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ABSTRACT OF THE DISSERTATION

Strichartz estimates for the Schrodinger flow on compact symmetric spaces

by

Yunfeng Zhang
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2018
Professor Rowan Brett Killip, Co-Chair

Professor Monica Visan, Co-Chair

This thesis studies scaling critical Strichartz estimates for the Schrodinger flow on compact
symmetric spaces. A general scaling critical Strichartz estimate (with an e-loss, respectively)
is given conditional on a conjectured dispersive estimate (with an e-loss, respectively) on
general compact symmetric spaces. The dispersive estimate is then proved for the special
case of connected compact Lie groups. Slightly more generally, for products of connected
compact Lie groups and spheres of odd dimension, the dispersive estimate is proved with an

e-loss.
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CHAPTER 1

Introduction

We start with a complete Riemannian manifold (M, g) of dimension d, associated to which
are the Laplace-Beltrami operator A, and the volume form measure ;. Then it is well
known that A, is essentially self-adjoint on L?(M) := L*(M, dpu,) (see [Str83] for a proof).

This gives the functional calculus of A,, and in particular gives the one-parameter unitary

operators e*?s which provides the solution to the linear Schrodinger equation on (M, g). We

A

refer to €29 as the Schrodinger flow. The functional calculus of A, also gives the definition

of the Bessel potentials thus the definition of the Sobolev space

H(M):={ue LQ(M) | Jwl s any = || (1 = A)S/Qu“Lz(M) < 00}

We are interested in obtaining estimates of the form

1€%29 f| orrxany < CI|f |l msan) (1.0.1)

where I C R is a fixed time interval, LPLI(I x M) is the space of L” functions on I with
values in L?(M), and C' is a constant that does not depend on f. Such estimates are often
called Strichartz estimates (for the Schrodinger flow), in honor of Robert Strichartz who first
derived such estimates for the wave equation on Euclidean spaces (see [Str77]).

The significance of the Strichartz estimates is evident in many ways. The Strichartz
estimates have important applications in the field of nonlinear Schrodinger equations, in
the sense that many perturbative results often require a good control on the linear solution
which is exactly provided by the Strichartz estimates. The Strichartz estimates can also

be interpreted as Fourier restriction estimates, which play a fundamental rule in the field



of classical harmonic analysis and have deep connections to arithmetic combinatorics (see
[Lab08]). Furthermore, the relevance of the distribution of eigenvalues and the norm of
eigenfunctions of A, in deriving the estimates makes the Strichartz estimates also a subject
in the field of semiclassical analysis and spectral geometry.

Many cases of Strichartz estimates for the Schrédinger flow are known in the literature.
For noncompact manifolds, first we have the sharp Strichartz estimates on the Euclidean

spaces obtained in [GV95, KT98]:

12 Fll 2o parxray < Ol f |l 22y (1.0.2)

where %—f— g = %l, p,q > 2, (p,q,d) # (2,00,2). Such pairs (p,q) are called admissible. This

implies by Sobolev embedding that

1€ fll oo xray < Ol Fllarsrey (1.0.3)
where
d 2 d
§=——— — — >0, (1.0.4)
2 p r

p,r > 2, (p,r,d) # (2,00,2). Note that the equality in (1.0.4) can be derived from a
standard scaling argument, and we call exponent triples (p,r, s) that satisfy (1.0.4) as well
as the corresponding Strichartz estimates scaling critical. An essential ingredient in the

derivation of (1.0.3) is the dispersive estimates
: _d
€2 fll e ray < CIEI7Z (1 Fl] 1 oy (1.0.5)

Similar dispersive estimates hold on many noncompact manifolds, which are essential in
the derivation of Strichartz estimates. For example, see [AP09, Ban07, IS09, Pie06] for
Strichartz estimates on the real hyperbolic spaces, [APV11, Pie08, BD07] for Damek-Ricci
spaces which include all rank one symmetric spaces of noncompact type, [Boull] for asymp-
totically hyperbolic manifolds, [HTWO06] for asymptotically conic manifolds, [BT08, ST02]

for some perturbed Schrédinger equations on Euclidean spaces, and [FMM15] for symmetric



spaces G/K where G is complex and K is a maximal compact subgroup of G.

For compact manifolds, however, dispersive estimates that are global in time such as
(1.0.5) are expected to fail and so are Strichartz estimates such as (1.0.2) (see [AM12] which
shows (1.0.2) fails for any p, ¢ with p = ¢). The Sobolev exponent s in (1.0.1) are expected
to be positive for (1.0.1) to possibly hold. And we also expect sharp Strichartz estimates
that fail to be scaling critical and thus are scaling subcritical, in the sense that the exponents

(p,r,s) in (1.0.1) satisfy

For example, from the results in [BGT04], we know that on a general compact Riemannian

manifold (M, g) it holds that for any finite interval I,

||€itAgf”LPL”(IxM) < CHf”Hl/P(M) (1-0-6)

for all admissible pairs (p,r). These estimates are scaling subcritical, and the special case of

2d

, 745, 1/2) can be shown to be sharp on spheres of dimension d > 3

which when (p,r,s) = (2
equipped with canonical Riemannian metrics. The proof of (1.0.6) in [BGT04] hinges on a
semiclassical analogue of the dispersive estimate (1.0.5): given any bump function ¢ on R,

there exists o > 0 such that
i _d
[ 29 0(R?Ag) fll oo ary < CIET2 (| fll 2 any (1.0.7)

for every t € (—ah, ah).
On the other hand, scaling critical Strichartz estimates have also been obtained on com-

pact manifolds. On spheres and more generally Zoll manifolds, it holds that

€ llsasany < Oy, (108

for p > 4 when d > 3 and p > 6 when d = 2 (see [BGT04, BGT05, Her13]). We also
have that on a d-dimensional torus T? equipped with a rectangular metric g = ®%_,a;dt?

where the a;’s are positive numbers and the dt?’s are the canonical metrics on the circle



2(d+2)
d

components of T? Strichartz estimates of the form (1.0.8) hold for all p > (see

[Bou93, Boul3, BD15, GOW14, KV16]). In [Bou93], the author was able to obtain (1.0.8)

2(d+4)
d

for p > on tori that are square in the sense that the underlying metric is a constant

multiple of ®ZL ,dt?, by interpolating a distributional Strichartz estimate
A-p{(t,x) € I x T¢: [e®P9p(N2A,) f(z)| > A\}/P < CN%_%H]CHLQ(']FI). (1.0.9)
for A\ > N4 p > 2(%2)’ N > 1, with the trivial subcritical Strichartz estimate
12 fll 2 (rxray < CJ|fllz2ray. (1.0.10)

(1.0.9) is a consequence of an arithmetic version of dispersive estimates:

. N
"0 (N T2Ag) fll oo ray < O ) I 1l e (1.0.11)
P = T A NI - g
for ||+ — ol < —, where || - || stands for the distance from 0 on the standard circle with

gN’

length 1, a,q are nonnegative integers with a < ¢ and (a,q) = 1, ¢ < N. Here T is the
period for the Schridinger flow e®®s. Then in [Boul3], the author improved (1.0.10) into a

stronger subcritical Strichartz estimate

e < Ol fll z2(ray (1.0.12)

IxTd) —

gf” 2(d+1)(

which yields (1.0.8) for p > (d+3) , which is further upgraded to the full range p > 2(d+2) in
[BD15]. Then authors in [GOW14, KV16] extend the results to all rectangular tori.

The understanding of Strichartz estimates on compact manifolds is far from complete.
The sublime goal is to understand how the exponents (p, 7, s) in the sharp Strichartz estimates
are related to the geometry and topology of the underlying manifold. This thesis picks up
a modest goal, that is to explore scaling critical Strichartz estimates on the special case of
compact Lie groups and more generally compact Riemannian globally symmetric spaces. By

the previous discussion, for such spaces, the cases already solved in the literature are

1. Euclidean type, i.e. tori;



2. Symmetric space of compact type of rank one, which are Zoll manifolds, i.e. manifolds
such that the geodesics are all closed and have the same length (see Proposition 10.2 of Ch.
VII in [Hel01]).

Symmetric spaces are equipped with rich tools of harmonic analysis, which provide a possible
general approach to Strichartz estimates. In this thesis, scaling critical (with an e-loss,
respectively) Strichartz estimates will be proved for general compact Riemannian globally
symmetric spaces with canonical rational metrics, conditional on a conjectured scaling critical
(with an e-loss, respectively) dispersive estimate associated to the spherical functions. This
scaling critical dispersive estimate will be proved for the special case of connected compact
Lie groups. More generally, for products of connected compact Lie groups and spheres of

odd dimension, the dispersive estimate will be proved with an e-loss.

1.1 Statement of the Main Theorem

1.1.1 Rational Metric and Rank

Throughout the thesis, a compact symmetric space always means a compact Riemannian
globally symmetric space. Let M be a compact symmetric space. It can be shown that M
is finitely covered by M = T™ x N where T" is the n-dimensional torus and N is a simply
connected Riemannian globally symmetric space of compact type!. As a simply connected
Riemannian globally symmetric space of compact type, N is a direct product U;/K; X
Us /Ky % -+ XU,/ K, of irreducible simply connected Riemannian globally symmetric space

of compact type (see Proposition 5.5 in Ch. VIII in [HelO1]).

IThis fact can be proved as follows. Let M = U/K be a compact symmetric space and u, £ be respectively
the Lie algebras of U, K. Then u = ¢ 4+ u’ where ¢ is the center of u and u’ is the semisimple part of u. Let
u = £+ m be the Cartan decomposition. Then € = ¢ + & for ¢ = cNE ¥ = NE and m = ¢, + m’ for
tm = cnNm,m =u Nm Let U, K’ be the subgroups of U associated to v, ¥ respectively. Then U’/K’
is a symmetric space of compact type and let U’ / K’ be its universal cover, the covering map induced from
the universal covering m : U’ — U’. Let Cy be the toric subgroup of U associated to ¢y. Then the map
Cou x U /K" = U/K, (c,uK') — er(u)K is a finite covering map.



Definition 1.1.1. We call such M = T x Uy /K1 xUy /Ky x -+ XUy, /Ky a universal covering

compact symmetric space, and say that M is universally covered by M.

Now let U/K be a simply connected Riemannian globally symmetric space of compact
type. We consider the dual symmetric space G/K with G and U analytic subgroups of the
simply connected group G* whose Lie algebra is the complexification g© of the Lie algebra
g of G. Let u £ be respectively the Lie algebra of U and K. Then we have the Cartan

decomposition

g=1t+p, (1.1.1)

u==t+ip. (1.1.2)

The negative of the Cartan-Killing form —{ , ) defined on u (as well as on g and g®) restricts
to ip as a positive definite bilinear form invariant under the adjoint action of U, which induces
a Riemannian metric on U/K invariant under the left action of U.

We equip each irreducible factor U;/K; with such a metric g; defined above. Then we
equip M = T" x Uy /Ky X --- x Uy, /K, the metric

§ = (®f 0;dt?) @ (T, B;9;), (1.1.3)
where dt? is the canonical metric on a circle of perimeter 27, and «;, 3; > 0, i =1,--- | n,
7g=1,---,m. Then g induces a metric g on M.

Definition 1.1.2. Let g be the metric induced from g in (1.1.3) as described above. We
call g a rational metric provided the numbers aq, -+ , oy, B1,- -+, Bm are rational multiples

of each other. If not, we call it an irrational metric.

Provided the numbers aq,--- , ay,, B1,---, B, are rational multiples of each other, the

A7 on each factor of M are rational multiples of each

periods of the Schrodinger flow e
other, which implies that the Schrodinger flow on M as well as on M is still periodic (see

Proposition 2.2.1 and Section 4.1).



Next, we define the rank of a Riemannian symmetric space U/K of compact type as the
dimension of any maximal abelian subspace a of p. In general, let M be a compact symmetric
space with a universal covering compact symmetric space M =T"x Uy /Ky x -+ X Up /K.
We define the rank of M as well as M to be n+171 + - - - + 7, where r; is the rank of U,/ K;,

j=1,---,m.

Example 1.1.3. Any compact connected Lie group M is a compact symmetric space. M 1is
covered by a universal covering compact Lie group M = T" X My X - - - X M,,, where the M;’s
are compact simply connected simple Lie groups (see Theorem 4, Section 7.2, Chapter 10 in
[Pro07]). Suppose M is a compact simply connected simple Lie group with Lie algebra m.
Then M = U/K where U = M x M and K = {(x,x) : € M}, of which the Lie algebras are
u=mxmand t = {(X,X) : X € m} respectively, and the complement of £ in the Cartan

decomposition (1.1.2) isip = {(X,—X) : X € m}. We have the identifications

U/K=M, (z,y)K — xy™ ",

ip=m, (X,—X) > 2X. (1.1.4)

Under the above identification, the Cartan-Killing form on ip s half the value of the Cartan-
Killing form on m, and any Cartan subalgebra (i.e. mazimal abelian subspace) ia of m

corresponds to a mazximal abelian subspace of ip.

1.1.2 Main Conjecture and Main Theorem

Inspired by the result of Strichartz estimates on tori and Zoll manifolds, we have the following

conjecture.

Conjecture 1.1.4. Let M be a compact symmetric space equipped with a rational metric g.
Let d be the dimension of M and r the rank of M. Let I C R be a finite time interval. Then

the following scaling critical Strichartz estimates

||€itAgf||Lp(I><M) S CH‘]CHH%*%(M) (115)

7



hold for all p > 2 + %.
This thesis proves some special cases of this conjecture.

Theorem 1.1.5. Let M be a compact symmetric space universally covered by M = T" x
Uy/Ky X -+ X Up/Ky. Equip M with a rational metric g and let d,r be respectively the
dimension and rank of M. Let I C R be a finite time interval.

Case 1. [Zhal7] If each U;/K; is a compact simply connected simple Lie group, in other
words, by Example 1.1.3, if M itself is a connected compact Lie group, then the following

scaling critical Strichartz estimates

||€itAgf||Lp(I><M) S CHfHH%_%(M) (116)

hold for all p > 2 + %.
Case 2. If each U;/K; is either a compact simply connected simple Lie group or a sphere

of odd dimension > 5, then

||€itAgf||Lp(I><M) < C€||f||H%7%+E(M) (117)

holdforallp22+§,6>0.

Note the different ranges for the value of the exponent p in the above conjecture and
theorem. The framework of the proof of Theorem 1.1.5 will be based on [Bou93], in which

the author proves it for the special case of tori.

1.2 Organization and Notation Conventions

The organization of the thesis is as follows. In Chapter 2, several reductions will be made to
reduce the conjectured Strichartz estimate (1.1.5) into a spectrally localized form posed on a
universal covering compact symmetric space. This reduction in particular dissolves the issue
of convergence of the Schrédinger kernel. In Chapter 3, basic facts of harmonic analysis on

compact symmetric spaces that are crucial in the sequel, including spherical Fourier series,

8



reduced root systems, and functional calculus of the Laplace-Beltrami operator, will be
reviewed, which are used to give the explicit formula of the Schrodinger kernel. In Chapter
4, a conjectured dispersive estimate will be posed on a general compact symmetric space,
and we will show that it implies the Strichartz estimates, by the method of Stein-Tomas type
interpolation. In Chapter 5, the conjectured spectrally localized dispersive estimate will be
proved on a general symmetric space of compact type for a neighborhood of diameter < N—!
of any corner in the space. Special approaches to this result for the case of compact Lie
groups will also be given. Chapter 5 ends with proving with an e-loss the dispersive estimate
on spheres of odd dimension and remarking on the difficulty for the general case. In Chapter
6, the dispersive estimate for connected compact Lie groups will be proved. We will first
make a crucial observation that the Schrodinger kernel can be rewritten as an exponential
sum over the whole weight lattice instead of just a Weyl chamber of the lattice, which is
unique among symmetric spaces of compact type. We will decompose the maximal torus
into regions according to the distance from the cell walls, and prove the dispersive estimate
for each region. The most difficult case is when the variable in the maximal torus stays away
from some cell walls but close to the other cell walls. These other walls will be identified as
those of a root subsystem, which induces a decomposition of Schrodinger kernel that makes
the proof work.

Throughout the paper:

e A< B means A < CB for some constant C.

A <up,.. B means A < CB for some constant C' that depends on a,b, .. ..

A, p are short for the Laplace-Beltrami operator A, and the associated normalized
volume form measure p, respectively when the underlying Riemannian metric g is

clear from context.

o LB H3 L7, LYLY, LY, are short for LP(M), H*(M), LP(I), LPLY(I x M), LP(I x M) re-

spectively when the underlying manifold M and time interval I are clear from context.



o Let T = R/TZ. For f € LYT), let f denote the Fourier transform of f such that
fln) =L [ f(t)e= dt, n € ZZ.

e ' denotes the number such that % + [% =1

10



CHAPTER 2

First Reductions

2.1 Littlewood-Paley Theory

Let (M, g) be a compact Riemannian manifold and A be the Laplace-Beltrami operator. Let
¢ be a bump function on R. Then for N > 1, Py := ¢(N2A) defines a bounded operator
on L?(M) through the functional calculus of A. These operators Py are often called the
Littlewood-Paley projections. We reduce the problem of obtaining Strichartz estimates for

eA to those for Pye't®

Proposition 2.1.1. Fiz p,q > 2, s > 0. Then the Strichartz estimate (1.0.1) is equivalent

to the following statement: Given any bump function o,

I1Pxe™ flloragrony S NI Fllcaou (2.1.1)

holds for all N € 2. In particular, (1.1.5) reduced to

d_ d+2
2

1 Pye™ fllexany < N2~ || fllzzcan. (2.1.2)

We quote the following Littlewood-Paley theory from [BGT04].

Proposition 2.1.2 (Corollary 2.3 in [BGT04)). Let ¢ € CX(R) and ¢ € CX(R*) such that

PN+ D p(N2A) =1

N=2N

for all A € R. Then for all ¢ > 2, we have

1 llzaany S 1A fllzaany + (D Il (N T2A) flZaan) . (2.1.3)

N=2N

11



Proof of Proposition 2.1.1. The implication of (2.1.1) from (1.0.1) is immediate by letting
fin (1.0.1) be Py f, and noting that Py and ¢®® commute, and that || Py f||gs < N°||f]|z2-
For the other direction, assume that ¢ and ¢ is given as in Proposition 2.1.1 and define
Py = o(N2A) and P, = @(A). Let § € O>(R) and define Py = G(N-2A) such that

o = ¢ and thus f’NPN = Py. By (2.1.3), we have that

€2 fllzpze = [[lle™ £l s

Ly
S|P Fllg + (Y I Pve ™ flIz)M?

N=2N

Ly

S NP fllgpes + || 1Pve™ flI70)"?

N=2N

Ly

S NP fllpres + |[(D 1Pve™ Py fl7a)"?

N=2N

Ly

which by the Minkowski inequality and the estimates (2.1.1) for both Py and P, implies

||6itAfHLfLZ < HfHL,% +( Z (NSHPNJC“L%)Q)IM

N=2N

S S M-
The last inequality uses the almost L? orthogonality among the Py’s. O
We also record here the Bernstein type inequalities that will be useful in the sequel.

Proposition 2.1.3 (Corollary 2.2 in [BGT04]). Let d be the dimension of M. Then for all

I1<p<r<oo,

1_1
1Py fllrany S N7 £l oocan. (2.1.4)

Remark 2.1.4. Note that the above proposition in particular implies that (2.1.2) holds for

N <1 orp=occ.

12



2.2 Reduction to a Finite Cover

Proposition 2.2.1. Let 7 : (M, §) — (M, g) be a Riemannian covering map between com-
pact Riemannian manifolds (then automatically with finite fibers). Let Ag, A, be the Laplace-
Beltrami operators on (M,Q) and (M, g) respectively and let ji and p be the normalized vol-
ume form measures respectively, which define the LP spaces. Let w* be the pull back map.
Define C°(M) := n*(C®(M)), and similarly define Cx(M), L2(M) and H:(M). Then the
following statement hold.

(i) © : C(M) — Cr(M) and ©* : C(M) — C>(M) are well-defined and linear isomor-
phisms.

(ii) For any f € C(M), we have [,, f du = [y 7*f dji. This implies 7 : LP(M) — LE(M)
1s well-defined and an isometry.

(iii) Ay maps C=°(M) into C(M) and the diagram

C®(M) "= C>(M)

commautes.

() €5 maps L2(M) into L2(M) and is an isometry, and the diagrams

* ~ * ~

L2(M) " [2(M)  L3(M) - L2(M) (2.2.1)

™

eitAgJ/ JeitAg PNJ J/PN
(M

L2(M) == L2(M) L2

™

commutes, where Py stands for both o(N72A,) and p(N~2A;).

(v) ™ : H*(M) — H:(M) is well-defined and an isometry.

Proof. (i)(ii)(iii) are direct consequences of the definition of a Riemannian covering map.
For (iv), note that (i)(il)(iii) together imply that the triples (L*(M),C>(M),A,) and

(L2(M),C(M), A;) are isometric as essentially self-adjoint operators on Hilbert spaces,

13



thus have isometric functional calculus. This implies (iv). Note that the H*(M) and H3 (M)
norms are also defined in terms of the isometric functional calculus of (L*(M),C* (M), A,)

and (L2(M), C®(M), Ay) respectively, which implies (v). O

Combining Proposition 2.1.1 and 2.2.1 and Remark 2.1.4, the Main Conjecture 1.1.4 is

reduced to the following.

Conjecture 2.2.2. Let M be a universal covering compact symmetric space as in Definition

1.1.1, equipped with a rational metric as in Definition 1.1.2. Then

d_
2

; dr2
| Pne tAfHLP(IxM) SNl ey (2.2.2)

holds forp>2+ 2 and N 2 1.

2.3 Littlewood-Paley Projections of the Product Type

Let (M, g) be the Riemannian product of the compact Riemannian manifolds (M;, g;), i =
1,---,n. Any eigenfunction of the Laplace-Beltrami operator A, on M with the eigenvalue
A < 0is of the form []}_; ¢»,, where each ¢,, is an eigenfunction of A, on M; with eigenvalue
A <0,i=1,---,n,such that A=A +---+ \,.

Given any bump function ¢ on R, there always exist bump functions ¢;’s, i = 1,--- , n,

such that for all (z1,--- ,xz,) € RE, with (x4 -+x,) # 0, [[; @i(z;) = 1. In particular,

n

o [ wilw) = e

i=1

For N > 1, define

Py : = @o(N72A),

Py:=pi(N7?A) @ ®@ oo (NT?A,),

as bounded operators on L?(M), where ¢1(N72A1) ®@ -+ @ ¢, (N2A,,) is defined to map

IT5, & to [T, @i( N72X)éy,. We call Py a Littlewood-Paley projection of the product type.
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We have
PN (¢] PN == PN.
This implies that we can further reduce Conjecture 2.2.2 into the following.

Conjecture 2.3.1. Let M =Ty x --- x T, x Uy /Ky X --- X Uy, / K, be a universal covering
compact symmetric space equipped with a rational metric. Let Ay, -, A, 1., be respectively
the Laplace-Beltrami operators on Ty, -+ T, U1 /K1, -+ ,Up/ K. Let o; be any bump func-

tion for eachi=1,--- . n+m, N > 1, and let Py = Q1™ p;(N72A;). Then
- d_d+2
IPxe™ fllorean S N2~ 7 (1 fll2n (2.3.1)
holds for p > 2—|—‘;" and N 2 1.

On the other hand, similarly, for each Littlewood-Paley projection Py of the product
type, there exists a bump function ¢ such that Py = @(N*QA) satisfies Py o Py = Py.

Noting that ||Pyfllzz < || f]lz2, (2.1.4) then implies
1P fllzran S NG £z, (2.3.2)

for all 2 <r < 0.
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CHAPTER 3

Harmonic Analysis on Compact Symmetric Spaces

In this chapter, we review harmonic analysis on compact symmetric spaces. Most of the

material can be found in [Hel84], [Hel01], [Hel08], [HS94], [KnaO1], [Tak94], [Var84].

3.1 Spherical Fourier Series

Let U/K be a symmetric space of compact type, equipped with the push forward measure
of the normalized Haar measure du of U. Let (0, V) be an irreducible unitary representation
of U and let V{* be the space of vectors v € Vs fixed under §(K). We say ¢ is spherical if
V& £ 0. Let & be such an irreducible spherical representation of U. Then V¥ is spanned by

a single unit vector e, and let
Hs;(U/K) = {(0(u)e,v)y, : v € Vs}. (3.1.1)

Let U Kk be the set of equivalence classes of spherical representations of U with respect to K.

The theory of Peter-Weyl gives the Hilbert space decomposition

[*(U/K) = ) Hs(U/K).

5661{

Define the spherical functions

Os(u) == (0(u)e,e)y, € Hy(U/K),

16



then the L? projections Ps : L*(U/K) — Hs(U/K) can be realized by convolution with ds®s,

so we have the L? spherical Fourier series

F=3dsf x5 =Y dss f.

6661{ ]S ﬁK
Here the convolution on U/K is defined by pulling back the functions to U and then applying

the standard convolution on U.

Example 3.1.1. Let M be a compact simply connected simple Lie group and continue the
notations in Erample 1.1.3. Then the set M of irreducible unitary representations of M

correspond to the set U Kk of irreducible spherical representations of U with respect to K, by
M36— 626 € Ug,

where 6* is the contragradient representation associated to 6. Let x5 be the character of §.

We have
1
Dsose = —
RO d(S Xé5
d5®(5* == d?

Note that convolution operations with respect to M and U/K do not necessarily match, but
we always have f * Psge+ = d—léf x Xs, thus the spherical Fourier series reduces to the Fourier

series
F=> dsfxxs=Y_dsxs*f.
seM seM
More generally, let M = T" x Uy /K; X --+ x Uy, /K,, be a universal covering compact

symmetric space. Define the Fourier dual M of M

—

M=7"xUg, - XUng,,

17



—~

Let 6 = (ky,--+ ,kn, 01, ,0m) € M, (t1, -+ ,tn, 21, ,Tm) € M, and let

_ ikiti++ikntn
(pﬁ(tlv"'?tn?xl?“'axm)_e . q)51"'q)5ma

ds =ds, ---ds,, .
Then the spherical Fourier series reads

F=> ds®sx f=> dsf *Ps,

seM seM

where the convolution is defined component-wise. This gives the Plancherel identity

1A 172 0n = D 3115 # fllz2an-

seM

The Young’s convolution inequalities hold on compact symmetric spaces
1 1 1
1f*gllr < I flleellgllza, = =—-4+-=1, 1<rp,q<co.
r p g
This implies the Hausdorff-Young type inequality
_1 —~
1F 5 @sllze < 1l l@slle = d5 21 o, ¥ € O, (3..2)

Let g =) 57 Cods®s, then f* g =", 17csdsf + $s, which implies

£ gllie =D lesPd3 |l f = ®s|*, (3.1.3)
seM

1f *gllzz < (sup [es]) - | 1] 2 (3.1.4)
oeM

3.2 Restricted Root Systems

Let U/K be a simply connected Riemannian globally symmetric space of compact type. Let
G/K be the dual symmetric space of noncompact type, and G be the complexification of
U and G, and g%, g,u,£ be the Lie algebra of G¢, G, U, K respectively. Let g = £+ p be

the Cartan decomposition and a be the maximal abelian subspace of p. Then we have the

18



restricted root space decomposition
g=a+c+ Z [2)
AEY
where ¢ = {X € ¢ : [X,H] =0, VH € a}, and ¥ consists of nonzero real-valued linear
functions A\ on a such that g, := {X € g: [H,X] = M(H)X,VH € a} # 0. Let b be the
maximal abelian subspace of ¢, then h = 7a 4+ b is a Cartan subalgebra of u, and then the
complexification hC of h becomes a Cartan subalgebra of g&. We also have the root space
decomposition
g“=5"+> gl
acd
where ® consists of nonzero complex-valued linear functionals o on h® such that g< := {X €
o¢  [H,X] = a(H)X,VH € h®} # 0. For a € @, al, is either 0 or belongs to 3. For each
A € %, define the multiplicity function my := [{a € ® : a|, = A\}|. g¥ is of one complex
dimension for any o € ® and g, = gnN (Za|u: A 05), which implies g, is of real dimension
equal to m,.
Let bg = a + ib. The Cartan-Killing form on g induces an inner product on a* and
hr* respectively, under which both ¥ and ® become root systems respectively. We state the
axiomatic description of a root system which will be needed in the sequel. A root system is

a finite set A in a finite dimensional real inner product space (V,( , )) such that

(i) A=-A
(i)  seA = A for all a € A; (3.2.1)

(iii) 2% € Z forall o, B € A.

Here s, : V — V is the reflection

So(x) =1 — 2<x’a>a, Vo e V.

(o, )
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If in addition it holds
(iv) ae AjkeRjkae A=k ==1, (3.2.2)

then we call it a reduced root system. & is reduced but not necessarily for ..

For a € V., let at := {# € V : (o, 8) = 0}. Then the Weyl chambers are defined to be
the connected components of V' \ Usegat, and each ot is called a Weyl chamber wall. The
Sq’s generate the Weyl group W, which acts simply transitively on the set of Weyl chambers,
the set of positive roots, and the set of simple roots respectively. Note that the identification
V = V* by the inner product ( , ) induces an isomorphic root system in (V*, (, )), for which
we have the isomorphic objects of Weyl chambers, Weyl group, positive roots, and simple
roots.

Let X7 denote a set of positive restricted roots in X. Then we have the Iwasawa decom-

position
g=n+a+t (3.2.3)

where n = ), o, gx. Let r and d be the rank and dimension of U/K respectively. Recall

that the real dimension of gy is m) for A € ¥, then the Iwasawa decomposition implies that
Z my =d—r. (3.2.4)
Let
Yo ={a€eX: :2a¢X}. (3.2.5)
Then X, is a reduced root system. Define the weight lattice A by
A:={\ea": e € Z, for all a € 3, }. (3.2.6)

(o, )

Let I" be the restricted root lattice generated by the root system 2¥. Then I' C A. Let
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Y = 3T NX, be the set of positive roots in X,. Let

AT i={\ea": A ) € Z>y, for all a € B}}
(o) =7

be the set of dominant weights. Given any irreducible spherical representation of § € U K,

the highest weight of 0 vanishes on b and restricts on a as an element in A™. This gives the

isomorphism
AT Uy (3.2.7)
We can also express A, AT in terms of a basis. Let {1, -+, a,} be the set of simple roots
in XF. Let {wy,--- ,w,.} be the dual basis to the coroot basis {<af—in>’ e ,(Cyf‘—ar)} Then
A =Zwy + - + Zw,,
A+ = Zzowl + -+ Zzowr.
wy, -+ ,w, are called the fundamental weights. Then

C =Rsowy + -+ Ryow,

is the fundamental Weyl chamber, and we have the decomposition

o =(||sO) | |(Ufrea: (Aa)=0}), (3.2.8)

seWw aEX
where | | stands for disjoint union.
Consider the map ia — U/K, iH + exp(iH)K. Let A denote the image of the map,

then
A~ iga/TV

where TV = {iH € ia: exp(iH) € K} is a lattice of ia. We call A a mazimal torus of U/K.
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It can be shown that

H, H,
IV = 2miZ L _ .+ 2miZ T,
<Oé], al) <a7“>a1”>

Here H,, € a corresponds to a; under the the identification a — a* by the Cartan-Killing

form. This implies the isomorphism between A and the character group Aof A
AS A\, A= et

Note that the Weyl group W on a naturally falls on A also. Define the cells in A to be the
connected components of A\ Uyex{[iH]| € A: (o, H) € 7Z}, and each {[iH] € A: (a, H) €
mn} for n € Z is called a cell wall. Let
Q= () {liH] € A:{a, H) € (0,m)},
aext

be such a cell (often called the fundamental cell), the closure of which is Q = (), 5+ {[iH] €
A (o, H) € [0,7]}. It can be shown that the Weyl group W acts simply transitively on
the set of cells (see Theorem 9.2 and its Corollary of Chapter II in [Tak94]), and WQ covers
A. Moreover, it can be shown that the K-orbits of A cover the whole space U/K, combined
with the fact that the K-actions on A preserving A coincide with W, we then have that the
values of any K-invariant function, for example any spherical function, are determined by

its restriction on Q).

Example 3.2.1. Let M = U/K be a simply connected compact symmetric space of rank 1.
Then the restricted root system X is either {£a} or {£5,£a}. In both cases, the weight
lattice A = Zav. Let A = R/27Z be the mazimal torus, then e"® = e 0 € A. The two cells
of A are (0,m) and (m,2m). Let m, and ma be respectively the multiplicity of o and § (if
the restricted root system is {£a}, then let ma =0). Then for n € Zxo = Zzoa = AT, the

spherical function ®,, restricted on A is (see Theorem 4.5 of Chapter V in [Hel84])

-1
P, = (n * a> P (cos §),

n
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where {P,(L“’b) :n € Lo} 1s the set of Jacobi polynomials (see [Sze75]) with parameters
1 1
a= §(m% +me—1), b= §(ma —1).

The cases when me = O correspond to spheres of dimension d = ma+1, mq € N. If d is odd,
we have explicit formulas for the Jacobi polynomials and thus for the spherical functions. Let
{(bgf\),n € Zso} denote the spherical functions on the (2X + 1)-dimensional sphere, A € N,

then (see Equation (4.7.3) and (8.4.13) in [Sze75])

o (n2a -1\ A (v =)
cbg)(e)_z( >oznz_:al,n+>\_1) AT

cos((n—v+ A0 — (v+MN)7/2)
(2sin O)+A

(3.2.9)

n+)\,1) )

where o, = ( -

Example 3.2.2. Continue Example 1.1.3 and 3.1.1. Fix a Cartan subalgebra ia of m. The
root system A for m® is reduced, and can be realized as a subset of a* by restriction on a.
We say A is the root system associated to the compact Lie group M. Then the root system

for u® = m® x m® can be realized as A x A. Let o € A. Identifying by 1.1.4
~ 1
ip D {(iH,—iH) : H € a} — 1a, 5(z‘H, —iH) > iH,
then
1
(,0)ls = (0, 0)le = 5(0,—a),
thus the set of restricted roots is
1
Y= {)\a = 5(04,—04):a€A},

with my = 2 for all A € X. Note that 2\, (5(H,—H)) = «(H) for all H € a, and in this

1
2
sense we identify 25 and A as isomorphic reduced root systems, with the identical Weyl

group. The restricted root lattice coincides with the root lattice I' generated by A. Note that
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by (3.2.4),

d—r

AT =27 =
2

(3.2.10)

The mazximal torus corresponding to ia is A = exp(ia). The character x, and dimension

dy associated to the irreducible representation with highest weight A\ € AT is given by Weyl’s

formulas
det s)esAtn)
Xala = 2z (dets) —, (3.2.11)
ZséW(det 8)6 P
i = Hoca: 47 0) 3.2.12
aceAt p7 Oé>
where

p= % D= wi (3.2.13)

We also record here the Weyl integral formula that will be useful in the sequel. Let f € L'(M)

be invariant under the adjoint action of M. Then

1 2
/M f =i /A f(a)| Dp(a)[? da, (3.2.14)

where the Weyl denominator Dp =Y __,,(det s) e*?, and dpu, da are respectively the normal-

ized Haar measures of M and A.

Continue the discussion of a general simply connected symmetric space U/K of com-
pact type. Recall that ® denotes the root system associated to U. Apply (3.2.12) to any

irreducible spherical representation A € A+ = U K, we have

o o >\ + /7 Q) - o alg= /’ o 1
dy = I1 P+, \usé0< pha) ,H €, |u—0<p >7 for p' = = Z Q. (3.2.15)
Hae¢>+ (p ,a) 2 acedt

Example 3.2.3. Let M = SU(2). SU(2) is of dimension 3 and rank 1. Let ia = iR be

the Cartan subalgebra and A = R/27Z be the mazimal torus. The root system is {£a},

where « acts on ia by a(if) = 2i0. The fundamental weight w = %a. We normalize the

24



Cartan-Killing form so that |{w| = 1. The Weyl group W is of order 2, and acts on ia as
well as a* through multiplication by £1. For m € Zsy = Zsow = A™, the dimension and

character corresponding to m are given by

dp =m+1, (3.2.16)
ei(m+1)9 _ e—z’(m-‘rl)@ sin(m + 1)9
= . . = R/27Z. 2.1
Xm () el — e=i0 sinf beR/2m (3:2.17)

3.3 Functional Calculus of the Laplace-Beltrami Operator

Continue the discussion of the last section. The eigenvalues of the Laplace-Beltrami operator

on U/K are computed as follows.

Lemma 3.3.1. Let A\ € AT = Uy and H)\(U/K) be the space of matriz coefficients associated

to A as in (3.1.1). For any f € Hy(U/K), we have

Af=(=A+pX+p)+p.p)- [, (3.3.1)
where
p= % agg; M. (3.3.2)

Proof. Let X' be the extension of A to hg = a + ib by making it 0 on ib. Since H)(U/K)
consists of matrix coefficients of the irreducible representation of U with highest weight X,

by Lemma 1 in Section 6.6 in [Pro07], we have for f € H)(U/K),
Af = (=N 40 XN +0)+ ', 0)) - f,

where p' = 33 o+ @ Noting that p'ls = p, N|a = A, N|;s = 0, and that a and ib are

orthogonal with respect to (, ), we get (3.3.1). ]

Using the spherical Fourier series, we now have the functional calculus of A as follows.

Let f € L*(U/K) and consider the spherical Fourier series f = Y, . d\f * ®5. Then for
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any bounded Borel function F': R — C, we have

F(A)f =) F(=A+p +pP)drf * Dx.

AEAT
In particular, we have
eAf =N et g, £ @y (3.3.3)
AEAT
_ 2
Pyetaf = 3 p(TAX ’ 1ol gvsor ot £ 4, (3.34)
AEAT
In particular, let
— Xl 1012 cine oo
Ey(t.z) =Y o e )e PPN g,y (3.3.5)
AEAT
then we have
PNeitAf =[x KN(ta ) = KN(ta ) * f. (336)

We call Ky(t,x) as the Schrédinger kernel on U/K. If the canonical Riemannian metric g
is scaled to (8¢ for some 8 > 0, then the eigenvalues of A are scaled by the factor of 57!,

and the Schrodinger kernel becomes

—I\ 2 20
Ky = Z o | +6€lf2+ | )eith HEplPH) g
AeA+

More generally, let M = T" x Uy /K; X --+ x Uy, /K,, be a universal covering compact
symmetric space equipped with a rational metric g as in Definition 1.1.2. Let A; be the
weight lattice for U;/K; and identify @Kj = AT, 1<) <m. Let Py = @1 "p(N7?A)
be a Littlewood-Paley projection of the product type as described in Section 2.3. Define the

Schrodinger kernel Ky on M by

Pye™®f = fxKy(t,-) = Ky(t,-) * f. (3.3.7)
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Then

n+m

Ky =[] K, (3.3.8)

i=1

where the Ky ;’s are respectively the Schrodinger kernel on each component

ki€Z
—|)\'+p'|2+|P‘|2 8= (— st 12 [2
Knptj = Z 90n+j( : /BTNQ ’ )6 5 (=Pt es| )d,\jCI),\].,
)\jEA? /

Ky =Y o\ N)e a0,

XeM

where

A:(k:L?"'7kn7A17...7)\m)€]/\Z:ZnXAi‘rX“'XA+

I = =Y R DB A + s ) (33.9)
i=1 j=1
T kT —[A + pil* + sl
e\, N) = H%‘(m) ' H@nﬂ‘( ’ ﬁi]\]? ), (3.3.10)
i=1 ¢ j=1 J

m m
dy = H d/\j7 Dy = g1ty ikntn H @)\j‘

j=1 j=1
Lemma 3.3.2. Let d,r be respectively the dimension and rank of M.
(i) [{A € M : A2 S N3} S N

(ii) dy < N uniformly for all || N> < N2

Proof. Note that \ € M lies in a lattice of dimension r, then (i) is a direct consequence
of the definition of ||A||?. For (ii), let d;,7;, ¥, be respectively the dimension, rank, and
the set of restricted roots of U;/K;, j = 1,--- ,m. For \; € Aj, (3.2.15) implies that dy,
is a polynomial in A; of degree equal to the number of positive restricted roots counting

multiplicities, which is equal to d; — r; by (3.2.4). Thus d\ = d, - - - d,,, is a polynomial in
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A of degree Y7 | (d; — ;) = d —r. In view of the definition of [|A[|* again, we get (ii). [

Example 3.3.3. Continue Fxample 1.1.3, 3.1.1 and 3.2.2. Let M be a compact simply
connected simple Lie group equipped with a rational metric. Then the Schrodinger kernel

reads

—|X+ o+ pl* | e
Ey=> o | ]pv|2 | )et=PHPPHPR) gy (3.3.11)

xeM
Example 3.3.4. Continue Example 3.2.1. Let M be the sphere of dimension 2A+1, A € N.

Then p = %maa = Aa. Normalize |a| = 1. Then the Schridinger kernel reads

2 _ )2 ) 5 1o
Ky(t,0)= ) gp(%)e”“”“‘) Ma, oM (). (3.3.12)

TLGZZ()

For the three sphere M = SU(2), the Schridinger kernel reads

m—+1)2 =1, iz
Knt.0) = 3 oM it 41

mEZZO

sin(m + 1)6
sinf

(3.3.13)
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CHAPTER 4

Conditional Strichartz Estimates

4.1 Strichartz Estimates as Fourier Restriction Phenomena

Lemma 4.1.1. Let ¥ be a restricted root system equipped with the Cartan-Killing form (| ).
Let ¥, A be the associated reduced root system and weight lattice as defined in (3.2.5) and

(3.2.6) respectively. Then there exists some D € N, such that {«, 8) € D7'Z for all o, B € A.

Proof. Let {1, -, .} be a set of simple roots for X,. Let {wq,--- ,w,.} be the dual basis
of the coroot basis {<a1°‘;1>, s <O:;T>} so that A = Zw, + --- + Zw,. Then it suffices to

prove that (w;,w;) € D7'Z for all 1 < i,j < r, for some D € N, which then reduces to
proving the rationality of (w;,w;), which further reduces to proving the rationality of («, 3)
for all a, # € ¥. Since X is a root system, 2% € Z for all o, f € ¥, thus it suffices to prove
the rationality of (o, ) for all &« € ¥. Let a be a restricted root in X, and let o/ € A be a
root such that o/|, = a. By Lemma 4.3.5 in [Var84], (¢/, ') is rational. Then by Lemma

8.4 of Ch. VII in [Hel01], («, ) is also rational. This finishes the proof. O

Let M =T" x Uy/K; X « -+ x Uy, /K,, be a universal covering compact symmetric space
equipped with a rational metric g. By the previous lemma, there exists for each 7 =1,--- ., m

some D; € N such that (A, ) € 2D;'Z for all A\, € A} = f]; which implies by (3.3.2)

K;’

that —|\; + pj|? + [p;* = =[N\ * — (A;, 2p;) € D;'Z for all A; € A;. By Definition 1.1.2 of a

rational metric, there exists some Dy > 0 such that

—1 —1 -1 —1 —1
Qq 0,0 761 7"'76m ED(] N.

29



Define
T =2xD,- || D;. (4.1.1)
j=1
Then (3.3.9) implies that T||A||* € 27Z, which then implies that the Schrodinger kernel as
in (3.3.8) is periodic in ¢ with a period of T. Thus we may view the time variable ¢ as living

on the circle T = [0,7"). Now the formal dual to the operator
T:L*(M) — IP(T x M), fs Pye™ (4.1.2)

is computed to be

, 4 d
T L (T x M) — L2(M), F o /PNe‘“AF(s, )z (4.1.3)
T

and thus

, . d .
TT* : LV (T x M) — L*(T x M), F s /P?Ve’(t_s)AF(s, ) TS =Ky xF, (414
T

where

Ky = 3 @2\ N)e a0, = Ky x Ky, (4.1.5)

AeM
and the symbol X is understood as convolution on the space-time T x M.

The cutoff function ¢*(\, N) (see (3.3.10)) still defines a Littlewood-Paley projection
Py of the product type, and Ky is the Schrodinger kernel associated to Py. Now the
argument of 7T says that the boundedness of the operators (4.1.2), (4.1.3) and (4.1.4) are
all equivalent, thus the Strichartz estimate in (2.2.2) is equivalent to the following space-time
Strichartz estimate

2(d+2)

K % Fllzoean S N7 1F ]l e (4.1.6)

which can be interpreted as Fourier restriction estimates on the product T x M.
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We have the space-time spherical Fourier series as follows. For F' € L*(T x M), we have

F= Y dF x [,

ne%’Z,
XeM
Let m =3, c2ny M(n)e’™, then
_ -~ 2 itn
m-Ky= > ¢\ N)i(n + [A)dre" s, (4.1.7)
ne%’rz,
XeM

4.2 Conjectured Dispersive Estimates and Their Consequences

One strategy to prove (4.1.6) is to first explore L* estimate of K. Throughout this section,
let S! stand for the standard circle of unit length, and || - || stands for the distance from 0

on S'. Define
Myy = {tes: Jt =2 < =
where
a€Zs, q€N, a<gq, (a,9)=1, ¢<N.

We call such M, ,’s as major arcs, which are reminiscent of the Hardy-Littlewood circle

method. In [Bou93], the author shows that for the Schrodinger kernel on the standard T™

Ky(t,t) = > ok, N)e ki,

KkezZn
it holds that for any D € N,
NT‘
Kn(tt)| < ~ (4.2.1)
(va(l + Nligm5 — S172)r
for # € M,,, uniformly in t € T". Inspired by this, we conjecture a general dispersive

estimate as follows.
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Conjecture 4.2.1. Let M be a universal covering compact symmetric space of rank r and
dimension d, equipped with a rational metric. Let Ky be the Schridinger kernel (3.3.8) and
T be the period (4.1.1). Then

Nd
Val+ Nz = 5172)r

Ky (t,2)| S ( (4.2.2)

for & € Mgy, uniformly in x € M.

Noting the product structure (3.3.8) of Ky, the definition of the rank of the product
space M, the definition (4.1.1) of 7, and the established result (4.2.1) on tori, the above

conjecture reduces to cases of irreducible components of M of compact type.

Conjecture 4.2.2. Let M be an irreducible simply connected symmetric space of compact
type of rank r and dimension d, equipped with a rational metric. Let A be the weight lattice
and AT the set of positive weights. Let D be a positive number such that (\,u) € D77 for
all \,;p € A. Let Ky be the Schridinger kernel (3.3.5). Then

N
V(L + Nz = 51M72)r

[Kn(tz)| S ( (4.2.3)

for 75 € Mo, uniformly in x € M.

We will prove the following special cases of this conjecture in the next chapter.

Theorem 4.2.3. (1) Conjecture 4.2.2 holds when M is a simply connected compact simple
Lie group.
(2) Congecture 4.2.2 holds with an £-loss when M is a sphere of odd dimension d > 5. That

is, we need to add an N¢ multiplicative factor to the right side of (4.2.3).

Now we show how Conjecture 4.2.1 implies Strichartz estimates (2.2.2) for p > 2+ %. We

prove the following theorem.

Theorem 4.2.4. Let M be a universal covering compact symmetric space of rank r and

dimension d, equipped with a rational metric. Let T be the period of Schrodinger flow as
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defined in (4.1.1). Let f € L*(M), A > 0, and define
my = p{(t,z) € T x M : [Pne™ f(z)| > \|}

where p = dt - duyy, dt, dpyy being the canonical normalized measures on T = R/TZ and M

respectively. Let

2(r+2)'

Po =

Assuming the truthfulness of Conjecture 4.2.1 , the following statements hold true .

Part 1.
my Se NE @m0 fli | for all A2 NETE, € > 0.
Part I1.
my S N%_(dﬂ))\_pﬂf”ig(M), for all X 2 Ng_i, P > Po.
Part II1.

, a_di2
IPne™ fllzorsan S N27 % || fllzan (4.2.4)

holds for all p > 2 + %.
Part IV. Assume it holds that

; d_d+2
P e flloomenny Se N2 7 || fllz (4.2.5)

for some p > pg, then (4.2.4) holds for all ¢ > p.
Assuming the only truthfulness of Conjecture (4.2.1) with e-loss, then Part I holds,
Part I and Part 111 hold with an e-loss (i.e. adding an N¢ multiplicative factor to the right

side of the inequalities), while Part IV fails.

Note that Theorem 4.2.3 implies Conjecture 4.2.1 (or its e-loss version, respectively) for

those spaces M described in Theorem 1.1.5, whence Theorem 1.1.5 follows by Part III (or
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its e-loss version, respectively) of Theorem 4.2.4.

We now follow closely the Stein-Tomas type argument in [Bou93| to prove Theorem 4.2.4.

We generalize its argument for tori to the general setting of compact symmetric spaces. We

will only write out the details of the proof for the case assuming the truthfulness of Conjecture

4.2.1, while the proof for the e-loss version is entirely similar.

Let w € C®(R) such that w > 0, w(z) =1 for all |z| < 1 and w(z) = 0 for all |z| > 2.

Let N € 2N, Define

CER = w(N?),
wﬁ::w(NM-)—w(ZNM-),
where
M < N, Me?2N
Let
N
Nl:ﬁv Q<N17 QGQN
Then
Z w 1 on[ 1 1}
1 =1, TATA AT |
TN NM NQ NQ
Z w 0, outside [ 2 ]
1L =V T AT AT |t
QAN NM NQ NQ
Write

1= > > Oafg | *w 1 (%)+P(t).

1<Q<N1 QEM<N (a,9)=1,
Q<qg<2Q

Note the major arc disjointness property

ay 2 2 a2 2 2 B
(2 e v )N+ v v ) =2
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(4.2.7)

(4.2.8)



for (a;,q;) =1, Q; < q <2Q;, 1 =1,2, Q1 < Q2 < Ny. This in particular implies that

0<p(t)<1, forallte|0,T), (4.2.9)
N
~ 1 [T t 2()?
Z Oa/q *Wﬁ(f) (O):f/o Z da/q *Wﬁ(f) dt < NI (4.2.10)
(a,9)=1, (a,9)=1,
Q<q<2Q R<q<2Q
which implies
A
~ . 8Ny _ 1
Lo =1- % > Y asa rwa(F)| O 21-—=2=7.
1<Q<NT Q<KM<N (a,q)=1,
QR<q<2Q
(4.2.11)

t

By Dirichlet’s lemma on rational approximations, for any # € S!, there exists a,q with

a € Zso, q €N, (a,q) =1, ¢ <N, such that | — %\ < qlN. If p(%) # 0, then (4.2.6) implies

1
T

that ¢ > Ny = J;. This implies by (4.2.3) and (4.2.9) that
IPK | oo (msary S N2 (4.2.12)

Now define coefficients a s such that

A
> b rwa ()] (0) =agup(0), (4.2.13)
(a7Q):17
Q<g<2Q
then (4.2.10) and (4.2.11) imply that
2
agm S ]\?M- (4.2.14)
Write
Ky(t,z)= Y Y  Kuy(tz) > b sw o () | —agup| ()
Q<N1 Q<M<N (a,9)=1,Q<q<2Q

35



Q.M
and define
Ao (t,z) = Ky(t, x) D b | wa () | —aqup| (B (42.15)
(a,q)=1,Q<q<2Q
Then from (4.2.3), (4.2.12), (4.2.14), we have
- M
1AQ M| oo xnr) S Nd*ﬁ(a)m- (4.2.16)
Next, we estimate ]\\Q,M. From (4.1.7), we have
Aoar = D dgu(n, \)dre""®,. (4.2.17)
nEQ%Z,
AeM
where
A
Aowr(n, ) = o\, ) ST | B (1) —agup| (i AR (42.15)
(a,q)=1,Q<q<2Q
Note that (4.2.13) immediately implies
Ao (n,\) =0, for n+||A* = 0. (4.2.19)

Let d(m, @) denote the number of divisors of m less than @), using Lemma 3.33 in [Bou93],

T
Y G ()] S d(52,Q)QMF, n#0, £ >0, (4.2.20)
2
(a,9)=1,Q<q<2Q
we get
Qe T(n+ky) Q 2
AN Sc (AN d , A9 4.2.21
o M| Se o0, N) S d(— T 0) 2t + R) (12:21)
Using the divisor bound
d(m, Q) <. m”,
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and (4.2.20), (4.2.8), we have

iz Yy WD N dorm 0ol 5 47
~J N7 Y ~Y )
1<Q<N) QESM<N
thus
Q T(n+ [[AlI*) Q
c N A(———F——, ~1z
Daun(n V] S o N @ra TR )y @
NE
<. @(A,N)%M, for |n| < N2.
Proposition 4.2.5. (i) Assume that f € L*(T x M). Then
= M,
1f % Agalloerxnny S Nd_Q(a) PN fllzr oy
(1i) Assume that f € L*(T x M). Assume also
itn 2m 2
fx[e"®,\] =0, forallne TZ such that |n| 2 N<.
Then
QN*®
|f x AQ,MHL?(TxM) Se NM Hf”L2 (Tx M)
and
QL 17 —B/2 nd/2
1f x Agmllr2erxary Srp £l z2msany + MTULTERNY2(| £ o rcan).
NM
for all
6 B
L>1 0<7<1, B>—-, N> (LQ)".
T
Proof. Using (4.2.16), we have
< Nd—3 M r/2
1 % Agullzoe(rxary < ([ fllprexanllAqullLoe s S N (Q) |

(4.2.22)

(4.2.23)

(4.2.24)

(4.2.25)

(4.2.26)

(4.2.27)

(4.2.28)

|f||L1(’JI‘><M)-

This proves (i). (4.2.26) is a consequence of (3.1.4), (4.2.17), and (4.2.23). To prove (4.2.27),
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we use (3.1.3) and (4.2.17) to get
1/2
1f % Agnllz2rxary = (Z AN f < [ A1 Z2rsenry - [N (n, A)|2> :
A

which combined with (4.2.19), (4.2.21), and (4.2.22) yields

/
Qe in T(n + ||N|?
17 Aqarllaan S % [ 32 O NPE I x [0 03] Baqpand ot D g
A

2w
QQ
+ VN ||f||L2(1er)-

Using Lemma 3.47 in [Bou93], we have

T(n+ [IM)

2 Q) > )

\{(m) Il I < N2, d(

Snp (DTRQTNTH QT - mage, 1 A) o A = m}|

m|S
<o (D7PQN? +QP) - |{h e M : |\|> < N?

Sep (D7PQTN? +QP) - N”. (4.2.29)

Here we used (i) of Lemma 3.3.2.

Now (3.1.2) gives

. _1
1f > [ Pa)l 2ersany < dy 2| fllor sy

which together with (4.2.29), d(-, Q) < @, and (ii) of Lemma 3.3.2 implies
Ql—i—aD Q2
Hf X AQ7MHL2(T><M) ST,B< NM + MNQ_E)Hf”LQ(TXM)

Ql—i—e
NM

+ Q- (DiB/QQTN + QB/Z)Nd/QHfHLl('JTXM)-

This implies (4.2.27) assuming the conditions in (4.2.28). O

Now interpolating (4.2.24) and (4.2.26), we get

r_ 2d—r42

-z r_r+2
1f % Agarlloersan Se N2 7 M7 Q

r, r+2
5T

v Hf“LP’(’Jl‘xM)' (4.2.30)

38



Interpolating (4.2.24) and (4.2.27) (see Lemma A.1 in the appendix) for

2 2 244
(r+2) + 107, (which implies 0 := - — rEeTe > 0) (4.2.31)

r
p> =
r 2 D

we get

2d—r+2 r

_r_ r_r+2 o .2
1f % Agurlliersany SepN2 5 M2 QL2 || fll 1o (pa)

r r4+2

+Q T EIMETT LY N S il eran- (4.2.32)

Now we are ready to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. Without loss of generality, we assume that || f||2(ary = 1. Then for
F =Pye'®f (2.3.2) implies that

[l S 1, (4.2.33)
1F|e S N (4.2.34)
For A > 0, let
F
H = - —. 4.2.35
X|F|>A 7 ( )

Let 1:3N be a Littlewood-Paley projection of the product type such that f’N oPy =Pp. Let

I:( ~ be the Schrodinger kernel associated to 1:3 ~ne®. Then
F x I:{ N =F
Let Py be the self-adjoint Littlewood-Paley projection operator on L*(T x M) defined by
PyoH = Z _”AHQ - TIAT T g0 H x [,y
for some bump function ¢, such that Py2 o Py = Py. Then F' = Py2F so that

(F,H)pp = (Py2F,H)z = (F,Py2H)z
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Then we can write
Ay < (F,H)pp = (F x Ky, Py2H)ps .
Noting that convolution with K ~ is also a self-adjoint operator on L?(T x M), then we have

My < (F, PaaH x Kz < |[Fllz [|PxeH x Kl 2.
< |Px2H x Kyll2. = (PyaH x Ky, Py2H x Ky) 2 = (Py2H, PyaH x (Ky x Ky))pz .
(4.2.36)

Let
HIIPNQH, KN :I:<N X IZ{N-

Note that H' by definition satisfies the assumption in (4.2.25) and we can apply Proposition
4.2.5. Also note that Ky is still a Schrodinger kernel associated to a Littlewood-Paley
projection operator of the product type (see (4.1.5)). Finally note that the Bernstein type

inequalities (2.1.4) and the definition (4.2.35) of H give
1
1 Ny, S 1H g, S m3- (4.2.37)
Write

A= > Y Agm, Ky=A+(Ky-A7),

1<SQ<N; Q<M<N

where Ag as is defined as in (4.2.15) except that Ky is replaced by Ky. We have by (4.2.36)

Nm3 S (H H x Nz + (H H' x (Ky = A))ps
SH o 1H > Allzy, + ||H’|Ii;7m||f<N — Aflrgs - (4.2.38)

Using (4.2.30) for p = pg := w, then summing over @), M, and noting (4.2.37), we have

2
d_2d+4 d— 2d+4 v
||y 1% ALy, S N5 R, S N5 ot

t,x
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From (4.2.12) and (4.2.14) we get

Ky — Al S N2, (4.2.39)
which implies
”H/H%tl’zHKN — Al S N3 1'% < No=2m3. (4.2.40)

Then we have

2
2 9 d—24t4 4o T d—L. 2
Amy SN° ro Tm)\° + N amy,

d_
2

r
4

which implies for A 2 N
my Se NPo(s =58 re \=po

Thus Part I is proved. To prove Part II for some fixed p, using Part I and (4.2.34), it

3

suffices to prove it for A 2 N 5e, Summing (4.2.32) over @, M in the range indicated by

(4.2.28), we get
|H % Aillay, S LN H |y + PPN H (4.2.41)

where

Al = Z AQ7M

Q<Q1,Q<M<N

and @ is the largest @-value satisfying (4.2.28). For values @ > 1, use (4.2.30) to get

2d+4

sty —(5-TE2)
I % (A= Aoy, S N5 (1242
Using (4.2.38), (4.2.40), (4.2.41) and (4.2.42), we get
2 2 o~ prd—24H2) N* 2/p' _BJp nrd—22 1+ d-%, 2
AMmy SN (L4 ——)m)" + L 7PN v m, P 4+ N 2my.
Qr 7

For A\ > N%_i, the last term of the above inequality can be dropped. Let Q1 = N° such
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that 0 > 0 and
(LN°)® < N
such that (4.2.28) holds. Note that

€

L>1>

_r+2

Qi
for p > pg 4+ 107 and e sufficiently small, thus

_2(d+2) d—dt2 1+

Nm2 < N L2 4 LB NS

This implies

my < NG 5P + NP2 [ -B -2
Nd/2 Nd/2

~Y

Let
Nd/2 p
L = T, B>=
oy, B>t
and 0 sufficiently small so that (4.2.43) holds, then
/2
ma S N

SN LE 4+ N ()L

(4.2.43)

Note that conditions for p, 7 indicated in (4.2.31) implies that p 4 &= can take any exponent

2(r+2)

> po = . This completes the proof of Part II.

The proof of Part III and Part IV is almost identical to the proof of Proposition 3.110

and 3.113 respectively in [Bou93]. The proof of Part III is an interpolation between the

result of Part IT with the trivial subcritical Strichartz estimates [[Pye fllz2 < || fllz2-

The proof of Part IV is similarly an interpolation between the result of Part IT with the

assumption (4.2.5). We omit the details.
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CHAPTER 5

Dispersive Estimates — General Theory

In this chapter, we start to prove Theorem 4.2.3. First note that the Schrodinger kernel
Kn(t,-) in (3.3.5) as a function on M = U/K is a linear combination of spherical functions
which are K-invariant, whence Kx(t,-) is also K-invariant, thus the values of Ky(¢,-) are
determined by its restriction on any maximal torus (more precisely, on the closure of any
cell in a maximal torus, see Section 3.2). Thus it suffices to prove (4.2.3) uniformly on a
fixed maximal torus. By Proposition 9.4 of Ch. III in [Hel08], the spherical function ®, for

A € AT on a maximal torus equals

q
by = Zcie’\"', A €A c;>0.
i=1
This puts the Schrodinger kernel (3.3.5) in the perfect form of an exponential sum. To be

able to estimate the size of such an exponential sum, we need to decompose and assemble

the terms rightly in order to exploit the oscillation in them.

5.1 Weyl Type Sums on Rational Lattices

Definition 5.1.1. Let L = Zw; + - - -+ Zw, be a lattice on an inner product space (V,(, )).
We say L is a rational lattice provided that there exists some D > 0 such that (w;,w;) €

D~Z. We call the number D a period of L.

By Lemma 4.1.1, the weight lattice A of U/K is a rational lattice with respect to the

Cartan-Killing form. As a sublattice of A, the restricted root lattice I' is also rational.
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Let f be a function on Z" and define the difference operator D;’s by

Di.f(nh o 7”7‘) = f(nla Ty M1, My 1ani+17 e 7nr) - f(nh U 7”7‘) (511)
fort=1,--- ,r. The Leibniz rule for D; reads
Di(Hfj) :Z Z D;fi, -+ Difr, - H Ij- (5.1.2)
j=1 I=1 1<k <-<ki<n J#kL Sk
1<j<n

Note that there are 2" — 1 terms in the right side of the above formula.

Lemma 5.1.2. Let L = Zw, + --- + Zw, be a rational lattice in the inner product space
(V,(, ) with a period D. Let ¢ be a bump function on R and N > 1. Let f be a function

on L = 7", with the requirement that
|D21Dznf(n17 anr)l SNA_n (513)

holds uniformly in |n;| S N, i =1,---,r, foralli; =1,---,r, j=1,---,n, n € Zsg ,

where A 1s a universal constant. Let

Ft, H) = 3 et (W ). f (5.1.4)

N2
AEL

fort e R and H € V. Then for 535 € Mg, we have

NAJrr
|F(t, H)|

|5 (Va(L+ Nz — ¢[72)r (5.1.5)

uniformly in H € V.

Proof. By the Weyl differencing trick, write

—i 2 A2 +i(A1— Ml Aol”
FPP= 37 emtnP-pap)ion st (il o el ) 7o)

A1, €L N2 N2
—it| |24 — +>\2 A R
= Y et 3 g o AT R £ 7
BU=A1—A2 A=A2
i p+ AP AP —
< 313 (AN B s T
SN A
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Now write

.
A= E n;w;,
i=1

and

AP AP FI5N

9=z () + A ).
Note that
e+ A —n AP n
[Diy -+ Diyo(Fm =) SN Diy - Dio (Gl S N

for all n € Zs( uniformly in |n;| < N, ¢ = 1,---,r, which combined with (5.1.3) and the
Leibniz rule (5.1.2) for the D;’s implies

Dy, -+ D gl S N*47. (5.1.6)

Write

r

Z e—m(u,x)g _ Z (H e—itm<u,2wi>)g. (5.1.7)

AEL ni, - nr€Z =1

By summation by parts twice, we have

—itny (p,2w1) e itw2un) 2 —itny (p,2w1) T2
D g = (T ) 2 ¢ Dglna, ), (BL8)
n1EZ ni1EZ

then (5.1.7) becomes
—it(p,2w1) r

—i2t(wN) € 2 —itng (1, 2w;)\ )2
Z € a 9= (1 . e*it<u,2w1>) Z (He g )Dlg(nla 7n7“)‘
AEL ni, - Nr€ZL i=1

Then we can carry out the procedure of summation by parts twice with respect to other

variables ny, - - - ,n,. But we require that only when |1 — e~#2wi)| > % do we carry out the

procedure to the variable n;. Using (5.1.6), then we obtain

|3 et o AR AR T
A

N2 N?
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T

5 N2A—r H 1

Pl (max{1 — e~{m2wi) %})2

T

1
< NZAfr )
g (maxc{[|5=t(u, 2wi) |, 3 1})?

Write pp = 377, mjw;, m; € Z, then we have
1
’F’Q < N2A r Z H

m; \<N i=1 maX{HQ tZg 1m]<wj,2wz)|| L})?
j=1,

Let

nZ:ij<wj,2wi)~D, i=1,---,r, (5.1.9)
=1

where D > 0 is the period of L so that (w;,w;) € D~'Z. Thenn; € Z. Noting that the matrix

((wj, 2w;) D), ; is non-degenerate, which implies that for each vector (n1,--- ,n,) € Z", there

exists at most one vector (my, -

- ,m,) € Z" so that (5.1.9) holds, thus

|F|2 < NQA r Z H
Ini|<N, i=1 maX{Hman’N})
i=1e e

T

< NQAfrH Z 1

L &2, a5l £

Then by Lemma B.1 in the appendix, we have

Z 1 < N3

Loy madllsgnill, 5312~ (VA + Nligp = gl172)*

which implies the desired result

N2A+2r

FI* S a2y
(Va1 + Nllzp — 2l'?)

We also have a variant of Lemma 5.1.2.

Corollary 5.1.3. Let L = Zwy + - - - + Zw, be a rational lattice in the inner product space
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(V,(, ) with a period D. Let L™ = Zsqwy + -+ + Zsow,. Let ¢ be a bump function on R

and N > 1. Let f be a function on L™ = 7%, with the requirement that
|Di, -+ Dy, f(ny, -+ ,n.)| < NA™ (5.1.10)

holds uniformly in 0 <n; SN,i=1,---,r, foralli;=1,---,r,j=1,---,n,n € Zxg ,

where A 1s a universal constant. Let

—1 'L A
= ) e RO (’ |2) f (5.1.11)
AeLt N
forteRand HeV.
(i) Suppose
A >, (5.1.12)
Then for 55 € Magq, we have
NAJrr
|F(t,H)| S (5.1.13)

S a
(Va1 + Nllgz = S1M72)r
uniformly in H € V.

(i) Suppose only that

A>r. (5.1.14)

Then for 55 € Magy, we have

Pt ) S N (5,115

F(t,H)| <c0 — 5.1.15

(VAL + Nk — 2172
uniformly in H € V.
Proof. Define f(nl,'-- ,ny) as f(ny, - ,n,) when (ny,---,n,) € Z%,, and 0 otherwise.
Then
F(t. H) — —zt|)\|2+z)\H |)\‘

AEL
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For (i), (5.1.10) and (5.1.12) imply that

|Di, -+~ D; f(ny, -+ ,n,)| < NA™ (5.1.16)

holds uniformly in |n; N, n; € Z, for all n < 2r. Follow the same line of proof as in

IS
Lemma 5.1.2, then (5.1.6) still holds for all n < 2r, which is enough to make the proof work
(the summation by parts procedure is carried out at most 2r times). For (ii), (5.1.10) and

(5.1.14) imply that (5.1.16) holds only for n < r. We modify (5.1.8) into summation by
parts only once, that is
—it{p,2w1)
—itny (p,2w1) , __ € —itng (u,2w1) .
Z € ! ! g - 1 . @—itWale) Z € ! ! Dlg<n17 7n7‘)'
n1€Z ni1€Z
Then (5.1.16) for n < r is enough to imply, following the same line of proof,

> ! |

=1 s | SN maX{HQTanluv N}

which gives (5.1.15) by Remark B.2 in the appendix. O

Remark 5.1.4. Let \y be any constant vector in V and C' any constant real number. Then
we can slightly generalize the form of the function F(t, H) in Lemma 5.1.2 and Corollary

5.1.3 into

A+ X2+ C

F(t, H) _ Z —zt|/\+/\o\2+z NH) ( ¥ ) f

XeL(or LT)

such that the proofs still work and the results still hold.

We have our first application of Corollary 5.1.3. Let U/K be a simply connected sym-
metric space of compact type. Specializing the Schrodinger kernel (3.3.5) to z = K, noting
that ®,(K) = 1, we have

—|A+p)* +
Ey(t,K)= > o | fv|2 ’p’) —AtePHeR) g (5.1.17)

AeA+

Proposition 5.1.5. Let d,r be respectively the dimension and rank of U/K. Let D be a

period of the weight lattice.
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(i) IFU/K is SU(2)/SO(2) or SU(3)/SO(3), then

Nd+s
(Va1 + Nz = S1V72)"

|KN(t7K)| §E>O

t
Jor 55 € Mayg.

(ii) For all the other irreducible spaces U/K of compact type,

Nd
Va(l+ Nl = 2lv2)r

|[Kn(t, K)| < (
for ﬁ € Mgy

Proof. Recall from the proof of Lemma 3.3.2 that d) is a polynomial in A € A of degree
d —r. Thus dy as a function on A* =2 7% satisfies (5.1.10) with A =d —r.

By (3.2.4), d — r equals the number of positive restricted roots counting multiplicities.
Now any irreducible simply connected symmetric space of compact type is either of type I: a
compact simply connected simple Lie group, or of type II: U/ K where U is a simply connected
compact simple Lie group and K is the fixed point set of an involutive automorphism of U.
For type I spaces, the multiplicities of the restricted roots are all equal to 2. Noting that
the number of positive restricted roots not counting multiplicities is no less than the rank r
of the root system, we have d —r > 2r for type I spaces. For type II spaces, Table V and
Section 6.4 of Ch. X in [Hel01] tell that d — r > 2r holds for all type II spaces apart from
SU(2)/S0(2) and SU(3)/SO(3), on which we only have d —r > r.

For irreducible simply connected symmetric spaces of compact type apart from SU(2)/SO(2)
and SU(3)/SO(3), apply part (i) of Corollary 5.1.3 with f(A) = d,. For SU(2)/SO(2) and
SU(3)/SO(3), apply part (ii) of Corollary 5.1.3 also with f(A) = d,. This finishes the

proof. n
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5.2 On a N '-Neighborhood of K

5.2.1 General Approach
We strengthen Proposition 5.1.5.

Theorem 5.2.1. Let d,r be respectively the dimension and rank of U/K. Let D be a period
of the weight lattice. Let d( , ) be the distance function on U/K.
(i) Let U/K be SU(2)/SO(2) or SU(3)/SO(3). Then

Kt )] < N 5.2.)
Kn(t,2)| Seso - 5.2.1
7 (Va(l+ Ngtp — 4l2)r
for 75 € Mg, uniformly for d(z, K) S N1
(ii) For all the other irreducible spaces U/ K of compact type,
Nd
(5.2.2)

[Kn(t2)] S a
(Va1 + Nliz5 — IV

for 35 € Mag, uniformly for d(z, K) < N~

The proof hinges on an integral representation of spherical functions in a neighborhood of
K. Continue the notations in Section 3.2. Let n®, a®, €€ be respectively the complexification

of n,a,t. By Section 9.2 Ch. III in [Hel08], the mapping
(X,H,T)—expXexpHexpT, X e n® H caf T ct"

is a holomorphic diffeomorphism of a neighborhood U® of G® such that U = U N U is

invariant under the maps u + kuk™!, k € K. This induces the map
A:expXexpHexpT — H

that sends U* into a®. Let ®, be the spherical function associated to A € A*. By Lemma

9.2 of Ch. III in [Hel08],
Dy (u) = / e MARETD) ke w e UY. (5.2.3)
K
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Note that the map u — kuk™! preserves the distance d(-,e) to the identity e of U. Let

N > 1 be large enough so that {u € U : d(u,e) < N7'} CU. Then
|A(kuk™ )| < N ! (5.2.4)

uniformly for d(u,e) < N7! and k € K. Here the norm on a® of course comes from the
Cartan-Killing form. Write A = nyw; + - - - + n,w,., n; € Zxq, viewing @, (u) = ¢(\,u) as a
function of A € Z%, (5.2.3) and (5.2.4) imply that ®(\,u) satisfies an equality of the type

(5.1.10) as follows.

Lemma 5.2.2.
|Di1 e Dinq)(nla e 7n'r")u)‘ S N7
holds uniformly in 0 < n; <N and d(u,e) S N7, foralli;j =1,--- ,r and n € Zso.

Proof of Theorem 5.2.1. Apply Corollary 5.1.3 with f(\) = d\®,. Using Lemma 5.2.2, the
fact that d) is a polynomial in A of degree d —r, and (5.1.2), we have that f satisfies (5.1.10)

with A = d — r. The rest of the proof is then found in the proof of Proposition 5.1.5. n

5.2.2 Special Approaches to Compact Lie Groups

We present here two more approaches to Theorem 5.2.1 for the special case of compact
Lie groups. Instead of using the integral formula (5.2.3) to establish Lemma 5.2.2; these
two approaches are based on the Weyl’s formula (3.2.11) to establish a simlar result for the
characters.

Let M be a compact simply connected simple Lie group of dimension d and r. Apply
the notations as in Example 1.1.3, 3.1.1, 3.2.2 and 3.3.3. We make the identification a = a*,
so that for A € a* and H € a, A\(H) = (\, H). Then the Weyl’s character formula (3.2.11)

becomes

> sew det (5)eHsAtr)H)
ZSEW det (S)€i<5(P)7H>

XA(PH) =
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for \e AT, H € a.

Lemma 5.2.3. Viewing the character xA(iH) = x(\, H) as a function on X\ € Zwy + - - - +
VAT

’Dil"'DikX(nlf" 7nraH)’ SNd;T_k (525)
holds uniformly in |n;| S N and |[H| S N7, for alli; =1,--- ,r and k € Zso.

This lemma implies Theorem 5.2.1 part (ii) for the case of compact Lie groups. In fact,
we use (3.3.11) as the Schrédinger kernel. Note that dy as in (3.2.12) is a polynomial in

A € AT of degree |AT|, which is equal to & by (3.2.10). We apply Corollary 5.1.3 part

(i) to this kernel K with f(A) = dyxx. Then Lemma 5.2.3 and the Leibniz rule (5.1.2)
imply that f(\) as a function of A € AT = ZL satisfies (5.1.10) with A = d —r > 2r, then
Corollary 5.1.3 part (i) works and the proof finishes.

We now prove Lemma 5.2.3. First, by Lemma 4.13.4 of Chapter 4 in [Var84], the Weyl
denominator Dp = Y, (det s)e () can be rewritten as

Dp = =t T (et — 1), (5.2.6)
N

As |H| < N7!, for N large enough, we have

’ [oea+ (o H)
D

~ 1.
P

Thus it suffices to show (5.2.5) replacing y (A, H) by

S ey det (5)ei0: 4017

VAH) = =

(5.2.7)

5.2.2.1 Approach 1: via BGG-Demazure Operators

The idea is to expand the numerator of x/'(\, H) into a power series of polynomials in
H € a, which are anti-invariant with respect to the Weyl group W, and then to estimate

the quotients of these polynomial over the denominator [ .+ (@, H). We will see that these
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quotients are in fact polynomials in H € a, and can be more or less explicitly computed by
the BGG-Demazure operators. We now review the basic definitions and facts of the BGG-
Demazure operators and the related invariant theory. A good reference is Chapter IV in
[Hil82]. The following theory works for any reduced root system A C a*.

Let P(a) be the space of polynomial functions on a. The orthogonal group O(a) with

respect to the inner product on a, in particular the Weyl group, acts on P(a) by
(sf)(H):=f(s7'H), s€O(a), fePla), Hea

Definition 5.2.4. For a € a*, let s, : a — a denote the reflection about the hyperplane

{H € a:«a(H)=0}, that is,
a(H)

So(H):=H — 2(a,a>

where H € a. Here H, corresponds to o through the identification a — a*. Define the

BGG-Demazure operator A, : P(a) — P(a) associated to o € a* by

f_sa(f)'

«

Aa(f) =

As an example, we compute A, (N™) for A € a*.

A" A= 22 H )™

Aa(N") = e
A — (A — 28l qym
N (0]
:i(—mi—l m Q—i.<A a)la T (5.2.8)
— i) {a, o)

This computation in particular implies that for any f € P(a), A,(f) lowers the degree of f
by at least 1.
Let P(a)" denote the subspace of P(a) that are invariant under the action of the Weyl
group W, that is,
P@W :={f€P(a)|sf=fforallscW}.
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We call P(a)" the space of invariant polynomials. We also define
P(a). =={f € P(a) | sf = (det s)f for all s € W}.

We call P(a)¥. the space of anti-invariant polynomials. We have the following proposition

which tells that P(a)!, is a free P(a)"-module of rank 1.

Proposition 5.2.5 (Chapter II, Proposition 4.4 in [Hil82]). Define dger € P(a) by
ddet = H .
acAt
Then dge, € P(a)¥, and
P(a)joy = daet - P(a)".

By the above proposition, given any anti-invariant polynomial f, we have f = d- g where
g is invariant. We call g the invariant part of f. The BGG-Demazure operators provide a
procedure that computes the invariant part of any anti-invariant polynomial. We describe
this procedure as follows. The Weyl group W is generated by the reflections s, - , Sa,
where S = {ay,---,a,} is the set of simple roots. Define the length of s € W to be the

smallest number & such that s can be written as s = sq, -+ Sq,, . The longest element s in

W is of length L = |AT| = £ and such s is unique (see Section 1.8 in [Hum90]). Write

S = Sq,

.+ Sq, . Define
1 'L

§ =Dy, - A

1 &

L

and it is well defined in the sense it does not depend on the particular choice of the decom-
position s = s,, * -S4, (see Chapter IV, Proposition 1.7 in [Hil82]).

Proposition 5.2.6 (Chapter IV, Proposition 1.6 in [Hil82]). We have

_ vl
ddet

0f

for all f € P(a)ly,.
That is, the operator 0 produces the invariant part of any anti-invariant polynomial
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(modulo a multiplicative constant). Now we compute § = A,, --+A,, on A™. Proceed

inductively using (5.2.8), we arrive at the following proposition.

Proposition 5.2.7. Let m > L. Then
d(A™) = Z (—1)? H<O%7 aiﬁ>a(a,ﬂ) 1‘[0\7 a;, )!0) H a;;C(C))\n
6,a(c,8),b(7),c(¢),neL as<p ¥ ¢
such that the following statements are true.
(1) In each term of the sum, 3 b(7y) +n=m.
(2) In each term of the sum, 3. c(C) +n=m — L.
(3) In each term of the sum, > b(y) — 3. c(¢) = L.
(4) In each term of the sum, |a(a, B)| < mL, 0 < b(7),c(C),n < m.

(5) There are in total less than 3™ terms in the sum.

Note that since each BGG-Demazure operator Aaij ind = A, -+ Ag,, lowers the degree

of polynomials by at least 1, § lowers the degree by at least L. Thus
d(A™) =0, form < L. (5.2.9)

Example 5.2.8. We specialize the discussion to the case M = SU(2). Recall that a* =
Rw where w is the fundamental weight, and A = {£a} with a = 2w. P(a) consists of

polynomials in the variable A € ]11% = Rw. For \ € Ii& >~ Rw, and f € P(a), we have
— W

A)— f(—=A
6y = TSN,
AL moodd,
S(A™) =
0, m even,
dyer(N) = 2. (5.2.10)

We can now finish the proof of (5.2.5).

Proof of Lemma 5.2.3. Recall that it suffices to prove (5.2.5) replacing x (A, H) by x'(\, H)
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n (5.2.7). Using power series expansions, write

oo

Z(dets i(A+p,H) Z det s Z —| (i(s(\+ p), H))™
seW seW m=0 m:
= Z Z det s (s(\ + p), H)™. (5.2.11)
T seW
Note that
flH) = fN) = (N H) =) dets (s(\ + p), H)™ (5.2.12)
seW

is an anti-invariant polynomial in H with respect to the Weyl group W, thus by Proposition

5.2.6,

ddet( )
W

HaeA+ <Oéa H>

0 fm(H) = ~0fm(H).

This implies that we can rewrite (5.2.7) into

1 o0 -m
X'\ H) = W Z_O%(Sfm([{)

Thus to prove (5.2.5), it suffices to prove that

o0

1 -
> —1Di Dy (8fu(N)] S N2,

m=0
for all k € Zs¢, uniformly in |n;| < N, where A = nyw; + -+ + n,w,. Then by (5.2.12), it

suffices to prove that

00 1 . -
> 1D Di (S l(s(A+ )" S NE, Vs e W,
m=0 ’
Without loss of generality, it suffices to show
(%s) 1 -
> |Di Dy (B[(A+ o)™ S NEE (5.2.13)

m!
m=0

Noting (5.2.9), it suffices to consider cases when m > L. We apply Proposition 5.2.7 to write

o((A+p)")(H)
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= Z (—1)° H(aia,aw)“(aﬁ H A+ p,ap )P0 H i, H O+ p, H)".
:8),6(7), ¢

0,a(a,3),b(7),¢(C).n a<p v
(5.2.14)
First note that for A = nyw; + -+« + n,w,, |ng| SN,i=1,--- ,r, we have
1S Kei o) S 1, [(A+p,00) SN, (5.2.15)
and by the assumption |H| < N7,
fow, H)| S N7L, [0+ p, H) = ‘ (Z ne{u, H>) o) S 1 (5.2.16)
i=1

These imply that

0((A+p)™)(H)| < Z CZap lal@B)HE, b+ E cOtn NIy e =L ) (5.2.17)
0,a(e,B),b(7),¢(C)n

for some constant C' independent of m. Now we derive a similar estimate for D; (6 [(A + ©)™]) (H).

By (5.2.14),

D;i (6[(A+p)"]) (H) = Z (=1 T (e )@ ] e, H)
¢

0,a(,B),b(7y),c(¢),n a<p
D, (Hu + .00+ p, H>") . (5.218)
y

For A = njw; 4 - - - + n,w,, we compute that

Di (A +p,05)) = (i, i),

D; (A +p, H)) = (v, H).

The above two formulas combined with (5.2.15), (5.2.16), and the Leibniz rule (5.1.2) for D;

imply that

< O b0+ 3, oY) =

D <H<A +p0i,)" A+ p, H >’7)

Y
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This combined with (5.2.15), (5.2.16) and (5.2.18) implies that
Dy (5 [\ + p)™]) (H)| < S CTas I, M) elHn VT o) Kl
0,a(a,8),b(7),¢(C)n
Inductively, we have

1D, -+~ Dy, (5[ +p)™]) (H)| < Z OB 1B+ b +30¢ c(Q)+n N2 bV =2 (O =k
0,a(c,B),b(v),c(¢)n

for some constant C' independent of m. This by Proposition 5.2.7 then implies
[Diy - Dy, (8[(A+ p)™]) (H)| < 3mECOmENETR < OMNET
for some positive constant C' independent of m. This estimate implies (5.2.13), noting that

= Cc™
<. 2.1
mZ:m < (5.2.19)

This finishes the proof. n

5.2.2.2 Approach 2: via Harish-Chandra’s Integral Formula

This very short approach expresses x'(\, H) as an integral over the group M, similar to
the approach in Section 5.2.1 for general symmetric spaces U/K of compact type where
the spherical functions are expressed as an integral over K (see (5.2.3)). We apply the
Harish-Chandra’s integral formula (see [HC57]), which reads

Zdet plshm) — H()\)H(M)/ oAdmN)1) g

seWw M
where TI(A) = [],cas (@, A), A\, € m®, and dm is the normalized Haar measure on M.

Then we can rewrite x'(\, H) as

AT
Vo) — SO p) / e PR UD) gy
I(p) M

Note that Mg# is a polynomial in A € A of degree |AT] = 4

of the form (5.1.10) for A = % uniformly. Also, as |H| < N71, |Ad,,(H)| £ N~! uniformly
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in m € M, which implies that the integral f(\) = fM e!MpAdm(H)) dm as a function of
A = mw; + -+ + n,w, satisfies estimate of the form (5.1.10) for A = 0, uniformly in
Inil <N,i=1,---,r,and in |H| < N~'. Then by the Leibniz rule (5.1.2), x'(\, H) as a
function of A satisfies the estimate of the form (5.1.10) for A = % uniformly. This finishes

the proof of Lemma 5.2.3.

Remark 5.2.9. Fiz € a*. For A € a*, define

> sew det (s)ettoOtm) H)
> sew det (s)eitsle) i)

X'\ H) =

Let {aq,--- ,a,.} be a set of simple roots in AT. Viewing x*(\, H) as a function of A =

niaq + - - - + npap lying in the root lattice, then we have a result similar to Lemma 5.2.3:

d—r —k

|Di1"'DikX#()‘7H)’ SJ Nz

uniformly in |n;| < N and |[H| < N7Y, for all k € Zso. Both approaches in the previous

sections to Lemma 5.2.3 can be slightly modified to yield this result.

Remark 5.2.10. Note that Lemma 5.2.3 and Remark 5.2.9 can be stated purely in terms
of a reduced root system without mentioning the ambient compact Lie group. And it is still
true this way. It can be seen either by the approach via BGG-Demazure operators which is
purely a root system theoretic argument, or by the fact that, for any reduced root system A,
there associates to it a unique compact simply connected semisimple Lie group equipped with
this root system, thus the approach via Harish-Chandra’s integral formula still works, even

though the argument explicitly involves the group.

5.3 On a N !'-Neighborhood of any Corner

Continue the notations in Section 3.2.

Definition 5.3.1. Recall that A = ia/TV is the maximal torus of M = U/K where TV =

Haq

(a1,00)

H.o,
(ar,ar)

2miZ + -+ 2miZ

. For H € a, we say [iH] € A is a corner if a(H) € ©Z for all
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o € 2.

Note that this definition is well defined and there are finitely many corners in A. In fact,

let wq, - -+, w, be the fundamental weights associated to the set of positive roots {ay, -+ , ;. },
and let AV = miZ (iwoig +- 4T <£wojr>. Then I'V C AV and the set of corners is isomorphic

to the finite set AV /TV.

Example 5.3.2. Continue Example 3.2.1. Then the only corners are 8 = 0, .
Continue Example 3.2.2. Since A = 2%, [iH] € A is a corner if and only if a(H) € 27Z for
all v € A.

Theorem 5.3.3. Let [iHy| € A be any corner. Then (5.2.1) and (5.2.2) hold respectively

for ﬁ € M, q, uniformly for d(z, [iHy]) < N zeA.

Remark 5.3.4. It can be shown that any corner is fixed by the left actions by K. By the
wnwvariance of the Schrodinger kernel under K, the above theorem can be slightly generalized

as such that (5.2.1) and (5.2.2) hold uniformly for d(z,[iHy)) S N7, x € U/K.

To prove this theorem, we describe an important characterization of spherical functions.
For p, A € A, let p < X denote the statement that A — p € 2Z>p0q + -+ + 2Z>pa,.. For

€ AT, define

seW

Then define the Heckman-Opdam polynomials P(\), A € AT, by

P(\) = Z exuM (), exn=1

REAT u<X

such that

da =0, Vp e AT, <\

H (% — e~ @)Me
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Here da is the normalized Haar measure on the A. Let e denote the identity of the maximal

torus A. Normalize P(\) by

Theorem 5.3.5 (Corollary 5.2.3 in Part I of [HS94]). The spherical functions on U/K

restricted on A are given by the normalized Heckman-Opdam polynomials:

Oy = P()\), VA€ AT,
Corollary 5.3.6. Let [iHy] € A be a corner. Then
®)\(iH 4 iHy) = eMH0d, (iH), VH € a, YA € AT,

Proof. By the above theorem and the definition of Heckman-Opdam polynomials, it suffices

to show that for any A € A™,
et(sm)(Ho) — eiA(Ho)7 Vi <\, Vs e W.

This is reduced to showing (su — A\)(Hp) € 27Z, and by the definition of [iHy| as a corner,
it is further reduced to sy — A € 2Zay + - - - + 2Za,.. By the fact p < A, it then suffices to
show sy — p € 2Zay + - - - + 2Zav, for any p € A and s € W. But this is a fact by Corollary
4.13.3 in [Var84]. O

Let I' = 2Zay + - - - + 2Za,.. The above corollary implies that for A € I' and p € AT such

that A+ € A™,

Oy, (iH +iHy) = " M0d,, (iH). (5.3.1)
This inspires a decomposition of AT and thus of the Schrodinger kernel (3.3.5), which makes
applicable the techniques in proving Theorem 5.2.1 for the proof of Theorem 5.3.3.

Proof of Theorem 5.3.3. The definition of the weight lattice and Axiom (iii) of the root

system in (3.2.1) imply that any of the fundamental weights wy,--- ,w, is a rational linear
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combination of roots. Thus there exists some B € N such that Bw; € I' for all i. Define
Fi‘_ = Zzonl + 4 ZZOBwr-
Let AT/Tf = {njw; +---+nw, :n; =0,--- ,B—1,i=1,--- ,r} and decompose

A= ] @+

peA+/rf

This yields decomposition of the Schrodinger kernel

Ky= )Y Kj, (5.3.2)
peA+ /T
—)\+u+p2+p2 it(— 2 2
Ky =" o | N2| 7 Yl Prtel o) g B
aerf

By the finiteness of AT/T'T, it suffices to prove (5.2.1) and (5.2.2) respectively replacing Ky
by K%. By (5.3.1),

—[A+ -+ pl2+ |p]?
N2

K (t,iH + iHg) = €10 3~ oo

Aert

)ez’t(—|/\+u+p\2+|p|2)d)\+#q)/\+u(iH).

Now we apply Corollary (5.1.3) to K\ (t,iH + iH,) as in the proof of Theorem 5.2.1. Note
that dy;, is still a polynomial in A € '] of degree d — r, and the proof of Lemma 5.2.2

generalizes to yield the result that

Dy, -+ Dy, ®*(ny, -,y iH)| S N7 (5.3.3)

i1 " in

holds uniformly in 0 < n; S

Y

N and |H| < N1, where ®(ny, -+ ,n,,iH) = ®,,,(iH) with
A =mBw + -+ n.Bw,. Thus f(\) = dr,Pr4,(1H) satisfies (5.1.10) with A = d —r
uniformly in 0 < n; < N and |H| < N~'. This makes applicable Corollary (5.1.3) and the

rest of the proof is then found in the proof of Proposition 5.1.5. m
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5.4 Away From the Corners

We do not have a general theory yet to prove (4.2.3) uniformly for all x € A that stays away
from the corners by a distance > N~! for a general symmetric space of compact type. The
main obstacle is the lack of explicit formulas or even approximate formulas for the general
spherical functions or say the Heckman-Opdam polynomials (for research in this direction,
see for example [EFK95], [Obl04], [vDO03]). In this section, we deal with the special case of
odd dimensional spheres required in Theorem 4.2.3, for which explicit formulas of spherical
functions exist and are useful. The other case of compact Lie groups required in Theorem
4.2.3 of which the spherical functions are given explicitly by Weyl’s character and dimension
formulas, is to be dealt with next chapter.

Let U/K be the sphere of dimension d = 2\ 4+ 1, A € N. Continue the notations in
Example 3.2.1. To prove (4.2.3) with e-loss for the Schrédinger kernel (3.3.12), first realize
that Kx(t,#) is invariant under the Weyl group action 6 — 27 — 6, thus it suffices to prove
(4.2.3) uniformly for 6 in the closed cell [0,7]. Then Theorem 5.3.3 implies (4.2.3) with
e-loss uniformly for |0] < N~ or |6 — x| < N~!, thus it suffices to prove (4.2.3) with e-loss
uniformly for 6 away from 0,7 by a distance 2> N~!. By (3.2.9), it then suffices to prove
< Nz,\+t1+a

VAl + Nllz5 — 51M?)

for 1= € M, uniformly in CN~' <0 <7 —CN~!, C > 0, where

IKY(t,0)

2w D
() _ 2 (A =N 2
KN (t, 9) = W EZZ: ()O(T>€ dnCnJ/ cos((n -V —+ )\)9 — (1/ + )\)71'/2),
n >0
with

o= () T e

As CN' <9 <m—-CN, |W| < NvHA = 0,---,)A — 1. Rewriting cosf =
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(e + e7"), it then suffices to prove

2 A—p+1+
| Z ”+>‘ —A )6—it[(n+A)2—AZ}ii(n—u+/\)9q:i(u+/\)7r/2d C N :

n n,u| 55 a
VAlL+ N3k — 317

(5.4.1)

uniformly in € [CN~', m# — CN~!]. Note that d, is polynomial in n of degree d — 1 = 2,
then we can write d,,C,,, = % such that f(n) and g(n) are polynomials of degree 3\ — 1

and 2\ — 1 4 v respectively. This implies that d,,C,,, satisfies estimate of the form (5.1.10)
|Diy -+ Dy (dnCin )| S NY7F

uniformly in 0 < n < N, for all k € Z>(. Note that A — p > 1, thus we can apply Corollary

5.1.3 part (ii) to (5.4.1) and finish the proof.

Remark 5.4.1. We have the following partial result on (4.2.3) for general symmetric spaces
of compact type of rank 1. Continue Example 3.2.1. Let M be a simply connected symmetric

space of compact type of dimension d and rank 1. The Schrodinger kernel reads

—(n 4P+ 0° itnipepy, (M - (a.b)
En(t.0)= Y o e Je o, P (cos )

TLGZZO
where d,, is polynomial in n of degree d — 1, p = %ma + %m%. We have the asymptotics for
the Jacobi polynomials (Theorem 8.21.8 in [Sze75])

p,sa’”(cose)=<m>—5<sing>‘a—5<cosg>‘b 2cos([n+ (a+b+1)/2)0 — (a+ >7r/2>+0< :),

where the bound for the error term holds uniformly in the interval [c, ™ — ¢|, ¢ > 0. Fiz such

a constant ¢ > 0. Note that

(l €
§s>0

n-—+a ) '
( n ) ‘ Seso n*¢, uniformly in n € N.

This implies

2 2 -1
|§0( _(n + P) +p )eit(—(n+p)2+p2)dn (n + CL> P(a b)(COS 9) d— l—a—%—i-s‘

Ncen

N2 n
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Now either a =0 or a > % For a > %, the above estimate directly implies
[Kn(t,0)] See N

which satisfies (4.2.3) uniformly for 6 € [c,m—c| (noting that ﬂ(l%—NHﬁ—%Hl/?) < Nz).

For a =0, if d =2, which is the case of the two sphere, then the above estimate gives
K (t,0)] See N3H°
which satisfies (4.2.3) with an e-loss for 0 € [e,m —¢|. If d > 3 for a =0, then

—1
‘Dil .- D, <(n + a) dnn—§>
n

Since d—1 > 2, an application of part (i) of Corollary 5.1.3 implies (4.2.3) for 6 € [c, 7 —¢].

_3_ _1—
Sand 5 k+5§nd 1 k‘

In conclusion, for all symmetric space of compact type of rank 1, (4.2.3) holds (with an e-loss
for the special case of the two sphere) uniformly for 6 € [c,m —c]. Recall from Theorem 5.3.3
we also have that (4.2.3) holds (with an e-loss for the two sphere) uniformly for 6 close to

the corners 0 and 7 by a distance of < N~t. But the estimate is still missing for other values

of 6.
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CHAPTER 6

Dispersive Estimates on Compact Lie Groups

In this chapter, we finish proof of part (1) of Theorem 4.2.3 . Let M be a simply connected
compact simple Lie group and continue the notations in Example 3.2.2.

Let Q = Nyeas{[iH] € A: (o, H) € [0,27]} be the fundamental cell in the maximal
torus A. In Section 5.3 of last chapter, we prove that (4.2.3) holds uniformly for z = [iH] € Q
that stays within a distance of < N~! from some corner, that is, if we use || - || to denote
the distance from 0 in the unit circle [0, 1), when ||3=(a, H)|| < N7! for all « € A. The key
ingredient in proving this is the polynomial-like behavior of characters as in Lemma 5.2.3.
Then it suffices to prove it for the cases when x stays away from all the corners by a distance
of 2 N~1. We will first prove it for the special case when x = [iH]| stays away from all
the cell walls, that is, when [|5=(a, H)|| Z N~! for all @ € A, by exploiting the oscillatory
behavior of characters for such x’s. The general case when x is close to some cell walls within
a distance of < N~ but away from other cell walls by a distance of > N~! will be dealt

with combining both the polynomial-like and the oscillatory behavior of characters.

6.1 Away From All the Cell Walls

Continue notations in Example 1.1.3, 3.1.1, 3.2.2, and 3.3.3. From now on, let P denote the
set AT of positive roots. Using (3.2.11), (3.2.12) and (5.2.6), the Schrodinger kernel (3.3.11)

reads

—I\ 2 2 5 o DY det i(s(\+p),H)
Ky = Z 30( ’ +p| + |p| )ezt(f|)\+p\ +lo| )Ha€P<a +p> ZsGW e (S)@

AEA+ N? [Licpla,p) eI p(etteth — 1)
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Proposition 6.1.1. We have

Nd
[Kn(t, [iH])] S - (6.1.1)
(vVa(l+ Nlizp — ¢IIM)r
for 15 € M4, uniformly for |5 (o, H)|| 2 N7 for alla € A, H € a.
Under the condition that ||=(a, H)|| Z N~! for alla € A = PU (—P),
eI T (e — 1)) Z NF (6.1.2)
acP

where L = |P| = . Using this, a direct application of Corollary 5.1.3 part (ii) will yield

(6.1.1) with an e-loss. To get rid of this loss, we make an important observation that we can
in fact rewrite the Schrodinger kernel as an exponential sum over the whole weight lattice A

instead of AT, thus we can apply Lemma 5.1.2 instead.

Lemma 6.1.2. Let Dp = e "I ] ("> — 1) be the Weyl denominator. We have

KN(t’ [ZH]) _ eit|p|2 Z e_it|A|2+i(A,H)¢(M) H (a, )\> (613)
(Haeple. ) Dp £ N aeP
eitlel?

_ Z —zt\)\|2 _’)\’ + ’pP) H< >Zs€W det (8)6“8()\)7[{)
(Lol AT 2 Dr

acP

(6.1.4)

Proof. We first prove (6.1.3). Recall that p = w; + - - - + w, where {wy,--- ,w,} is a set of
fundamental weights such that AT = Zsow; + - - - + Zsow, and A = Zw; + - - - + Zw,. Recall

that the fundamental chamber is C' = Rogw; + - - - + Rygw,. Thus we have
A +p=ANC.

Then we can rewrite the Schrodinger kernel as

Ky = Z ¢(—!A\2 + [l ) (=|A12+] 0|2 )Ha€P<a7)\> ZSEW det (5)6“5/\’H>‘
AEANC N [Tocp(e, p) Dp

Recall that from Proposition 5.2.5, [[ cp(c, ) is an anti-invariant polynomial so that for
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seW

[] (e s(N) = det(s) [] (e, A). (6.1.5)

acP acP
Then recall that the Weyl group W acts on a* as a group of isometries so that

s = A, forallse W, A€ a. (6.1.6)

Using the above two formulas, we rewrite the Schrodinger kernel

Kn(t, [iH]) = eitlel? Z ot (—\)\\2 + [l H Zdet oits(). H
e (Haep<a p))Dp AeANC ’ N? a€eP seW
e o —IM + pI? i),
(H ) %:VAGZA;C tIM2 )ng s(N))e s
- <Haepnc:|p 2 — |p|2)g<g’s(”>ei<8(x)ﬂ>
it|p|? ) —| )2 2 )
N (Haej(l::l P>)DP Aeuse%;(AmC) e_Zﬂ/\ng( M’N_; |p| >E<Q7A>€Z<A7H>.

Now (3.2.8) implies

A=(]saano) [ |dJrer:(\a)y=0}),

seW aEX

using which we rewrite

el s — AR+ lpl? -
_ —it|A| (N H)
Rnltoo) = ps 22 A ) e ne™

P xeA acP

This proves (6.1.3). To prove (6.1.4), using sA = A for all s € W, write

—it|A|24i —|)\|2 + |P|2 —it|s(\) |2 +i(s _|3()‘)|2 + |P|2
D et <A’H>SO(T) [t n)y =" eritsWFHtI o e ) [T ¢e s(V),

AEA acP AEA aeP

which implies using (6.1.5) and (6.1.6) that

i il _A2+ p2 —i i(s( _A2+p2
Ze it| A2 +i(\H) o | |N2| | )H< ) = det(s Ze it| A2 +i( @(%)H@é’)\%

AEA acP AEA acP
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which further implies

—it|\2+i —[A* + 1o
Ze tl/\|+()\’H>90< ’ ‘N2’ ’ )H<a7)‘>

AEA aeP
1 R 1A : - P : i(s
=17 Ze 4 w(%) H<O" A) Z det(s)ei ),
AEA SeP =
This combined with (6.1.3) yields (6.1.4). 0

Proof of Proposition 6.1.1. Using (6.1.3) and (6.1.2), it suffices to prove

2 —[AP + ol N
2 :e—zt\)\| —H)\(H)SO<|—) <Oé7)‘> 5 “ '
AeA N2 CED (vVa(l+ Nllgzs = ¢1M7)r

for %LD € M, uniformly in H. This is a direct consequence of Lemma 5.1.2, noting that

[T.cp{a, A) is a polynomial in X of degree | P| = 4, thus it satisfies (5.1.3) with A = 2. O
Example 6.1.3. We summarize the techniques in Chapter 5 and Section 6.1 to prove for
the special case M = SU(2) that

< M
S AT ML =)

K x(t,0) (6.1.8)

for % € M, q, uniformly for 0 lying in the cell [0, 7] (then automatically in the whole mazimal

torus [0,27) ). Specialize (6.1.3) and (6.1.4) to the Schridinger kernel (3.3.13), we get

e —itm?4im@ m2 —1
meZ
eit it m2 -1 eime o e—im@
=5 D et MmO ER/2L. (6.1.10)
meZ

Scenario 1: 0 is away from the two corners 0,7 by a distance of 2 N='. Then (6.1.8)
follows directly from Lemma 5.1.2, noting that |e® — e~ > N1,

Scenario 2: 0 is close to 0 or 7 by a distance of < N~L. Recall that A = Zw, I’ = Za with
a = 2w, thus A/T = {0,1} - w. Similar to (5.3.2), we decompose

eit

KN(t,g) - 2

(K (t,0) + Ky(t,0)),
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where

KO _ e—itm2 (m2 _ 1)m . eimG _ e—im@
N 2 ;k ¥ N2 el — o—if '
m=2k,
keZ

eime o e—imQ

1 itm?_m?— 1
Ky = Z € wl N2 ym - ol _ g—if

m=2k-+1,
kEZ

Write 0 = 0 + 0y, where |01] S N7, and 0y = 0, 7. Then for m =2k, k € Z,

1

= _— Z"’nel _ *imel
1 e L . .
= g ) 2 (M) = ()"
n=0
91 " n—1,.n
= o Ty 2 ™),
n odd

and similarly form =2k +1, k € Z,

6i9291 [ n—1,_mn
Xm(0) = (e — 1) Edjﬂ@el m").

Note that we have been implicitly applying the special case of Proposition 5.2.6 that

0, -207'm", n odd,
fn<01) = (m@l)” — (—m@l)" = 91 . 6fn =

0, n even.

01
ei261 1

If |[k| < N, noting that

< 1, then
|D xor| S N'E D xarga| SN'E, L€ Zs,

where D is the difference operator with respect to the variable k. These two inequalities will

give the desired estimates for K% and K} respectively and thus for Ky, using Lemma 5.1.2.
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6.2 Root Subsystems

To finish proof of part (1) of Theorem 4.2.3; considering Theorem 5.3.3 and Proposition
6.1.1, it suffices to prove 4.2.3 in the scenarios when [iH] € @ is away from some of the
cell walls by a distance of 2> N~1 but stays close to the other cell walls within a distance of
< N1 We will identify these other walls as belonging to a root subsystem of the original
root system A, and then we will decompose the character, the weight lattice as well as the

Schrodinger kernel according to this root subsystem, so to make Lemma 5.1.2 applicable.

6.2.1 Identifying Root Subsystems and Rewriting the Character

Fix any H € a, let Ry be the subset of the set A of roots defined by
1 -1
Ry ::{aEA:H%(a,HWSN }.

Thus
1
A\ Ry ={aeA: ||%<a,H)|| > N_l}.

Define

Ay :={a € A : « lies in the Z-linear span of Ry}, (6.2.1)

then AH D Ry, and

1
g (e H)| S N7, Vo€ A, (6.2.2)

with the implicit constant independent of H, and

1
I5-{a H)| > N7, Va e A\ Ay (6.2.3)

Note that Ay is Z-closed in A, that is, no element in A \ Ay lies in the Z-linear span of
Ay.
Proposition 6.2.1. Ay is a reduced root system.

Proof. We check the requirements for a reduced root system listed in (3.2.1) and (3.2.2).
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(iii) and (iv) are automatic from the fact that Ay is a subset of A. (i) comes from the fact
that Ay is a Z-linear space. (ii) follows from the fact that s, is a Z-linear combination of

a and B, for all a, B € Ay, and the fact that Ay is a Z-linear space. O

Then we say that Ay is a reduced root subsystem of A.

Let Wg be the Weyl group associated to Ay. Wy is generated by reflections s, for
a € Ay and thus Wy is considered a subgroup of the Weyl group W of A. Let P be a
positive system of roots of A and define Py = PN Ay. Then Py is a positive system of

roots of Ay. We rewrite the Weyl character

>y det s et H)

) — ‘
xa([iH]) e—i{p.H) Haep(ez(a,H) —1)
@ ZSHewH ZSEW det(sgs) eil(sms)(X),H)
e—ip.H) (HaeP\PH(ei<a’H> — 1)) (HaepH(€i<a,H> _ 1))
: | . Eos ot 00
‘WH’e*MP,H) HaEP\PH (ez(a,H> _ 1) foerr? HaEPH (ez(a,H> _ 1)
> e, det s eilsu(s(\)),H)
=C(H) det s - =M . :
sezl/i:/ HocEPH (€Z<Q7H> - 1)
where
1
C(H):= , A ) (6.2.4)
|WH|6_Z(P7H> HaEP\PH (ez(a,H> _ 1)
Then by (6.2.3),
C(H)| < NIPPHL (6.2.5)

Let Vi be the R-linear span of Ay in a* and let Hl be the orthogonal projection of
Heaon Vy. Let H- = H — HI. Then H*' is orthogonal to Vi and we have
S ew, det sy ilsm(s(N), H-+HI)
HaepH(ei<a,Hl+Hll> . 1)

ZSHGWH det sy eils(N)s5 (HD)) gils(N),s5' (HI)

ila, HI
sEW HaePH(e (e HY) — 1)
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Note that since H* is orthogonal to every root in Ay, H* is fixed by the reflection s, for
any a € Ay, which in turn implies that H= is fixed by any sy € Wy, that is, sy (H*) = H*.
Then

. det S ei<8()‘)vsl}l(H”)>
Xo=C(H) Y dets-eNH 2wy L
sewW HaGPH (6 ’ - 1)

Note that by the definition of Hll, we have

1
Il H)[ S N7, Vo€ Ap. (6.2.6)
m

This means that [iH] is a corner of the maximal torus associated to Ay. We will exploit

the oscillatory behavior of xy embodied in the term e )

i(s(\),s 5t (a )

as well as the polynomial-like

ZSHEWH detsy e
[aepy (eeHh-1)

5.3, see Lemma 6.2.7 below) so to make Lemma 5.1.2 applicable.

behavior embodied in the term

(similar to the treatment in Section

Using the above formula, we rewrite the Schrodinger kernel (6.1.4)

C(H)elel”
Ky = dets - Ky (6.2.7)
T (aeplas )W ZW "

where

S e, det sy ellesg! (1)

K. — Z i(s(N),HL)—it| A2 (—|>\|2 + |,0|2) H< A)
N,s — € ¥ N2 «, H p (ei<a’HH> _ 1)
a€Py

AEA aeP

Using (6.1.5), (6.1.6) and s(A) = A for all s € W, we have
KN,s = det s KN,]I
where 1 is the identity element in W. Then (6.2.7) becomes
C(H)etle!

Ky = m}(m. (6.2.8)
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Proposition 6.2.2. Recall that

i(\sg (HI)
: : i — A2+ |p|? D eew, det sy efen
Ky (t, [iH]) =Y =0 o 2Py (T (o, A) | Souse—
)\GZA N2 (gp HaEPH (ez(a,HH> o 1)
(6.2.9)
Then
. N-I1P\Px|
[Kna(t, [tH])] S (6.2.10)

(va+ Nzt - 21)

for 555 € Mqq, uniformly in H € a.

Noting (6.2.5) and (6.2.8), the above proposition directly implies part (1) of Theorem
4.2.3.

Example 6.2.3. The following Figure 6.1 is an illustration of the decomposition of the maz-
imal torus of SU(3) according to the values of ||5=(a, H)|, a € A. Here AT = {ay, ap, 3 =
ay + ao}. The three proper subsystems of A are {£a;}, i = 1,2,3. The association of Ay

to H 1s as follows.

[iH] € regions of color =~ < Ag=A,
[iH] € regions of color < Ay ={tai},
[iH] € regions of color & Ay ={tas},
[iH] € regions of color < Apg ={taz},
[iH] € regions of color & Ay =0.

6.2.2 Decomposition of the Weight Lattice

To prove Proposition 6.2.2, we now make a decomposition of the weight lattice A according

to the reduced root subsystem Ap. Let Proj,; denote the orthogonal projection map from
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. 2H
Qmg—21

(a1,01)

iH

. 2H,
(a2,a2)

Figure 6.1: Decomposition of the maximal torus of SU(3)
according to the values of ||5=(a, H)||, a € A
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the ambient inner product space onto any subspace U.

Lemma 6.2.4. Let ® be a reduced root system in the space V with the associated weight
lattice Ag. Let W be a reduced root subsystem of ®. Then let I'y and Ag be the root lattice
and weight lattice associated to W respectively. Let Vi be the R-linear span of W in V. Let
Yy be the image of the orthogonal projection of Ag onto V. Then the following statements
hold true.

(1) Yy is a lattice and I'y C Yy C Ay. In particular, the rank of Ty equals the rank of I'y
as well as Ay .

(2) Let the rank of Ty and Ag be r and R respectively. Let {wy,--- ,w,} be a Z-basis of
Ty. Pick any {u1,--- ,u,} C Ag such that Projy, (u;) = w;, @ = 1,--- ,r. Then we can
extend {uy, -+ ,u.} into a basis {uy, -+ ,Up, Ups1, - ,ur} of Ng. Furthermore, we can pick

{Upy1,- -+ ,ur} such that Projv\p(ui) =0 fori=r+1,--- ,R.

Proof. Part (1). It’s clear that Ty is a lattice. Let I'p be the root lattice associated to .

Then I'y C I'g. Then
'y = Projy, (T'w) C Projy, (T's) C Projy, (As) = Ty.

On the other hand, for any p € Ag, a € I'y, (Projy, (1), a) = (@, ). This in particular

implies that

 (Proiy, (). a)

€Z, forall u € Ao, a € I'y.
(a,a) (a, )

This implies that Projy, (1) € Ay for all u € Ag, that is, Ty = Profy, (Ae) C Ay.

Part (2). Let S¢ := Zuy + - -+ + Zu,., then Sy is a sublattice of Ag of rank r. By the theory
of sublattices (see Chapter II, Theorem 1.6 in [Hun80]), there exists a basis {u}, - ,u}r} of
Ag and positive integers dy|ds| - - - |d, such that {d;u],--- ,d,u.} is a basis of Sg. Then we

must have dy = dy = --- = d, = 1, since
Zd,Projy, (u}) + - - - + Zd,Projy, (u,.) = Projy, (Ss)
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= Projy, (Ae) D ZProjy, (uy) + -+ - + ZProjy, (u;)
and that u),--- ,u, are R-linear independent. Thus we have

Se = Zuy + -+ + Lu, = Ly + - -+ + Zu,

r

and then {u1, - ,up,u;, - ,uR} is also a basis of Ag. Furthermore, by adding a Z-linear
combination of ui,--- ,u, to each of u;,,--- ,u, we can assume that Projy, (u;) = 0, for
i=r+1,--- R 0

Example 6.2.5. Continue the example of SU(3). Recall that the three proper subsystems of
the root system A = {£ay, s, tas} are {£a;}, i = 1,2,3. Then the weight lattice of A

projects on Ray; to be the weight lattice Z5 associated to the root system {+a;}, i =1,2,3.

We apply the above lemma to the reduced root subsystem Apy of A. Recall that Vg

denotes the R-linear span of Ay in a*. Let 'y be the root lattice for @5, and let
Ty := Projy, (A). (6.2.11)

Then by the above lemma, we have

Let 7y be the rank of Ay as well as of I'y and Yp, and let {wy, - ,w,,} C Ty such that
Yy =2Zw + -+ Zw,,.

Pick {uy,--- ,u,,} C A such that

ProjVH(u,;) =w;, t=1,---,ry.
Then by the above lemma, we can extend {uy, -+ ,u,, } into a basis {uy,--- ,u,} of A, such
that
Projy, (u;) =0, i=rg+1,--- .7 (6.2.13)
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with

AN =Zu; + -+ Zu,.

Denote

Yy =Zuy+ -+ Zu,, CA,

then

Projy, : Ty = Ty

Recalling (6.2.12), let I'}; be the sublattice of T’ corresponding to I'y C Ty under this

isomorphism. More precisely, let {a1,--- ,a;, } be a simple system of roots for 'y, then
Projy, : Ty =Zay + -+ Za,, = Ty = Loy + -+ Loy, oo, =1, ,rp,
(6.2.14)

and we have

We decompose the weight lattice

A= || 4Ty Ztnyn + -+ Zu,),
peTy /Ty

then

/ 2 2
Ko — N g H it N a2 AL+ Aol® + [p]
N1 = e o( )
N2
HET /Ty,
AM=niod+tnegog
)\2:n7‘H+lurH+1+“‘+an'r

det S 67:<,U4+>\/1+>\2751_{1 (HH»
' H(oz, i+ N+ Ag) s eW ad o) :
HaGPH (el & - 1)

Note that (6.2.13) implies for Ay = n, 41Uy, +1 + - - - + n,u, that

aeP

(Ao, sy (H1)) = 0,
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and (6.2.14) implies for A} = nya} + -+ n,,a;  that
N s (HD) = Ows st (HY) = (su(h), HY)
where \y = nyoy + - + n,, ., € V. Similarly, also note that

(y sy (HY) = (!, sy (H1)) = (s (ul), HY), where pll := Projy,, ().

Thus we rewrite

/ 2 2
Ko — N, A, H ) —itltx a2 I AL+ Ao? + [p|
N,1 — € 90( N2 )
HGTlH/F/H (nl""»nT)EZTy
AM=n1od+tnegog
A=niai+-+nry ey,
)\2:n7‘H+luT‘H+1+“‘+an7‘

> det sy eilsm (ul+x1),H1)
T e+ X+ A2 HEWn e |
och HaGPH (6 ’ - 1)

Remark 6.2.6. We have that in the above formula

Y oecw, det sy eilsm (ul+21),H)
H H

[Tocp, (e = 1)

is a character associated to the weight pull + X\, of the reduced root subsystem Ay, noting that

Xl n, (H) = (6.2.16)

ul e Projy. (M) lies in the weight lattice of Ay by Lemma 6.2.4.

Lemma 6.2.7. Let A C a* be a reduced root system, and let ', A, W and P be the associated
root lattice, weight lattice, Weyl group and a set of positive roots respectively. Fix some p € A.

For H € a, let

5 e (et )0 1)

€i<a,H) -1
HaGP(

Then x(\, H) as a function on X € T satisfies an estimate of the form (5.1.3)

XA H) =

’Dh T le (X(A))l S N|P|_k7 (6217)

uniformly for |\| S N and H € a such that ||s=c(H)|| S N7t for alla € A, for all k € Z.
Proof. This lemma is similar to (5.3.3). For |[£a(H)|| < N7 for all @ € A, we can write
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H = Hy + H; such that a(Hy) € 27Z and |a(H;)| < N7! for all @ € A. This implies [i H]

is a corner and
|H| S N
By Corollary 4.13.3 in [Var84], s(u+ X) — (u+ ) € I for p+ X € A for all s € W, thus

eis(/-t"")‘)(HO) e ei(:u’"')‘)(HO) = 67::“(H0). Then we rewrite

ZsEW(det S)ei<5(ﬂ‘+)‘)7H1>
[Loep(ei ) —1)

Then the result follows from Remark 5.2.9 and 5.2.10. OJ

XA, H) = et

Noting (6.2.15), Proposition 6.2.2 reduces to the following.

Proposition 6.2.8. For p € Y, /T, let

- - —lp+ A+ X + [pl?
I ; . WX, o, HE) —it| 4N 42 |2 |N+ 1 2 P
K (8, [iH]) < = > it el = )
(n1,-,np)ELT,
A=niof+otne o,
Ar=niai+Ane g o,
A2=n7»H+1U,T-H+1+---+7LT’U,T,
ni, - NrE€EZL

Y. det sgr eilsu (ul+21),HI)
T e+ X+ A2 HEWH e |
acP [Tocp, (A —1)

Then
Na—IP\Px|

(va+Nizs —21)

[Ki 1t [iH])] S (6.2.18)

for %LD € Mg, uniformly in H € a.

Proof. We apply Lemma 5.1.2 to the lattice Zay + - -+ + Zay., + Zttpyq1 + -+ - + Zu,. Let

Zs cw det SH ei<5H(N”+>\1)7HH>
H H

[Lacp, (e = 1)

Viewing [, p(av, g+ A +X2)x (A1, HI) as a function on the lattice (ny,--- ,n,) € Z", where

X(Ah HH) =

! / / _ — ]
A =mo) + -+ Mgy Qs Al =n1aq + N, 0y A2 = Ny 41Uy g1 + 0+ NpU,, then it
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suffices to show that it satisfies estimate of the form (5.1.3)

< NO-IP\Pal=r—k

‘Dil .- Dy, (H@W + )+ )\2>X(/\1,H)>

aceP

uniformly for [n;| S N, i=1,---,r. Since [ cpl{a, u+ A] + X2) is a polynomial of degree
Pl

< N\P\*k.

acP

Thus by the Leibniz rule (5.1.2) for the D;’s, it suffices to show that
|Di, -+ Dy, (x(\, HIY)) | < NA-IPAPrI=r =PIk — yIPai=k (6.2.19)

Since x(A1) does not involve the variables n,, 1, ,n,, it suffices to prove (6.2.19) for
1 < iy,--- i < rg. Recall (6.2.6), then (6.2.19) follows by noting Remark 6.2.6 and

applying Lemma 6.2.7 to the reduced root system Ay and the proof is finished. n

6.3 [P Estimates

We prove in this section LP(M ) estimates of the Schrodinger kernel for p not necessarily equal
to infinity. Though they are not used in the proof of the main theorem, they encapsulate

the essential results in the proof of the L>(M) estimates and are of independent interest.

Proposition 6.3.1. Let Ky be the Schrodinger kernel as in (3.3.11). Then for any p > 3,
we have

N
(Va1 + Nllgs = ¢ 1M72)r

| Kn(t, ) |lrary S (6.3.1)
for 75 € May,.

Proof. As a linear combination of characters, the Schrodinger kernel Ky (t,-) is invariant
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under the adjoint action. Then we can apply to it the Weyl integration formula (3.2.14)

1
1K, ) ar) = W/A|KN(t,a)|P|Dp(a)|2 da. (6.3.2)

We have shown in Section 6.2 that each H € a is associated to a root subsystem Ay such
that (6.2.2) and (6.2.3) hold. Note that there are finitely many root subsystems of a given

root system, thus A is covered by finitely many subsets R of the form
1 1
R={[iH] € A: H2—<a, H)|| <N ' VaeU, Hz—(a, H)| > N1'vaecA\V} (6.3.3)
T T

where W is a root subsystem of A. Thus to prove (6.3.1), using (6.3.2), it suffices to show

Ncl p »
(Va(l + N3 — §H1/2))r> N5 (6.3.4)

By (6.2.5), (6.2.8) and (6.2.10), we have

/R (Kt [iH))|P| Dy (H) 2 d < (

1 NA=IP\Q|
Kn(t,[iH]) < -

~ ilo, HY __ r
[Liep (et = 1) (\/5(1+N’27r%—§|1/2)>

where P, () are respectively the sets of positive roots of A and ¥ with P D (. Recall
Dp(H) = [Leple’H) —1), (6.3.4) is then reduced to

/ T (e — 1)

a€eqQ

p—2 2

1

4 dH < NPiP\@l=d,
HaeP\Q(€Z<a’H> —-1)

Using
e 1| x| (a, 1),
2
it suffices to show

J

For each H € a, write

p—2 2

1
[aero 37 o Bl

dH < NPIP\@I=d, (6.3.5)

1
TT 1o (e )]
acq@
H=H + H,
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such that

1 1
5= (a, H)|| = |5=(a, H")|, (@, Ho) € 27Z, Vo € P.
2 2
Then write
Rc |y R+[iH (6.3.6)
[¢Hop]| is a corner
where

R={[iH] € A+ |- o, H)| S N7 Vo€ Q|- (o, H) | > N7\ Va € PAQY. (637

Recall that there are only finitely many corners. Thus using (6.3.6), (6.3.5) is further reduced

I,

Now we reparametrize the maximal torus A by

to

2
dH < NPIP\@lI=d, (6.3.8)

p—2

1
[aer\q 3 (. H)|

1
[ 5o 20)
a€eqQ

H= Ztini, (ty,--- ,t,) €D
=1

where {wy,--- ,w,} is the set of fundamental weights associated to a set {ay, -, .} of
simple roots and H,, corresponds to w; by a = a*, and D is a bounded domain in R". Then

the normalized Haar measure dH equals
dH = Cdty - - - dt,
for some constant C'. Let s < r such that

{ar, -, CP\Q,

{asi1, .} CQ.
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Using (6.3.7), we estimate

/ T 5z o 11)
R acQ

1
< — = NE2AAAQI=s) 2Rl qp, ... g, 6.3.9
~ /t1|,~~-,|ts|2N1, |t1 1 ( )

et P2
|tS+1|7"' 7‘t7"|5N71

p—2 2

1
[acr\q 37 (a, H)|

dH

If p > 3, the above is bounded by
< NE-2(P\QI=s) N=21Q| \ys(p=3)=(r—s) — NpIP\Ql-d
noting that 2|P \ Q|+ 2|Q| +r = 2|P| +r = d. O

Remark 6.3.2. The requirement p > 3 is by no means optimal. The estimate in (6.3.9)
may be improved to lower the exponent p. I conjecture that (6.3.1) holds for all p > p, such

that lim, .o, p, = 2, 7 being the rank of M.
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APPENDIX

A. Proof of an Interpolation Lemma

Lemma A.1. Let (X,pu) and (Y,v) be o-finite measure spaces. Let po,p1,qo0, 1 € [1,00],
po # p1- Suppose that T is a linear operator from LP°( X, p)+LP (X, u) to L (Y, v)+ L7 (Y, v)

such that

1T fllzoo < Allfllzro, Vf € L7, (A.1)

|Tfllzer < Bl fllzor + D fllzeo, Vf € L™, (A.2)

for some positive constants A, B, D. Let 0 < 0 <1 and

1 1- 6 1 1-60 0

P  Po DI @ Q@ @

Then for some universal constant C,
1Tl < CCABY||fllpy + AD°| ), ¥ € L7 1 I, (A.3)
Proof. ! By scaling the measure v, noting the assumption py # p;, we can assume that
B=D.

We now use complex interpolation theory (see Chapter 4 and 5 in [BL76] as a reference) to
prove the lemma. Let (X, X;)g denote the complez interpolation space between compatible
complex Banach spaces Xy and X; of parameter §. By Theorem 4.1.2 in [BL76], it suffices

to prove

(L(Io, qu)g — LQG7

!The author thanks mathoverflow.net for providing a forum where he could ask about the proof and
be provided with an authoritative reference.
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(LP07LP1 N Lpo)e = PN Lpo7

in the sense that the norm on either side of the equation is bounded by the norm on the other
side multiplied by a universal positive constant. The first equation is given by Theorem
5.1.1 in [BL76]. The second equation follows by the same line of proof of Theorem 3 in

[Riel2]. In fact, we can generalize it to
(LP°NLP LN LP) =P N LP (A.4)

for either 1 < p < pg,p1 < 00, or 1 < py,p1 < p < oo. For the sake of completeness, we
sketch the proof here. We prove the case when 1 < p < pg, p1 < 00, and the other case can
be proved similarly. By Theorem 4 in [Riel2], given any f € L'(M) + L>*(M) (originally
stated with respect to a domain of R”, but can be generalized to any o-measure space M by

its proof), there exist linear maps

Syt LN(M) + L® = LY(0,1), Sy: L'M)+ L®(M) — 1™

Ty : L'0,1) — LYM) + L*>®(M), Ty:1° — LY(M) + L>®(M),
such that
f=T51f +125:f (A.5)
holds almost everywhere, and

[S1ullzro0y < ullzrany,  [1S2ullr < [lul|zran,

| Tvullzrary < ullzrony,  1Toulloran < [lullir

for all 1 <r < 0o and all u in the respective Lebesgue spaces. Note that for all p < r,

lullzey < llullry,  llelle < lulle
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for uw in the respective Lebesgue spaces, whence we have for all p < r,

|S1u| r0,1) < vl Lranynze ()
1Saullr < ||ullzr(arynLe ),
| Tvullzrarynre oy < 1wl 2r0,1),

| Toull e (anynzeany < lullie.

Then by Theorem 4.1.2 and 5.1.1 in [BL76], the above inequalities imply

[S1ullzro 0.1y < [l zro (arynre ), Lo (aynLe (1)),
[ Saullwe < |wll(Lroar)nrean), Loy (v)nLe ()
| Tvull (zro (vynre (), o (anynze (), < M[ullzre0,1)s

[ T2ull(zro (arynze (), Lo (e (ary)y < [lut]fimo.

(A.10)
(A.11)
(A.12)

(A.13)

Now let f € LPo(M) N LP(M) and let the linear maps Sy, Sz, 71, Ty be the maps defined as

above for f. Now (A.6), (A.12), (A.7), (A.13) imply

T3Syl zroanynze (), Lo anynLeanyy, < | fllLeo nnze oy,

| T%S2 f || (Lro (vynze(ary, Lor (anynze () < | f | Lre (arynze(ary s

then by (A.5),

| fll(zro (anynze(any,Lon (anynze vy < 20| f | Lro vy (any-

On the other hand, let f € (LPo(M) N LP(M), LP (M) N LP(M))y and let the linear maps

S1, 52,11, Ty be the maps defined as above for this f. Then (A.10), (A.8), (A.11), (A.9)

imply

|T1S1f || oo (anynze iy < | f |l zro (anynzeany, Lor (anynze (an))»

| T%Sa f || oo (anynzeary < || f |l zro (vnynzeany, Lor (anynze (an))g»
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which imply by (A.5)

| fllzro anynzeary < 2|\ I zro (vynze (ar),Lex (M)A Le (1)) -

Thus (A.4) is proved, and the lemma follows. O

B. Proof of a Major Arc Lemma

Lemma B.1. Let N € N, a € Z>o, g € N, a < q, (a,q) =1, and ¢ < N. Let || - || denote

1

the distance from 0 on the standard unit length circle. Suppose ||t — ¢|| < 5. Then we have

1 N3
m%v (max{||nt]], 3})? < (va(l + Nt — 2]72))> (B.1)

Proof. Let 7 =t — 2, then ||7|| < [nt|| = [[ng +n7||. We see that for each ¢ consecutive

qN ’
numbers of n, say n € A={0,1,---,¢— 1}, the distribution of S(A) = {|[n? + n7 | n € A}
on the unit circle follows the patern that apart from the closest point to 0, the other ¢ — 1
points out of S(A) stays away from 0 by the distances of about %, m=1,2,---,q—1. The
set {n | |n| < N} lies in the disjoint union of A+lg, forl € Z, |I| < %. So first we have that
the contribution to the left of (B.1) from the points away from 0 out of A + lq for all | € Z,

|l‘<ﬂ

Nq?

(B.2)

|l\<Nm 1l

Now let p(A) denote the point out of S(A) that is closest to 0. Then compared with p(A),
p(A £ ¢) moves away or towards 0 by a distance of ¢||7||. We consider two separate cases.
Case I. Suppose that m > NTQ. Then we simply estimate the contribution from the points

closest to 0 out of p(A + lg) for all [ to the left of (B.1) to be

1 N3
Y 35— (B.3)
gy N2 1
quTH < NTQ. Then if the closest point to 0 out of some
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A+lq say for | = [y is ever within the distance of % from 0, the closest point out of A+Iq will

stay the distance of  away from 0 when [l —lo| > m. This implies that the contribution

to the left of (B.1) out of the closest points from 0 is

1 1 1 N
<— —+ < ) (B.4)
Nqll7ll = IZ<l<N (gllTI)? =~ gl
Nql[T][~"~ q
In summary, we have
Z ! <Nq+Nmin{N2 ! }
N2 1
< Nmin{—, ——}
q qll7]
N3
< . B.5
S T NI (B5)

Remark B.2. With the same notation as in the previous lemma, the proof can be slightly

modified to show that

3 1 < N2log N
g max{llntll ¥} ™ (va(l + Nie = g/)>

(B.6)
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