ+

eit(−|λ+ρ|2+|ρ|2)dλf ∗ Φλ, (3.3.3)

PNe
it∆f =

∑
λ∈Λ+

ϕ(
−|λ+ ρ|2 + |ρ|2

N2
)eit(−|λ+ρ|2+|ρ|2)dλf ∗ Φλ. (3.3.4)

In particular, let

KN(t, x) =
∑
λ∈Λ+

ϕ(
−|λ+ ρ|2 + |ρ|2

N2
)eit(−|λ+ρ|2+|ρ|2)dλΦλ, (3.3.5)

then we have

PNe
it∆f = f ∗KN(t, ·) = KN(t, ·) ∗ f. (3.3.6)

We call KN(t, x) as the Schrödinger kernel on U/K. If the canonical Riemannian metric g

is scaled to βg for some β > 0, then the eigenvalues of ∆ are scaled by the factor of β−1,

and the Schrödinger kernel becomes

KN =
∑
λ∈Λ+

ϕ(
−|λ+ ρ|2 + |ρ|2

βN2
)eitβ

−1(−|λ+ρ|2+|ρ|2)dλΦλ.

More generally, let M = Tn × U1/K1 × · · · × Um/Km be a universal covering compact

symmetric space equipped with a rational metric g as in Definition 1.1.2. Let Λj be the

weight lattice for Uj/Kj and identify ÛjKj
∼= Λ+

j , 1 ≤ j ≤ m. Let PN = ⊗n+m
i=1 ϕi(N

−2∆i)

be a Littlewood-Paley projection of the product type as described in Section 2.3. Define the

Schrödinger kernel KN on M by

PNe
it∆f = f ∗KN(t, ·) = KN(t, ·) ∗ f. (3.3.7)
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Then

KN =
n+m∏
i=1

KN,i, (3.3.8)

where the KN,i’s are respectively the Schrödinger kernel on each component

KN,i =
∑
ki∈Z

ϕi(
−k2

i

αiN2
)e−itα

−1
i k2

i eikiti ,

KN,n+j =
∑
λj∈Λ+

j

ϕn+j(
−|λj + ρj|2 + |ρj|2

βjN2
)eitβ

−1
j (−|λj+ρj |2+|ρj |2)dλjΦλj ,

for i = 1, · · · , n, j = 1, · · · ,m. Here the ρj’s are defined in terms of (3.3.2). We also write

KN =
∑
λ∈M̂

ϕ(λ,N)e−it‖λ‖
2

dλΦλ,

where

λ = (k1, · · · , kn, λ1, · · · , λm) ∈ M̂ = Zn × Λ+
1 × · · · × Λ+

m,

−‖λ‖2 = −
n∑
i=1

α−1
i k2

i +
m∑
j=1

β−1
j (−|λj + ρj|2 + |ρj|2), (3.3.9)

ϕ(λ,N) =
n∏
i=1

ϕi(
−k2

i

αiN2
) ·

n∏
j=1

ϕn+j(
−|λj + ρj|2 + |ρj|2

βjN2
), (3.3.10)

dλ =
m∏
j=1

dλj , Φλ = eik1t1+···+ikntn
m∏
j=1

Φλj .

Lemma 3.3.2. Let d, r be respectively the dimension and rank of M .

(i) |{λ ∈ M̂ : ‖λ‖2 . N2}| . N r.

(ii) dλ . Nd−r, uniformly for all ‖λ‖2 . N2.

Proof. Note that λ ∈ M̂ lies in a lattice of dimension r, then (i) is a direct consequence

of the definition of ‖λ‖2. For (ii), let dj, rj,Σj be respectively the dimension, rank, and

the set of restricted roots of Uj/Kj, j = 1, · · · ,m. For λj ∈ Λ+
j , (3.2.15) implies that dλj

is a polynomial in λj of degree equal to the number of positive restricted roots counting

multiplicities, which is equal to dj − rj by (3.2.4). Thus dλ = dλ1 · · · dλm is a polynomial in
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λ of degree
∑m

j=1(dj − rj) = d− r. In view of the definition of ‖λ‖2 again, we get (ii).

Example 3.3.3. Continue Example 1.1.3, 3.1.1 and 3.2.2. Let M be a compact simply

connected simple Lie group equipped with a rational metric. Then the Schrödinger kernel

reads

KN =
∑
λ∈M̂

ϕ(
−|λ+ ρ|2 + |ρ|2

N2
)eit(−|λ+ρ|2+|ρ|2)dλχλ. (3.3.11)

Example 3.3.4. Continue Example 3.2.1. Let M be the sphere of dimension 2λ+ 1, λ ∈ N.

Then ρ = 1
2
mαα = λα. Normalize |α| = 1. Then the Schrödinger kernel reads

KN(t, θ) =
∑
n∈Z≥0

ϕ(
(n+ λ)2 − λ2

N2
)e−it[(n+λ)2−λ2]dnΦ(λ)

n (θ). (3.3.12)

For the three sphere M = SU(2), the Schrödinger kernel reads

KN(t, θ) =
∑

m∈Z≥0

ϕ(
(m+ 1)2 − 1

N2
)e−it[(m+1)2−1](m+ 1)

sin(m+ 1)θ

sin θ
. (3.3.13)
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CHAPTER 4

Conditional Strichartz Estimates

4.1 Strichartz Estimates as Fourier Restriction Phenomena

Lemma 4.1.1. Let Σ be a restricted root system equipped with the Cartan-Killing form 〈 , 〉.

Let Σ∗,Λ be the associated reduced root system and weight lattice as defined in (3.2.5) and

(3.2.6) respectively. Then there exists some D ∈ N, such that 〈α, β〉 ∈ D−1Z for all α, β ∈ Λ.

Proof. Let {α1, · · · , αr} be a set of simple roots for Σ∗. Let {w1, · · · , wr} be the dual basis

of the coroot basis { α1

〈α1,α1〉 , · · · ,
αr

〈αr,αr〉} so that Λ = Zw1 + · · · + Zwr. Then it suffices to

prove that 〈wi, wj〉 ∈ D−1Z for all 1 ≤ i, j ≤ r, for some D ∈ N, which then reduces to

proving the rationality of 〈wi, wj〉, which further reduces to proving the rationality of 〈α, β〉

for all α, β ∈ Σ. Since Σ is a root system, 2 〈α,β〉〈α,α〉 ∈ Z for all α, β ∈ Σ, thus it suffices to prove

the rationality of 〈α, α〉 for all α ∈ Σ. Let α be a restricted root in Σ, and let α′ ∈ ∆ be a

root such that α′|a = α. By Lemma 4.3.5 in [Var84], 〈α′, α′〉 is rational. Then by Lemma

8.4 of Ch. VII in [Hel01], 〈α, α〉 is also rational. This finishes the proof.

Let M = Tn × U1/K1 × · · · × Um/Km be a universal covering compact symmetric space

equipped with a rational metric g. By the previous lemma, there exists for each j = 1, · · · ,m

some Dj ∈ N such that 〈λ, µ〉 ∈ 2D−1
j Z for all λ, µ ∈ Λ+

j
∼= ÛjKj , which implies by (3.3.2)

that −|λj + ρj|2 + |ρj|2 = −|λj|2 − 〈λj, 2ρj〉 ∈ D−1
j Z for all λj ∈ Λj. By Definition 1.1.2 of a

rational metric, there exists some D0 > 0 such that

α−1
1 , · · · , α−1

n , β−1
1 , · · · , β−1

m ∈ D−1
0 N.
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Define

T = 2πD0 ·
m∏
j=1

Dj. (4.1.1)

Then (3.3.9) implies that T‖λ‖2 ∈ 2πZ, which then implies that the Schrödinger kernel as

in (3.3.8) is periodic in t with a period of T . Thus we may view the time variable t as living

on the circle T = [0, T ). Now the formal dual to the operator

T : L2(M)→ Lp(T×M), f 7→ PNe
it∆ (4.1.2)

is computed to be

T ∗ : Lp
′
(T×M)→ L2(M), F 7→

∫
T

PNe
−is∆F (s, ·) ds

T
, (4.1.3)

and thus

TT ∗ : Lp
′
(T×M)→ Lp(T×M), F 7→

∫
T

P2
Ne

i(t−s)∆F (s, ·) ds
T

= K̃N × F, (4.1.4)

where

K̃N =
∑
λ∈M̂

ϕ2(λ,N)e−it‖λ‖
2

dλΦλ = KN ×KN , (4.1.5)

and the symbol × is understood as convolution on the space-time T×M .

The cutoff function ϕ2(λ,N) (see (3.3.10)) still defines a Littlewood-Paley projection

PN of the product type, and K̃N is the Schrödinger kernel associated to PN . Now the

argument of TT ∗ says that the boundedness of the operators (4.1.2), (4.1.3) and (4.1.4) are

all equivalent, thus the Strichartz estimate in (2.2.2) is equivalent to the following space-time

Strichartz estimate

‖KN × F‖Lp(T×M) . Nd− 2(d+2)
p ‖F‖Lp′ (T×M), (4.1.6)

which can be interpreted as Fourier restriction estimates on the product T×M .
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We have the space-time spherical Fourier series as follows. For F ∈ L2(T×M), we have

F =
∑

n∈ 2π
T

Z,
λ∈M̂

dλF × [eitnΦλ].

Let m =
∑

n∈ 2π
T

Z m̂(n)eitn, then

m ·KN =
∑

n∈ 2π
T

Z,
λ∈M̂

ϕ(λ,N)m̂(n+ ‖λ‖2)dλe
itnΦλ. (4.1.7)

4.2 Conjectured Dispersive Estimates and Their Consequences

One strategy to prove (4.1.6) is to first explore L∞ estimate of KN . Throughout this section,

let S1 stand for the standard circle of unit length, and ‖ · ‖ stands for the distance from 0

on S1. Define

Ma,q := {t ∈ S1 : ‖t− a

q
‖ < 1

qN
}

where

a ∈ Z≥0, q ∈ N, a < q, (a, q) = 1, q < N.

We call such Ma,q’s as major arcs, which are reminiscent of the Hardy-Littlewood circle

method. In [Bou93], the author shows that for the Schrödinger kernel on the standard Tn

KN(t, t) =
∑
k∈Zn

ϕ(k, N)e−it|k|
2+ik·t,

it holds that for any D ∈ N,

|KN(t, t)| . N r

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(4.2.1)

for t
2πD
∈ Ma,q, uniformly in t ∈ Tn. Inspired by this, we conjecture a general dispersive

estimate as follows.
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Conjecture 4.2.1. Let M be a universal covering compact symmetric space of rank r and

dimension d, equipped with a rational metric. Let KN be the Schrödinger kernel (3.3.8) and

T be the period (4.1.1). Then

|KN(t, x)| . Nd

(
√
q(1 +N‖ t

T
− a

q
‖1/2))r

(4.2.2)

for t
T
∈Ma,q, uniformly in x ∈M .

Noting the product structure (3.3.8) of KN , the definition of the rank of the product

space M , the definition (4.1.1) of T , and the established result (4.2.1) on tori, the above

conjecture reduces to cases of irreducible components of M of compact type.

Conjecture 4.2.2. Let M be an irreducible simply connected symmetric space of compact

type of rank r and dimension d, equipped with a rational metric. Let Λ be the weight lattice

and Λ+ the set of positive weights. Let D be a positive number such that 〈λ, µ〉 ∈ D−1Z for

all λ, µ ∈ Λ. Let KN be the Schrödinger kernel (3.3.5). Then

|KN(t, x)| . Nd

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(4.2.3)

for t
2πD
∈Ma,q, uniformly in x ∈M .

We will prove the following special cases of this conjecture in the next chapter.

Theorem 4.2.3. (1) Conjecture 4.2.2 holds when M is a simply connected compact simple

Lie group.

(2) Conjecture 4.2.2 holds with an ε-loss when M is a sphere of odd dimension d ≥ 5. That

is, we need to add an N ε multiplicative factor to the right side of (4.2.3).

Now we show how Conjecture 4.2.1 implies Strichartz estimates (2.2.2) for p ≥ 2+ 8
r
. We

prove the following theorem.

Theorem 4.2.4. Let M be a universal covering compact symmetric space of rank r and

dimension d, equipped with a rational metric. Let T be the period of Schrödinger flow as
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defined in (4.1.1). Let f ∈ L2(M), λ > 0, and define

mλ = µ{(t, x) ∈ T×M : |PNe
it∆f(x)| > λ|}

where µ = dt · dµM , dt, dµM being the canonical normalized measures on T = R/TZ and M

respectively. Let

p0 =
2(r + 2)

r
.

Assuming the truthfulness of Conjecture 4.2.1 , the following statements hold true .

Part I.

mλ .ε N
dp0
2
−(d+2)+ελ−p0‖f‖p0

L2(M), for all λ & N
d
2
− r

4 , ε > 0.

Part II.

mλ . N
dp
2
−(d+2)λ−p‖f‖pL2(M), for all λ & N

d
2
− r

4 , p > p0.

Part III.

‖PNe
it∆f‖Lp(T×M) . N

d
2
− d+2

p ‖f‖L2(M) (4.2.4)

holds for all p ≥ 2 + 8
r
.

Part IV. Assume it holds that

‖PNe
it∆f‖Lp(T×M) .ε N

d
2
− d+2

p
+ε‖f‖L2(M) (4.2.5)

for some p > p0, then (4.2.4) holds for all q > p.

Assuming the only truthfulness of Conjecture (4.2.1) with ε-loss, then Part I holds,

Part II and Part III hold with an ε-loss (i.e. adding an N ε multiplicative factor to the right

side of the inequalities), while Part IV fails.

Note that Theorem 4.2.3 implies Conjecture 4.2.1 (or its ε-loss version, respectively) for

those spaces M described in Theorem 1.1.5, whence Theorem 1.1.5 follows by Part III (or
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its ε-loss version, respectively) of Theorem 4.2.4.

We now follow closely the Stein-Tomas type argument in [Bou93] to prove Theorem 4.2.4.

We generalize its argument for tori to the general setting of compact symmetric spaces. We

will only write out the details of the proof for the case assuming the truthfulness of Conjecture

4.2.1, while the proof for the ε-loss version is entirely similar.

Let ω ∈ C∞c (R) such that ω ≥ 0, ω(x) = 1 for all |x| ≤ 1 and ω(x) = 0 for all |x| ≥ 2.

Let N ∈ 2N. Define

ω 1
N2

: = ω(N2·),

ω 1
NM

: = ω(NM ·)− ω(2NM ·),

where

M < N, M ∈ 2N.

Let

N1 =
N

210
, Q < N1, Q ∈ 2N.

Then

∑
Q≤M≤N

ω 1
NM

= 1, on

[
− 1

NQ
,

1

NQ

]
, (4.2.6)

∑
Q≤M≤N

ω 1
NM

= 0, outside

[
− 2

NQ
,

2

NQ

]
. (4.2.7)

Write

1 =
∑

1≤Q≤N1

∑
Q≤M≤N


 ∑

(a,q)=1,
Q≤q<2Q

δa/q

 ∗ ω 1
NM

 (
t

T
) + ρ(t). (4.2.8)

Note the major arc disjointness property(
a1

q1

+

[
− 2

NQ1

,
2

NQ1

])⋂(
a2

q2

+

[
− 2

NQ2

,
2

NQ2

])
= ∅
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for (ai, qi) = 1, Qi ≤ qi < 2Qi, i = 1, 2, Q1 ≤ Q2 ≤ N1. This in particular implies that

0 ≤ ρ(t) ≤ 1, for all t ∈ [0, T ), (4.2.9)


 ∑

(a,q)=1,
Q≤q<2Q

δa/q

 ∗ ω 1
NM

(
·
T

)


∧

(0) =
1

T

∫ T

0

 ∑
(a,q)=1,
Q≤q<2Q

δa/q

 ∗ ω 1
NM

(
t

T
) dt ≤ 2Q2

NM
, (4.2.10)

which implies

1 ≥ |ρ̂(0)| ≥ 1−
∑

1≤Q≤N1

∑
Q≤M≤N

∣∣∣∣∣∣∣∣

 ∑

(a,q)=1,
Q≤q<2Q

δa/q

 ∗ ω 1
NM

(
·
T

)


∧

(0)

∣∣∣∣∣∣∣∣ ≥ 1− 8N1

N
≥ 1

2
.

(4.2.11)

By Dirichlet’s lemma on rational approximations, for any t
T
∈ S1, there exists a, q with

a ∈ Z≥0, q ∈ N, (a, q) = 1, q ≤ N , such that | t
T
− a

q
| < 1

qN
. If ρ( t

T
) 6= 0, then (4.2.6) implies

that q > N1 = N
210 . This implies by (4.2.3) and (4.2.9) that

‖ρKN‖L∞(T×M) . Nd− r
2 . (4.2.12)

Now define coefficients αQ,M such that
 ∑

(a,q)=1,
Q≤q<2Q

δa/q

 ∗ ω 1
NM

(
·
T

)


∧

(0) = αQ,M ρ̂(0), (4.2.13)

then (4.2.10) and (4.2.11) imply that

αQ,M .
Q2

NM
. (4.2.14)

Write

KN(t, x) =
∑
Q≤N1

∑
Q≤M≤N

KN(t, x)

 ∑
(a,q)=1,Q≤q<2Q

δa/q

 ∗ ω 1
NM

(
·
T

)

− αQ,Mρ
 (t)
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+

(
1 +

∑
Q,M

αQ,M

)
KN(t, x)ρ(t),

and define

ΛQ,M(t, x) := KN(t, x)

 ∑
(a,q)=1,Q≤q<2Q

δa/q

 ∗ ω 1
NM

(
·
T

)

− αQ,Mρ
 (t). (4.2.15)

Then from (4.2.3), (4.2.12), (4.2.14), we have

‖ΛQ,M‖L∞(T×M) . Nd− r
2 (
M

Q
)r/2. (4.2.16)

Next, we estimate Λ̂Q,M . From (4.1.7), we have

ΛQ,M =
∑

n∈ 2π
T

Z,
λ∈M̂

λQ,M(n, λ)dλe
itnΦλ. (4.2.17)

where

λQ,M(n, λ) = ϕ(λ,N)

 ∑
(a,q)=1,Q≤q<2Q

δa/q

∧ · ω̂ 1
NM

(T ·)− αQ,M ρ̂

 (n+ ‖λ‖2). (4.2.18)

Note that (4.2.13) immediately implies

λQ,M(n, λ) = 0, for n+ ‖λ‖2 = 0. (4.2.19)

Let d(m,Q) denote the number of divisors of m less than Q, using Lemma 3.33 in [Bou93],

|(
∑

(a,q)=1,Q≤q<2Q

δa/q)
∧(Tn)| .ε d(

Tn

2π
,Q)Q1+ε, n 6= 0, ε > 0, (4.2.20)

we get

|λQ,M(n, λ)| .ε ϕ(λ,N)
Q1+ε

NM
d(
T (n+ kλ)

2π
,Q) +

Q2

NM
|ρ̂(n+ ‖λ‖2)|. (4.2.21)

Using the divisor bound

d(m,Q) .ε m
ε,
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and (4.2.20), (4.2.8), we have

|ρ̂(n)| ≤
∑

1≤Q≤N1

∑
Q≤M≤N

d(Tn
2π
, Q)Q1+ε

NM
.
N ε

N
, for n 6= 0, |n| . N2, (4.2.22)

thus

|λQ,M(n, λ)| .ε ϕ(λ,N)
Q

NM

[
Qεd(

T (n+ ‖λ‖2)

2π
,Q) +

Q

N1−ε

]
.ε ϕ(λ,N)

QN ε

NM
, for |n| . N2. (4.2.23)

Proposition 4.2.5. (i) Assume that f ∈ L1(T×M). Then

‖f × ΛQ,M‖L∞(T×M) . Nd− r
2 (
M

Q
)r/2‖f‖L1(T×M). (4.2.24)

(ii) Assume that f ∈ L2(T×M). Assume also

f × [eitnΦλ] = 0, for all n ∈ 2π

T
Z such that |n| & N2. (4.2.25)

Then

‖f × ΛQ,M‖L2(T×M) .ε
QN ε

NM
‖f‖L2(T×M), (4.2.26)

and

‖f × ΛQ,M‖L2(T×M) .τ,B
Q1+2τL

NM
‖f‖L2(T×M) +M−1L−B/2Nd/2‖f‖L1(T×M). (4.2.27)

for all

L > 1, 0 < τ < 1, B >
6

τ
, N > (LQ)B. (4.2.28)

Proof. Using (4.2.16), we have

‖f × ΛQ,M‖L∞(T×M) ≤ ‖f‖L1(T×M)‖ΛQ,M‖L∞(T×M) . Nd− r
2 (
M

Q
)r/2‖f‖L1(T×M).

This proves (i). (4.2.26) is a consequence of (3.1.4), (4.2.17), and (4.2.23). To prove (4.2.27),
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we use (3.1.3) and (4.2.17) to get

‖f × ΛQ,M‖L2(T×M) =

(∑
n,λ

d2
λ‖f × [eitnΦλ]‖2

L2(T×M) · |λQ,M(n, λ)|2
)1/2

,

which combined with (4.2.19), (4.2.21), and (4.2.22) yields

‖f × ΛQ,M‖L2(T×M) .ε
Q1+ε

NM

(∑
n,λ

ϕ(λ,N)2d2
λ‖f × [eitnΦλ]‖2

L2(T×M)d(
T (n+ ‖λ‖2)

2π
,Q)2

)1/2

+
Q2

MN2−ε‖f‖L2(T×M).

Using Lemma 3.47 in [Bou93], we have∣∣∣∣{(n, λ) : |n|, ‖λ‖2 . N2, d(
T (n+ ‖λ‖2)

2π
,Q) > D}

∣∣∣∣
.τ,B (D−BQτN2 +QB) · max

|m|.N2
|{(n, λ) : n+ ‖λ‖2 = m}|

.τ,B (D−BQτN2 +QB) · |{λ ∈ M̂ : ‖λ‖2 . N2}|

.τ,B (D−BQτN2 +QB) ·N r. (4.2.29)

Here we used (i) of Lemma 3.3.2.

Now (3.1.2) gives

‖f × [eitnΦλ]‖L2(T×M) ≤ d
− 1

2
λ ‖f‖L1(T×M),

which together with (4.2.29), d(·, Q) ≤ Q, and (ii) of Lemma 3.3.2 implies

‖f × ΛQ,M‖L2(T×M) .τ,B(
Q1+εD

NM
+

Q2

MN2−ε )‖f‖L2(T×M)

+
Q1+ε

NM
·Q · (D−B/2QτN +QB/2)Nd/2‖f‖L1(T×M).

This implies (4.2.27) assuming the conditions in (4.2.28).

Now interpolating (4.2.24) and (4.2.26), we get

‖f × ΛQ,M‖Lp(T×M) .ε N
d− r

2
− 2d−r+2

p
+εM

r
2
− r+2

p Q−
r
2

+ r+2
p ‖f‖Lp′ (T×M). (4.2.30)
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Interpolating (4.2.24) and (4.2.27) (see Lemma A.1 in the appendix) for

p >
2(r + 2)

r
+ 10τ, (which implies σ :=

r

2
− r + 2 + 4τ

p
> 0) (4.2.31)

we get

‖f × ΛQ,M‖Lp(T×M) .τ,BN
d− r

2
− 2d−r+2

p M
r
2
− r+2

p Q−σL
2
p‖f‖Lp′ (T×M)

+Q−
2
r

(1− 2
p

)M
r
2
− r+2

p L−
B
pNd− r

2
− d−r

p ‖f‖L1(T×M). (4.2.32)

Now we are ready to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. Without loss of generality, we assume that ‖f‖L2(M) = 1. Then for

F = PNe
it∆f , (2.3.2) implies that

‖F‖L2
x
. 1, (4.2.33)

‖F‖L∞x . N
d
2 . (4.2.34)

For λ > 0, let

H = χ|F |>λ ·
F

|F |
. (4.2.35)

Let ˜̃PN be a Littlewood-Paley projection of the product type such that ˜̃PN ◦PN = PN . Let

˜̃KN be the Schrödinger kernel associated to ˜̃PNe
it∆. Then

F × ˜̃KN = F.

Let PN2 be the self-adjoint Littlewood-Paley projection operator on L2(T×M) defined by

PN2H :=
∑
n,λ

ϕ(
−‖λ‖2 − n2

N4
)dλH × [eitnΦλ]

for some bump function ϕ, such that PN2 ◦PN = PN . Then F = PN2F so that

〈F,H〉L2
t,x

= 〈PN2F,H〉L2
t,x

= 〈F, PN2H〉L2
t,x
.
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Then we can write

λmλ ≤ 〈F,H〉L2
t,x

= 〈F × ˜̃KN , PN2H〉L2
t,x
.

Noting that convolution with ˜̃KN is also a self-adjoint operator on L2(T×M), then we have

λmλ ≤ 〈F, PN2H × ˜̃KN〉L2
t,x
≤ ‖F‖L2

t,x
‖PN2H × ˜̃KN‖L2

t,x

. ‖PN2H × ˜̃KN‖L2
t,x

= 〈PN2H × ˜̃KN , PN2H × ˜̃KN〉L2
t,x

= 〈PN2H,PN2H × ( ˜̃KN × ˜̃KN)〉L2
t,x
.

(4.2.36)

Let

H ′ = PN2H, K̃N = ˜̃KN × ˜̃KN .

Note that H ′ by definition satisfies the assumption in (4.2.25) and we can apply Proposition

4.2.5. Also note that K̃N is still a Schrödinger kernel associated to a Littlewood-Paley

projection operator of the product type (see (4.1.5)). Finally note that the Bernstein type

inequalities (2.1.4) and the definition (4.2.35) of H give

‖H ′‖Lpt,x . ‖H‖Lpt,x . m
1
p

λ . (4.2.37)

Write

Λ =
∑

1≤Q≤N1

∑
Q≤M≤N

ΛQ,M , K̃N = Λ + (K̃N − Λ),

where ΛQ,M is defined as in (4.2.15) except that KN is replaced by K̃N . We have by (4.2.36)

λ2m2
λ . 〈H ′, H ′ × Λ〉L2

t,x
+ 〈H ′, H ′ × (K̃N − Λ)〉L2

t,x

. ‖H ′‖
Lp
′
t,x
‖H ′ × Λ‖Lpt,x + ‖H ′‖2

L1
t,x
‖K̃N − Λ‖L∞t,x . (4.2.38)

Using (4.2.30) for p = p0 := 2(r+2)
r

, then summing over Q,M , and noting (4.2.37), we have

‖H ′‖
Lp
′
t,x
‖H ′ × Λ‖Lpt,x . N

d− 2d+4
p0

+ε‖H ′‖2

L
p′0
t,x

. N
d− 2d+4

p0
+ε
m

2
p′0
λ .
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From (4.2.12) and (4.2.14) we get

‖K̃N − Λ‖L∞t,x . Nd− r
2 , (4.2.39)

which implies

‖H ′‖2
L1
t,x
‖K̃N − Λ‖L∞t,x . Nd− r

2‖H ′‖2
L1
t,x

. Nd− r
2m2

λ. (4.2.40)

Then we have

λ2m2
λ . N

d− 2d+4
p0

+ε
m

2
p′0
λ +Nd− r

2m2
λ,

which implies for λ & N
d
2
− r

4

mλ .ε N
p0( d

2
− d+2

p0
)+ε
λ−p0 .

Thus Part I is proved. To prove Part II for some fixed p, using Part I and (4.2.34), it

suffices to prove it for λ & N
d
2
−ε. Summing (4.2.32) over Q,M in the range indicated by

(4.2.28), we get

‖H ′ × Λ1‖Lpt,x . LNd− 2d+4
p ‖H ′‖

Lp
′
t,x

+ L−B/pNd− d+2
p ‖H ′‖L1

t,x
, (4.2.41)

where

Λ1 :=
∑

Q<Q1,Q≤M≤N

ΛQ,M

and Q1 is the largest Q-value satisfying (4.2.28). For values Q ≥ Q1, use (4.2.30) to get

‖H ′ × (Λ− Λ1)‖Lpt,x .ε N
d− 2d+4

p
+εQ

−( r
2
− r+2

p
)

1 ‖H ′‖
Lp
′
t,x
. (4.2.42)

Using (4.2.38), (4.2.40), (4.2.41) and (4.2.42), we get

λ2m2
λ . Nd− 2(d+2)

p (L+
N ε

Q
r
2
− r+2

p

1

)m
2/p′

λ + L−B/pNd− d+2
p m

1+ 1
p′

λ +Nd− r
2m2

λ.

For λ & N
d
2
− r

4 , the last term of the above inequality can be dropped. Let Q1 = N δ such
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that δ > 0 and

(LN δ)B < N (4.2.43)

such that (4.2.28) holds. Note that

L > 1 >
N ε

Q
r
2
− r+2

p

1

for p > p0 + 10τ and ε sufficiently small, thus

λ2m2
λ . Nd− 2(d+2)

p Lm
2/p′

λ + L−B/pNd− d+2
p m

1+ 1
p′

λ .

This implies

mλ . Np( d
2
− d+2

p
)L

p
2λ−p +Np(d− d+2

p
)L−Bλ−2p

. N−d−2(
Nd/2

λ
)pL

p
2 +N−d−2(

Nd/2

λ
)2pL−B.

Let

L = (
Nd/2

λ
)τ , B >

p

τ

and δ sufficiently small so that (4.2.43) holds, then

mλ . N−d−2(
Nd/2

λ
)p+

pτ
2 .

Note that conditions for p, τ indicated in (4.2.31) implies that p+ pτ
2

can take any exponent

> p0 = 2(r+2)
r

. This completes the proof of Part II.

The proof of Part III and Part IV is almost identical to the proof of Proposition 3.110

and 3.113 respectively in [Bou93]. The proof of Part III is an interpolation between the

result of Part II with the trivial subcritical Strichartz estimates ‖PNe
it∆f‖L2

t,x
. ‖f‖L2

x
.

The proof of Part IV is similarly an interpolation between the result of Part II with the

assumption (4.2.5). We omit the details.
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CHAPTER 5

Dispersive Estimates – General Theory

In this chapter, we start to prove Theorem 4.2.3. First note that the Schrödinger kernel

KN(t, ·) in (3.3.5) as a function on M = U/K is a linear combination of spherical functions

which are K-invariant, whence KN(t, ·) is also K-invariant, thus the values of KN(t, ·) are

determined by its restriction on any maximal torus (more precisely, on the closure of any

cell in a maximal torus, see Section 3.2). Thus it suffices to prove (4.2.3) uniformly on a

fixed maximal torus. By Proposition 9.4 of Ch. III in [Hel08], the spherical function Φλ for

λ ∈ Λ+ on a maximal torus equals

Φλ =

q∑
i=1

cie
λi , λi ∈ Λ, ci ≥ 0.

This puts the Schrödinger kernel (3.3.5) in the perfect form of an exponential sum. To be

able to estimate the size of such an exponential sum, we need to decompose and assemble

the terms rightly in order to exploit the oscillation in them.

5.1 Weyl Type Sums on Rational Lattices

Definition 5.1.1. Let L = Zw1 + · · ·+Zwr be a lattice on an inner product space (V, 〈 , 〉).

We say L is a rational lattice provided that there exists some D > 0 such that 〈wi, wj〉 ∈

D−1Z. We call the number D a period of L.

By Lemma 4.1.1, the weight lattice Λ of U/K is a rational lattice with respect to the

Cartan-Killing form. As a sublattice of Λ, the restricted root lattice Γ is also rational.
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Let f be a function on Zr and define the difference operator Di’s by

Dif(n1, · · · , nr) := f(n1, · · · , ni−1, ni + 1, ni+1, · · · , nr)− f(n1, · · · , nr) (5.1.1)

for i = 1, · · · , r. The Leibniz rule for Di reads

Di(
n∏
j=1

fj) =
n∑
l=1

∑
1≤k1<···<kl≤n

Difk1 · · ·Difkl ·
∏

j 6=k1,··· ,kl
1≤j≤n

fj. (5.1.2)

Note that there are 2n − 1 terms in the right side of the above formula.

Lemma 5.1.2. Let L = Zw1 + · · · + Zwr be a rational lattice in the inner product space

(V, 〈 , 〉) with a period D. Let ϕ be a bump function on R and N ≥ 1. Let f be a function

on L ∼= Zr, with the requirement that

|Di1 · · ·Dinf(n1, · · · , nr)| . NA−n (5.1.3)

holds uniformly in |ni| . N , i = 1, · · · , r, for all ij = 1, · · · , r, j = 1, · · · , n, n ∈ Z≥0 ,

where A is a universal constant. Let

F (t,H) =
∑
λ∈L

e−it|λ|
2+i〈λ,H〉ϕ(

|λ|2

N2
) · f (5.1.4)

for t ∈ R and H ∈ V . Then for t
2πD
∈Ma,q, we have

|F (t,H)| . NA+r

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(5.1.5)

uniformly in H ∈ V .

Proof. By the Weyl differencing trick, write

|F |2 =
∑

λ1,λ2∈L

e−it(|λ1|2−|λ2|2)+i〈λ1−λ2,H〉ϕ(
|λ1|2

N2
)ϕ(
|λ2|2

N2
)f(λ1)f(λ2)

=
∑

µ=λ1−λ2

e−it|µ|
2+i〈µ,H〉

∑
λ=λ2

e−i2t〈µ,λ〉ϕ(
|µ+ λ|2

N2
)ϕ(
|λ|2

N2
)f(µ+ λ)f(λ)

≤
∑
|µ|.N

|
∑
λ

e−i2t〈µ,λ〉ϕ(
|µ+ λ|2

N2
)ϕ(
|λ|2

N2
)f(µ+ λ)f(λ))|.

44



Now write

λ =
r∑
i=1

niwi,

and

g = ϕ(
|µ+ λ|2

N2
)ϕ(
|λ|2

N2
)f(µ+ λ)f(λ).

Note that

|Di1 · · ·Dinϕ(
|µ+ λ|2

N2
)| . N−n, |Di1 · · ·Dinϕ(

|λ|2

N2
)| . N−n

for all n ∈ Z≥0 uniformly in |ni| . N , i = 1, · · · , r, which combined with (5.1.3) and the

Leibniz rule (5.1.2) for the Di’s implies

|Di1 · · ·Ding| . N2A−n. (5.1.6)

Write

∑
λ∈L

e−i2t〈µ,λ〉g =
∑

n1,··· ,nr∈Z

(
r∏
i=1

e−itni〈µ,2wi〉)g. (5.1.7)

By summation by parts twice, we have

∑
n1∈Z

e−itn1〈µ,2w1〉g = (
e−it〈µ,2w1〉

1− e−it〈µ,2w1〉
)2
∑
n1∈Z

e−itn1〈µ,2w1〉D2
1g(n1, · · · , nr), (5.1.8)

then (5.1.7) becomes

∑
λ∈L

e−i2t〈µ,λ〉g = (
e−it〈µ,2w1〉

1− e−it〈µ,2w1〉
)2

∑
n1,··· ,nr∈Z

(
r∏
i=1

e−itni〈µ,2wi〉)D2
1g(n1, · · · , nr).

Then we can carry out the procedure of summation by parts twice with respect to other

variables n2, · · · , nr. But we require that only when |1− e−it〈µ,2wi〉| ≥ 1
N

do we carry out the

procedure to the variable ni. Using (5.1.6), then we obtain

|
∑
λ

e−i2t〈µ,λ〉ϕ(
|µ+ λ|2

N2
)ϕ(
|λ|2

N2
)f(µ+ λ)f(λ)|
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. N2A−r
r∏
i=1

1

(max{1− e−it〈µ,2wi〉, 1
N
})2

. N2A−r
r∏
i=1

1

(max{‖ 1
2π
t〈µ, 2wi〉‖, 1

N
})2

.

Write µ =
∑r

j=1mjwj, mj ∈ Z, then we have

|F |2 . N2A−r
∑
|mj |.N,
j=1,··· ,r

r∏
i=1

1

(max{‖ 1
2π
t
∑r

j=1 mj〈wj, 2wi〉‖, 1
N
})2

.

Let

ni =
r∑
j=1

mj〈wj, 2wi〉 ·D, i = 1, · · · , r, (5.1.9)

whereD > 0 is the period of L so that 〈wj, wi〉 ∈ D−1Z. Then ni ∈ Z. Noting that the matrix

(〈wj, 2wi〉D)i,j is non-degenerate, which implies that for each vector (n1, · · · , nr) ∈ Zr, there

exists at most one vector (m1, · · · ,mr) ∈ Zr so that (5.1.9) holds, thus

|F |2 . N2A−r
∑
|ni|.N,
i=1,··· ,r

r∏
i=1

1

(max{‖ t
2πD

ni‖, 1
N
})2

. N2A−r
r∏
i=1

 ∑
|ni|.N

1

(max{‖ t
2πD

ni‖, 1
N
})2

 .

Then by Lemma B.1 in the appendix, we have

∑
|ni|.N

1

(max{‖ t
2πD

ni‖, 1
N
})2

.
N3

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))2

,

which implies the desired result

|F |2 . N2A+2r

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))2r

.

We also have a variant of Lemma 5.1.2.

Corollary 5.1.3. Let L = Zw1 + · · · + Zwr be a rational lattice in the inner product space
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(V, 〈 , 〉) with a period D. Let L+ = Z≥0w1 + · · · + Z≥0wr. Let ϕ be a bump function on R

and N ≥ 1. Let f be a function on L+ ∼= Zr≥0, with the requirement that

|Di1 · · ·Dinf(n1, · · · , nr)| . NA−n (5.1.10)

holds uniformly in 0 ≤ ni . N , i = 1, · · · , r, for all ij = 1, · · · , r, j = 1, · · · , n, n ∈ Z≥0 ,

where A is a universal constant. Let

F (t,H) =
∑
λ∈L+

e−it|λ|
2+i〈λ,H〉ϕ(

|λ|2

N2
) · f (5.1.11)

for t ∈ R and H ∈ V .

(i) Suppose

A ≥ 2r. (5.1.12)

Then for t
2πD
∈Ma,q, we have

|F (t,H)| . NA+r

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(5.1.13)

uniformly in H ∈ V .

(ii) Suppose only that

A ≥ r. (5.1.14)

Then for t
2πD
∈Ma,q, we have

|F (t,H)| .ε>0
NA+r+ε

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(5.1.15)

uniformly in H ∈ V .

Proof. Define f̃(n1, · · · , nr) as f(n1, · · · , nr) when (n1, · · · , nr) ∈ Zr≥0, and 0 otherwise.

Then

F (t,H) =
∑
λ∈L

e−it|λ|
2+i〈λ,H〉ϕ(

|λ|2

N2
) · f̃ .
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For (i), (5.1.10) and (5.1.12) imply that

|Di1 · · ·Din f̃(n1, · · · , nr)| . NA−n (5.1.16)

holds uniformly in |ni| . N , ni ∈ Z, for all n ≤ 2r. Follow the same line of proof as in

Lemma 5.1.2, then (5.1.6) still holds for all n ≤ 2r, which is enough to make the proof work

(the summation by parts procedure is carried out at most 2r times). For (ii), (5.1.10) and

(5.1.14) imply that (5.1.16) holds only for n ≤ r. We modify (5.1.8) into summation by

parts only once, that is

∑
n1∈Z

e−itn1〈µ,2w1〉g =
e−it〈µ,2w1〉

1− e−it〈µ,2w1〉

∑
n1∈Z

e−itn1〈µ,2w1〉D1g(n1, · · · , nr).

Then (5.1.16) for n ≤ r is enough to imply, following the same line of proof,

|F |2 . N2A

r∏
i=1

 ∑
|ni|.N

1

max{‖ t
2πD

ni‖, 1
N
}

 ,

which gives (5.1.15) by Remark B.2 in the appendix.

Remark 5.1.4. Let λ0 be any constant vector in V and C any constant real number. Then

we can slightly generalize the form of the function F (t,H) in Lemma 5.1.2 and Corollary

5.1.3 into

F (t,H) =
∑

λ∈L(or L+)

e−it|λ+λ0|2+i〈λ,H〉ϕ(
|λ+ λ0|2 + C

N2
) · f

such that the proofs still work and the results still hold.

We have our first application of Corollary 5.1.3. Let U/K be a simply connected sym-

metric space of compact type. Specializing the Schrödinger kernel (3.3.5) to x = K, noting

that Φλ(K) = 1, we have

KN(t,K) =
∑
λ∈Λ+

ϕ(
−|λ+ ρ|2 + |ρ|2

N2
)eit(−|λ+ρ|2+|ρ|2)dλ. (5.1.17)

Proposition 5.1.5. Let d, r be respectively the dimension and rank of U/K. Let D be a

period of the weight lattice.
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(i) If U/K is SU(2)/SO(2) or SU(3)/SO(3), then

|KN(t,K)| .ε>0
Nd+ε

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

for t
2πD
∈Ma,q.

(ii) For all the other irreducible spaces U/K of compact type,

|KN(t,K)| . Nd

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

for t
2πD
∈Ma,q.

Proof. Recall from the proof of Lemma 3.3.2 that dλ is a polynomial in λ ∈ Λ of degree

d− r. Thus dλ as a function on Λ+ ∼= Zr≥0 satisfies (5.1.10) with A = d− r.

By (3.2.4), d − r equals the number of positive restricted roots counting multiplicities.

Now any irreducible simply connected symmetric space of compact type is either of type I: a

compact simply connected simple Lie group, or of type II: U/K where U is a simply connected

compact simple Lie group and K is the fixed point set of an involutive automorphism of U .

For type I spaces, the multiplicities of the restricted roots are all equal to 2. Noting that

the number of positive restricted roots not counting multiplicities is no less than the rank r

of the root system, we have d − r ≥ 2r for type I spaces. For type II spaces, Table V and

Section 6.4 of Ch. X in [Hel01] tell that d − r ≥ 2r holds for all type II spaces apart from

SU(2)/SO(2) and SU(3)/SO(3), on which we only have d− r ≥ r.

For irreducible simply connected symmetric spaces of compact type apart from SU(2)/SO(2)

and SU(3)/SO(3), apply part (i) of Corollary 5.1.3 with f(λ) = dλ. For SU(2)/SO(2) and

SU(3)/SO(3), apply part (ii) of Corollary 5.1.3 also with f(λ) = dλ. This finishes the

proof.
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5.2 On a N−1-Neighborhood of K

5.2.1 General Approach

We strengthen Proposition 5.1.5.

Theorem 5.2.1. Let d, r be respectively the dimension and rank of U/K. Let D be a period

of the weight lattice. Let d( , ) be the distance function on U/K.

(i) Let U/K be SU(2)/SO(2) or SU(3)/SO(3). Then

|KN(t, x)| .ε>0
Nd+ε

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(5.2.1)

for t
2πD
∈Ma,q, uniformly for d(x,K) . N−1.

(ii) For all the other irreducible spaces U/K of compact type,

|KN(t, x)| . Nd

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(5.2.2)

for t
2πD
∈Ma,q, uniformly for d(x,K) . N−1.

The proof hinges on an integral representation of spherical functions in a neighborhood of

K. Continue the notations in Section 3.2. Let nC, aC, kC be respectively the complexification

of n, a, k. By Section 9.2 Ch. III in [Hel08], the mapping

(X,H, T ) 7→ expX expH expT, X ∈ nC, H ∈ aC, T ∈ kC

is a holomorphic diffeomorphism of a neighborhood UC of GC such that U = UC ∩ U is

invariant under the maps u 7→ kuk−1, k ∈ K. This induces the map

A : expX expH expT → H

that sends UC into aC. Let Φλ be the spherical function associated to λ ∈ Λ+. By Lemma

9.2 of Ch. III in [Hel08],

Φλ(u) =

∫
K

e−λ(A(kuk−1)) dk, u ∈ U . (5.2.3)
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Note that the map u 7→ kuk−1 preserves the distance d(·, e) to the identity e of U . Let

N ≥ 1 be large enough so that {u ∈ U : d(u, e) . N−1} ⊂ U . Then

|A(kuk−1)| . N−1 (5.2.4)

uniformly for d(u, e) . N−1 and k ∈ K. Here the norm on aC of course comes from the

Cartan-Killing form. Write λ = n1w1 + · · · + nrwr, ni ∈ Z≥0, viewing Φλ(u) = Φ(λ, u) as a

function of λ ∈ Zr≥0, (5.2.3) and (5.2.4) imply that Φ(λ, u) satisfies an equality of the type

(5.1.10) as follows.

Lemma 5.2.2.

|Di1 · · ·DinΦ(n1, · · · , nr, u)| . N−n

holds uniformly in 0 ≤ ni . N and d(u, e) . N−1, for all ij = 1, · · · , r and n ∈ Z≥0.

Proof of Theorem 5.2.1. Apply Corollary 5.1.3 with f(λ) = dλΦλ. Using Lemma 5.2.2, the

fact that dλ is a polynomial in λ of degree d− r, and (5.1.2), we have that f satisfies (5.1.10)

with A = d− r. The rest of the proof is then found in the proof of Proposition 5.1.5.

5.2.2 Special Approaches to Compact Lie Groups

We present here two more approaches to Theorem 5.2.1 for the special case of compact

Lie groups. Instead of using the integral formula (5.2.3) to establish Lemma 5.2.2, these

two approaches are based on the Weyl’s formula (3.2.11) to establish a simlar result for the

characters.

Let M be a compact simply connected simple Lie group of dimension d and r. Apply

the notations as in Example 1.1.3, 3.1.1, 3.2.2 and 3.3.3. We make the identification a ∼= a∗,

so that for λ ∈ a∗ and H ∈ a, λ(H) = 〈λ,H〉. Then the Weyl’s character formula (3.2.11)

becomes

χλ(iH) =

∑
s∈W det (s)ei〈s(λ+ρ),H〉∑
s∈W det (s)ei〈s(ρ),H〉
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for λ ∈ Λ+, H ∈ a.

Lemma 5.2.3. Viewing the character χλ(iH) = χ(λ,H) as a function on λ ∈ Zw1 + · · · +

Zwr,

|Di1 · · ·Dikχ(n1, · · · , nr, H)| . N
d−r

2
−k (5.2.5)

holds uniformly in |ni| . N and |H| . N−1, for all ij = 1, · · · , r and k ∈ Z≥0.

This lemma implies Theorem 5.2.1 part (ii) for the case of compact Lie groups. In fact,

we use (3.3.11) as the Schrödinger kernel. Note that dλ as in (3.2.12) is a polynomial in

λ ∈ Λ+ of degree |∆+|, which is equal to d−r
2

by (3.2.10). We apply Corollary 5.1.3 part

(i) to this kernel KN with f(λ) = dλχλ. Then Lemma 5.2.3 and the Leibniz rule (5.1.2)

imply that f(λ) as a function of λ ∈ Λ+ ∼= Zr≥0 satisfies (5.1.10) with A = d− r ≥ 2r, then

Corollary 5.1.3 part (i) works and the proof finishes.

We now prove Lemma 5.2.3. First, by Lemma 4.13.4 of Chapter 4 in [Var84], the Weyl

denominator DP =
∑

s∈W (det s)ei〈s(ρ),H〉 can be rewritten as

DP = e−i〈ρ,H〉
∏
α∈∆+

(ei〈α,H〉 − 1). (5.2.6)

As |H| . N−1, for N large enough, we have∣∣∣∣∏α∈∆+〈α,H〉
DP

∣∣∣∣ ≈ 1.

Thus it suffices to show (5.2.5) replacing χ(λ,H) by

χ′(λ,H) =

∑
s∈W det (s)ei〈s(λ+ρ),H〉∏

α∈∆+〈α,H〉
. (5.2.7)

5.2.2.1 Approach 1: via BGG-Demazure Operators

The idea is to expand the numerator of χ′(λ,H) into a power series of polynomials in

H ∈ a, which are anti-invariant with respect to the Weyl group W , and then to estimate

the quotients of these polynomial over the denominator
∏

α∈∆+〈α,H〉. We will see that these

52



quotients are in fact polynomials in H ∈ a, and can be more or less explicitly computed by

the BGG-Demazure operators. We now review the basic definitions and facts of the BGG-

Demazure operators and the related invariant theory. A good reference is Chapter IV in

[Hil82]. The following theory works for any reduced root system ∆ ⊂ a∗.

Let P (a) be the space of polynomial functions on a. The orthogonal group O(a) with

respect to the inner product on a, in particular the Weyl group, acts on P (a) by

(sf)(H) := f(s−1H), s ∈ O(a), f ∈ P (a), H ∈ a.

Definition 5.2.4. For α ∈ a∗, let sα : a → a denote the reflection about the hyperplane

{H ∈ a : α(H) = 0}, that is,

sα(H) := H − 2
α(H)

〈α, α〉
Hα

where H ∈ a. Here Hα corresponds to α through the identification a
∼−→ a∗. Define the

BGG-Demazure operator ∆α : P (a)→ P (a) associated to α ∈ a∗ by

∆α(f) =
f − sα(f)

α
.

As an example, we compute ∆α(λm) for λ ∈ a∗.

∆α(λm) =
λm − λ(· − 2 α

〈α,α〉Hα)m

α

=
λm − (λ− 2 〈λ,α,〉〈α,α〉α)m

α

=
m∑
i=1

(−1)i−1

(
m

i

)
2i

〈α, α〉i
〈λ, α〉iαi−1λm−i. (5.2.8)

This computation in particular implies that for any f ∈ P (a), ∆α(f) lowers the degree of f

by at least 1.

Let P (a)W denote the subspace of P (a) that are invariant under the action of the Weyl

group W , that is,

P (a)W := {f ∈ P (a) | sf = f for all s ∈ W}.

53



We call P (a)W the space of invariant polynomials. We also define

P (a)Wdet := {f ∈ P (a) | sf = (det s)f for all s ∈ W}.

We call P (a)Wdet the space of anti-invariant polynomials. We have the following proposition

which tells that P (a)Wdet is a free P (a)W -module of rank 1.

Proposition 5.2.5 (Chapter II, Proposition 4.4 in [Hil82]). Define ddet ∈ P (a) by

ddet =
∏
α∈∆+

α.

Then ddet ∈ P (a)Wdet and

P (a)Wdet = ddet · P (a)W .

By the above proposition, given any anti-invariant polynomial f , we have f = d ·g where

g is invariant. We call g the invariant part of f . The BGG-Demazure operators provide a

procedure that computes the invariant part of any anti-invariant polynomial. We describe

this procedure as follows. The Weyl group W is generated by the reflections sα1 , · · · , sαr

where S = {α1, · · · , αr} is the set of simple roots. Define the length of s ∈ W to be the

smallest number k such that s can be written as s = sαi1 · · · sαik . The longest element s in

W is of length L = |∆+| = d−r
2

, and such s is unique (see Section 1.8 in [Hum90]). Write

s = sαi1 · · · sαiL . Define

δ = ∆αi1
· · ·∆αiL

and it is well defined in the sense it does not depend on the particular choice of the decom-

position s = sαi1 · · · sαiL (see Chapter IV, Proposition 1.7 in [Hil82]).

Proposition 5.2.6 (Chapter IV, Proposition 1.6 in [Hil82]). We have

δf =
|W |
ddet

· f

for all f ∈ P (a)Wdet.

That is, the operator δ produces the invariant part of any anti-invariant polynomial
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(modulo a multiplicative constant). Now we compute δ = ∆αi1
· · ·∆αiL

on λm. Proceed

inductively using (5.2.8), we arrive at the following proposition.

Proposition 5.2.7. Let m ≥ L. Then

δ(λm) =
∑

θ,a(α,β),b(γ),c(ζ),η∈Z

(−1)θ
∏
α≤β

〈αiα , αiβ〉a(α,β)
∏
γ

〈λ, αiγ〉b(γ)
∏
ζ

α
c(ζ)
iζ
λη

such that the following statements are true.

(1) In each term of the sum,
∑

γ b(γ) + η = m.

(2) In each term of the sum,
∑

ζ c(ζ) + η = m− L.

(3) In each term of the sum,
∑

γ b(γ)−
∑

ζ c(ζ) = L.

(4) In each term of the sum, |a(α, β)| ≤ mL, 0 ≤ b(γ), c(ζ), η ≤ m.

(5) There are in total less than 3mL terms in the sum.

Note that since each BGG-Demazure operator ∆αij
in δ = ∆αi1

· · ·∆αiL
lowers the degree

of polynomials by at least 1, δ lowers the degree by at least L. Thus

δ(λm) = 0, for m < L. (5.2.9)

Example 5.2.8. We specialize the discussion to the case M = SU(2). Recall that a∗ =

Rw where w is the fundamental weight, and ∆ = {±α} with α = 2w. P (a) consists of

polynomials in the variable λ ∈ R
1

∼=
7→

Rw
w

. For λ ∈ R
1

∼=
7→

Rw
w

, and f ∈ P (a), we have

(δf)(λ) =
f(λ)− f(−λ)

2λ
,

δ(λm) =

 λm−1, m odd,

0, m even,

ddet(λ) = 2λ. (5.2.10)

We can now finish the proof of (5.2.5).

Proof of Lemma 5.2.3. Recall that it suffices to prove (5.2.5) replacing χ(λ,H) by χ′(λ,H)
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in (5.2.7). Using power series expansions, write

∑
s∈W

(det s)ei〈λ+ρ,H〉 =
∑
s∈W

det s
∞∑
m=0

1

m!
(i〈s(λ+ ρ), H〉)m

=
∞∑
m=0

im

m!

∑
s∈W

det s 〈s(λ+ ρ), H〉m. (5.2.11)

Note that

fm(H) = fm(λ) = fm(λ,H) :=
∑
s∈W

det s 〈s(λ+ ρ), H〉m (5.2.12)

is an anti-invariant polynomial in H with respect to the Weyl group W , thus by Proposition

5.2.6,

fm(H) =
ddet(H)

|W |
· δfm(H) =

∏
α∈∆+〈α,H〉
|W |

· δfm(H).

This implies that we can rewrite (5.2.7) into

χ′(λ,H) =
1

|W |

∞∑
m=0

im

m!
δfm(H).

Thus to prove (5.2.5), it suffices to prove that

∞∑
m=0

1

m!
|Di1 · · ·Dik (δfm(λ))| . NL−k,

for all k ∈ Z≥0, uniformly in |ni| . N , where λ = n1w1 + · · · + nrwr. Then by (5.2.12), it

suffices to prove that

∞∑
m=0

1

m!
|Di1 · · ·Dik (δ [(s(λ+ ρ))m])| . NL−k, ∀s ∈ W.

Without loss of generality, it suffices to show

∞∑
m=0

1

m!
|Di1 · · ·Dik (δ [(λ+ ρ)m])| . NL−k. (5.2.13)

Noting (5.2.9), it suffices to consider cases when m ≥ L. We apply Proposition 5.2.7 to write

δ((λ+ ρ)m)(H)
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=
∑

θ,a(α,β),b(γ),c(ζ),η

(−1)θ
∏
α≤β

〈αiα , αiβ〉a(α,β)
∏
γ

〈λ+ ρ, αiγ〉b(γ)
∏
ζ

〈αiζ , H〉c(ζ)〈λ+ ρ,H〉η.

(5.2.14)

First note that for λ = n1w1 + · · ·+ nrwr, |ni| . N , i = 1, · · · , r, we have

1 . |〈αi, αj〉| . 1, |〈λ+ ρ, αi〉| . N, (5.2.15)

and by the assumption |H| . N−1,

|〈αi, H〉| . N−1, |〈λ+ ρ,H〉| =

∣∣∣∣∣
(

r∑
i=1

ni〈wi, H〉

)
+ 〈ρ,H〉

∣∣∣∣∣ . 1. (5.2.16)

These imply that

|δ((λ+ ρ)m)(H)| ≤
∑

θ,a(α,β),b(γ),c(ζ),η

C
∑
α,β |a(α,β)|+

∑
γ b(γ)+

∑
ζ c(ζ)+ηN

∑
γ c(γ)−

∑
ζ c(ζ) (5.2.17)

for some constant C independent ofm. Now we derive a similar estimate forDi (δ [(λ+ µ)m]) (H).

By (5.2.14),

Di (δ [(λ+ ρ)m]) (H) =
∑

θ,a(α,β),b(γ),c(ζ),η

(−1)θ
∏
α≤β

〈αiα , αiβ〉a(α,β)
∏
ζ

〈αiζ , H〉c(ζ)

·Di

(∏
γ

〈λ+ ρ, αiγ〉b(γ)〈λ+ ρ,H〉η
)
. (5.2.18)

For λ = n1w1 + · · ·+ nrwr, we compute that

Di

(
〈λ+ ρ, αiγ〉

)
= 〈αi, αiγ〉,

Di (〈λ+ ρ,H〉) = 〈αi, H〉.

The above two formulas combined with (5.2.15), (5.2.16), and the Leibniz rule (5.1.2) for Di

imply that ∣∣∣∣∣Di

(∏
γ

〈λ+ ρ, αiγ〉b(γ)〈λ+ ρ,H〉η
)∣∣∣∣∣ ≤ C

∑
γ b(γ)+ηN

∑
γ b(γ)−1.
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This combined with (5.2.15), (5.2.16) and (5.2.18) implies that

|Di (δ [(λ+ ρ)m]) (H)| .
∑

θ,a(α,β),b(γ),c(ζ),η

C
∑
α,β |a(α,β)|+

∑
γ b(γ)+

∑
ζ c(ζ)+ηN

∑
γ b(γ)−

∑
ζ c(ζ)−1.

Inductively, we have

|Di1 · · ·Dik (δ [(λ+ ρ)m]) (H)| .
∑

θ,a(α,β),b(γ),c(ζ),η

C
∑
α,β |a(α,β)|+

∑
γ b(γ)+

∑
ζ c(ζ)+ηN

∑
γ b(γ)−

∑
ζ c(ζ)−k,

for some constant C independent of m. This by Proposition 5.2.7 then implies

|Di1 · · ·Dik (δ [(λ+ ρ)m]) (H)| ≤ 3mLCCmLNL−k ≤ CmNL−k

for some positive constant C independent of m. This estimate implies (5.2.13), noting that

∞∑
m=0

Cm

m!
. 1. (5.2.19)

This finishes the proof.

5.2.2.2 Approach 2: via Harish-Chandra’s Integral Formula

This very short approach expresses χ′(λ,H) as an integral over the group M , similar to

the approach in Section 5.2.1 for general symmetric spaces U/K of compact type where

the spherical functions are expressed as an integral over K (see (5.2.3)). We apply the

Harish-Chandra’s integral formula (see [HC57]), which reads

∑
s∈W

det(s)e〈sλ,µ〉 =
Π(λ)Π(µ)

Π(ρ)

∫
M

e〈Adm(λ),µ〉 dm.

where Π(λ) :=
∏

α∈∆+〈α, λ〉, λ, µ ∈ mC, and dm is the normalized Haar measure on M .

Then we can rewrite χ′(λ,H) as

χ′(λ,H) =
i|∆

+|Π(λ+ ρ)

Π(ρ)

∫
M

ei〈λ+ρ,Adm(H)〉 dm.

Note that i|∆
+|Π(λ+ρ)
Π(ρ)

is a polynomial in λ ∈ Λ of degree |∆+| = d−r
2

, thus it satisfies estimate

of the form (5.1.10) for A = d−r
2

uniformly. Also, as |H| . N−1, |Adm(H)| . N−1 uniformly
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in m ∈ M , which implies that the integral f(λ) =
∫
M
ei〈λ+ρ,Adm(H)〉 dm as a function of

λ = n1w1 + · · · + nrwr satisfies estimate of the form (5.1.10) for A = 0, uniformly in

|ni| . N , i = 1, · · · , r, and in |H| . N−1. Then by the Leibniz rule (5.1.2), χ′(λ,H) as a

function of λ satisfies the estimate of the form (5.1.10) for A = d−r
2

uniformly. This finishes

the proof of Lemma 5.2.3.

Remark 5.2.9. Fix µ ∈ a∗. For λ ∈ a∗, define

χµ(λ,H) =

∑
s∈W det (s)ei〈s(λ+µ),H〉∑
s∈W det (s)ei〈s(ρ),H〉 .

Let {α1, · · · , αr} be a set of simple roots in ∆+. Viewing χµ(λ,H) as a function of λ =

n1α1 + · · ·+ nrαr lying in the root lattice, then we have a result similar to Lemma 5.2.3:

|Di1 · · ·Dikχ
µ(λ,H)| . N

d−r
2
−k

uniformly in |ni| . N and |H| . N−1, for all k ∈ Z≥0. Both approaches in the previous

sections to Lemma 5.2.3 can be slightly modified to yield this result.

Remark 5.2.10. Note that Lemma 5.2.3 and Remark 5.2.9 can be stated purely in terms

of a reduced root system without mentioning the ambient compact Lie group. And it is still

true this way. It can be seen either by the approach via BGG-Demazure operators which is

purely a root system theoretic argument, or by the fact that, for any reduced root system ∆,

there associates to it a unique compact simply connected semisimple Lie group equipped with

this root system, thus the approach via Harish-Chandra’s integral formula still works, even

though the argument explicitly involves the group.

5.3 On a N−1-Neighborhood of any Corner

Continue the notations in Section 3.2.

Definition 5.3.1. Recall that A = ia/Γ∨ is the maximal torus of M = U/K where Γ∨ =

2πiZ Hα1

〈α1,α1〉 + · · ·+ 2πiZ Hαr
〈αr,αr〉 . For H ∈ a, we say [iH] ∈ A is a corner if α(H) ∈ πZ for all
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α ∈ Σ.

Note that this definition is well defined and there are finitely many corners in A. In fact,

let w1, · · · , wr be the fundamental weights associated to the set of positive roots {α1, · · · , αr},

and let Λ∨ = πiZ Hw1

〈α1,α1〉+ · · ·+πiZ Hwr
〈αr,αr〉 . Then Γ∨ ⊂ Λ∨ and the set of corners is isomorphic

to the finite set Λ∨/Γ∨.

Example 5.3.2. Continue Example 3.2.1. Then the only corners are θ = 0, π.

Continue Example 3.2.2. Since ∆ = 2Σ, [iH] ∈ A is a corner if and only if α(H) ∈ 2πZ for

all α ∈ ∆.

Theorem 5.3.3. Let [iH0] ∈ A be any corner. Then (5.2.1) and (5.2.2) hold respectively

for t
2πD
∈Ma,q, uniformly for d(x, [iH0]) . N−1, x ∈ A.

Remark 5.3.4. It can be shown that any corner is fixed by the left actions by K. By the

invariance of the Schrödinger kernel under K, the above theorem can be slightly generalized

as such that (5.2.1) and (5.2.2) hold uniformly for d(x, [iH0]) . N−1, x ∈ U/K.

To prove this theorem, we describe an important characterization of spherical functions.

For µ, λ ∈ Λ, let µ ≤ λ denote the statement that λ − µ ∈ 2Z≥0α1 + · · · + 2Z≥0αr. For

µ ∈ Λ+, define

M(µ) =
∑
s∈W

esµ.

Then define the Heckman-Opdam polynomials P (λ), λ ∈ Λ+, by

P (λ) =
∑

µ∈Λ+,µ≤λ

cλ,µM(µ), cλ,λ = 1

such that ∫
A

P (λ) ·M(µ) ·

∣∣∣∣∣ ∏
α∈Σ+

(eα − e−α)mα

∣∣∣∣∣ da = 0, ∀µ ∈ Λ+, µ < λ.
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Here da is the normalized Haar measure on the A. Let e denote the identity of the maximal

torus A. Normalize P (λ) by

P̃ (λ) =
P (λ)

P (λ)(e)
.

Theorem 5.3.5 (Corollary 5.2.3 in Part I of [HS94]). The spherical functions on U/K

restricted on A are given by the normalized Heckman-Opdam polynomials:

Φλ = P̃ (λ), ∀λ ∈ Λ+.

Corollary 5.3.6. Let [iH0] ∈ A be a corner. Then

Φλ(iH + iH0) = eiλ(H0)Φλ(iH), ∀H ∈ a, ∀λ ∈ Λ+.

Proof. By the above theorem and the definition of Heckman-Opdam polynomials, it suffices

to show that for any λ ∈ Λ+,

ei(sµ)(H0) = eiλ(H0), ∀µ ≤ λ, ∀s ∈ W.

This is reduced to showing (sµ − λ)(H0) ∈ 2πZ, and by the definition of [iH0] as a corner,

it is further reduced to sµ − λ ∈ 2Zα1 + · · · + 2Zαr. By the fact µ ≤ λ, it then suffices to

show sµ− µ ∈ 2Zα1 + · · ·+ 2Zαr for any µ ∈ Λ and s ∈ W . But this is a fact by Corollary

4.13.3 in [Var84].

Let Γ = 2Zα1 + · · ·+ 2Zαr. The above corollary implies that for λ ∈ Γ and µ ∈ Λ+ such

that λ+ µ ∈ Λ+,

Φλ+µ(iH + iH0) = eiµ(H0)Φλ+µ(iH). (5.3.1)

This inspires a decomposition of Λ+ and thus of the Schrödinger kernel (3.3.5), which makes

applicable the techniques in proving Theorem 5.2.1 for the proof of Theorem 5.3.3.

Proof of Theorem 5.3.3. The definition of the weight lattice and Axiom (iii) of the root

system in (3.2.1) imply that any of the fundamental weights w1, · · · , wr is a rational linear
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combination of roots. Thus there exists some B ∈ N such that Bwi ∈ Γ for all i. Define

Γ+
1 = Z≥0Bw1 + · · ·+ Z≥0Bwr.

Let Λ+/Γ+
1 = {n1w1 + · · ·+ nrwr : ni = 0, · · · , B − 1, i = 1, · · · , r} and decompose

Λ+ =
⊔

µ∈Λ+/Γ+
1

(Γ+
1 + µ).

This yields decomposition of the Schrödinger kernel

KN =
∑

µ∈Λ+/Γ+
1

Kµ
N , (5.3.2)

Kµ
N =

∑
λ∈Γ+

1

ϕ(
−|λ+ µ+ ρ|2 + |ρ|2

N2
)eit(−|λ+µ+ρ|2+|ρ|2)dλ+µΦλ+µ.

By the finiteness of Λ+/Γ+
1 , it suffices to prove (5.2.1) and (5.2.2) respectively replacing KN

by Kµ
N . By (5.3.1),

Kµ
N(t, iH + iH0) = eiµ(H0)

∑
λ∈Γ+

1

ϕ(
−|λ+ µ+ ρ|2 + |ρ|2

N2
)eit(−|λ+µ+ρ|2+|ρ|2)dλ+µΦλ+µ(iH).

Now we apply Corollary (5.1.3) to Kµ
N(t, iH + iH0) as in the proof of Theorem 5.2.1. Note

that dλ+µ is still a polynomial in λ ∈ Γ+
1 of degree d − r, and the proof of Lemma 5.2.2

generalizes to yield the result that

|Di1 · · ·DinΦµ(n1, · · · , nr, iH)| . N−n (5.3.3)

holds uniformly in 0 ≤ ni . N and |H| . N−1, where Φµ(n1, · · · , nr, iH) = Φλ+µ(iH) with

λ = n1Bw1 + · · · + nrBwr. Thus f(λ) = dλ+µΦλ+µ(iH) satisfies (5.1.10) with A = d − r

uniformly in 0 ≤ ni . N and |H| . N−1. This makes applicable Corollary (5.1.3) and the

rest of the proof is then found in the proof of Proposition 5.1.5.
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5.4 Away From the Corners

We do not have a general theory yet to prove (4.2.3) uniformly for all x ∈ A that stays away

from the corners by a distance & N−1 for a general symmetric space of compact type. The

main obstacle is the lack of explicit formulas or even approximate formulas for the general

spherical functions or say the Heckman-Opdam polynomials (for research in this direction,

see for example [EFK95], [Obl04], [vD03]). In this section, we deal with the special case of

odd dimensional spheres required in Theorem 4.2.3, for which explicit formulas of spherical

functions exist and are useful. The other case of compact Lie groups required in Theorem

4.2.3 of which the spherical functions are given explicitly by Weyl’s character and dimension

formulas, is to be dealt with next chapter.

Let U/K be the sphere of dimension d = 2λ + 1, λ ∈ N. Continue the notations in

Example 3.2.1. To prove (4.2.3) with ε-loss for the Schrödinger kernel (3.3.12), first realize

that KN(t, θ) is invariant under the Weyl group action θ 7→ 2π − θ, thus it suffices to prove

(4.2.3) uniformly for θ in the closed cell [0, π]. Then Theorem 5.3.3 implies (4.2.3) with

ε-loss uniformly for |θ| . N−1 or |θ − π| . N−1, thus it suffices to prove (4.2.3) with ε-loss

uniformly for θ away from 0, π by a distance & N−1. By (3.2.9), it then suffices to prove

|K(ν)
N (t, θ)| .ε

N2λ+1+ε

√
q(1 +N‖ t

2πD
− a

q
‖1/2)

for t
2πD
∈Ma,q, uniformly in CN−1 ≤ θ ≤ π − CN−1, C > 0, where

K
(ν)
N (t, θ) =

2

(2 sin θ)ν+λ

∑
n∈Z≥0

ϕ(
(n+ λ)2 − λ2

N2
)e−it[(n+λ)2−λ2]dnCn,ν cos((n− ν + λ)θ − (ν + λ)π/2),

with

Cn,ν =

(
n+ 2λ− 1

n

)−1(
n+ λ− 1

n

)(
ν + λ− 1

ν

)
(1− λ) · · · (ν − λ)

(n+ λ− 1) · · · (n+ λ− ν)
.

As CN−1 ≤ θ ≤ π − CN−1, | 2
(2 sin θ)ν+λ | . Nν+λ, ν = 0, · · · , λ − 1. Rewriting cos θ =
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1
2
(eiθ + e−iθ), it then suffices to prove

|
∑
n∈Z≥0

ϕ(
(n+ λ)2 − λ2

N2
)e−it[(n+λ)2−λ2]±i(n−ν+λ)θ∓i(ν+λ)π/2dnCn,ν | .ε

Nλ−µ+1+ε

√
q(1 +N‖ t

2πD
− a

q
‖1/2)

(5.4.1)

uniformly in θ ∈ [CN−1, π − CN−1]. Note that dn is polynomial in n of degree d− 1 = 2λ,

then we can write dnCn,v = f(n)
g(n)

such that f(n) and g(n) are polynomials of degree 3λ − 1

and 2λ− 1 + ν respectively. This implies that dnCn,v satisfies estimate of the form (5.1.10)

|Di1 · · ·Dik(dnCn,ν)| . Nλ−ν−k

uniformly in 0 ≤ n . N , for all k ∈ Z≥0. Note that λ− µ ≥ 1, thus we can apply Corollary

5.1.3 part (ii) to (5.4.1) and finish the proof.

Remark 5.4.1. We have the following partial result on (4.2.3) for general symmetric spaces

of compact type of rank 1. Continue Example 3.2.1. Let M be a simply connected symmetric

space of compact type of dimension d and rank 1. The Schrödinger kernel reads

KN(t, θ) =
∑
n∈Z≥0

ϕ(
−(n+ ρ)2 + ρ2

N2
)eit(−(n+ρ)2+ρ2)dn

(
n+ a

n

)−1

P (a,b)
n (cos θ)

where dn is polynomial in n of degree d− 1, ρ = 1
2
mα + 1

4
mα

2
. We have the asymptotics for

the Jacobi polynomials (Theorem 8.21.8 in [Sze75])

P (a,b)
n (cos θ) = (nπ)−

1
2 (sin

θ

2
)−a−

1
2 (cos

θ

2
)−b−

1
2 cos([n+ (a+ b+ 1)/2]θ − (a+

1

2
)π/2) +O(n−

3
2 ),

where the bound for the error term holds uniformly in the interval [c, π− c], c > 0. Fix such

a constant c > 0. Note that

na−ε .ε>0

∣∣∣∣(n+ a

n

)∣∣∣∣ .ε>0 n
a+ε, uniformly in n ∈ N.

This implies∣∣∣∣∣ϕ(
−(n+ ρ)2 + ρ2

N2
)eit(−(n+ρ)2+ρ2)dn

(
n+ a

n

)−1

P (a,b)
n (cos θ)

∣∣∣∣∣ .c,ε n
d−1−a− 1

2
+ε.
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Now either a = 0 or a ≥ 1
2
. For a ≥ 1

2
, the above estimate directly implies

|KN(t, θ)| .c,ε N
d−1+ε

which satisfies (4.2.3) uniformly for θ ∈ [c, π−c] (noting that
√
q(1+N‖ t

2πD
− a

q
‖1/2) . N

1
2 ).

For a = 0, if d = 2, which is the case of the two sphere, then the above estimate gives

|KN(t, θ)| .c,ε N
1
2

+ε

which satisfies (4.2.3) with an ε-loss for θ ∈ [c, π − c]. If d ≥ 3 for a = 0, then∣∣∣∣∣Di1 · · ·Dik

((
n+ a

n

)−1

dnn
− 1

2

)∣∣∣∣∣ .ε n
d− 3

2
−k+ε ≤ nd−1−k.

Since d−1 ≥ 2, an application of part (i) of Corollary 5.1.3 implies (4.2.3) for θ ∈ [c, π− c].

In conclusion, for all symmetric space of compact type of rank 1, (4.2.3) holds (with an ε-loss

for the special case of the two sphere) uniformly for θ ∈ [c, π− c]. Recall from Theorem 5.3.3

we also have that (4.2.3) holds (with an ε-loss for the two sphere) uniformly for θ close to

the corners 0 and π by a distance of . N−1. But the estimate is still missing for other values

of θ.
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CHAPTER 6

Dispersive Estimates on Compact Lie Groups

In this chapter, we finish proof of part (1) of Theorem 4.2.3 . Let M be a simply connected

compact simple Lie group and continue the notations in Example 3.2.2.

Let Q =
⋂
α∈∆+{[iH] ∈ A : 〈α,H〉 ∈ [0, 2π]} be the fundamental cell in the maximal

torus A. In Section 5.3 of last chapter, we prove that (4.2.3) holds uniformly for x = [iH] ∈ Q

that stays within a distance of . N−1 from some corner, that is, if we use ‖ · ‖ to denote

the distance from 0 in the unit circle [0, 1), when ‖ 1
2π
〈α,H〉‖ . N−1 for all α ∈ ∆. The key

ingredient in proving this is the polynomial-like behavior of characters as in Lemma 5.2.3.

Then it suffices to prove it for the cases when x stays away from all the corners by a distance

of & N−1. We will first prove it for the special case when x = [iH] stays away from all

the cell walls, that is, when ‖ 1
2π
〈α,H〉‖ & N−1 for all α ∈ ∆, by exploiting the oscillatory

behavior of characters for such x’s. The general case when x is close to some cell walls within

a distance of . N−1 but away from other cell walls by a distance of & N−1 will be dealt

with combining both the polynomial-like and the oscillatory behavior of characters.

6.1 Away From All the Cell Walls

Continue notations in Example 1.1.3, 3.1.1, 3.2.2, and 3.3.3. From now on, let P denote the

set ∆+ of positive roots. Using (3.2.11), (3.2.12) and (5.2.6), the Schrödinger kernel (3.3.11)

reads

KN =
∑
λ∈Λ+

ϕ(
−|λ+ ρ|2 + |ρ|2

N2
)eit(−|λ+ρ|2+|ρ|2)

∏
α∈P 〈α, λ+ ρ〉∏
α∈P 〈α, ρ〉

∑
s∈W det (s)ei〈s(λ+ρ),H〉

e−i〈ρ,H〉
∏

α∈P (ei〈α,H〉 − 1)
.

66



Proposition 6.1.1. We have

|KN(t, [iH])| . Nd

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(6.1.1)

for t
2πD
∈Ma,q, uniformly for ‖ 1

2π
〈α,H〉‖ & N−1 for all α ∈ ∆, H ∈ a.

Under the condition that ‖ 1
2π
〈α,H〉‖ & N−1 for all α ∈ ∆ = P ∪ (−P ),∣∣∣∣∣e−i〈ρ,H〉∏

α∈P

(ei〈α,H〉 − 1)

∣∣∣∣∣ & N−L (6.1.2)

where L = |P | = d−r
2

. Using this, a direct application of Corollary 5.1.3 part (ii) will yield

(6.1.1) with an ε-loss. To get rid of this loss, we make an important observation that we can

in fact rewrite the Schrödinger kernel as an exponential sum over the whole weight lattice Λ

instead of Λ+, thus we can apply Lemma 5.1.2 instead.

Lemma 6.1.2. Let DP = e−i〈ρ,H〉
∏

α∈P (ei〈α,H〉 − 1) be the Weyl denominator. We have

KN(t, [iH]) =
eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)DP

∑
λ∈Λ

e−it|λ|
2+i〈λ,H〉ϕ(

−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉 (6.1.3)

=
eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)|W |
∑
λ∈Λ

e−it|λ|
2

ϕ(
−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉
∑

s∈W det (s)ei〈s(λ),H〉

DP

(6.1.4)

Proof. We first prove (6.1.3). Recall that ρ = w1 + · · · + wr where {w1, · · · , wr} is a set of

fundamental weights such that Λ+ = Z≥0w1 + · · ·+Z≥0wr and Λ = Zw1 + · · ·+Zwr. Recall

that the fundamental chamber is C = R>0w1 + · · ·+ R>0wr. Thus we have

Λ+ + ρ = Λ ∩ C.

Then we can rewrite the Schrödinger kernel as

KN =
∑

λ∈Λ∩C

ϕ(
−|λ|2 + |ρ|2

N2
)eit(−|λ|

2+|ρ|2)

∏
α∈P 〈α, λ〉∏
α∈P 〈α, ρ〉

∑
s∈W det (s)ei〈sλ,H〉

DP

.

Recall that from Proposition 5.2.5,
∏

α∈P 〈α, ·〉 is an anti-invariant polynomial so that for
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s ∈ W

∏
α∈P

〈α, s(λ)〉 = det(s)
∏
α∈P

〈α, λ〉. (6.1.5)

Then recall that the Weyl group W acts on a∗ as a group of isometries so that

|s(λ)| = |λ|, for all s ∈ W, λ ∈ a∗. (6.1.6)

Using the above two formulas, we rewrite the Schrödinger kernel

KN(t, [iH]) =
eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)DP

∑
λ∈Λ∩C

e−it|λ|
2

ϕ(
−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉
∑
s∈W

det(s)ei〈s(λ),H〉

=
eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)DP

∑
s∈W

∑
λ∈Λ∩C

e−it|λ|
2

ϕ(
−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, s(λ)〉ei〈s(λ),H〉

=
eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)DP

∑
s∈W

∑
λ∈Λ∩C

e−it|s(λ)|2ϕ(
−|s(λ)|2 + |ρ|2

N2
)
∏
α∈P

〈α, s(λ)〉ei〈s(λ),H〉

=
eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)DP

∑
λ∈

⊔
s∈W s(Λ∩C)

e−it|λ|
2

ϕ(
−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉ei〈λ,H〉.

Now (3.2.8) implies

Λ = (
⊔
s∈W

s(Λ ∩ C))
⊔

(
⋃
α∈Σ

{λ ∈ Λ : 〈λ, α〉 = 0}),

using which we rewrite

KN(t, x) =
eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)DP

∑
λ∈Λ

e−it|λ|
2

ϕ(
−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉ei〈λ,H〉.

This proves (6.1.3). To prove (6.1.4), using sΛ = Λ for all s ∈ W , write

∑
λ∈Λ

e−it|λ|
2+i〈λ,H〉ϕ(

−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉 =
∑
λ∈Λ

e−it|s(λ)|2+i〈s(λ),H〉ϕ(
−|s(λ)|2 + |ρ|2

N2
)
∏
α∈P

〈α, s(λ)〉,

(6.1.7)

which implies using (6.1.5) and (6.1.6) that

∑
λ∈Λ

e−it|λ|
2+i〈λ,H〉ϕ(

−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉 = det(s)
∑
λ∈Λ

e−it|λ|
2+i〈s(λ),H〉ϕ(

−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉,
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which further implies

∑
λ∈Λ

e−it|λ|
2+i〈λ,H〉ϕ(

−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉

=
1

|W |
∑
λ∈Λ

e−it|λ|
2

ϕ(
−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉
∑
s∈W

det(s)ei〈s(λ),H〉.

This combined with (6.1.3) yields (6.1.4).

Proof of Proposition 6.1.1. Using (6.1.3) and (6.1.2), it suffices to prove∣∣∣∣∣∑
λ∈Λ

e−it|λ|
2+iλ(H)ϕ(

−|λ|2 + |ρ|2

N2
)
∏
α∈P

〈α, λ〉

∣∣∣∣∣ . N
d+r

2

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

.

for t
2πD
∈ Ma,q uniformly in H. This is a direct consequence of Lemma 5.1.2, noting that∏

α∈P 〈α, λ〉 is a polynomial in λ of degree |P | = d−r
2

, thus it satisfies (5.1.3) with A = d−r
2

.

Example 6.1.3. We summarize the techniques in Chapter 5 and Section 6.1 to prove for

the special case M = SU(2) that

|KN(t, θ)| . N3

√
q(1 +N‖ t

2π
− a

q
‖1/2)

(6.1.8)

for t
2π
∈Ma,q, uniformly for θ lying in the cell [0, π] (then automatically in the whole maximal

torus [0, 2π)). Specialize (6.1.3) and (6.1.4) to the Schrödinger kernel (3.3.13), we get

KN(t, θ) =
eit

eiθ − e−iθ
∑
m∈Z

e−itm
2+imθϕ(

m2 − 1

N2
)m (6.1.9)

=
eit

2

∑
m∈Z

e−itm
2

ϕ(
m2 − 1

N2
)m · e

imθ − e−imθ

eiθ − e−iθ
, θ ∈ R/2πZ. (6.1.10)

Scenario 1: θ is away from the two corners 0, π by a distance of & N−1. Then (6.1.8)

follows directly from Lemma 5.1.2, noting that |eiθ − e−iθ| & N−1.

Scenario 2: θ is close to 0 or π by a distance of . N−1. Recall that Λ = Zw, Γ = Zα with

α = 2w, thus Λ/Γ ∼= {0, 1} · w. Similar to (5.3.2), we decompose

KN(t, θ) =
eit

2

(
K0
N(t, θ) +K1

N(t, θ)
)
,
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where

K0
N =

∑
m=2k,
k∈Z

e−itm
2

ϕ(
m2 − 1

N2
)m · e

imθ − e−imθ

eiθ − e−iθ
,

K1
N =

∑
m=2k+1,
k∈Z

e−itm
2

ϕ(
m2 − 1

N2
)m · e

imθ − e−imθ

eiθ − e−iθ
.

Write θ = θ1 + θ2, where |θ1| . N−1, and θ2 = 0, π. Then for m = 2k, k ∈ Z,

χm(θ) =
1

e−iθ(ei2θ1 − 1)
· (eimθ1 − e−imθ1)

=
1

e−iθ(ei2θ1 − 1)
·
∞∑
n=0

in

n!
((mθ1)n − (−mθ1)n)

=
θ1

e−iθ(ei2θ1 − 1)
·
∑
n odd

in

n!
(2θn−1

1 mn),

and similarly for m = 2k + 1, k ∈ Z,

χm(θ) =
eiθ2θ1

e−iθ(ei2θ1 − 1)
·
∑
n odd

in

n!
(2θn−1

1 mn).

Note that we have been implicitly applying the special case of Proposition 5.2.6 that

fn(θ1) := (mθ1)n − (−mθ1)n = θ1 · δfn =

 θ1 · 2θn−1
1 mn, n odd,

0, n even.

If |k| . N , noting that
∣∣∣ θ1
ei2θ1−1

∣∣∣ . 1, then

|DLχ2k| . N1−L, |DLχ2k+1| . N1−L, L ∈ Z≥0,

where D is the difference operator with respect to the variable k. These two inequalities will

give the desired estimates for K0
N and K1

N respectively and thus for KN , using Lemma 5.1.2.
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6.2 Root Subsystems

To finish proof of part (1) of Theorem 4.2.3, considering Theorem 5.3.3 and Proposition

6.1.1, it suffices to prove 4.2.3 in the scenarios when [iH] ∈ Q is away from some of the

cell walls by a distance of & N−1 but stays close to the other cell walls within a distance of

. N−1. We will identify these other walls as belonging to a root subsystem of the original

root system ∆, and then we will decompose the character, the weight lattice as well as the

Schrödinger kernel according to this root subsystem, so to make Lemma 5.1.2 applicable.

6.2.1 Identifying Root Subsystems and Rewriting the Character

Fix any H ∈ a, let RH be the subset of the set ∆ of roots defined by

RH := {α ∈ ∆ : ‖ 1

2π
〈α,H〉‖ ≤ N−1}.

Thus

∆ \RH = {α ∈ ∆ : ‖ 1

2π
〈α,H〉‖ > N−1}.

Define

∆H := {α ∈ ∆ : α lies in the Z-linear span of RH}, (6.2.1)

then ∆H ⊃ RH , and

‖ 1

2π
〈α,H〉‖ . N−1, ∀α ∈ ∆H , (6.2.2)

with the implicit constant independent of H, and

‖ 1

2π
〈α,H〉‖ > N−1, ∀α ∈ ∆ \∆H . (6.2.3)

Note that ∆H is Z-closed in ∆, that is, no element in ∆ \ ∆H lies in the Z-linear span of

∆H .

Proposition 6.2.1. ∆H is a reduced root system.

Proof. We check the requirements for a reduced root system listed in (3.2.1) and (3.2.2).
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(iii) and (iv) are automatic from the fact that ∆H is a subset of ∆. (i) comes from the fact

that ∆H is a Z-linear space. (ii) follows from the fact that sαβ is a Z-linear combination of

α and β, for all α, β ∈ ∆H , and the fact that ∆H is a Z-linear space.

Then we say that ∆H is a reduced root subsystem of ∆.

Let WH be the Weyl group associated to ∆H . WH is generated by reflections sα for

α ∈ ∆H and thus WH is considered a subgroup of the Weyl group W of ∆. Let P be a

positive system of roots of ∆ and define PH = P ∩ ∆H . Then PH is a positive system of

roots of ∆H . We rewrite the Weyl character

χλ([iH]) =

∑
s∈W det s ei〈s(λ),H〉

e−i〈ρ,H〉
∏

α∈P (ei〈α,H〉 − 1)

=

1
|WH |

∑
sH∈WH

∑
s∈W det(sHs) e

i〈(sHs)(λ),H〉

e−i〈ρ,H〉
(∏

α∈P\PH (ei〈α,H〉 − 1)
)(∏

α∈PH (ei〈α,H〉 − 1)
)

=
1

|WH |e−i〈ρ,H〉
∏

α∈P\PH (ei〈α,H〉 − 1)

∑
s∈W

det s ·
∑

sH∈WH
det sH ei〈sH(s(λ)),H〉∏

α∈PH (ei〈α,H〉 − 1)

= C(H)
∑
s∈W

det s ·
∑

sH∈WH
det sH ei〈sH(s(λ)),H〉∏

α∈PH (ei〈α,H〉 − 1)
,

where

C(H) :=
1

|WH |e−i〈ρ,H〉
∏

α∈P\PH (ei〈α,H〉 − 1)
. (6.2.4)

Then by (6.2.3),

|C(H)| . N |P\PH |. (6.2.5)

Let VH be the R-linear span of ∆H in a∗ and let H‖ be the orthogonal projection of

H ∈ a on VH . Let H⊥ = H −H‖. Then H⊥ is orthogonal to VH and we have

χλ = C(H)
∑
s∈W

det s ·
∑

sH∈WH
det sH ei〈sH(s(λ)),H⊥+H‖〉∏

α∈PH (ei〈α,H⊥+H‖〉 − 1)

= C(H)
∑
s∈W

det s ·
∑

sH∈WH
det sH ei〈s(λ),s−1

H (H⊥)〉ei〈s(λ),s−1
H (H‖)〉∏

α∈PH (ei〈α,H‖〉 − 1)
.
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Note that since H⊥ is orthogonal to every root in ∆H , H⊥ is fixed by the reflection sα for

any α ∈ ∆H , which in turn implies that H⊥ is fixed by any sH ∈ WH , that is, sH(H⊥) = H⊥.

Then

χλ = C(H)
∑
s∈W

det s · ei〈s(λ),H⊥〉 ·
∑

sH∈WH
det sH ei〈s(λ),s−1

H (H‖)〉∏
α∈PH (ei〈α,H‖〉 − 1)

.

Note that by the definition of H‖, we have

‖ 1

2π
〈α,H‖〉‖ . N−1, ∀α ∈ ∆H . (6.2.6)

This means that [iH‖] is a corner of the maximal torus associated to ∆H . We will exploit

the oscillatory behavior of χλ embodied in the term ei〈s(λ),H⊥〉 as well as the polynomial-like

behavior embodied in the term
∑
sH∈WH

det sH e
i〈s(λ),s−1

H
(H‖)〉∏

α∈PH
(ei〈α,H

‖〉−1)
(similar to the treatment in Section

5.3, see Lemma 6.2.7 below) so to make Lemma 5.1.2 applicable.

Using the above formula, we rewrite the Schrödinger kernel (6.1.4)

KN =
C(H)eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)|W |
∑
s∈W

det s ·KN,s (6.2.7)

where

KN,s =
∑
λ∈Λ

ei〈s(λ),H⊥〉−it|λ|2ϕ(
−|λ|2 + |ρ|2

N2
)

(∏
α∈P

〈α, λ〉

)∑
sH∈WH

det sH ei〈s(λ),s−1
H (H‖)〉∏

α∈PH (ei〈α,H‖〉 − 1)
.

Using (6.1.5), (6.1.6) and s(Λ) = Λ for all s ∈ W , we have

KN,s = det s KN,1

where 1 is the identity element in W . Then (6.2.7) becomes

KN =
C(H)eit|ρ|

2

(
∏

α∈P 〈α, ρ〉)
KN,1. (6.2.8)
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Proposition 6.2.2. Recall that

KN,1(t, [iH]) =
∑
λ∈Λ

ei〈λ,H
⊥〉−it|λ|2ϕ(

−|λ|2 + |ρ|2

N2
)

(∏
α∈P

〈α, λ〉

)∑
sH∈WH

det sH ei〈λ,s
−1
H (H‖)〉∏

α∈PH (ei〈α,H‖〉 − 1)
.

(6.2.9)

Then

|KN,1(t, [iH])| . Nd−|P\PH |(√
q(1 +N | t

2πD
− a

q
|1/2)

)r (6.2.10)

for t
2πD
∈Ma,q, uniformly in H ∈ a.

Noting (6.2.5) and (6.2.8), the above proposition directly implies part (1) of Theorem

4.2.3.

Example 6.2.3. The following Figure 6.1 is an illustration of the decomposition of the max-

imal torus of SU(3) according to the values of ‖ 1
2π
〈α,H〉‖, α ∈ ∆. Here ∆+ = {α1, α2, α3 =

α1 + α2}. The three proper subsystems of ∆ are {±αi}, i = 1, 2, 3. The association of ∆H

to H is as follows.

[iH] ∈ regions of color ⇔ ∆H = ∆,

[iH] ∈ regions of color ⇔ ∆H = {±α1},

[iH] ∈ regions of color ⇔ ∆H = {±α2},

[iH] ∈ regions of color ⇔ ∆H = {±α3},

[iH] ∈ regions of color ⇔ ∆H = ∅.

6.2.2 Decomposition of the Weight Lattice

To prove Proposition 6.2.2, we now make a decomposition of the weight lattice Λ according

to the reduced root subsystem ∆H . Let ProjU denote the orthogonal projection map from

74



2πi
2Hα1

〈α1,α1〉

2πi
2Hα3

〈α3,α3〉

2πi
2Hα2

〈α2,α2〉

iHiH‖

iH⊥
∼ N−1

Figure 6.1: Decomposition of the maximal torus of SU(3)
according to the values of ‖ 1

2π
〈α,H〉‖, α ∈ ∆
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the ambient inner product space onto any subspace U .

Lemma 6.2.4. Let Φ be a reduced root system in the space V with the associated weight

lattice ΛΦ. Let Ψ be a reduced root subsystem of Φ. Then let ΓΨ and ΛΦ be the root lattice

and weight lattice associated to Ψ respectively. Let VΨ be the R-linear span of Ψ in V . Let

ΥΨ be the image of the orthogonal projection of ΛΦ onto VΨ. Then the following statements

hold true.

(1) ΥΨ is a lattice and ΓΨ ⊂ ΥΨ ⊂ ΛΨ. In particular, the rank of ΥΨ equals the rank of ΓΨ

as well as ΛΨ.

(2) Let the rank of ΥΨ and ΛΦ be r and R respectively. Let {w1, · · · , wr} be a Z-basis of

ΥΨ. Pick any {u1, · · · , ur} ⊂ ΛΦ such that ProjVΨ
(ui) = wi, i = 1, · · · , r. Then we can

extend {u1, · · · , ur} into a basis {u1, · · · , ur, ur+1, · · · , uR} of ΛΦ. Furthermore, we can pick

{ur+1, · · · , uR} such that ProjVΨ
(ui) = 0 for i = r + 1, · · · , R.

Proof. Part (1). It’s clear that ΥΨ is a lattice. Let ΓΦ be the root lattice associated to Φ.

Then ΓΨ ⊂ ΓΦ. Then

ΓΨ = ProjVΨ
(ΓΨ) ⊂ ProjVΨ

(ΓΦ) ⊂ ProjVΨ
(ΛΦ) = ΥΨ.

On the other hand, for any µ ∈ ΛΦ, α ∈ ΓΨ, 〈ProjVΨ
(µ), α〉 = 〈µ, α〉. This in particular

implies that

2
〈ProjVΨ

(µ), α〉
〈α, α〉

= 2
〈µ, α〉
〈α, α〉

∈ Z, for all µ ∈ ΛΦ, α ∈ ΓΨ.

This implies that ProjVΨ
(µ) ∈ ΛΨ for all µ ∈ ΛΦ, that is, ΥΨ = ProfVΨ

(ΛΦ) ⊂ ΛΨ.

Part (2). Let SΦ := Zu1 + · · ·+ Zur, then SΦ is a sublattice of ΛΦ of rank r. By the theory

of sublattices (see Chapter II, Theorem 1.6 in [Hun80]), there exists a basis {u′1, · · · , u′R} of

ΛΦ and positive integers d1|d2| · · · |dr such that {d1u
′
1, · · · , dru′r} is a basis of SΦ. Then we

must have d1 = d2 = · · · = dr = 1, since

Zd1ProjVΨ
(u′1) + · · ·+ ZdrProjVΨ

(u′r) = ProjVΨ
(SΦ)
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= ProjVΨ
(ΛΦ) ⊃ ZProjVΨ

(u′1) + · · ·+ ZProjVΨ
(u′r)

and that u′1, · · · , u′r are R-linear independent. Thus we have

SΦ = Zu1 + · · ·+ Zur = Zu′1 + · · ·+ Zu′r

and then {u1, · · · , ur, u′r+1, · · · , u′R} is also a basis of ΛΦ. Furthermore, by adding a Z-linear

combination of u1, · · · , ur to each of u′r+1, · · · , u′R, we can assume that ProjVΨ
(u′i) = 0, for

i = r + 1, · · · , R.

Example 6.2.5. Continue the example of SU(3). Recall that the three proper subsystems of

the root system ∆ = {±α1,±α2,±α3} are {±αi}, i = 1, 2, 3. Then the weight lattice of ∆

projects on Rαi to be the weight lattice Zαi
2

associated to the root system {±αi}, i = 1, 2, 3.

We apply the above lemma to the reduced root subsystem ∆H of ∆. Recall that VH

denotes the R-linear span of ∆H in a∗. Let ΓH be the root lattice for ΦH , and let

ΥH := ProjVH (Λ). (6.2.11)

Then by the above lemma, we have

ΥH ⊃ ΓH . (6.2.12)

Let rH be the rank of ∆H as well as of ΓH and ΥH , and let {w1, · · · , wrH} ⊂ ΥH such that

ΥH = Zw1 + · · ·+ ZwrH .

Pick {u1, · · · , urH} ⊂ Λ such that

ProjVH (ui) = wi, i = 1, · · · , rH .

Then by the above lemma, we can extend {u1, · · · , urH} into a basis {u1, · · · , ur} of Λ, such

that

ProjVH (ui) = 0, i = rH + 1, · · · , r, (6.2.13)
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with

Λ = Zu1 + · · ·+ Zur.

Denote

Υ′H = Zu1 + · · ·+ ZurH ⊂ Λ,

then

ProjVH : Υ′H
∼−→ ΥH .

Recalling (6.2.12), let Γ′H be the sublattice of Υ′H corresponding to ΓH ⊂ ΥH under this

isomorphism. More precisely, let {α1, · · · , αrH} be a simple system of roots for ΓH , then

ProjVH : Γ′H = Zα′1 + · · ·+ Zα′rH
∼−→ ΓH = Zα1 + · · ·+ ZαrH , α′i 7→ αi, i = 1, · · · , rH ,

(6.2.14)

and we have

Υ′H/Γ
′
H
∼= ΥH/ΓH , |Υ′H/Γ′H | = |ΥH/ΓH | <∞. (6.2.15)

We decompose the weight lattice

Λ =
⊔

µ∈Υ′H/Γ
′
H

(µ+ Γ′H + ZurH+1 + · · ·+ Zur) ,

then

KN,1 =
∑

µ∈Υ′H/Γ
′
H ,

λ′1=n1α′1+···+nrHα
′
rH
,

λ2=nrH+1urH+1+···+nrur

ei〈µ+λ′1+λ2,H⊥〉−it|µ+λ′1+λ2|2ϕ(
−|µ+ λ′1 + λ2|2 + |ρ|2

N2
)

·

(∏
α∈P

〈α, µ+ λ′1 + λ2〉

)∑
sH∈WH

det sH ei〈µ+λ′1+λ2,s
−1
H (H‖)〉∏

α∈PH (ei〈α,H‖〉 − 1)
.

Note that (6.2.13) implies for λ2 = nrH+1urH+1 + · · ·+ nrur that

〈λ2, s
−1
H (H‖)〉 = 0,
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and (6.2.14) implies for λ′1 = n1α
′
1 + · · ·+ nrHα

′
rH

that

〈λ′1, s−1
H (H‖)〉 = 〈λ1, s

−1
H (H‖)〉 = 〈sH(λ1), H‖〉

where λ1 = n1α1 + · · ·+ nrHαrH ∈ VH . Similarly, also note that

〈µ, s−1
H (H‖)〉 = 〈µ‖, s−1

H (H‖)〉 = 〈sH(µ‖), H‖〉, where µ‖ := ProjVH (µ).

Thus we rewrite

KN,1 =
∑

µ∈Υ′H/Γ
′
H

∑
(n1,··· ,nr)∈Zr,

λ′1=n1α′1+···+nrHα
′
rH
,

λ1=n1α1+···+nrHαrH ,
λ2=nrH+1urH+1+···+nrur

ei〈µ+λ′1+λ2,H⊥〉−it|µ+λ′1+λ2|2ϕ(
−|µ+ λ′1 + λ2|2 + |ρ|2

N2
)

·

(∏
α∈P

〈α, µ+ λ′1 + λ2〉

)∑
sH∈WH

det sH ei〈sH(µ‖+λ1),H‖〉∏
α∈PH (ei〈α,H‖〉 − 1)

.

Remark 6.2.6. We have that in the above formula

χµ‖+λ1
(H‖) :=

∑
sH∈WH

det sH ei〈sH(µ‖+λ1),H‖〉∏
α∈PH (ei〈α,H‖〉 − 1)

(6.2.16)

is a character associated to the weight µ‖+λ1 of the reduced root subsystem ∆H , noting that

µ‖ ∈ ProjVH (Λ) lies in the weight lattice of ∆H by Lemma 6.2.4.

Lemma 6.2.7. Let ∆ ⊂ a∗ be a reduced root system, and let Γ, Λ, W and P be the associated

root lattice, weight lattice, Weyl group and a set of positive roots respectively. Fix some µ ∈ Λ.

For H ∈ a, let

χ(λ,H) =

∑
s∈W (det s)ei〈s(µ+λ),H〉∏

α∈P (ei〈α,H〉 − 1)
.

Then χ(λ,H) as a function on λ ∈ Γ satisfies an estimate of the form (5.1.3)

|Di1 · · ·Dik(χ(λ))| . N |P |−k, (6.2.17)

uniformly for |λ| . N and H ∈ a such that ‖ 1
2π
α(H)‖ . N−1 for all α ∈ ∆, for all k ∈ Z≥0.

Proof. This lemma is similar to (5.3.3). For ‖ 1
2π
α(H)‖ . N−1 for all α ∈ ∆, we can write
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H = H0 + H1 such that α(H0) ∈ 2πZ and |α(H1)| . N−1 for all α ∈ ∆. This implies [iH0]

is a corner and

|H1| . N−1.

By Corollary 4.13.3 in [Var84], s(µ + λ) − (µ + λ) ∈ Γ for µ + λ ∈ Λ for all s ∈ W , thus

eis(µ+λ)(H0) = ei(µ+λ)(H0) = eiµ(H0). Then we rewrite

χ(λ,H) = eiµ(H0)

∑
s∈W (det s)ei〈s(µ+λ),H1〉∏

α∈P (ei〈α,H1〉 − 1)
.

Then the result follows from Remark 5.2.9 and 5.2.10.

Noting (6.2.15), Proposition 6.2.2 reduces to the following.

Proposition 6.2.8. For µ ∈ Υ′H/Γ
′
H , let

Kµ
N,1(t, [iH]) : =

∑
(n1,··· ,nr)∈Zr,

λ′1=n1α′1+···+nrHα
′
rH
,

λ1=n1α1+···+nrHαrH ,
λ2=nrH+1urH+1+···+nrur,

n1,··· ,nr∈Z

ei〈µ+λ′1+λ2,H⊥〉−it|µ+λ′1+λ2|2ϕ(
−|µ+ λ′1 + λ2|2 + |ρ|2

N2
)

·

(∏
α∈P

〈α, µ+ λ′1 + λ2〉

)∑
sH∈WH

det sH ei〈sH(µ‖+λ1),H‖〉∏
α∈PH (ei〈α,H‖〉 − 1)

.

Then

|Kµ
N,1(t, [iH])| . Nd−|P\PH |(√

q(1 +N | t
2πD
− a

q
|1/2)

)r (6.2.18)

for t
2πD
∈Ma,q, uniformly in H ∈ a.

Proof. We apply Lemma 5.1.2 to the lattice Zα′1 + · · ·+ Zα′rH + ZurH+1 + · · ·+ Zur. Let

χ(λ1, H
‖) =

∑
sH∈WH

det sH ei〈sH(µ‖+λ1),H‖〉∏
α∈PH (ei〈α,H‖〉 − 1)

.

Viewing
∏

α∈P 〈α, µ+λ′1 +λ2〉χ(λ1, H
‖) as a function on the lattice (n1, · · · , nr) ∈ Zr, where

λ′1 = n1α
′
1 + · · ·+ nrHα

′
rH

, λ1 = n1α1 + · · ·+ nrHαrH , λ2 = nrH+1urH+1 + · · ·+ nrur, then it
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suffices to show that it satisfies estimate of the form (5.1.3)∣∣∣∣∣Di1 · · ·Dik

(∏
α∈P

〈α, µ+ λ′1 + λ2〉χ(λ1, H
‖)

)∣∣∣∣∣ . Nd−|P\PH |−r−k,

uniformly for |ni| . N , i = 1, · · · , r. Since
∏

α∈P 〈α, µ + λ′1 + λ2〉 is a polynomial of degree

|P |, ∣∣∣∣∣Di1 · · ·Dik

(∏
α∈P

〈α, µ+ λ′1 + λ2〉

)∣∣∣∣∣ . N |P |−k.

Thus by the Leibniz rule (5.1.2) for the Di’s, it suffices to show that

∣∣Di1 · · ·Dik(χ(λ1, H
‖))
∣∣ . Nd−|P\PH |−r−|P |−k = N |PH |−k. (6.2.19)

Since χ(λ1) does not involve the variables nrH+1, · · · , nr, it suffices to prove (6.2.19) for

1 ≤ i1, · · · , ik ≤ rH . Recall (6.2.6), then (6.2.19) follows by noting Remark 6.2.6 and

applying Lemma 6.2.7 to the reduced root system ∆H and the proof is finished.

6.3 Lp Estimates

We prove in this section Lp(M) estimates of the Schrödinger kernel for p not necessarily equal

to infinity. Though they are not used in the proof of the main theorem, they encapsulate

the essential results in the proof of the L∞(M) estimates and are of independent interest.

Proposition 6.3.1. Let KN be the Schrödinger kernel as in (3.3.11). Then for any p > 3,

we have

‖KN(t, ·)‖Lp(M) .
Nd− d

p

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

(6.3.1)

for t
2πD
∈Ma,q.

Proof. As a linear combination of characters, the Schrödinger kernel KN(t, ·) is invariant
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under the adjoint action. Then we can apply to it the Weyl integration formula (3.2.14)

‖KN(t, ·)‖pLp(M) =
1

|W |

∫
A

|KN(t, a)|p|DP (a)|2 da. (6.3.2)

We have shown in Section 6.2 that each H ∈ a is associated to a root subsystem ∆H such

that (6.2.2) and (6.2.3) hold. Note that there are finitely many root subsystems of a given

root system, thus A is covered by finitely many subsets R of the form

R = {[iH] ∈ A : ‖ 1

2π
〈α,H〉‖ . N−1,∀α ∈ Ψ; ‖ 1

2π
〈α,H〉‖ > N−1,∀α ∈ ∆ \Ψ} (6.3.3)

where Ψ is a root subsystem of ∆. Thus to prove (6.3.1), using (6.3.2), it suffices to show∫
R

|KN(t, [iH])|p|Dp(H)|2 dH .

(
Nd

(
√
q(1 +N‖ t

2πD
− a

q
‖1/2))r

)p

N−d. (6.3.4)

By (6.2.5), (6.2.8) and (6.2.10), we have

KN(t, [iH]) .
1∏

α∈P\Q(ei〈α,H〉 − 1)
· Nd−|P\Q|(√

q(1 +N | t
2πD
− a

q
|1/2)

)r
where P,Q are respectively the sets of positive roots of ∆ and Ψ with P ⊃ Q. Recall

DP (H) =
∏

α∈P (ei〈α,H〉 − 1), (6.3.4) is then reduced to

∫
R

∣∣∣∣∣ 1∏
α∈P\Q(ei〈α,H〉 − 1)

∣∣∣∣∣
p−2 ∣∣∣∣∣∏

α∈Q

(ei〈α,H〉 − 1)

∣∣∣∣∣
2

dH . Np|P\Q|−d.

Using

|ei〈α,H〉 − 1| ≈ ‖ 1

2π
〈α,H〉‖,

it suffices to show∫
R

∣∣∣∣∣ 1∏
α∈P\Q ‖

1
2π
〈α,H〉‖

∣∣∣∣∣
p−2 ∣∣∣∣∣∏

α∈Q

‖ 1

2π
〈α,H〉‖

∣∣∣∣∣
2

dH . Np|P\Q|−d. (6.3.5)

For each H ∈ a, write

H = H ′ +H0
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such that

‖ 1

2π
〈α,H〉‖ = | 1

2π
〈α,H ′〉|, 〈α,H0〉 ∈ 2πZ, ∀α ∈ P.

Then write

R ⊂
⋃

[iH0] is a corner

R′ + [iH0] (6.3.6)

where

R′ = {[iH] ∈ A : | 1

2π
〈α,H〉| . N−1,∀α ∈ Q; | 1

2π
〈α,H〉| > N−1,∀α ∈ P \Q}. (6.3.7)

Recall that there are only finitely many corners. Thus using (6.3.6), (6.3.5) is further reduced

to ∫
R′

∣∣∣∣∣ 1∏
α∈P\Q |

1
2π
〈α,H〉|

∣∣∣∣∣
p−2 ∣∣∣∣∣∏

α∈Q

| 1

2π
〈α,H〉|

∣∣∣∣∣
2

dH . Np|P\Q|−d. (6.3.8)

Now we reparametrize the maximal torus A by

H =
r∑
i=1

tiHwi , (t1, · · · , tr) ∈ D

where {w1, · · · , wr} is the set of fundamental weights associated to a set {α1, · · · , αr} of

simple roots and Hwi corresponds to wi by a
∼−→ a∗, and D is a bounded domain in Rr. Then

the normalized Haar measure dH equals

dH = Cdt1 · · · dtr

for some constant C. Let s ≤ r such that

{α1, · · · , αs} ⊂ P \Q,

{αs+1, · · · , αr} ⊂ Q.
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Using (6.3.7), we estimate

∫
R′

∣∣∣∣∣ 1∏
α∈P\Q |

1
2π
〈α,H〉|

∣∣∣∣∣
p−2 ∣∣∣∣∣∏

α∈Q

| 1

2π
〈α,H〉|

∣∣∣∣∣
2

dH

.
∫
|t1|,··· ,|ts|&N−1,
|ts+1|,··· ,|tr|.N−1

1

|t1 · · · ts|p−2
N (p−2)(|P\Q|−s)N−2|Q| dt1 · · · dtr. (6.3.9)

If p > 3, the above is bounded by

. N (p−2)(|P\Q|−s)N−2|Q|N s(p−3)−(r−s) = Np|P\Q|−d,

noting that 2|P \Q|+ 2|Q|+ r = 2|P |+ r = d.

Remark 6.3.2. The requirement p > 3 is by no means optimal. The estimate in (6.3.9)

may be improved to lower the exponent p. I conjecture that (6.3.1) holds for all p > pr such

that limr→∞ pr = 2, r being the rank of M .
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APPENDIX

A. Proof of an Interpolation Lemma

Lemma A.1. Let (X,µ) and (Y, ν) be σ-finite measure spaces. Let p0, p1, q0, q1 ∈ [1,∞],

p0 6= p1. Suppose that T is a linear operator from Lp0(X,µ)+Lp1(X,µ) to Lq0(Y, ν)+Lq1(Y, ν)

such that

‖Tf‖Lq0 ≤ A‖f‖Lp0 , ∀f ∈ Lp0 , (A.1)

‖Tf‖Lq1 ≤ B‖f‖Lp1 +D‖f‖Lp0 , ∀f ∈ Lp1 , (A.2)

for some positive constants A,B,D. Let 0 < θ < 1 and

1

pθ
=

1− θ
p0

+
θ

p1

,
1

qθ
=

1− θ
q0

+
θ

q1

.

Then for some universal constant C,

‖Tf‖Lqθ ≤ C(A1−θBθ‖f‖pθ + A1−θDθ‖f‖p0), ∀f ∈ Lpθ ∩ Lp0 . (A.3)

Proof. 1 By scaling the measure ν, noting the assumption p0 6= p1, we can assume that

B = D.

We now use complex interpolation theory (see Chapter 4 and 5 in [BL76] as a reference) to

prove the lemma. Let (X0, X1)θ denote the complex interpolation space between compatible

complex Banach spaces X0 and X1 of parameter θ. By Theorem 4.1.2 in [BL76], it suffices

to prove

(Lq0 , Lq1)θ = Lqθ ,

1The author thanks mathoverflow.net for providing a forum where he could ask about the proof and
be provided with an authoritative reference.
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(Lp0 , Lp1 ∩ Lp0)θ = Lpθ ∩ Lp0 ,

in the sense that the norm on either side of the equation is bounded by the norm on the other

side multiplied by a universal positive constant. The first equation is given by Theorem

5.1.1 in [BL76]. The second equation follows by the same line of proof of Theorem 3 in

[Rie12]. In fact, we can generalize it to

(Lp0 ∩ Lp, Lp1 ∩ Lp) = Lpθ ∩ Lp (A.4)

for either 1 ≤ p ≤ p0, p1 ≤ ∞, or 1 ≤ p0, p1 ≤ p ≤ ∞. For the sake of completeness, we

sketch the proof here. We prove the case when 1 ≤ p ≤ p0, p1 ≤ ∞, and the other case can

be proved similarly. By Theorem 4 in [Rie12], given any f ∈ L1(M) + L∞(M) (originally

stated with respect to a domain of Rn, but can be generalized to any σ-measure space M by

its proof), there exist linear maps

S1 : L1(M) + L∞ → L1(0, 1), S2 : L1(M) + L∞(M)→ l∞

T1 : L1(0, 1)→ L1(M) + L∞(M), T2 : l∞ → L1(M) + L∞(M),

such that

f = T1S1f + T2S2f (A.5)

holds almost everywhere, and

‖S1u‖Lr(0,1) ≤ ‖u‖Lr(M), ‖S2u‖lr ≤ ‖u‖Lr(M),

‖T1u‖Lr(M) ≤ ‖u‖Lr(0,1), ‖T2u‖Lr(M) ≤ ‖u‖lr

for all 1 ≤ r ≤ ∞ and all u in the respective Lebesgue spaces. Note that for all p ≤ r,

‖u‖Lp(0,1) ≤ ‖u‖Lr(0,1), ‖u‖lr ≤ ‖u‖lp
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for u in the respective Lebesgue spaces, whence we have for all p ≤ r,

‖S1u‖Lr(0,1) ≤ ‖u‖Lr(M)∩Lp(M), (A.6)

‖S2u‖lp ≤ ‖u‖Lr(M)∩Lp(M), (A.7)

‖T1u‖Lr(M)∩Lp(M) ≤ ‖u‖Lr(0,1), (A.8)

‖T2u‖Lr(M)∩Lp(M) ≤ ‖u‖lp . (A.9)

Then by Theorem 4.1.2 and 5.1.1 in [BL76], the above inequalities imply

‖S1u‖Lpθ (0,1) ≤ ‖u‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ , (A.10)

‖S2u‖lpθ ≤ ‖u‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ , (A.11)

‖T1u‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ ≤ ‖u‖Lpθ (0,1), (A.12)

‖T2u‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ ≤ ‖u‖lpθ . (A.13)

Now let f ∈ Lpθ(M) ∩ Lp(M) and let the linear maps S1, S2, T1, T2 be the maps defined as

above for f . Now (A.6), (A.12), (A.7), (A.13) imply

‖T1S1f‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ ≤ ‖f‖Lpθ (M)∩Lp(M),

‖T2S2f‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ ≤ ‖f‖Lpθ (M)∩Lp(M),

then by (A.5),

‖f‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ ≤ 2‖f‖Lpθ (M)∩Lp(M).

On the other hand, let f ∈ (Lp0(M) ∩ Lp(M), Lp1(M) ∩ Lp(M))θ and let the linear maps

S1, S2, T1, T2 be the maps defined as above for this f . Then (A.10), (A.8), (A.11), (A.9)

imply

‖T1S1f‖Lpθ (M)∩Lp(M) ≤ ‖f‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ ,

‖T2S2f‖Lpθ (M)∩Lp(M) ≤ ‖f‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ ,
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which imply by (A.5)

‖f‖Lpθ (M)∩Lp(M) ≤ 2‖f‖(Lp0 (M)∩Lp(M),Lp1 (M)∩Lp(M))θ .

Thus (A.4) is proved, and the lemma follows.

B. Proof of a Major Arc Lemma

Lemma B.1. Let N ∈ N, a ∈ Z≥0, q ∈ N, a < q, (a, q) = 1, and q < N . Let ‖ · ‖ denote

the distance from 0 on the standard unit length circle. Suppose ‖t− a
q
‖ ≤ 1

qN
. Then we have

∑
|n|.N

1

(max{‖nt‖, 1
N
})2

.
N3

(
√
q(1 +N‖t− a

q
‖1/2))2

. (B.1)

Proof. Let τ = t− a
q
, then ‖τ‖ < 1

qN
, ‖nt‖ = ‖na

q
+ nτ‖. We see that for each q consecutive

numbers of n, say n ∈ A = {0, 1, · · · , q− 1}, the distribution of S(A) = {‖na
q

+ nτ | n ∈ A}

on the unit circle follows the patern that apart from the closest point to 0, the other q − 1

points out of S(A) stays away from 0 by the distances of about m
q

, m = 1, 2, · · · , q− 1. The

set {n | |n| . N} lies in the disjoint union of A+ lq, for l ∈ Z, |l| . N
q

. So first we have that

the contribution to the left of (B.1) from the points away from 0 out of A+ lq for all l ∈ Z,

|l| . N
q

, is

.
∑
|l|.N

q

q−1∑
m=1

1

(m
q

)2
. Nq. (B.2)

Now let p(A) denote the point out of S(A) that is closest to 0. Then compared with p(A),

p(A± q) moves away or towards 0 by a distance of q‖τ‖. We consider two separate cases.

Case I. Suppose that 1
q‖τ‖ ≥

N2

q
. Then we simply estimate the contribution from the points

closest to 0 out of p(A+ lq) for all l to the left of (B.1) to be

.
∑
|l|.N

q

1
1
N2

.
N3

q
. (B.3)

Case II. Suppose on the contrary that 1
q‖τ‖ ≤

N2

q
. Then if the closest point to 0 out of some

88



A+lq say for l = l0 is ever within the distance of 1
N

from 0, the closest point out of A+lq will

stay the distance of 1
N

away from 0 when |l− l0| ≥ 2
Nq‖τ‖ . This implies that the contribution

to the left of (B.1) out of the closest points from 0 is

.
1

Nq‖τ‖
· 1

1
N2

+
∑

1
Nq‖τ‖.l.

N
q

1

(lq‖τ‖)2
.

N

q‖τ‖
. (B.4)

In summary, we have

∑
|n|.N

1

(max{‖nt‖, 1
N
})2

. Nq +N min{N
2

q
,

1

q‖τ‖
}

. N min{N
2

q
,

1

q‖τ‖
}

.
N3

q(1 +N‖τ‖1/2)2
. (B.5)

Remark B.2. With the same notation as in the previous lemma, the proof can be slightly

modified to show that

∑
|n|.N

1

max{‖nt‖, 1
N
}
.

N2 logN

(
√
q(1 +N‖t− a

q
‖1/2))2

. (B.6)
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[BL76] Jöran Bergh and Jörgen Löfström. Interpolation spaces. An introduction. Springer-
Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften,
No. 223.

[Bou93] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets
and applications to nonlinear evolution equations. I. Schrödinger equations. Geom.
Funct. Anal., 3(2):107–156, 1993.

[Bou11] Jean-Marc Bouclet. Strichartz estimates on asymptotically hyperbolic manifolds.
Anal. PDE, 4(1):1–84, 2011.

[Bou13] J. Bourgain. Moment inequalities for trigonometric polynomials with spectrum in
curved hypersurfaces. Israel J. Math., 193(1):441–458, 2013.

90



[BT08] Jean-Marc Bouclet and Nikolay Tzvetkov. On global Strichartz estimates for non-
trapping metrics. J. Funct. Anal., 254(6):1661–1682, 2008.

[EFK95] Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov, Jr. Spherical functions
on affine Lie groups. Duke Math. J., 80(1):59–90, 1995.

[FMM15] A. Fotiadis, N. Mandouvalos, and M. Marias. Schrödinger equation on locally
symmetric spaces. ArXiv e-prints, September 2015.

[GOW14] Zihua Guo, Tadahiro Oh, and Yuzhao Wang. Strichartz estimates for Schrödinger
equations on irrational tori. Proc. Lond. Math. Soc. (3), 109(4):975–1013, 2014.

[GV95] J. Ginibre and G. Velo. Generalized Strichartz inequalities for the wave equation.
J. Funct. Anal., 133(1):50–68, 1995.

[HC57] Harish-Chandra. Differential operators on a semisimple Lie algebra. Amer. J. Math.,
79:87–120, 1957.

[Hel84] Sigurdur Helgason. Groups and geometric analysis, volume 113 of Pure and Applied
Mathematics. Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant
differential operators, and spherical functions.

[Hel01] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, vol-
ume 34 of Graduate Studies in Mathematics. American Mathematical Society, Prov-
idence, RI, 2001. Corrected reprint of the 1978 original.

[Hel08] Sigurdur Helgason. Geometric analysis on symmetric spaces, volume 39 of Mathe-
matical Surveys and Monographs. American Mathematical Society, Providence, RI,
second edition, 2008.

[Her13] Sebastian Herr. The quintic nonlinear Schrödinger equation on three-dimensional
Zoll manifolds. Amer. J. Math., 135(5):1271–1290, 2013.

[Hil82] Howard Hiller. Geometry of Coxeter groups, volume 54 of Research Notes in Math-
ematics. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982.

[HS94] Gerrit Heckman and Henrik Schlichtkrull. Harmonic analysis and special functions
on symmetric spaces, volume 16 of Perspectives in Mathematics. Academic Press,
Inc., San Diego, CA, 1994.

[HTW06] Andrew Hassell, Terence Tao, and Jared Wunsch. Sharp Strichartz estimates
on nontrapping asymptotically conic manifolds. Amer. J. Math., 128(4):963–1024,
2006.

[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1990.

[Hun80] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.

91



Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original.

[IS09] Alexandru D. Ionescu and Gigliola Staffilani. Semilinear Schrödinger flows on hy-
perbolic spaces: scattering H1. Math. Ann., 345(1):133–158, 2009.

[Kna01] Anthony W. Knapp. Representation theory of semisimple groups. Princeton
Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 2001. An
overview based on examples, Reprint of the 1986 original.

[KT98] Markus Keel and Terence Tao. Endpoint Strichartz estimates. Amer. J. Math.,
120(5):955–980, 1998.

[KV16] Rowan Killip and Monica Visan. Scale invariant Strichartz estimates on tori and
applications. Math. Res. Lett., 23(2):445–472, 2016.

[ Lab08] Izabella  Laba. From harmonic analysis to arithmetic combinatorics. Bull. Amer.
Math. Soc. (N.S.), 45(1):77–115, 2008.

[Obl04] A. Oblomkov. Heckman-Opdam’s Jacobi polynomials for the BCn root system and
generalized spherical functions. Adv. Math., 186(1):153–180, 2004.

[Pie06] Vittoria Pierfelice. Weighted Strichartz estimates for the radial perturbed
Schrödinger equation on the hyperbolic space. Manuscripta Math., 120(4):377–389,
2006.

[Pie08] Vittoria Pierfelice. Weighted Strichartz estimates for the Schrödinger and wave
equations on Damek-Ricci spaces. Math. Z., 260(2):377–392, 2008.

[Pro07] Claudio Procesi. Lie groups. Universitext. Springer, New York, 2007. An approach
through invariants and representations.

[Rie12] Paul Felix Riechwald. Interpolation of sum and intersection spaces of Lq-type and
applications to the Stokes problem in general unbounded domains. Ann. Univ.
Ferrara Sez. VII Sci. Mat., 58(1):167–181, 2012.

[ST02] Gigliola Staffilani and Daniel Tataru. Strichartz estimates for a Schrödinger operator
with nonsmooth coefficients. Comm. Partial Differential Equations, 27(7-8):1337–
1372, 2002.

[Str77] Robert S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and
decay of solutions of wave equations. Duke Math. J., 44(3):705–714, 1977.

[Str83] Robert S. Strichartz. Analysis of the Laplacian on the complete Riemannian mani-
fold. J. Funct. Anal., 52(1):48–79, 1983.
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