
UC San Diego
UC San Diego Previously Published Works

Title
SIMILE enables alignment of tandem mass spectra with statistical significance

Permalink
https://escholarship.org/uc/item/0np4p4wr

Journal
Nature Communications, 13(1)

ISSN
2041-1723

Authors
Treen, Daniel GC
Wang, Mingxun
Xing, Shipei
et al.

Publication Date
2022

DOI
10.1038/s41467-022-30118-9

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0np4p4wr
https://escholarship.org/uc/item/0np4p4wr#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ARTICLE

SIMILE enables alignment of tandem mass spectra
with statistical significance
Daniel G. C. Treen 1, Mingxun Wang2, Shipei Xing3, Katherine B. Louie1, Tao Huan3, Pieter C. Dorrestein 2,

Trent R. Northen 1 & Benjamin P. Bowen 1✉

Interrelating small molecules according to their aligned fragmentation spectra is central to

tandem mass spectrometry-based untargeted metabolomics. Current alignment algorithms

do not provide statistical significance and compounds that have multiple delocalized struc-

tural differences and therefore often fail to have their fragment ions aligned. Here we align

fragmentation spectra with both statistical significance and allowance for multiple chemical

differences using Significant Interrelation of MS/MS Ions via Laplacian Embedding (SIMILE).

SIMILE yields spectral alignment inferred structural connections in molecular networks that

are not found with cosine-based scoring algorithms. In addition, it is now possible to rank

spectral alignments based on p-values in the exploration of structural relationships between

compounds and enhance the chemical connectivity that can be obtained with molecular

networking.
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Tandem mass spectrometry is widely used in metabolomics
experiments to hypothesize chemical structures. This is
done by aligning fragment ions that share the same mass-

to-charge ratio (m/z) and calculating the cosine similarity of their
intensities1. Such compound identification often requires deter-
mining if an experimental fragmentation spectrum matches an
authentic standard with the annotated data.

Recently, alignment approaches have been developed that aim
to yield scores that are a proxy for compound similarity rather
than identity. For instance, GNPS-based molecular networking
and NIST Hybrid Search both implement an alignment approach
that is sensitive to compounds that differ by a single/localized
structural difference(s)2–4. The general logic for these two
approaches is as follows: when a pair of related molecules are
fragmented, their fragmentation data are likely similar. Under the
assumption that the difference in masses stems from a single/
localized structural difference and does not alter the fragmenta-
tion process of the molecule, the structural difference can either
be attached to charged fragments or localized modifications that
are reflected in neutral mass additions in the fragment ions (e.g., a
lipid may have an additional mass of 14, 26, or 28 Da representing
CH2, CH=CH, or CH2–CH2 additions). The charged fragments
are directly observed as m/z’s in the fragmentation spectrum,
while the neutral fragments can be indirectly observed as neutral
losses by subtracting (or adding) the fragment m/z’s from their
precursor m/z. Therefore, when the assumptions hold as is often
the case, two fragments from different molecules can be aligned if
they share the same m/z or the same m/z difference with respect
to their precursor m/z. More recently, a concept of hypothetical
neutral loss is proposed to further align neutral losses from pairs
of fragment ions, showing significantly improved correlation
between spectral and structural similarities5. Alignment approa-
ches on fragmentation data have also proven useful for mass
spectrometry-based proteomics by identifying pairs of peptides
that differ by multiple modifications6–8.

Machine-learning approaches such as SIRIUS, CANOPUS,
MS2LDA, and Spec2Vec also incorporate precursor ion neutral
losses as a feature in their implementations9–12. Recent imple-
mentations combining machine learning with in silico structural
database searching allow exploring high-confidence identifica-
tions to explore biochemistry outside of known chemical
databases13. Other tools have enabled the false-discovery rates
from tandem mass spectra database searches to separate correct
from incorrect hits through false-discovery rate assignments
(analogous to decoy database searching in proteomics). While
there are methods for estimating statistical significance for
compound identification, to our knowledge, no method for cal-
culating the significance of fragmentation-spectra alignments
from a pair of spectra has been described14,15.

Protein-sequence alignment algorithms like Needleman–Wunsch,
Smith–Waterman, and BLAST yield alignments with statistical sig-
nificance that are robust to multiple substitutions, insertions, and
deletions16,17. These methods are fundamentally different from
fragmentation-spectra-based cosine similarity in that they rely on
substitution matrices describing the log odds of amino acids sharing
common ancestry relative to random chance such as the PAM and
BLOSUM matrices18,19. These approaches have not been widely
applied to fragmentation data for two reasons: first, unlike protein-
substitution matrices that are generally of size 20 by 20 (amino
acids), a global substitution matrix for fragment ions would be
infinite due to the infinite number of possible m/z values; and sec-
ond, m/z values are only partially tied to chemical structure due to
the one-to-many correspondence between m/z values and chemical
structures. However, if restricted to a single pair of fragmentation
spectra, a spectral graph-theoretic framework parameterized by their
all-by-all m/z difference counts can generate finite, context sensitive,

and mathematically consistent fragment ion similarity matrices
based on average commute times20.

Here, we introduce Significant Interrelation of MS/MS Ions via
Laplacian Embedding (SIMILE), an approach that leverages
methods used for protein-sequence alignment to enable robust
pairwise alignment of fragmentation spectra with p-value esti-
mation (Fig. 1). Rather than requiring identical m/z values or
precursor ion neutral losses for alignment of fragmentation
spectra, SIMILE uses all m/z differences among a pair of frag-
mentation spectra to generate a pair-specific fragment ion simi-
larity matrix. This matrix is then used as the input to a dynamic
programming alignment algorithm for alignment and scoring.
The significance of an alignment is calculated via a Monte Carlo
permutation test with alignment score as the test statistic under
the null hypothesis that m/z values are exchangeable between
m/z-ordered fragmentation spectra only if they yield hypothetical
fragmentation spectra that are also m/z ordered. Figure 2 illus-
trates these aspects of the SIMILE algorithm with two hypothe-
tical molecules.

Results
SIMILE benchmarking. We used tandem mass spectra from
NIST20’s Small Molecule High Resolution Accurate Mass MS/MS
Library to compare SIMILE to existing algorithms, determine
strengths of SIMILE, and identify potential areas for improve-
ment of SIMILE. The reference tandem mass spectra of com-
pounds were filtered by unique InChIKey closest to 40-eV
collision energy within ± 5 eV, resulting in a dataset comprising a
single spectra for each of 24.5k molecules (7356 molecules as
negative-mode [M–H]− adducts and 17,225 molecules as
positive-mode [M+H]+ adducts). These spectra were used in
analysis without modification or further filtering.

We compared “pairs of spectra” from the spectral dataset, and
evenly sampled 100,000 pairs from each Classyfire compound
class, with the requirement that at least one compound in each
pair was from a specific compound class. Compound classes with
less than 100,000 pairs were eliminated, resulting in 63 unique
compound classes for negative ionization mode and 145 unique
compound classes for positive ionization mode having at least
100,000 pairs for comparison. Rather than focusing on perfor-
mance across compound classes, this approach simply served to
remove unexpected bias in the dataset where a small number of
compound classes might be overrepresented. This gave a final
total for negative ionization mode of 6,300,000 pairs and for
positive ionization mode 14,500,000 pairs for analysis.

Since each pair of spectra is accompanied by a pair of
corresponding chemical structures, for each ionization mode, we
performed an all-vs-all calculation across all pairs to calculate the
maximum common substructure (MCS) Jaccard similarity
coefficient. MCS is a property of a pair of molecules computed
based on their overlapping chemical structure. If you know the
chemical structure of each molecule in a pair of molecules, then
the MCS can be easily calculated. This was used to define a rubric
of chemical similarity in which an MCS less than 0.35 is
considered “not similar”, between 0.35 and 0.45 to be “low
similarity”, 0.45–0.7 to be “medium similarity”, and greater than
0.7 to be “high similarity”. These cutoffs are based on the finding
that, across all pairs of molecules, the average MCS plus one
standard deviation was 0.4. The distribution of MCS values across
unfiltered pairs of molecules can be seen in Fig. 3a, b.

On all pairs of spectra, we then performed an all-vs-all
calculation using a range of algorithms, including the MatchMS
implementation of modified cosine, SIMILE, GNPS-cosine
scoring, and Core Structure-based Search (CSS)3,5,12,21. Using
the MCS associated with each pair of spectra/compounds as the
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ground-truth structural similarity for each pair, we sought to test
how well each algorithm could convey structural similarity from
spectral similarity. The absolute (Fig. 3a, b) and relative number
(Fig. 3c) of returned pairs are shown in Fig. 3, and for each
similarity category, the actual number of pairs can be seen in
Supplementary Table 2. These both show that SIMILE finds the
largest number of associations across all similarity categories.

The parameters chosen for each spectral similarity algorithm
are such that an experienced practitioner would be comfortable
choosing them. In addition, each algorithm returned approxi-
mately the same percent of “not similar”, or false positive, and
one can see that the algorithms all have comparable abilities to
return a relative number of structurally similar results. As can be
seen in Fig. 3c, the fraction of “not similar” (blue) hits ranges
between 20 and 30% of total hits. For SIMILE and CSS, there is a
slight improved performance in negative ionization mode (~20%
“not similar” in negative vs. 30% in positive), but for modified
cosine, there is a slight improvement in performance for positive
ionization mode. In the unfiltered comparisons shown in Fig. 3a,

the amount of “not similar” pairs of spectra comprises
approximately 80% of the pairs, demonstrating that all algorithms
greatly enhance the recovery of structurally similar pairs of
molecules from tandem mass spectra.

Using these parameters for each algorithm for this analysis,
SIMILE was found to identify more structurally similar pairs than
all other algorithms in positive and negative ionization modes
(Fig. 3c, d). More importantly, the unique and intersecting pairs
of spectra that each algorithm identifies (Fig. 4) show that the
algorithms yield nonoverlapping pairs of spectra. This implies
that without sacrificing quality, a combination of these tools
would likely yield the best results. To focus on highly similar
pairs, (MCS > 0.7, Supplementary Figs 3, 4), a confusion matrix
can be seen that shows the specific true-/false-positive and true-/
false-negative counts for each algorithm. These algorithms all
have comparable precision, but SIMILE was found to match more
true positives.

To further understand the degree to which SIMILE can find
more pairs of structurally related molecules, a synthetic dataset

Fig. 1 Analogous to how protein sequences undergo alignment, SIMILE aligns fragmentation spectra with allowances for substitutions and gaps.
a–c Pairs of protein sequences are globally aligned by using a dynamic programming algorithm such as Needleman–Wunsch with an evolutionary model-
based substitution matrix and gap penalty. d Significance of the alignment is calculated by assuming alignment scores that follow a distribution
parameterized by choice of substitution matrix. e–g Likewise, pairs of fragmentation spectra are aligned by a dynamic programming algorithm with a pair-
specific similarity matrix and a gap penalty of zero. g, h The alignment-score null distribution used to calculate the significance of observed alignments
stems from permuting pair-specific similarity matrix interrelating fragmentation spectra X and Y randomly many times with restrictions according to the
null hypothesis.
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Fig. 2 For two hypothetical molecules, this cartoon illustrates the underlying steps of the SIMILE algorithm in calculating pairwise m/z similarity
matrices. For this example, two molecules “1” and “2” are shown. Each molecule is made from three blocks and there are two modifiers to molecule 2. a All
pairwise m/z differences between fragments of molecule 1 and molecule 2 are stored in a matrix. b All entries with the same m/z difference in the top-two
quadrants are replaced by the number of entries in which that m/z difference occurred. The same process is repeated for the bottom-two quadrants.
c Calculating the pseudoinverse of the directed graph laplacian with this matrix yields similarity scores for each pair of m/z values. The quadrants
interrelating molecules 1 and 2 can then be fed into a dynamic programming algorithm to yield aligned fragment ions between molecules 1 and 2. For
illustrative purposes, only the quadrant corresponding to molecule 1 vs. molecule 2 of the full matrices is shown. The other quadrants corresponding to
molecule 1 vs. molecule 1, molecule 2 vs. molecule 1, and molecule 2 vs. molecule 2 are still used for calculations.

Fig. 3 SIMILE identifies more pairs of spectra with meaningful structural similarity in comparison with Core Substructure Search (CSS), GNPS, and
Modified Cosine using maximum common substructure (MCS) as a proxy for structural similarity. The inset histograms (a and b) show the distribution
of MCS for unfiltered pairs of spectra and the MCS distribution for each algorithm in positive and negative ionization modes (respectively). The number of
pairs with low, medium, or high structural similarity are shown for each algorithm in (c and d); and the fraction of similarity scores by each approach in (e)
where positive ionization mode—dashed lines and negative ionization mode are solid bars.
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was created consisting of 20 flavonoids and 20 indoles randomly
selected from the Berkeley Lab public GNPS reference library.
Molecular networks were created using either GNPS or SIMILE
scoring (Supplementary Fig. 5a, b). Because these classes of
molecules have a conserved core structure, one can reliably
identify moieties of each molecule that are present/or absent in
another. For the ninety-seven pairs of flavonoids that were found
by SIMILE and not found by GNPS, their aligned structures show
multiple modifications (Supplementary Fig. SI5 and Supplemen-
tary Dataset 1).

To test the validity of using SIMILE for a real-world
application to molecular networking, we searched all pairs of
spectra from a publicly available dataset of chemical extracts of S.
roseosporus NRRL 15998 and Streptomyces sp. DSM5940. Scoring
these pairs with both GNPS-cosine scoring and SIMILE, we
sought to determine if SIMILE could help gain additional
information regarding the relationships between the spectra.
Following the traditional scoring and network pruning
approaches used in GNPS, many additional edges were identified
by SIMILE, which could be explored (Fig. 5a). Focusing on the
previously identified molecule, Napsamycin C, several connec-
tions (Fig. 5a inset) were found by SIMILE and not GNPS and
vice-a-versa22. An example demonstrating additional insight from
SIMILE, is a connection not observed before that links
Napsamycin C to N-acetylmureidomycin B, another structurally
related compound23. The fragmentation data shown in Fig. 5b, c
match that described previously for these compounds22,23.
Because the GNPS-cosine score was near to zero, this connection
would have been missed by traditional molecular networking
approaches and enabled putative annotations that were pre-
viously not possible.

Since this is the first application of a pair-specific similarity
matrix for fragmentation spectra, we sought to better understand
examples where SIMILE performed remarkably well and where

SIMILE performed poorly. To look closely at cases that illustrate
certain strengths and weaknesses of the current implementation
of SIMILE, two cases were selected and shown in Fig SI6. Shown
in Fig SI6a is a case comparing spectra from two flavonoid
molecules with high structural similarity (MCS of 0.89) but
differing by four relatively small non-stereo-specific structural
differences. In this example, there is a spectrum with 26 ions from
kaempferol 3-O-xyloside and a spectrum with 18 ions from
mearnsitrin. The alignment identified by SIMILE follows a nearly
unbroken path using 16 out of a possible 18 fragment ions, with
an alignment score of 0.84 and a p-value of 0.008. In line with the
view that modified cosine can struggle to align compounds with
multiple structural differences, modified cosine only aligned
4 ions and had a score near zero. This example demonstrates a
case where a precursor ion neutral-loss shift between the two
spectra fails to align the spectra, but traversing the pair-specific
similarity matrix with a dynamic programming approach yields
an excellent alignment.

Shown in Fig SI6b is a case comparing the spectra from two
secondary bile acids (deoxycholic acid with 19 ions and alpha-
muricholic acid with 18 ions) differing by two structural
modifications: the addition of a hydroxyl group and the
relocation of another hydroxyl group. This pair of molecules
has an MCS of 0.91. Like the example above, these spectra come
from compounds with high overall structural similarity and differ
by more than one structural difference. However, in this case,
SIMILE failed to find reliable alignment. Only 6 out of 18 ions
were aligned with an alignment score of 0.22 and a p-value of 1.
By comparison, modified cosine aligned 7 ions, including the top-
two ions, resulting in a score of 0.84. As can be seen in the
similarity matrix, there are two potential paths. One path shifted
by the precursor ion neutral loss and one path based on m/z
differences of the fragment ions. Likely, an improvement to the
SIMILE algorithm that incorporates precursor ion neutral-loss

Fig. 4 SIMILE identifies the largest number of similar pairs and 88% and 89% of the pairs of spectra identified by SIMILE in positive and negative
ionization mode were not found by any other algorithm. Pairs of spectra identified by each algorithm for positive (a–c) and negative (d–f) ionization
modes can be seen in these UpSet plots. The total number of pairs identified by each algorithm is shown in the bar chart to the left (a and d), and the
unique pairs identified by each algorithm along with their corresponding structural similarity are shown in (b, c) and (e, f). Boxen plots (b, e) show several
quantiles of the maximum common substructure (MCS) for each algorithm to approximate a distribution38.
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differences (like modified cosine) would aid this case and
potentially many others.

Discussion
Spectral similarity applications, like spectral networking, benefit
from increasing connections between truly similar metabolites.
One way of accomplishing this is by using a scoring method that
is robust to arbitrary structural differences and provides statistical
significance. In protein-sequence alignment, this is achieved by
using substitution matrices with alignment algorithms that gen-
erate scores according to known distributions24–26. However,
substitution/similarity matrices also appear in many other con-
texts, including text, speech, video, or even mathematically
abstracted signals27–30. Once a similarity matrix is chosen, widely
known methods can be used to calculate optimal alignments
between pairs of signals16,31,32. To this end, we have developed a
method of generating similarity matrices for fragmentation
spectra to associate fragment ions by the similarity of their
fragmentation paths. We found that our alignment method,
SIMILE, yields different and typically more associations than
cosine-based scoring algorithms and significant alignment scores
generated by SIMILE correspond to compound structural simi-
larity. SIMILE is currently limited to analysis of protonation/
deprotonation, which is certainly a limitation. We see that
developing approaches to comprehensively addressing additional
adducts is an important direction for future research.

As can be seen in Figs. 4, 5, SIMILE identifies different pairs of
compounds than other algorithms. This provides evidence that
the SIMILE alignment scores and p-values are capturing aspects
of how similar compounds fragment similarly. For modified

cosine, the number of matching ions acts as a heuristic to
approximate the significance of aligning/scoring the similarity of
two spectra; in contrast with SIMILE, there is a mechanistic
calculation of significance using a framework based on fragment
ion substitutability. Likely, there will be classes of molecules that
are more appropriate for cosine-based scoring than SIMILE-
based scoring. Consequently, it makes sense to use SIMILE as an
algorithm to accompany traditional scoring approaches (like
modified cosine).

The underlying SIMILE distance measure for comparing
fragment ions is closely related to Euclidean Commute Time
Distance (ECTD), which has the property of decreasing with the
number of connecting paths and increasing with the “length” of
connecting paths33. The number of paths connecting two frag-
ment ions increases when the number of total fragment ions
increases. Likewise, the “length” of a path connecting fragment
ions decreases when the frequency of m/z differences in the path
increases. In other words, two fragment ions are similar if they
are connected by many paths exhibiting high- frequency m/z
differences.

Saerens et al. prove that the pseudoinverse of the graph
laplacian acts as a covariance matrix with respect to ECTD33. We
use a normalized and directed graph laplacian as the SIMILE
similarity matrix to ensure that similarity scores in the fragment
ion similarity matrix are normalized. We can then score
fragmentation-spectra pairs by using a dynamic programming
algorithm to align their fragment ions according to similarity
scores32. This in turn mirrors how pairs of protein sequences can
be scored by aligning their residues according to a substitution
matrix.
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Fig. 5 Starting with a spectrum from node 2021, which was identified as Napsamycin C from traditional molecular networking work, SIMILE found
additional connections that would have been missed if only cosine scoring was used. The network shown in a contains edges from SIMILE, GNPS-Cosine,
and both techniques. The connection to the spectrum from node 2021 shown in b was connected to the spectrum from node 2164 shown in c. Both spectra
closely matched the spectra described for these compounds from published work (matching ions are shown)22,23. The cosine score between these two
spectra is near zero.
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For much of metabolomics research (including spectral-based
molecular networking), it is necessary to use intermediate spectral
similarity scores. Interrelating fragmentation spectra with inter-
mediate scores in SIMILE is aided by a significance estimate;
without statistical significance, intermediate similarity scores are
to some degree uninterpretable. For example, intermediate scores
could imply moderate structural similarity or tentative high
similarity. Interpretation of intermediate scores has a direct effect
on how researchers prioritize metabolites of interest and ulti-
mately on the outcome of their research. As such, SIMILE sig-
nificance estimation assists in deriving biological insight from
metabolomics data when confronted with underexplored bio-
chemistry. The significance of SIMILE alignments is calculated
via a Monte Carlo permutation test with alignment score as the
test statistic. It is important to note that significant SIMILE
alignment of fragmentation spectra does not necessitate com-
pound structure similarity. This is similar to how protein
sequences can have significant alignment but yield different ter-
tiary structures or functions. Likely, a significant SIMILE align-
ment indicates that two molecules fragment similarly, not that
they necessarily have similar structures. Nevertheless, the results
presented here show that significant fragmentation-spectra
alignments often correspond to moderate-to-high structural
similarity.

While SIMILE is a very promising approach for scoring pair-
wise spectral alignments, since this is the first application of
scoring metabolite-fragmentation spectra using a similarity
matrix, close attention must be applied. We recommend com-
plementing SIMILE with the use of cosine-based scoring for
compound identification. There is a massive amount of literature
on cosine-based scoring, is well established, and has been in use
for many decades. Since we find that SIMILE often works for
cases where cosine-based scoring fails, using both approaches will
provide more identifications. In addition, SIMILE provides a p-
value and an alignment between fragments.

This said, it is likely that the parameters used in this study to
compare alignment algorithms could be further optimized to
improve performance. While beyond the scope of this work, this
would likely provide additional insights on how the various
approaches can be best used as part of metabolomics workflows.
However, such optimizations almost certainly result in trade-offs
in performance, for example, improving specificity vs. number of
hits, both of which can be desirable objectives. In addition, from
the m/z differences in the alignment, one can glean structural
clues regarding the differences between the molecules. For
example, the predominant m/z difference in Fig SI6a of 30.983
likely corresponds to [+O2 −H]. This is not surprising, given
that one of the chemical differences between the two structures is
the addition of two oxygens. We see this methodology being
useful for elucidation of novel natural products by using the
fragmentation spectra of known members of the same chemical
class as “scaffolds.” In addition, as shown in Fig SI6b, there are
improvements to the SIMILE algorithm that can likely boost its
reliability and interpretability.

Here we describe SIMILE, a metabolomics tool immediately
useful to complement existing widely used approaches with the
potential to open up a completely new area for research in
fragment ion similarity matrices with significance estimation.
This approach provides a scoring and significance framework for
discovering relationships between molecules that would have
been dismissed with existing approaches. As such, using SIMILE
as an algorithm to accompany traditional scoring approaches
(like modified cosine) should lead to increased discovery in
multiple fields, including compound and pathway discovery, and
other useful applications of spectral networking.

Methods
Overview. The SIMILE algorithm calculates spectral similarity by aligning sub-
stitutable fragments, identification of the significance of their alignment; and
scoring the degree to which two spectra are correlated. The underlying mathe-
matical framework for these calculations is described below. Python code for each
step is available in the GitHub repository (https://github.com/biorack/simile) as the
release “v1_manuscript-submission”. Figure 2 illustrates the SIMILE algorithm
with two hypothetical molecules. SIMILE can be evaluated interactively alongside
other scoring algorithms in the GNPS Similarity Hub (example result for SIMILE
scores and p-values calculated—Hub Link) where spectra from [M+H]+ adducts
for N-acetyl-5-hydroxytryptamine and 5-hydroxy-DL-tryptophan are scored.

The fragmentation process in tandem mass spectrometry can be modeled as a
network of fragmentation paths connecting precursor ions to product ions with
fragmentation reactions34. In addition, it is broadly assumed that similar structures
fragment similarly. If this assumption holds, a similarity measure for fragment
ions, which considers their fragmentation paths ought to be a good proxy for their
structural similarity and, when aggregated, the similarity of the intact structures. To
find such a similarity measure, we rely on the following observation: a modification
to a molecule can add and/or remove fragmentation reactions to fragmentation
paths. For modified fragmentation paths that do not remove fragmentation
reactions, there will be a one-to-one substitution from the original fragment ions to
modified fragment ions. The m/z differences cross-linking such fragmentation
paths will be characteristic of the modification and their frequency proportional to
the similarity of the fragmentation paths.

Because we do not know fragmentation paths for fragment ions in general, we
consider the frequency of all pairwise m/z differences. While the frequency of m/z
differences alone suffices in providing a “shortest path” distance between fragment
ions, it remains insensitive to fragmentation paths. After all, a single common m/z
difference between two fragment ions may very well be spurious. Instead, we are
interested in consistent m/z differences cross-linking the same sets of fragment ions
that are more likely to result from similar fragmentation paths.

For this reason, we use the average “commute time” of fragment ions as our
distance measure that considers all paths weighted by m/z difference frequencies.
Specifically, SIMILE works by projecting fragment ions into a Euclidean commute
time distance (ECTD) space dependent on the frequency and connectivity of the
m/z differences between them.

We rely on the variance–covariance matrix with respect to ECTD space for the
remainder of the SIMILE algorithm because it forms a valid kernel (i.e., similarity
function in the strict mathematical sense), which we denote the SIMILE similarity
matrix. When comparing fragmentation spectra A and B, it is important to note
that intraspectral (i.e., A vs. A) and interspectral (i.e., A vs. B) comparisons are
considered in tandem by forming a square (A+ B) by (A+ B) similarity matrix.
This is critical, because our p-value exchanges fragment ions between the A and B
and so the fragment ions must be projected into the same space.

In order to quantify the similarity of fragmentation spectra A and B, the
SIMILE similarity matrix is used in conjunction with a dynamic programming
algorithm related to those used for pairwise alignment of biological sequences. For
the sum of the similarities in the alignment, we denote the SIMILE alignment score
and use as a proxy for compound similarity.

While alternatives to m/z order-based alignment of fragment ions exist such as
maximum weight matching (aka Hungarian algorithm or linear sum assignment
optimization), there is a reason as to why one may prefer alignment. Because
SIMILE projects fragment ions into a space dependent on the frequency of m/z
differences and not the magnitude of those differences, it is possible for similar
fragment ions to have very different masses. However, one would naturally expect
large mass differences to imply comparatively less structural similarity than smaller
mass differences. By using alignment instead of maximum weight matching, we are
in effect forcing the score to address this trade- off albeit stochastically. While
alignment is not guaranteed to appropriately match similar fragment ions
(Fig. SI6b), we found alignment to perform well in predicting structural similarity.

Ideally, SIMILE would align fragment ions that are substitutions with respect to
their fragmentation paths. We assume that substitutable ions are more similar to
each other than to their precursor or product ions. If this were not the case, then
such precursor ions could be considered substitutable with its product ions that
break the one-to-one correspondence definition of substitutability. To this end, we
construct a random permutation test for the robustness of the SIMILE alignment
score to invasion by precursor/product similarity scores. If the observed SIMILE
alignment score is consistently higher than those from the null distribution, then
we cannot reject the aligned ions being substitutable. By default 10, 100, and 1000
iterations of the permutation are performed, and that early stopping occurs when
the p-value does not improve by twofold.

Compute time. While calculating the p-value is of time complexity O(knm) where
there are k permutations of n-by-m similarity matrices, three key optimizations in
the implementation details confer significant speedup by enabling vectorized
operations. This effectively moves k times max(n,m) of the operations out of
Python and into highly optimized compiled C code. One, because the gap penalty is
zero and only the alignment score is needed (not the alignment), we can replace the
O(nm) dynamic programming implementation for alignment with a single-loop
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iterating over min(n,m) in Python to greedily compute the alignment score using
alternating vectorized maximum and rolling maximum operations. Two, the k-by-
n-by-m array consisting of “stacks” of permuted similarity matrices is constructed
by broadcasting the similarity matrix using k random permutation indices that
minimize needless data copying. Three, because permuted similarity matrices are
stacked, the alignment of each stack is independent of one another, and the
underlying alignment-score operation is partially vectorized, we extend the vec-
torized alignment- score operation to operate on each stack in a vectorized fashion.
On a modern Linux workstation and at a p-value of 0.0001, we found the average
compute time to be 20 milliseconds for SIMILE comparisons within NIST20
without any parallelization (Figure SI2). For comparisons that have a very low
SIMILE p-value, the computation can take up to 10 seconds, but this is extremely
rare within the NIST20 comparisons. Early stopping can restrict p-value calcula-
tions to a p-value of 0.01 and shorten this calculation time by approximately a
factor of 100. For spectra with 100 s of ions that align extremely well, the compute
time can be even longer. This is a limitation, and would increase the time to
calculate the all-by-all comparisons, for datasets rich in these types of spectra.

Similarity matrix. Construction of a pair-specific m/z similarity matrix takes the
concatenation of two ordered m/z lists from fragmentation spectra X of length m
and Y of length n as input. The pairwise (outer) difference of the concatenated m/z
list is stored in an m+ n by m+ n m/z difference matrix, D. (Fig. 2a). The m/z
difference matrix D is delineated by four quadrants: X minus X (e.g., all of the
intraspectral differences in X) in the top-left m by m, Y minus Y (e.g., all of the
intraspectral differences in Y) in the bottom-right n by n, X minus Y in the top-
right m by n, and Y minus X (e.g., all of the interspectral differences between X and
Y) in the bottom-left n by m. In Fig. 2, only the top-right quadrant is shown to
illustrate m/z differences, frequencies of specific differences, and ion similarity
scores comparing the two hypothetical molecules, but all four quadrants are used in
the calculation. For each element Dij of the top m by m+ n quadrants of D, the m/
z differences in the block that are within a given m/z tolerance window of Dij are
counted and element-wise assigned to the m/z difference frequency matrix, C
(Fig. 2b). Repeat the procedure to fill the bottom n by m+ n quadrants of C using
the bottom m by m+ n block of D.

To calculate a similarity matrix from the m/z frequency matrix, we used the
approach described by Li et al.20. Dividing each row of the m/z difference count
matrix C by the sum of the row yields the m/z transition matrix T. Each element Tij

describes the probability of the ith m/z from the concatenated m/z list transitioning
to the jth m/z. As such, the transition matrix defines a Markov chain representation
of the m/z values from fragmentation spectra X and Y. Let I be the m+ n by m+ n
identity matrix, defined as having ones along the diagonal and zeros elsewhere. Let
p be the stationary probability distribution of the m/z transition matrix T, defined
by the property that pT= p. The stationary probability distribution p is calculated
by dividing the principal eigenvector of T by its sum. The directed graph Laplacian
L of C is defined as p1/2(I-T)p−1/2. Finally, the m/z similarity matrix S is calculated
by taking the Moore–Penrose pseudoinverse of (L+ LT)/2. SXX and SYY are
defined as the top-left m-by-m quadrant and the bottom-right n-by-n quadrant of
S, respectively. Likewise, SXY and SYX are defined as the top-right m-by-n quadrant
and the bottom-left n-by-m quadrant of S, respectively.

Alignment and alignment score. The alignment and alignment score are calcu-
lated using the dynamic programming approach described by Needleman and
Wunsch for sequence alignments, but with a fixed gap penalty of zero32. It is
defined by the recurrence relation

Aði; jÞ ¼ max

Aði� 1; j� 1Þ þ Sij
Aði� 1; jÞ
Aði; j� 1Þ

8
><

>:
ð1Þ

with initial conditions A(i,0) = 0 for all i and A(0,j) = 0 for all j. The terminal value
of A is the alignment score and tracing back the elements of S, Bhich contribute to
this score, yields the alignment.

Alignment significance. The significance of the alignment is calculated via a
permutation test with the alignment score used as test statistic under the null
hypothesis that m/z values are exchangeable between m/z-ordered fragmentation
spectra X and Y only if they generate fragmentation spectra X′ and Y′ that are also
m/z ordered. This null hypothesis corresponds to the assumption that exchanging
interspectral similarity scores in SXY and SYX with intraspectral similarity scores in
SXX and SYY improves alignment scores so long as m/z order is preserved in the
resulting SX′Y′ and SY′X′.

Rather than compute every valid permutation of S to calculate the p-value, we
use Monte Carlo testing with early stopping to asymptotically approach the true p-
value with bounded and known error35. In practice, this is done by first generating
a random permutation of indices that index the concatenated m/z list, such that the
first n entries are m/z ordered and the last m entries are m/z ordered, which
implicitly generates hypothetical fragmentation spectra X′ and Y′. This
permutation of indices is then used to permute the rows and columns of S
symmetrically. The alignment score is calculated with the alignment algorithm
described above. The p-value is then the probability that a random alignment score

from the empirical distribution is greater than the observed alignment score or one
out of the number of iterations, whichever is greater (Fig. 1h). A score cutoff
greater than or equal to 0.7, a p-value cutoff less than or equal to 0.05, and a
number of matching ion cutoff greater than or equal to 10 were used to identify
similar spectra for the majority of calculations in this work.

Validation and development dataset. The algorithm was developed and validated
using tandem mass spectra from the commercially available electrospray ionization
spectra available from the National Institute of Standards and Technology (NIST
2020) library. These spectra are acquired on a variety of instruments (Supple-
mentary Table 1) under a variety of conditions. They were filtered to include only
[M–H]− adducts for negative-mode comparisons and [M+H]+ adducts for
positive-mode comparisons, and the closest collision energy to 40 eV within 5 eV
(SI Fig. 1). Many other collision energies are available for study, but we limited this
to one specific value for the sake of defining a highly controlled set of comparisons.
Future studies can extend to 0 V, 20 V, 40 V, 60 V, 80 V, and 100 V to identify the
optimum collision energy for assessing similarity with tandem mass spectra. Each
compound was assigned to a chemical class using the ClassyFire web service36. For
each unique inchi key, a JSON file containing the chemical class was retrieved from
the web service by the following URL http://classyfire.wishartlab.com/entities/ik.
json where ik is the inchi key for the compound. While this JSON file provides
predicted compound kingdom, superclass, class, and subclass, only the class was
retained for this analysis.

Spectral similarity algorithms. In general, the following score cutoffs for each
algorithm are based on the published parameters. For CSS and SIMILE, the
development teams worked together to select parameters for the comparisons. As is
stated above, for SIMILE, a score cutoff greater than or equal to 0.7, a p-value cutoff
less than or equal to 0.05 and a number of matching ion cutoff greater than or
equal to 10 were used to identify similar spectra for all calculations in this work
(with the exception of the Napsamycin molecular network). The MatchMS python
package version 0.6.2 was used to calculate the modified cosine spectral similarity
score and determine the number of matching ions21. Each spectrum was square-
root intensity scaled and further normalized using the MatchMS function “nor-
malize_intensities”. Pairs of spectra were evaluated with the modified_cosine.pair()
function, a scoring algorithm that includes precursor loss masses and intensities. A
score cutoff greater than or equal to 0.6 and a number of matching ions greater
than or equal to 6 were used to identify similar spectra.

The Core Structure-based Search (CSS) algorithm was rewritten in C# for large-
scale spectral comparison5. For each MS/MS spectrum, top-30 fragments (sorted by
intensity) were reserved, and peak intensities were subject to normalization and
square-root transformation. The maximum number of hypothetical neutral losses
(HNLs) was set to 100, and the minimum HNL mass was set to 36. Both CSS score
and CSS match number were output to optimize the cutoffs for similar spectra. A
score cutoff greater than or equal to 0.6 and a match number cutoff greater than or
equal to 40 was used to identify similar spectra.

GNPS-aligned cosine spectral similarity was written in C++ for large-scale
comparisons and run externally of GNPS’ molecular networking to benchmark the
scoring function in isolation of molecular networking. This was done specifically
because the molecular networking workflows introduce other heuristic processing
algorithms that increase the interpretability of the molecular networks that
interfere with benchmarking. MS/MS spectra were aligned and scored with a
fragment tolerance of 0.5 Da. A score cutoff greater than or equal to 0.6 and a
number of matching ions greater than or equal to 6 were used to identify similar
spectra.

Molecular networking. Following the calculation of all-by-all SIMILE scores, fil-
tering both by score cutoffs and topology is required to make an interpretable
network. The all-by-all scores were filtered to remove scores less than 1.0 and
p-value greater than 0.05 for SIMILE. This is a more strict threshold than was used
in the NIST20 data. Finally, the network topology was constrained first to preserve
only the 10 top-scoring edges and second to constrain subgraph size to 100 nodes
or less. This resulting SIMILE network was merged with the existing network based
on GNPS-cosine scores. The existing GNPS network was created using the same
topological filters as were used for SIMILE.

Maximum common substructure (MCS). The chemical similarity metric used in
this paper is the Jaccard similarity coefficient, s, of the overlapping bonds given by
s=N / ((NA+NB)−N) where N is the number of overlapping bonds between the
pair of molecules A and B. NA and NB are the number of bonds in each of the
molecules A and B, respectively. The alignment of a connected block between each
pair of molecules is done using the RDKIT python package with a timeout of
1800 seconds and ringMatchesRingOnly set to False37. One pair of compounds
timed out and was discarded from further analysis. Here we refer to the MCS
Jaccard similarity of bonds as MCS.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw spectra for the work presented here came from three sources. For the majority of the
analysis, the commercially available NIST20 Tandem Mass Spectral Library was used.
Further analysis of molecular networking from Streptomyces isolates used a molecular
network available in GNPS3. In addition, the flavonoid and indole comparison network
was based on the publicly available Berkeley Lab GNPS library.

Code availability
The SIMILE algorithm and example Jupyter notebooks are available on Github at https://
github.com/biorack/simile/ and tagged as a release-labeled version 1.
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