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Autonomous systems, such as autonomous driving (AD), rely heavily on real-time percep-

tion systems to detect and interpret their surroundings, such as traffic cones, pedestrians,

traffic signs, vehicles, etc. These perception systems predominantly employ Deep Neural

Networks (DNNs) for tasks such as real-time object detection due to their superior perfor-

mance. However, DNNs are inherently vulnerable to adversarial attacks—maliciously crafted

inputs designed to cause the DNNs to malfunction. Given the safety- and mission-critical na-

ture of autonomous systems, it is crucial to systematically investigate the potential security

vulnerabilities of these systems in real-world settings.

So far, one of the most general yet crucial limitations for prior research works in this area is

their limited practicality in real-world autonomous system setups, either due to their sole fo-

cus on the AI component alone, which makes it non-trivial to transfer their component-only

attack effects to the system level, or due to their research scopes limited to academic pro-

totypes instead of real-world systems. For example, almost all prior adversarial attacks on

Traffic Sign Recognition (TSR) systems have only assessed the effects on academic TSR mod-

els, leaving the impacts on real-world commercial TSR systems largely unexplored. While a

few recent works have attempted to evaluate the impact on commercial TSR systems, these

xx



efforts are typically confined to a single vehicle model, sometimes even an unidentified one,

raising questions about both the generalizability and representativeness of their findings.

In this dissertation, I present a suite of research efforts toward novel vulnerability discoveries,

measurements, and attack designs for safety-critical autonomous systems from practicality

perspectives. By systematically discovering and understanding the security vulnerabilities at

both the DNN model level and autonomous system level, these research efforts aim to provide

new and useful insights that can inspire further exploration of this largely under-explored

aspect in this research area.
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Chapter 1

Introduction

Autonomous systems are now a reality in our daily life, such as a wide variety of commercial

and private Autonomous Driving (AD) vehicles are already driving on the road. For instance,

millions of Tesla [158] are running on public road and Waymo taxi [288] is publicly available

in Los Angeles, Phoenix, etc. To ensure safety, a fundamental pillar in the autonomous

system is perception, which leverages sensors such as cameras and LiDARs (Light Detection

and Ranging) to detect surroundings in real time. Due to the recent superior performance of

Deep Neural Networks (DNNs), such perception systems predominantly employ DNNs for

tasks such as real-time object detection.

Despite their advancements, DNNs are inherently vulnerable to adversarial attacks: mali-

ciously crafted inputs designed to cause the DNNs to malfunction [123, 76, 198, 301, 323, 192].

Given the safety- and mission-critical nature of autonomous systems, it is crucial to systemat-

ically investigate the potential security vulnerabilities of them in real-world settings. Thus,

various prior works have studied the security of AD perception such as the attacks that

aim at causing the evasion of critical physical road objects (e.g., STOP signs and pedestri-

ans) [148, 305, 83, 293, 330, 70, 110, 186, 69]. However, all the prior research studies have
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general yet crucial limitations in this area: their limited practicality in real-world autonomous

system setups, either due to 1) their sole focus on the AI component alone, which makes

it non-trivial to transfer their component-only attack effects to the system level, or 2) their

research scope limited to academic prototypes instead of real-world systems. For example,

almost all prior studies [110, 187, 330, 83, 213, 335, 283, 237, 186, 104, 332, 195] have only

assessed the effects of adversarial attacks on academic Traffic Sign Recognition (TSR) mod-

els, leaving the impacts on real-world commercial TSR systems largely unexplored. While

a few recent works [148, 243] have attempted to evaluate the impact on commercial TSR

systems, these efforts are typically confined to a single vehicle model, sometimes even an

unidentified one, raising questions about both the generalizability and representativeness of

their findings and even meaningfulness.

This dissertation aims to bridge these research gaps by focusing on novel vulnerability dis-

coveries, measurements, and attack designs for safety-critical autonomous systems from prac-

ticality perspectives. AD systems are chosen as a primary case study due to their critical

importance to safety.

Gap between AD system level and AI component level: To systematically address

this research gap, my research focuses on two main security properties: integrity and avail-

ability. The research studies in each area are detailed as follows.

Integrity: Security of Multi-Sensor Fusion (MSF) based perception. All of prior attacks on

AD perception are limited to attacks on a single source of AD perception, i.e., camera- or

LiDAR-based AD perception alone [110, 329, 187, 324, 83, 221, 268, 72, 261]. By contrast,

production high-level AD systems such as Waymo, Pony.ai, and Baidu Apollo, typically

adopt an MSF-based design [34, 53, 7, 25], which fuses the results from different perception

sources, e.g., LiDAR and camera, to achieve overall higher accuracy and robustness [115,

180, 86, 304, 179, 102, 163, 196, 101]. In such a design, under the assumption that not all

perception sources are (or can be) attacked simultaneously, there always exists a possible
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MSF algorithm that can rely on the unattacked source(s) to detect or prevent such an

attack. This basic security design assumption is believed to hold in general [228, 128], and

MSF is thus widely recognized as a general defense strategy against existing attacks on AD

perception [228, 128, 72, 254].

This research presents a first study on the security property of MSF-based perception in AD

systems today. I directly challenge the above basic security design assumption by demon-

strating the possibility of effectively and simultaneously attacking all perception sources used

in state-of-the-art MSF-based AD perception, i.e., camera and LiDAR [115, 180, 86, 304,

179, 102, 163, 196, 101]. This for the first time allows us to gain a concrete understanding of

how much security guarantee the use of MSF can fundamentally provide as a general defense

strategy for AD perception. Specifically, I consider physical-world attack vectors for high

attack practicality, and target an attack goal with the most direct safety consequence for

autonomous driving: cause a victim AD vehicle to fail in detecting a front obstacle.

Integrity: Physical-World hijacking attack on visual perception. Previous studies have high-

lighted the potential for adversarial attacks, including the use of adversarial patch [289,

148, 330, 283, 111], to fool object detection in AD perception. Such attacks cause the

AD systems to ignore objects, posing significant safety risks. However, it is essential to

recognize that AD perception extends beyond object detection to include Multiple Object

Tracking (MOT) [53, 160, 150, 252]. MOT plays a pivotal role in AD perception by enhanc-

ing robustness against object detection errors. It ensures that only objects detected with

consistent and stable accuracy across multiple frames are considered in the tracking results

and, consequently, the driving decisions. This multi-frame consistency requirement presents

a significant challenge to attacks that solely target object detection [150]. Therefore, a digital

adversarial hijacking attack [150] to fool the entire AD perception has been proposed with

adversarial patches as the attack vector. However, this prior attack [150] has shown limited

effectiveness even in the digital space and is ineffective in the physical world.
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This research proposes the first physical-world adversarial hijacking attack on the entire AD

perception system. This attack adopts a strategic two-stage approach. In the initial stage,

I focus on finding the most effective location for placing the adversarial patch to facilitate

successful hijacking attacks. Subsequently, the second stage is to generate the adversarial

patch, guided by the optimal locations identified in the preceding phase. I propose two loss

functions in the second stage and given the inherent challenges arising from the interdepen-

dence of these loss functions, I propose a novel optimization strategy, which demonstrates

superior performance compared to existing methods in prior works [150, 148, 283, 330]. Due

to these, the attack can significantly outperform the existing hijacking attack [150].

Integrity: System-Level effect of adversarial object evasion attack. Various prior works have

studied security of AD perception, especially the ones that aim at causing the evasion of

critical physical road objects (e.g., STOP signs and pedestrians) [148, 305, 83, 293, 330,

70, 110, 186, 69]. Although these attacks are all motivated by causing erroneous driving

behaviors at the AD system level (e.g., vehicle collisions and traffic rule violations), I find

that so far they predominately only evaluate the attack success at the targeted AI component

level alone (e.g., judged by per-frame object misdetection rates [83, 110, 305, 330, 148]),

without further evaluation at the system level. Specifically, to systematically perform such

system-level evaluation, I need to measure the end-to-end system-level attack success metrics

(e.g., collision rates) with the full system-level attack context enclosing the attack-targeted

AI component, for example, the remaining AD system pipeline such as object tracking,

planning, and control, closed-loop control, and the attack-targeted driving scenario. In this

paper, I call such system-level attack context system model for such adversarial attacks.

This thus raises a critical research question: can these existing works on physical adversarial

object evasion attacks effectively achieve the desired system-level attack effects in the realistic

AD system settings?

To systematically answer this critical research question, I conduct the first measurement
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study on representative prior object-evasion attacks with regard to their capabilities in caus-

ing system-level effects. I propose a general framework, i.e., a system model, including

perception modeling from the physical world, to measure STOP sign-evasion attack which

is my target due to its high representativeness [252] and its direct impacts on driving cor-

rectness and road safety. The results show that all the representative existing works cannot

cause any STOP sign traffic rule violation within the system model including a represen-

tative closed-loop control AD system in the common speed range for STOP sign-controlled

roads in the real world even though the most effective attack can achieve more than 70%

average attack success rate at the AI component alone.

I further investigate the potential root causes and find that all the existing works have design

limitations on achieving effective system-level effects due to the lack of a system model in

AD context for attack design: 1) physical model-inconsistent object size distribution in

pixel sampling and 2) lack of vehicle plant model and AD system model consideration. A

novel system-driven attack design is proposed, which can be integrated with all state-of-

the-art attack methods to significantly improve system-level effects by overcoming the two

limitations.

Availability: Increasing the latency of visual perception. While a plethora of prior works

study the integrity of the AD perception, the availability aspect (real-time performance) of

the system, which is crucial for safety (e.g., causing vehicle collision [275]) has been relatively

underexplored, especially for the complete AD perception pipeline. While some existing AD

security analysis has studied availability in object detection [249, 80], they do not encompass

the entire AD perception since usually, object detection is a part of the AD perception [150].

Thus, these studies leave a critical research gap: their proposed attack strategies may not be

effective enough to conduct system-level effects in end-to-end AD systems. As I demonstrate

later, existing attacks targeting only object detection do not consistently produce highly

potent system-level effects due to lack of entire AD perception consideration.
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To fill in this critical research gap, I am the first to study availability-based adversarial

attacks across the entire camera-based AD perception including both object detection and

tracking. The proposed novel attack framework is designed to increase the latency of camera-

based AD perception. Instead of solely targeting object detection, which might not yield

potent system-level effects due to the limited increase of the latency, I realize the untapped

potential of object tracking response time to generate a much more effective latency attack.

To illustrate, an attacker focusing only on object detection might attempt to dramatically

increase the number of proposed bounding boxes [80]. Object tracking might filter out a

majority of these boxes and in common object detection post-processing [155, 327], the

maximum number of detection is provided to ensure performance. Thus, the effectiveness of

these attacks is limited. Due to the importance of object tracking, I first perform availability

attack surface analysis by analyzing the time complexity of the state-of-the-art representative

tracking algorithms. Then, I propose a two-stage attack strategy and formulate the attack as

an optimization problem. Additionally, the novel loss function designs, encompassing score

loss, bounding box area loss, and feature match loss, fully leverage the entire tracking-by-

detection pipeline to generate effective latency-based attack.

Gap between academic prototypes and real-world systems: To deepen the un-

derstanding of this gap, I conduct the first large-scale measurement of prior physical-world

adversarial attacks against commercial TSR systems. The study include four different com-

mercial vehicle models from the top 15 best-selling brands in the US to ensure represen-

tativeness. The testing results reveal that it is actually possible for existing attack works

from academia to have a highly-reliable attack success rate against certain commercial TSR

system functionality, which is much higher than expected if compared to the transfer attack

success rates reported by the corresponding original papers (e.g., for one such case the re-

ported was <20%). Meanwhile I do not see generalizability of such attack capabilities over

different commercial vehicle models and sign types. The much lower-than-expected attack

success rate on commercial systems suggests the potential existence of deeper challenges for
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such attacks to take effect at the TSR system level. This measurement further prove the

gap mentioned above.

Through further investigations, one major factor might be an unexpected spatial memo-

rization design that commonly exists in commercial TSR systems. Specifically, this design

exhibits an effect that once a sign is detected, both the detected sign type and the detected

location are persistently memorized until the sign’s reaction task is finished. Such a spatial

memorization design can significantly impact the success of existing adversarial attacks at

the TSR system level. For example, for hiding attacks, to achieve a system-level success

in which the TSR system is unable to show the sign display at the sign’s reaction task pe-

riod, the attack has to be continuously successful at all possible detection moments that

can trigger such memorization before the vehicle passes the sign. I further mathematically

model its impact on the TSR system-level attack success for both hiding and appearing

attacks, which results in new attack success metric designs that can systematically consider

the spatial memorization effect.

By systematically discovering and understanding the security vulnerabilities at both the

DNN model level and autonomous system level, these research efforts aim to provide new

and useful insights that can inspire further exploration of this largely under-explored aspect

in this research area.

Based on the extensive research outlined above, I have formulated my dissertation statement

as follows.

Dissertation statement: Vulnerabilities of AI components in autonomous systems can be

both (1) physically realizable, and (2) capable of damaging multiple types of system-level

security properties (e.g., not only integrity but also availability). Moreover, existing security

analysis methods that focus solely on AI components alone or academic prototype systems

can be fundamentally insufficient.
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Research impact: My research has left a mark on both academia and industry. To

date, I have authored 19 research papers (4 under submission), of which 8 were accepted in

top-tier conferences—5 in top-tier computer security conferences such as IEEE Security &

Privacy, NDSS, and USENIX Security, 2 in the top-tier computer vision conference, ICCV

and CVPR, 1 in the top-tier machine learning conferences, AAAI, and 1 in the top-tier the

web & information retrieval conferences, WWW. My work has also garnered media coverage,

interviews, and led to vulnerability disclosures. Notably, I received the best paper award at

AISec 2018 [281] and the best technical poster award at NDSS 2020. To date, over 30 leading

AD companies—including Tesla, GM, Volkswagen, Zoox, Hyundai, Baidu, Bosch, TuSimple,

Lyft, Nuro, Toyota, and more—have initiated investigations into the security vulnerabilities

in AD perception algorithms identified in my research. Several of these corporations have

further engaged in discussions, exploring potential testing within their products and devising

mitigation strategies.

1.1 Dissertation Roadmap

This dissertation is structured as follows. Chapter 2: This chapter lays the background and

related work required to understand the research conducted in this dissertation. Chapters 3

to 6 – addressing the research gap between AD system level and AI component level: Chap-

ter 3 introduces the security of MSF based perception; Chapter 4 proposes a physical-world

hijacking attack on visual perception; Chapter 5 presents the system-level effect of adver-

sarial object evasion attack; and Chapter 6 reveals an novel attack to increase the latency

of the visual perception. Then, Chapter 7 focuses on addressing another research gap, i.e.,

gap between academic prototypes and real-world systems. The first large-scale measure-

ment study of prior physical-world adversarial attacks against commercial TSR systems is

conducted and significant insights are uncovered. This dissertation is further concluded in
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Chapter 8 with a detailed discussion of future work.
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Chapter 2

Background and Related Work

2.1 Autonomous Driving (AD) System Designs

The detailed overview of AD system designs is depicted in Fig. 2.1. This system gather

data from various sensors, such as cameras and LiDAR, to perceive the physical world. The

sensor data is then processed by the AD system to make crucial control decisions, such as

steering adjustments. The core components of an AD system include perception, prediction,

and planning. Prediction: This component estimates the future states (position, heading,

velocity, acceleration, etc.) of nearby objects, which is vital for dynamic environments.

Planning : Responsible for making trajectory-level driving decisions (e.g., cruising, stopping,

lane changing), this module ensures that actions are safe and adhere to traffic regulations.

Perception: Acting as the “eyes” of the AD system, this module processes real-time environ-

mental data through functions such as object detection, object tracking, multi-sensor fusion

(MSF), lane detection, and traffic sign detection. Given its critical role in vehicle safety and

operational integrity, the perception module is selected as the primary and representative

research focus of this dissertation.
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Figure 2.1: Overview of AD system designs.

2.2 Adversarial Attacks

Recent works find that DNN models are generally vulnerable to adversarial attacks [123, 220,

299, 302, 298, 300, 227]. Some works further explored such attacks in the physical world [110,

173, 64, 267, 324, 83, 187, 329, 56, 195]. However, all the prior research studies have general

yet crucial limitations in this area: their limited practicality in real-world autonomous system

setups, either due to 1) their sole focus on the AI component alone, which makes it non-

trivial to transfer their component-only attack effects to the system level, or 2) their research

scope limited to academic prototypes instead of real-world systems. For example, almost all

prior studies [110, 187, 330, 83, 213, 335, 283, 237, 186, 104, 332, 195] have only assessed the

effects of adversarial attacks on academic Traffic Sign Recognition (TSR) models, leaving

the impacts on real-world commercial TSR systems largely unexplored. While a few recent

works [148, 243] have attempted to evaluate the impact on commercial TSR systems, these

efforts are typically confined to a single vehicle model, sometimes even an unidentified one,

raising questions about both the generalizability and representativeness of their findings and

even meaningfulness. In this dissertation, I present a suite of research efforts toward novel
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vulnerability discoveries, measurements, and attack designs for safety-critical autonomous

systems from practicality perspectives.
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Chapter 3

Security of Multi-Sensor Fusion based

Perception in Autonomous Driving

Under Physical-World Attacks

3.1 Introduction

Today, high-level (e.g., Level-4 [92]) self-driving cars, or Autonomous Vehicles (AV) [2], are

under rapid development. Some of them, e.g., Google Waymo [33] and TuSimple [30], are

already providing services on public roads. To ensure correct and safe driving, a fundamental

pillar in the Autonomous Driving (AD) system is perception, which leverages sensors such as

cameras and LiDARs (Light Detection and Ranging) to detect surrounding obstacles in real

time. Due to the direct impact on safety-critical driving decisions such as collision avoidance,

various prior works have studied the security of AD perception under realistic physical-world

attack vectors such as adding stickers, posters, or paintings to traffic signs [110, 329, 187,

324, 83], or shooting lasers to the LiDAR [72, 261].
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All of these studies, however, are limited to attacks on a single source of AD perception, i.e.,

camera- or LiDAR-based AD perception alone [110, 329, 187, 324, 83, 221, 268, 72, 261].

By contrast, production high-level AD systems such as Waymo, Pony.ai, and Baidu Apollo,

typically adopt a Multi-Sensor Fusion (MSF) based design [34, 53, 7, 25], which fuses the

results from different perception sources, e.g., LiDAR and camera, to achieve overall higher

accuracy and robustness [115, 180, 86, 304, 179, 102, 163, 196, 101]. In such a design, under

the assumption that not all perception sources are (or can be) attacked simultaneously, there

always exists a possible MSF algorithm that can rely on the unattacked source(s) to detect or

prevent such an attack. This basic security design assumption is believed to hold in general

[228, 128], and MSF is thus widely recognized as a general defense strategy against existing

attacks on AD perception [228, 128, 72, 254].

This paper presents a first study on the security property of MSF-based perception in AD

systems today. We directly challenge the above basic security design assumption by demon-

strating the possibility of effectively and simultaneously attacking all perception sources used

in state-of-the-art MSF-based AD perception, i.e., camera and LiDAR [115, 180, 86, 304,

179, 102, 163, 196, 101]. This for the first time allows us to gain a concrete understanding of

how much security guarantee the use of MSF can fundamentally provide as a general defense

strategy for AD perception. Specifically, we consider physical-world attack vectors for high

attack practicality, and target an attack goal with the most direct safety consequence for

autonomous driving: cause a victim AV to fail in detecting a front obstacle.

Although prior works have designed successful physical-world attacks on AD perceptions

based only on camera or only on LiDAR, we find that simply combining their designs does

not achieve our goal. First, we need to identify a physical-world attack vector effective for

both camera and LiDAR, which can not be satisfied by those popular ones used in prior

works. For example, adding stickers changes an object’s texture (e.g., color) but not its

shape; this can be effective for camera [110, 329, 187, 324, 83] but not LiDAR. Conversely,
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laser shooting has been shown to be effective for LiDAR-based AD perception [72, 261], but

not for camera-based ones. Second, no matter what attack vector we use, we need to further

address 2 design challenges: (1) We need to differentiably synthesize the physical attack

impacts simultaneously and consistently onto both camera images and LiDAR point clouds.

For certain attack vectors, e.g., differentiably modelling the impact of lasers on camera

images, this can be very challenging. (2) To improve run-time performance, the state-of-the-

art LiDAR-based AD perception uses aggregated features of the 3D points grouped at the

level of 2D or 3D cells [107, 333, 165, 53, 60, 312, 86]; however, their calculation is by nature

non-differentiable (§3.3.2), which makes the attack difficult to optimize.

Towards this end, we design a novel physical-world adversarial attack method, MSF-ADV,

which addresses the challenges above and thus fundamentally challenges the basic MSF de-

sign assumption in AD perception. We employ adversarial 3D object as the attack vector,

with the key observation that different shapes of a 3D object can lead to both point position

changes in LiDAR point clouds and pixel value changes in camera images. Thus, an attacker

can leverage shape manipulations to introduce input perturbations to both camera and Li-

DAR simultaneously. To achieve the attack goal, the attacker simply places such an object

on the roadway; this can be conveniently accomplished with modern 3D printing services

and an object type commonly expected on the roadway, e.g., a traffic cone but with a slightly

worn or broken look.

To systematically generate effective adversarial 3D objects, we adopt an optimization-based

approach that starts with a 3D mesh of a normal object, e.g., a normal traffic cone, and

performs shape manipulation by changing its vertex positions. Under this attack vector, we

address design challenge 1 by constructing differentiable 3D rendering functions to synthesize

the attack-influenced point clouds and camera images. For design challenge 2, we find that

all commonly-used cell-level aggregated features can be differentiably derived by the point-

inclusion property (§3.4.4). Thus, we first design a differentiable and accurate approximation
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for such property, and then use it as a building block to differentiably compute the gradient

of the cell-level aggregated features during the optimization. We also employ domain-specific

designs for attack robustness, stealthiness, and physical-world realizability.

We evaluate MSF-ADV with MSF algorithms included in 2 open-source full-stack AD sys-

tems, Baidu Apollo [53] and Autoware.AI [7], that have high representativeness in practice,

e.g., Apollo is ranked as the top 4 leading AD developers along with Waymo, Ford, and

Cruise [22]. We select 3 object types and evaluate each on 100 real-world driving scenar-

ios from the KITTI dataset [119]. Our results show that the generated adversarial objects

achieve more than 91% success rate across different object types and MSF algorithms. We

also find that our attack is (1) stealthy from the driver’s view based on a user study, (2)

robust to different victim approaching positions and angles, with over 95% average success

rates, and (3) transferable across different MSF algorithms, with an average transfer attack

success rate of around 75%.

To understand the attack realizability in the physical world, we 3D-print our adversarial

objects, and evaluate them using real LiDAR and camera devices. Using a vehicle with

a LiDAR mounted, we find that our 3D-printed adversarial object can successfully evade

LiDAR detection in 99.1% (107) of the total 108 collected frames. Using a miniature-scale

experiment setting (§3.5.5.2), we find that our adversarial object has a 85-90% success rate

to evade both LiDAR and camera detection at 20 randomly-sampled positions.

To understand the end-to-end safety impact, we further evaluate our method using a production-

grade AD simulator, and find that our adversarial traffic cone can cause a 100% vehicle

collision rate for an Apollo AV across 100 runs. In contrast, the collision rate with a normal

traffic cone is 0%. Demo videos are at our project website: https://sites.google.com/vie

w/cav-sec/msf-adv. We also evaluate various existing DNN-level defense strategies (e.g.,

input transformation and augmenting training data), and discuss future defense directions.

Our code and data are released at our website [23].
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In summary, this work makes the following contributions:

• We are the first to study security issues of MSF-based AD perception and the first to

challenge the basic MSF design assumption in the AD context. We successfully design

and engineer a physical-world adversarial attack aiming at generating adversarial 3D

object to mislead a victim AV to fail in detecting it and thus crash into it.

• We adopt an optimization-based approach that addresses two main design challenges:

non-differentiable target camera and LiDAR sensing systems, and non-differentiable

cell-level aggregated features used by LiDAR. We also design strategies to enhance the

attack robustness, stealthiness, and physical-world realizability.

• We evaluate on MSF algorithms included in representative open-source industry-grade

AD systems in real-world driving scenarios. Our attack is shown to achieve over 91%

success rates across different object types and MSF algorithms. Such high effectiveness

can also be achieved with (1) high stealthiness, (2) high robustness to victim positions,

(3) high transferability across MSF algorithms, and (4) high physical-world realizability

after being 3D-printed and captured by LiDAR and camera devices.

• To understand the end-to-end safety impact, we further evaluate the proposed attack

on a production-grade simulator, and show that our attack can cause a 100% vehicle

collision rate to an industry-grade AD system. We also evaluate and discuss defense

strategies.

While MSF is widely recognized as a promising and general defense strategy for existing

attacks on AD perception [228, 128, 72, 144, 254, 308, 310, 222, 202, 79], prior works have

neither studied the security of existing MSF algorithms in practical AD settings, nor made

attempts to understand whether the very basic security design assumption for MSF can

fail. In this paper, we make the first attempt towards this direction, and we hope that our
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findings and insights can inspire more future research into this largely overlooked research

perspective.

3.2 Background

3.2.1 MSF-based AD Perception

In high-level (e.g., Level 4 [92]) AD systems, perception is a critical module that detects

surrounding objects in real time. Due to its direct impact on safety-critical driving decisions

such as collision avoidance, AD perception in production high-level AD systems such as

Google Waymo, Pony.ai, and Baidu Apollo predominantly adopts a Multi-Sensor Fusion

(MSF) based design [34, 53, 7, 25]. In this paper, we call such design MSF-based AD

perception, or MSF for short. In this paper, we focus on MSF designed for in-road obstacle

detection, e.g., front cars, which is the most basic task for AD perception.

MSF design principle and basic assumption. In MSF-based AD perception, the final

object detection results are obtained by fusing multiple perception sources such as camera

and LiDAR, with the goal of leveraging their strengths while compensating their weaknesses

to achieve overall higher accuracy and robustness than those achievable by a single perception

source [115, 180, 86, 304, 179, 102, 163, 196, 101]. For example, LiDAR is a ranging-based

sensor by shooting lasers, which thus is more difficult to capture the texture information (e.g.,

color) of an object compared to cameras [115]. Camera images, on the other hand, cannot

directly provide the depth information of an object [180, 196], which can be overcome by

LiDARs. Thus, an MSF algorithm can be designed to leverage both the depth information

from LiDAR point clouds and the texture information from camera images to achieve higher

object detection performance than those using either camera or LiDAR alone [86, 180]. To

achieve such overall higher accuracy and robustness, the basic design assumption is that
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there generally exists at least one source that can provide the correct results. In this paper,

we are the first to challenge such assumption in the AD context.

Representative MSF algorithm design. In AD perception, state-of-the-art MSF al-

gorithms predominately use 2 perception sources: camera and LiDAR [115, 180, 86, 304,

179, 102, 163, 101]. Fig. 3.1 shows an overview of a typical MSF-based AD perception de-

sign. In industry AD systems, before running the MSF, the raw camera and LiDAR inputs,

i.e., camera images and LiDAR point clouds, are usually first pre-processed [53, 7] to pre-

pare the camera- and LiDAR-side MSF inputs, which can improve the run-time algorithm

performance (detailed later).

In the MSF algorithm, state-of-the-art designs predominantly adopt DNN networks to pro-

cess the LiDAR-side and camera-side MSF inputs [53, 7, 115, 180, 86, 304, 179, 102, 163, 101],

due to the recent superior performance of deep learning [331, 183, 185, 59, 43, 44, 41, 42]. In

this paper, we call them LiDAR perception networks and camera perception networks inside

the MSF algorithm. Next, the processing results from these two networks are fused using

(1) DNNs [86, 304, 115, 180, 179, 102, 163], or (2) hard-coded matching and prioritization

rules [53, 7]. Rule-based fusion is usually a late fusion, i.e., applied to the end results of the

two networks, while DNN-based one can be a late or early fusion, i.e., at the intermediate

perception results, which can be fused more deeply and thus potentially lead to higher ac-

curacy. Meanwhile, rule-based fusion has two unique benefits. First, it is more modular and

thus can flexibility combine different camera and LiDAR perception models [316]. Second,

it is easier to debug and interpret than DNNs [88], and also to hard-code safety rules and

measures [316]. In our attack design later in §3.4, we comprehensively consider both fusion

designs.

When preparing the camera- and LiDAR-side MSF inputs, typical pre-processing steps in-

clude data transformation such as rotations and shifting, applying Region of Interest (ROI)

filter to remove unrelated input portions, and extracting aggregated features from the raw
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Figure 3.1: Overview of MSF-based AD perception design.

input. These pre-processing steps can largely reduce the sizes and dimensions of the MSF

algorithm inputs, which can thus greatly improve the run-time algorithm performance [129].

Considering that the raw point cloud data can include millions of 3D points per second [32],

such pre-processing is especially beneficial for LiDAR perception. Thus, many state-of-

the-art LiDAR-based AD perception model designs choose to use aggregated input features

such as average height and intensity of the 3D points grouped at the level of 3D cells, or

voxels [107, 279, 333, 165]. Some state-of-the-art designs even choose to further aggregate

the features in such 3D cells to 2D cells in Bird’s-Eye View (BEV) to further improve the

real-time detection performance [312], which is thus the most popularly adopted in industry-

grade AD systems [53, 60, 312, 86]. As detailed in §3.3.2, such popular adoption of cell-level

aggregated features for LiDAR introduces a unique challenge to our attack design.

3.2.2 Physical-World Adversarial Attack

Recent works find that DNN models are generally vulnerable to adversarial example, or

adversarial attacks [123, 220, 299, 302, 298, 300, 227]. Some works further explored such

attacks in the physical world [110, 173, 64, 267, 324, 83, 187, 329, 56]. In the AD context,

previous works have designed successful physical-world adversarial attacks on the camera-

based AD perception alone [110, 329, 187, 324, 83, 221, 268], or the LiDAR-based one

alone [72, 261]. However, none of them have considered MSF-based AD perception, which

is predominantly adopted in industry AD systems today (§3.2.1) and in principle can be
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more robust against these attacks (§3.1). Also, as detailed later in §3.3.2, blindly combining

these prior designs cannot directly lead to successful attacks on MSF due to various new and

unique challenges.

3.3 Problem Formulation and Design Challenges

3.3.1 Attack Goal and Threat Model

Attack goal: Fundamentally defeat MSF design assumption. In this paper, we

target an attack goal with the most direct safety impact on driving: fool the MSF-based AD

perception in the victim AV to fail in detecting a front obstacle and thus crash into it. Even

when the vehicle has a fail-safe Automatic Emergency Brake (AEB) system, e.g., based on

RADAR or ultrasonic sensors, such a crash is still possible for two reasons. First, today’s

AEB systems are not perfect. For example, a recent study shows that the ones in popular

vehicle models today fail to avoid crashes 60% of the time [36]. Second, even if they can

successfully perform emergency stop, they cannot avoid being hit by rear vehicles that fail

to yield on time. To achieve this goal, in this paper we target physical-world attack vectors

in the AD context for high practicality and realism.

Due to the basic design assumption of MSF (§3.2.1), as long as there still exists at least one

perception source that is not attacked, it is always possible for the unattacked source(s) to

correct the final fused perception results and thus defeat our attack goal. Thus, in this paper

we aim at designing an attack that can effectively attack all perception sources used in the

MSF-based AD perception. This can enable our design to fundamentally defeat the MSF

design assumption and thus most generally achieve our goal above. As the combination of

camera and LiDAR is most popularly adopted in state-of-the-art MSF-based AD perception

(§3.2.1), in this paper our design needs to attack both camera and LiDAR simultaneously.
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Threat Model. As the first study to achieve the attack goal above, in this work we mainly

focus on a white-box attack setting, i.e., assuming that the attacker has a full knowledge of

the MSF algorithm used in the victim AD system. This is the same assumption made in most

prior adversarial attacks on camera- or LiDAR-based AD perception [72, 111, 110, 329]. To

achieve this, the attacker may obtain a victim AV model, e.g., by purchasing or renting [8],

and then reverse engineer its perception module, which has been shown as possible on Tesla

Autopilot [15]. The attacker can also target the AVs using open-source MSF-based AD

perception algorithms [53, 7]. In the attack preparation time, we assume that the attacker

can collect camera images and LiDAR point clouds of a targeted road where she plans to

launch the attack.

3.3.2 Design Challenges

As described in §3.2.1, in state-of-the-art MSF algorithms, the camera and LiDAR perception

networks are DNN based. Although no prior works consider attacking MSF, many designed

successful physical-world adversarial attacks on camera- or LiDAR-based AD perception

DNN models. However, we find that blindly combining these prior designs cannot directly

achieve our goal due to 3 unique challenges:

C1. Lack of a single physical-world attack vector effective for both camera- and

LiDAR-based AD perception. To achieve our attack goal, we need to find physical-world

attack vectors for both camera- and LiDAR-based perception networks in MSF. However,

so far none of the attack vectors used in previous physical-world adversarial attacks in the

AD context have shown effectiveness in affecting both. For camera-based AD perception,

previous works predominately consider adding stickers/posters [110, 329], painting [324, 83],

or changing brightness [221, 268], which can only change the texture of an obstacle but

not its shape and thus can barely affect the LiDAR point clouds. On the LiDAR side,

LiDAR spoofing [72, 261], which shoots lasers to LiDAR, has shown to be effective in the
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AD context. Although lasers can also affect camera inputs [310], no prior work has studied

its effectiveness for fooling camera-based AD perception models. One possible solution is to

use separate attack vectors for them, e.g., using stickers for camera and laser shooting for

LiDAR. However, this not only adds up the attack deployment costs and thus lowers the

realizability and stealthiness, but also requires precise synchronizations across the attack

processes. Thus, it is highly desired to identify one single attack vector that can effectively

attack both at the same time.

C2. Need to differentiably synthesize physically-consistent attack impacts onto

both camera and LiDAR. To systematically generate adversarial inputs, prior works

generally adopt optimization-based approaches, which have shown both high efficiency and

effectiveness [329, 56]. Since adversarial attack generation typically takes thousands of opti-

mization iterations [200, 76], it is almost impossible in practice to physically drive vehicles on

the target road to obtain the attack-influenced camera images and LiDAR point clouds every

time the adversarial inputs are updated in an iteration. Thus, we need to digitally synthesize

the impacts of the adversarial stimulus from the physical world onto both camera images

and LiDAR point clouds, and such synthesizing needs to be differentiable to enable effective

optimization. As discussed in C1, no single attack vector has been studied for both camera-

and LiDAR-based AD perception so far in prior works. Thus, no matter what attack vector

we identify to address C1, we need to design a new differentiable synthesizing function for

at least one of the perception sources, which can be quite challenging for certain physical-

world attack vectors, e.g., differentiably modelling the impact of lasers on camera inputs

from different distances and angles. Meanwhile, since such attack impacts come from the

same physical-world stimulus, the synthesized impacts to the camera images and the LiDAR

point clouds need to be physically consistent, e.g., conforming to their different mounting

positions in the AV.
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C3. Need to handle non-differentiable pre-processing steps in AD perception.

As introduced in §3.2.1, in industry AD systems, images and point clouds are usually pre-

processed before fed into the MSF algorithm. In particular, state-of-the-art LiDAR-based

AD perception models popularly use aggregated features of 3D points grouped at level of

2D or 3D cells (§3.2.1). To calculate such cell-level aggregated features, the necessary first

step is to calculate whether an input point is inside a cell or not. In this paper, we call

it a point-inclusion property. By nature, such property is discontinuous, i.e., 0 and 1 for

outside and inside a cell. This causes the calculation of any cell-level aggregated features

non-differentiable with regard to the LiDAR point clouds, which thus makes our optimization

difficult to be effective. So far, no prior works have considered a general design to handle

such non-differentiable pre-processing steps for LiDAR.

3.4 Attack Design: MSF-ADV

In this paper, we are the first to address all the 3 challenges in §3.3.2 by designing a novel

physical-world adversarial attack method, MSF-ADV, which thus can fundamentally defeat

the MSF design assumption in AD perception.

3.4.1 Design Overview

To address the challenges in §3.3.2, our MSF-ADV method has the following novel designs:

Adversarial 3D object: physically-realizable and stealthy attack vector for MSF-

based AD perception. To address C1, we identify adversarial 3D object as the physical-

world attack vector against MSF-based AD perception. Our key insight is that different

shapes of a 3D object can lead to not only point position changes in LiDAR point clouds but

also pixel value changes in camera images. Thus, the attacker can leverage shape manipula-
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Figure 3.2: Real-world traffic objects with worn or broken looking shapes, which can be
mimicked by our physical-world attack vector: adversarial 3D object with shape manipula-
tions.

tions of such an object to introduce adversarial input perturbations simultaneously to both

camera and LiDAR perception networks in the MSF algorithm. To achieve the attack goal,

the attacker simply places such an object in the roadway to trick the victim AV to crash

into it.

Beside satisfying C1, such an attack vector also has 2 other advantages. First, it is easily

realizable and deployable in the physical world. For example, the attacker can construct

it digitally in a 3D mesh and 3D-print it, which is convenient today through online ser-

vices [1]. Second, it can achieve high stealthiness by mimicking a normal traffic object

that can legitimately appear in the middle of the road, e.g., a traffic cone or barrier, but

with a worn or broken look, which is not uncommon in the real world as shown in Fig. 3.2.

In our design (§3.4.5), we also constrain the degree of the shape changes from the normal

object to achieve high stealthiness. Note that although it is possible to manipulate the ob-

ject texture (e.g., color) together with the shape in our design, we intentionally choose to

not consider it in this paper as it can greatly harm stealthiness and also incur additional

printability issues, which is a common challenge for physical-world adversarial attacks using

stickers/posters [109, 110, 141].

Causing road safety threats. To make such an object both easy to deploy and able to

cause severe crashes, the attacker can choose smaller objects such as a rock or traffic cone

but fill it with granite or even metal to make it harder and heavier. For example, a 0.5
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Figure 3.3: Overview of the optimization-based adversarial 3D object generation in MSF-
ADV.

cubic-meter rock or a 1-meter high traffic cone [27] filled with some aluminum can easily

weigh over 100 kg, which can trip the victim AV to lose control, damage the chassis, or break

the windshield glass if bounced up when driving at a high speed. Besides causing damages

by the crash itself, the attackers can also exploit the semantic meaning of certain road object

types such as traffic cones. For example, the attacker can design an AV-specific attack by

placing nails or glass debris behind an adversarial traffic cone object so that failing to detect

it can lead to tire blowout of a targeted AV. Here, the safety damages are not directly caused

by the traffic cone crash itself, and thus in this case the adversarial traffic cone can be small

and lightweight like normal ones to make it easier to 3D-print, carry, and deploy.

Optimization-based adversarial 3D object generation. To systematically generate ad-

versarial 3D objects, we adopt an optimization-based approach similar to prior works [110,

329, 187, 324, 83, 72, 261]. We start with a 3D mesh of a normal 3D object, e.g., a normal

traffic cone, and then introduce shape manipulations by changing its vertex positions. To

address C2, due to the choice of adversarial 3D objects as the attack vector, we can con-

veniently leverage existing 3D rendering techniques in computer graphics to simulate the

functionalities of the physical equipment, i.e., camera and LiDAR, and thus systematically

synthesize the attack-influenced camera images and LiDAR point clouds. Specifically, to

enable the end-to-end optimization process, we perform differentiable constructions of these
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rendering processes, and use the relative positions to the 3D object to ensure the physical

consistency with the corresponding camera and LiDAR mounting positions.

With the synthesized raw camera images and LiDAR point could, next we design the

differentiable approximation function for the non-differentiable pre-processing step (non-

differentiable cell-level aggregated feature calculation) to enable the end-to-end optimization.

To address this, our key insight is that all the commonly-used cell-level aggregated features

can be differentiably derived by the point-inclusion property (detailed later in §3.4.4). Thus,

we first design a novel and accurate differentiable function to approximate the calculation of

the point-inclusion property, and then use it as a building block to achieve differentiable com-

putations of the pre-processing steps for LiDAR. In the optimization process, we also have

other domain-specific designs, e.g., for attack robustness, stealthiness, and physical-world

realizability, which will be detailed in the following sections.

3.4.2 MSF-ADV Methodology Overview

In this section, we provide an overview of our MSF-ADV method, and will detail its compo-

nents in later sections.

Problem formulation. We formulate the attack generation process as the following opti-
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mization problem:

min
Sa

Et∼T [La(t(S
a);Rl,Rc,P ,M) + λ · Lr(S

a, S)] (3.1)

where PCa = Rl(t(Sa), PC) (3.2)

IMGa = Rc(t( Sa), IMG,C) (3.3)

F a = P(PCa, IMGa) (3.4)

La(t(S
a);Rl,Rc,P ,M) = O(M(F a)) (3.5)

subject to ∆(Sa, S) ≤ ϵ (3.6)

S is the original benign object and Sa is the adversarial one. We use vertex-face (v-f)

meshes to represent them, i.e., S = (v,f) and Sa = (va,fa). In Eq. (3.1), the optimizing

parameter is the adversarial object Sa, and we only change its vertices va. The objective

function includes: (1) an adversarial loss La, which is designed to achieve our attack goal by

misleading the MSF algorithmM(·) to fail in detecting Sa, and (2) a realizability loss Lr(·),

which is designed to improve smoothness of the Sa surface to benefit both the printability

and stealthiness (§3.4.5). To improve the robustness of Sa in the physical world, we apply

Expectation over Transformation (EoT) [56] by introducing a set of 3D transformation T

to Sa and optimize the expectation of their objective function values in Eq. (3.1). λ is a

balancing hyper-parameter.

In Eq. (3.2) and Eq. (3.3), Rl(·) andRc(·) are the differentiable LiDAR and camera rendering

functions respectively (§3.4.3). They generate the attack-influenced point clouds PCa and

images IMGa given the corresponding backgrounds of the target road (PC and IMG). PCa

and IMGa are then fed into the differentiable pre-processing approximation function P(·) to

obtain the attack-influenced MSF input features F a (§3.4.4). F a is fed into MSF algorithm

M(·) in Eq. (3.5), and O(·) is designed to extract the output features related to the object’s

confidence score of the adversarial object. To achieve high stealthiness, in Eq. (3.6) we limit
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the shape deformation between S and Sa within a threshold ϵ by using a distance metric

∆(·) (e.g., Lp distance metric: ∆(Sa, S) = ||Sa − S||p).

Optimization process overview. Fig. 3.3 overviews our optimization process. As shown,

given a 3D object Sa initialized with S, we first apply 3D transformations (e.g. rotation

and position shifting) T to generate multiple samples t(S) to improve the robustness of the

adversarial object against environment’s variation. Next, each one of them, along with the

LiDAR point clouds (PC) and camera image (IMG) background from the target road, are

fed into the rendering functions (Rl(·),Rc(·)), pre-processing approximation functions (P(·)),

and the MSF algorithm (M(·)) to calculate La. Additionally, the realizability loss Lr(S
a, S)

is added to La(·) together using Eq. (3.1) to construct our loss function. To solve it, we use

Projected Gradient Descent (PGD). Specifically, we compute its gradients with respect to

the vertex positions va of Sa and constrain the gradients with a stealthiness threshold ϵ. We

then update Sa using these gradients. We iteratively apply this process until Sa cannot be

detected by the MSF algorithm.

3.4.3 Differentiable Rendering

In this section, we detail the differentiable rendering functions Rl(·) and Rc(·) in Eq. (3.2)

and Eq. (3.3). To ensure physical consistency, we define Sa in the LiDAR coordinate system,

which is convenient as it is by nature 3D. For camera rendering, we then use a calibration

matrix C to transform Sa from the LiDAR coordinate system to the camera coordinate

system. C can be obtained by measuring the relative positions between the camera and the

LiDAR of AV. To achieve differential rendering, we leverage existing differentiable ray-casting

methods [19] for LiDAR and NMR [159] for camera.
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Table 3.1: Summary of commonly-used cell-level aggregated features in state-of-the-art
LiDAR-based object detection models. Our novel soft point-inclusion property calculation
(§3.4.4) can be used to differentiably derive all of them.

Cell-level Aggregated Features Used in

Occupancy [53, 312, 7, 107, 279, 205]

Count [53, 7]

Height (min/max/mean) [53, 7, 86, 60, 163]

Intensity (min/max/mean) [53, 7, 312, 86, 60, 107, 279]

Density [86, 60, 163]

3.4.4 Pre-Processing Step Approximation

In this section, we detail the construction of the differentiable pre-processing function P(·).

Most of the pre-processing steps such as ROI, rotation, and position shifting (§3.2.1) can be

directly constructed differentiably using projective and affine transformations. However, such

construction is especially challenging for the calculation of cell-level aggregated features such

as cell occupancy and the mean height of the points inside a cell, due to the discontinuity

of the point-inclusion property as discussed in C3 (§3.3.2). However, such features are

commonly used in state-of-the-art LiDAR-based AD perception as summarized in Table 3.1,

for achieving high run-time performance (§3.2.1). This thus makes it necessary to address

this to ensure the generality of our attack method.

To address this, we find that as long as we can obtain the point-inclusion value of each

3D point to a given cell, all the commonly-used features in Table 3.1 can be mathematically

calculated in closed form. Thus, we first design an accurate and differentiable approximation

of the point-inclusion property calculation, or a soft point-inclusion calculation, and then

use it as a building block to differentiably derive the features.

Building block: Soft point-inclusion calculation. Given a point PCi with coordinate

(ui, vi, wi) from the point cloud PC and a 3D cell cm of length L, width W , and height H, the

direct point-inclusion value of PCi for cm, denoted as PI(PCi, cm), is 1 if PCi is inside cm,
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Figure 3.4: Illustration of the soft point-inclusion calculation with trilinear and tanh approx-
imations. PCi is a point in PC, and c1 to c8 are the 8 3D cells closest to PCi.

and 0 if not. To differentiably approximate this function, we estimate the point-inclusion

probability of the point among the 8 cells closest to it by calculating the interpolation of

it to these 8 cell center positions. Fig. 3.4 (a) illustrates these 8 cells, which are indexed

as m = 1...8. The center position of a cell cm is denoted as (um, vm, wm). These 8 center

positions form a cuboid that encloses PCi. We can then calculate the interpolation of this

point to these center positions using trilinear interpolation [28]:

softPI(PCi, cm) =(1− d(um, ui)

L
) · (1− d(vm, vi)

W
) · (1− d(wm, wi)

H
) (3.7)

where d(u1, u2) = |u1−u2| and
∑8

m=1 softPI(PCi, cm) = 1. Thus, this is similar to calculating

the probabilities of whether PCi is inside each of these 8 cells. Fig. 3.4 (b) illustrates the

calculation process and the example calculation for PCi at (0.8, 0.7, 0.1) when L = W =

H = 1 (i.e., each cell is a cube) and the center coordinate of c5 is the origin (0, 0, 0). The

calculation results are the numbers without underline at the 8 center positions. In Fig. 3.4 (c),

the interpolation value at the center position of each cell is then used as the point-inclusion

probability for such cell. As shown, since PCi is inside c7, it is the closest to the center

of c7 at (1, 1, 0), and thus the interpolation value is the highest for c7. This thus is able to

correctly assign the highest point-inclusion probability to c7.

31



1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

x = |u1 � u2|

d
d1 = 0.5 + 0.5 · sign(x� 0.5)

d3 = 0.5 + 0.5 · tanh(x� 0.5)
d2 = x
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As shown, the tanh one is much closer to the ground truth.

Approximation accuracy improvement. In Fig. 3.4 (b), while the point-inclusion prob-

ability is indeed the highest for c7, the probability value is only 0.504 and thus still has a

non-negligible gap to the ground-truth value 1. We find that the cause of this gap is at the

d(u1, u2) function in Eq. (3.7). As shown in Fig. 3.5, the ground-truth function for d(u1, u2)

when L = W = H = 1 is 0.5 + 0.5 · sign(|u1 − u2| − 0.5), since if the distance between

the point and the cell center at any dimension is over 0.5, it is outside of cell and thus

(1− d(u1, u2)) should be 0 in Eq. (3.7). Since sign(x) is not differentiable when x = 0, such

ground-truth function cannot be directly used in softPI(·). Using d(u1, u2) = |u1 − u2| as in

classic trilinear interpolation is differentiable, but its curve has a gap to the ground truth

as shown in Fig. 3.5 so that it is more difficult for the optimized Sa to succeed. To address

this, we use tanh(·) to differentiably and accurately approximate sign(·). For example, for

the u dimension, it becomes:

d(u1, u2) =
L

2
+

L

2
· tanh(µ · (| u1 − u2 | −

L

2
)) (3.8)

For the v and w dimensions of PCi we replace L with W and H. Fig. 3.5 shows the curve

of Eq. (3.8) when L = 1. As shown, the difference between Eq. (3.8) approximation and the

ground truth is much smaller. In this paper, we call SoftPI(·) using d(u1, u2) = |u1 − u2|

and Eq. (3.8) trilinear and tanh approximation respectively. The numbers with underline in

Fig. 3.4 (b) and (c) are the results with tanh approximation. As shown, with tanh approxi-

mation the point-inclusion probability for c7 becomes 1.0, which is directly the ground-truth
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Figure 3.6: Accuracy benefit of tanh approximation over trilinear approximation for the
count feature (number of points per cell). Count values are visualized using a gray-scale
heatmap. GT denotes the ground-truth count value.

value and thus much more accurate than trilinear approximation.

To more concretely show the benefit of tanh approximation, Fig. 3.6 shows the calculation

results for the count feature in Table 3.1 based on softPI(·) using real-world point cloud

data. The count feature calculates the number of points in a cell (derivation of it from

softPI(·) is described later). In Fig. 3.6, the count values are visualized using a gray-scale

heatmap in BEV. Fig. 3.6 (a) and (c) shows the count values calculated using trilinear and

tanh approximations respectively, and (b) and (d) shows their differences to the ground-truth

count value. As shown, the count values using trilinear approximation have clear differences

to the groundtruth, while the differences for the ones using tanh approximation is almost

invisible.

Derivation of cell-level aggregated features. With an accurate SoftPI(·), we can then

differentiably approximate all the cell-level aggregated features in Table 3.1 as follows:

•Count and density. The count feature calculates the number of points in a cell. With

softPI(·), we can differentiably derive the count value as CNT(cm) =
∑

PCi∈PC softPI(PCi, cm).

The density feature calculates the density of points in a cell. Thus, we can directly calculate

it by dividing CNT(·) by the cell size.

•Occupancy. The occupancy feature calculates whether a cell has points or not. With CNT(·)
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above, it can be calculated as sign(CNT(·)). Note that since the sign(·) is not differentiable,

we approximate it using sign(x) = x during the backward pass of the optimization.

•Height and intensity. The max/min/mean height features calculate the maximum, mini-

mum, and the average height of the points inside a cell. Thus, the max and min height fea-

tures are directly maxPCi∈PC softPI(PCi, cm) · wi and minPCi∈PC softPI(PCi, cm) · wi. The

mean height feature can be calculated as
∑

PCi∈PC softPI(PCi,cm)·wi

CNT(cm)+ϵ
, where ϵ is small number to

prevent division by zero. The max/min/mean intensity features can be calculated similarly

by replacing wi with the intensity value of PCi.

The calculations above are performed for 3D cells. To obtain features for 2D cells, we just

need to add an aggregation of these 3D cell features in one dimension, e.g., the vertical

dimension for BEV 2D cells (§3.2.1), into these calculations.

3.4.5 Objective Function Design

Adversarial loss La. For the adversarial loss La in Eq. (3.1), similar to prior attacks on

object detection [110, 329], we extract and minimize the confidence value (which reflects the

confidence that the region contains an object) of the regions of Sa. As introduced in §3.2.1,

the fusion process of the LiDAR and camera perception networks in the MSF algorithm can

be DNN-based or rule-based. For the former, we directly extract the confidence values in the

MSF output [86, 304, 115, 180, 179, 102, 163]. For the latter, since the rule-based fusion logic

is not directly differentiable, we extract the confidence values in the outputs of the LiDAR

and camera perception networks separately, and minimize the sum of them. This is because

if we can prevent Sa from being detected in the outputs of both the LiDAR and camera

perception networks, Sa will not appear in the MSF output no matter what the rule-based

logic is.
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Realizability loss Lr(·). To realize our attack goal in §3.3.1, Sa needs to be 3D-printed

and placed on top of the road surface in the physical world. To facilitate this, we design the

realizability loss Lr(·) in our objective function to (1) improve the printability of Sa at 3D

printers by maximizing its surface smoothness using a Laplacian loss [176], and (2) prevent

the generation of Sa that is underneath the road surface. The detailed loss formulations are

in Appendix 3.A.

Stealthiness designs. Our optimization process has two designs for improving the stealth-

iness of Sa. First, the realizability loss above can improve its surface smoothness, which

can thus allow it to look normally in practice. Second, we solve Eq. (3.6) by using Project

Gradient Descent (PGD) with L∞ distance constraint during the gradient update step in

Fig. 3.3, which thus ensures that the per-dimension moving distance for each vertex in S is

smaller than ϵ. We can then use ϵ to control how similar Sa looks compared to the benign

one S, and thus the smaller ϵ is, the stealthier Sa is.

Attack robustness improvement. To achieve the end-to-end attack success in our setting,

it is ideal if Sa can be continuously undetected by the MSF algorithm when the victim AV

is approaching the object, until their distance is smaller than the brake distance [11] so

that it is too late to brake to avoid the crash. Thus, we need to improve the robustness of

Sa against different victim approaching distances and angles of the target road. To achieve

this, we implement Transformation T via random yaw-dimension rotations and ground-plane

position shifting of Sa, which is illustrated in Fig. 3.3.
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3.5 Attack Evaluation

3.5.1 Evaluation Methodology and Setup

MSF algorithm selection. In our evaluation, we target MSF algorithms included in

open-source industry-grade AD systems to ensure high practicality and realism of our eval-

uation results. In particular, we select the ones included in 2 open-source full-stack AD

systems, Baidu Apollo [53] and Autoware.AI [7], due to their (1) representativeness among

industry-grade AD systems today, as Apollo has been recently ranked among the top 4 lead-

ing industrial AD developers along with Waymo, Ford, and Cruise [22], and Autoware is

adopted by the USDOT in their AV fleet [12]; (2) practicality, since both systems can be

readily installed on real vehicle models [6, 10] for driving on public roads. In particular,

Apollo has been providing self-driving taxi services in China for months [9]; and (3) ease to

experiment with, since they are the only full-stack AD systems that are open-sourced.

Both AD systems use rule-based fusion in their MSF algorithms, i.e., the LiDAR and cam-

era perception networks are separated DNN models, and their individual perception out-

puts are fused based on hard-coded matching and prioritization rules. As described in

§3.2.1, such design has high modularity and is easy to debug, interpret, and hard-code safety

rules/measures [316]. These can greatly benefit system development in industry, which might

be the reasons why it is adopted in both Apollo and Autoware.AI. As described in §3.4.5, for

such fusion type, our optimization objective is to make our adversarial object undetected in

both the outputs of the LiDAR and camera perception models to allow our attack to succeed

no matter what rule-based fusion logic is used.

Due to such modular fusion designs, the MSF algorithms in both Apollo and Autoware.AI

allow different combinations of LiDAR and camera perception models. Thus, in our eval-
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uation we also evaluate our attack against different such combinations to understand the

generality of our attack. In this paper, we call each such combination an MSF combination

and use +○ to denote such combination operation. In particular, we select 2 different models

for LiDAR and 2 for camera, which forms 4 MSF combinations in total. On the LiDAR side,

the LiDAR perception model in Apollo is also included in Autoware.AI. Thus, we choose 2

models in different Apollo versions that have substantially different DNN designs: one from

the latest version, v5.5, denoted as A5-L, and another from an older version, v2.5, denoted

as A2-L. At the DNN design level, A5-L differs greatly from A2-L with 43.9% more deep

layers and 65.0% more trainable parameters. On the camera side, we select the one from the

latest version of Apollo, denoted as A5-C, and the pre-trained YOLO v3 [35], denote it as

Y3, which is included in the latest version of Autoware.AI.

3D object type selection. Considering the supported object types for the LiDAR and

camera models, we experiment with 3 types of objects for the above 4 MSF combinations:

(1) a traffic cone of size 0.5 m × 0.5 m × 1.0 m, for A5-L+○A5-C and A2-L+○A5-C, (2) a

bench of size 0.6 m × 0.5 m × 1.5 m, for A5-L+○Y3 and A2-L+○Y3, and (3) a toy car of size

0.6 m × 0.7 m × 1.6 m (for kids to sit inside), for all 4 MSF combinations. We intentionally

avoid large objects like cars since they are much harder to 3D-print and deploy. Among the

3 object types, we consider traffic cone as the most attractive for attacker since it is much

more common to appear on the roadway than the other two and thus the most stealthy.

Thus, majority of our experiments are focused on traffic cone.

Attack scenario selection. For each object type, we select 100 real-world driving scenarios

from the KITTI dataset [119] in which such object in benign case can be 100% detected by the

MSF combinations. Each scenario is one frame of sensor inputs including the camera image,

the LiDAR point cloud, and the calibration matrix. These scenarios has high diversity with

different types of objects (e.g., cars, trucks, traffic lights) and roads (e.g., local, high-way, to

rural roads).
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Object placement. For most experiments, we place the benign and adversarial objects 7

meters (m) in front of the victim. We choose 7 m because it is the braking distance [11] when

the vehicle speed is 25 mph, almost the lowest one in normal driving. Since such distance

is larger for higher vehicle speeds, 7 m represents the smallest distance at which the object

has to be detected by the victim to avoid a crash in normal driving scenarios. In §3.5.4, we

also evaluate our attack among different victim distances and angles. More detailed attack

parameter settings are in Table 3.A.1 in Appendix.

3.5.2 Attack Effectiveness

In this section, we evaluate the effectiveness of our attack on the attack scenarios described

in §3.5.1.

Evaluation metrics. Given an MSF combination and an attack scenario, we render our

generated 3D adversarial object into the background point cloud and image, and test whether

it can be detected by the MSF combination. We determine our attack as success if and only

if the adversarial 3D object is undetected by both the LiDAR and camera models in such

MSF combination. Under this criterion, the successful attacks can generally defeat any rule-

based fusion logic that can be applied to fuse the outputs of these two models. Thus, the

calculated success rate is a lower bound when a specific fusion logic is used, e.g., the ones in

Apollo and Autoware.AI. We perform evaluation on 100 scenarios and report success rate.

Results. The results for the 4 MSF combinations are shown in Table 3.2. For all object

types and all MSF combinations, success rates are at least 91%, and those for traffic cone and

bench are all 100% among 100 driving scenarios. This shows that MSF-ADV is an effective

method. Among these results, the 100% success rates for traffic cone is especially important,

since it is the most attractive object type among the three from the attacker’s view due to

its small size and the ability to disguise as a normal traffic object in the middle of the road.
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Table 3.2: Attack success rate and average vertex perturbation distance of MSF-ADV on
different MSF combinations in 100 driving scenarios. A5-L, A5-C: LiDAR and camera models
in Baidu Apollo v5.5. A2-L: LiDAR model in Apollo v2.5. Y3: YOLO v3. All objects can
be 100% detected by each MSF combination in the benign case.

MSF Comb. A5-L+○A5-C A5-L+○Y3 A2-L+○A5-C A2-L+○Y3

Object Type Traffic cone Toy car Bench Toy car Traffic cone Toy car Bench Toy car

Success Rate 100% 91% 100% 93% 100% 96% 100% 97%

∆ℓ1 5.92 5.95 5.93 5.97 5.93 5.63 5.90 5.61

∆ℓ2 3.28 3.46 3.39 3.37 3.43 3.34 3.30 3.25
Dist.
(cm)

∆ℓ∞ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

LPIPS 0.06 0.02 0.20 0.04 0.07 0.17 0.20 0.06

Note that our method can achieve 91% attack success rates even for the toy car of which

the object type (car) has been heavily explored in training data of the model. Among the 4

MSF combinations, A5-L+○A5-C has the lowest attack success rates, which shows that the

models from the latest version of Apollo are the most robust among the 4.

Stealthiness. We also measure the stealthiness of our object using the average per-vertex

∆ℓp distances and the LPIPS (Learned Perceptual Image Patch Similarity) metric [321]. Ta-

ble 3.2 shows the results with stealthiness parameter ϵ = 2 cm (§3.4.5). As shown, our attack

only needs to move each vertex by 3.4 cm on average (∆ℓ2) to achieve at least 91% success

rates on all MSF combinations. For LPIPS, we use the official implementation from [321] to

measure the LPIPS value between the driving image with benign object rendered and the

same image with the adversarial one rendered at the same location. As shown, the average

LPIPS value is 0.10 across the 3 object types. This is at the same level as those achieved in

latest GAN-based image restoring methods [154], which are generally considered as indistin-

guishable for human. In Table 3.3, we further evaluate our attack under different ϵ values on

A5-L+○A5-C using traffic cone. As shown, the attack success rates are still over 93% even

when the average moved distance per vertex (∆ℓ2) is as small as 1.5 cm.

Attack stealthiness user study. To more directly evaluate the attack stealthiness, we
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Table 3.3: Stealthiness evaluation results of MSF-ADV on MSF combination A5-L+○A5-C
with the traffic cone object under different stealthiness levels of ϵ (§3.4.5).

∆ℓp Dist. (cm)
Stealthiness
Level (cm)

Succ.
Rate ∆ℓ1 ∆ℓ2 ∆ℓ∞

LPIPS

ϵ = 2.0 100% 5.92 3.28 2.00 0.06

ϵ = 1.0 93% 2.84 1.51 1.00 0.05

ϵ = 0.5 76% 1.38 0.54 0.50 0.05

also conduct a user study for traffic cone with 105 participants from Amazon Mechanical

Turk [4]. The results show that the generated adversarial traffic cone is generally viewed

(1) as innocent as the original benign cone, and (2) less suspicious than certain benign ones

with broken shapes. More details are in Appendix 3.B.

Effectiveness under different attack settings. We also perform evaluation under dif-

ferent attack parameter settings. We find that our attack is most sensitive to µ, which show

that the differentiable approximation design in §3.4.4 is critical to the attack success. More

details are in Appendix 3.C.

Printability. We also evaluate the printability of our attack using commercial printability

checking tool and geometry metrics such as watertightness [271, 16], self-intersection [14],

and curvature [14]. Our results show that our generated objects are 100% printable, and our

printability improvement designs in §3.4.5 substantially reduce the printing difficulties from

58.9% to 74.3%. Detailed are in Appendix 3.D.

Transferability. We also evaluate the attack transferability among the 4 MSF combinations

with the toy car object. We find that the transfer attack among them is generally effective,

with success rates around 75% on average.
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Table 3.4: Comparison between MSF-ADV and baseline attack methods in attack success
rate and object perturbation degrees. GN: Gaussian noise. GA: genetic algorithm.

∆ℓp Dist. (cm)
Attack
Method

Success
Rate ∆ℓ1 ∆ℓ2 ∆ℓ∞

GN 8% 21.8 3.35 10.3

GA 9% 2.85 1.84 2.00

Ours 100% 5.92 3.28 2.00

3.5.3 Comparison with Baseline Attack Methods

While our attack shows high effectiveness in the previous section, it is unclear how much of

it is due to the specific designs in MSF-ADV. To understand this, in this section we compare

our method with possible baseline attack methods.

Evaluation methodology. We consider 2 baseline attack methods: (1) Gaussian noise

based shape perturbation, denoted as GN, and (2) Genetic algorithm [208] based attack

generation, denoted as GA. GN is used to understand whether the success of our attack is

due to our optimization-based design (§3.4), or simply due to the nature of that level of shape

perturbations. GA still uses our objective function design in §3.4.5 as fitness function, but

does not need differentiability, which is thus used to understand whether our differentiable

approximation function designs in §3.4.4 are actually useful.

Experimental setup. We perform comparison with our attack on A5-L+○A5-C MSF

combination with the traffic cone object using the same setup in §3.5.1. We implement GN

and GA using the corresponding standard Python libraries [3, 17]. For GN, we apply a

Gaussian noise with µ = 0 and σ = 2.1 cm to each vertex dimension to generate a similar

level of perturbation as MSF-ADV with ϵ = 2 cm. For GA, we set the population size to 50,

a common value used in genetic algorithm based adversarial attacks [51, 113]. We configure

it to use 2 cm as the per-dimension perturbation bound for each vertex, the same as ϵ in

MSF-ADV. To achieve a fair comparison, we run GA using similar CPU and GPU resources
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Figure 3.7: Fitness values of GA and MSF-ADV during the optimization process. The curve
for MSF-ADV stops at 1000 since it can already succeed for all scenarios at that point.

as MSF-ADV, and ensure that it runs longer than our method.

Result. Table 3.4 summarizes the attack success rates of GN, GA, and our method, and the

corresponding shape perturbation degrees. As shown, for GN, the average moved distance

per vertex is 3.35 cm (∆ℓ2), which is larger than those generated by our method (3.28 cm).

However, only 8% of the ones from GN succeed, which is a magnitude lower than ours (100%).

This thus shows that our high attack effectiveness is mainly due to our optimization-based

design, instead of the nature of a similar-level shape perturbation. For GA, we stop it after

it generates 2000 adversarial objects for each attack scenario, which is twice the number for

our method (1000). However, the success rate is only 9%, which is also a magnitude lower

than ours. Fig. 3.7 shows the fitness value trend during the optimization process, which

is averaged over the 100 attack scenarios. As shown, the fitness value decrease for GA is

much slower than ours: its fitness value drop after 2000 trials is achieved after only 133 trials

using our method, which is 15× more efficient. This thus concretely shows that benefit of

our differentiable approximation function designs in §3.4.4, which allows the use of gradient-

based optimizations to significantly improve both the attack efficiency and effectiveness.

3.5.4 Attack Robustness

In this section, we evaluate our attack robustness against different victim approaching posi-

tions and angles.
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Table 3.5: Average success rate on A5-L+○A5-C with traffic cone in different victim ap-
proaching distance ranges.

Y = (-0.1 m, 0.1 m)

X = (5 m, 15 m) (15 m, 25 m) (25 m, 35 m)

w/o EoT 80.3% 79.2% 79.9%

w/ EoT 96.3% 95.5% 96.6%

Evaluation methodology. We still use the attack scenarios in §3.5.1 for evaluation. To

synthesize different relative positions between the victim and the object when the victim is

approaching the object, we render the object at different locations ahead of the victim in

both the camera and LiDAR frames given an attack scenario.

Experimental setup. As described in our attack design (§3.4.1), the adversarial object is

placed in the middle of the traffic lane in which the victim is driving. In this section, X and

Y denote the relative distance between the victim and the object in the longitudinal (i.e.,

forward and backward) and lateral (i.e., left and right) directions respectively. For X, we

consider 3 distance ranges from 5 to 35 m, which correspond to the brake distances for speed

from ∼20 to 55 mph [11]. For Y , the deviations to the center of the lane usually need to be

within 0.1 m for smooth and safe driving [49, 98]. Thus, we consider Y ∈ (−0.1 m, 0.1 m).

For each position range, we randomly sample 20 different positions.

Results. Table 3.5 shows the average attack success rates for A5-L+○A5-C with traffic cone

in the 3 position ranges over the 100 evaluation scenarios (§3.5.1). As described in §3.4.5,

we use EoT to improve robustness. As shown, this improves the average success rates in all

position ranges by 20.5% on average. Overall, with EoT the average attack success rates

are over 95% across different position ranges, which shows a high robustness of our attack

against different victim approaching positions and angles at common driving speeds.
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3.5.5 Physical-World Attack Realizability Evaluation

While the results in prior sections show high effectiveness and robustness of our attack, the

experiments are performed by digitally rendering the objects into camera and LiDAR inputs.

Thus, it is unclear whether such high effectiveness can still be achieved after the adversarial

object is 3D-printed and placed in the physical world. Thus, in this section we evaluate such

physical-world realizabilty of our attack.

3.5.5.1 Real Vehicle based Experiments

At the early stage of this project, we had access to a real vehicle equipped with a high-end

Velodyne HDL-64E LiDAR, and used it to perform physical-world experiments for LiDAR

models. Unfortunately, later we lost the access to it and only have such real vehicle based

experiments for the LiDAR-side evaluation. In this section, we report these results for LiDAR

side, and will detail in the next section the physical-world experiments for both LiDAR and

camera using a miniature-scale experiment setup.

Evaluation methodology and setup. In this experiment, we 3D-print the adversarial

object and conduct the experiment by using the vehicle mentioned above to collect its LiDAR

point clouds on the real road. Fig. 3.8 (a) shows the vehicle and road. We selected a rarely-

used road and no other vehicles passed by during this experiment. Since this experiment

was performed at the early stage of this project, the selected object type was a 75cm cube,

and the targeted model was A2-L, the latest version of the Apollo LiDAR model at that

time. Fig. 3.8 (b) shows the box of the same size used as the benign cube, and the 3D-

printed adversarial cube. This setup mimics the attack scenario by placing an adversarial

rock-shaped object (§3.4.1).
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(a) Road & car w/ LiDAR

(b) Benign and adv. cubes (c) Benign case (d) Adversarial case

Figure 3.8: Physical-world experiment settings and evaluation results for LiDAR-side
physical-world attack realizability. We use a Velodyne HDL-64E LiDAR mounted on a
real vehicle. The adversarial cube is 3D-printed at 1:1 scale.

Results. We manually drive the vehicle around the cube and collect traces in front of it

and on the left of it. In total, there are 99 LiDAR frames with the benign cube, and A2-L is

able to correctly detect it in 84.8% (84) frames. In comparison, we find that the adversarial

cube is detected in only 0.9% (1) of the 108 LiDAR frames including it. Fig. 3.8 (c) and

Fig. 3.8 (d) show examples of the frames and detection results for the benign and adversarial

cubes respectively. These results show that our attack is still effective in the physical-

world setting for the LiDAR side of MSF. Experiment videos and images are at https:

//sites.google.com/view/cav-sec/msf-adv.

3.5.5.2 Miniature-Scale Experiments

Since we lost the access to the experiment vehicle, in this section we design a miniature-scale

experiment in our lab environment to perform physical-world experiments for both LiDAR

and camera.

Evaluation methodology. In this experiment, we still 3D-print the adversarial object and
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Figure 3.9: Miniature-scale experiment setup with camera and LiDAR. Road and traffic cone
are at 1:6.67 scale.

Figure 3.10: Visualization of the LiDAR and camera perception results for A5-L+○A5-C in
miniature-scale experiments.

obtain its point clouds and images using physical LiDAR and camera devices like in the

actual physical-world attack settings. However, the main difference is that the adversarial

object and the road are set up in a miniature scale as shown in Fig. 3.9. As shown, the

adversarial object is 3D-printed at 1:6.67 scale and placed on a miniature-scale straight road

created by printing a real-world high-resolution BEV road texture on multiple A4 papers

and concatenating them together. Here, the obtained point clouds of the object and road

are scaled up accordingly following the physical rule of LiDAR to obtain the point clouds

in real-world scale. The benefit of such miniature-scale setup is that it can not only obtain

physical-world point clouds and images following the same physical rules of LiDAR and

camera, but also more easily fit into the budget of a university-level research lab (e.g., 3D-
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Table 3.6: Evaluation results for A5-L+○A5-C and A2-L+○A5-C at 20 randomly-sampled
positions in miniature-scale experiments. Results for A2-L+○A5-C is a transfer attack since
the adversarial traffic cone is generated for A5-L+○A5-C.

A5-L+○A5-C A2-L+○A5-C (transfer attack)

Benign detection rate 19/20 (95%) 16/20 (80%)

Attack success rate 18/20 (90%) 17/20 (85%)

Attack success rate when

benign can be detected
18/19 (94.7%) 14/16 (87.5%)

printing our 1-meter high traffic cone at 1:1 scale requires industry-grade 3D printers [20]).

Experimental setup. We use an iPhone 8 Plus back camera and a Velodyne VLP-16

LiDAR to collect images and point clouds as shown in Fig. 3.9. For the adversarial object,

we generate the adversarial traffic cone mesh using the image and point cloud collected in

our miniature-scale setup as the background. We 3D-print the benign and adversarial traffic

cones with 380 um precision at 1:6.67 scale. The road size, traffic cone size, and the camera

and LiDAR positions are chosen to represent the scenario where these sensors are installed

on a car driving on a standard 3.6-meter wide highway road [39].

In the experiment, we try 20 different positions on the miniature road, which are randomly

sampled in a 6.0 cm × 6.0 cm area at the road center and ∼45 cm far from the camera and

LiDAR. We choose this area because we find the highest detection rate of the benign cone

in this area. In real-world scale, this represents the scenario where the adversarial cone is

roughly at the road center and 3-3.5 m far from the camera and LiDAR on the victim. Since

the object type is traffic cone, we consider A5-C on camera side, and the VLP-16 versions

of A5-L and A2-L in Apollo, which has the same model architecture as their corresponding

HDL-64 versions [5].

Results. Table 3.6 shows the results. As shown, for A5-L+○A5-C, the benign traffic cone

can achieve 95% detection rate at the 20 random positions. However, after we place the

adversarial one at exactly these 20 positions, the detection rate is only 10%, leading to a
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90% success rate. Specifically, at the 19 positions that the benign cone can be successfully

detected, the attack success rate is around 95%. Fig. 3.10 visualizes the LiDAR and camera

perception results of the benign and adversarial cones. More images and dynamic moving

videos are at https://sites.google.com/view/cav-sec/msf-adv.

Since this adversarial cone is generated for A5-L+○A5-C, we also evaluate it against A2-

L+○A5-C to understand whether such attack effectiveness can transfer. As shown, the success

rate of such a transfer attack is very similar: the success rate among the 20 positions is 85%,

and that among the positions where the benign cone can be detected is 87.5%. These results

thus show that our generated adversarial objects can still be effective against both LiDAR

and camera in a physical-world environment, and such effectiveness can transfer.

3.6 End-to-End Attack Simulation Evaluation

To more concretely understand the end-to-end safety consequences, we further evaluate on

a concrete attack scenario using a production-grade AD simulator.

Evaluation methodology and metrics. We perform an end-to-end attack evaluation on

Baidu Apollo using LGSVL simulator [38]. LGSVL is an open-source Unity-based simulator

designed for testing and development of industry-grade AD systems, and has already sup-

ported Apollo. In our evaluation, we use a map of a single-lane road in LGSVL, and set

up Apollo to control a vehicle to drive along this lane. To launch our attack, we imported

the 3D mesh of our adversarial traffic cone into Unity, set its physical properties, and then

re-build the simulator and the map. We control the position of this adversarial cone to set it

to the lane center, and LGSVL will provide Apollo with the raw camera and LiDAR inputs

with the adversarial objects using its simulation engine. As described in §3.4.1, crashing

into such an adversarial traffic cone can lead to severe safety damages as the attacker can
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fill it with denser materials such as granite or metal, or put nails or glass debris behind it.

Considering such concrete attack scenarios, we directly use the vehicle collision rate with the

adversarial cone to evaluate the attack effectiveness.

Experimental setup. We evaluate on Apollo v5.0, the latest Apollo version supported

by LGSVL so far [38]. We use the default camera and LiDAR device configurations in this

support. The LiDAR and camera models in Apollo v5.0 are the same as those in the latest

version, Apollo v5.5. Thus, we directly use the adversarial traffic cone generated in §3.5

for this evaluation. The vehicle speed is set to 30 km/h. For both benign and adversarial

scenarios, we perform 100 runs of experiments and each lasts around 20 seconds to allow

the vehicle to arrive at the traffic cone placement position and finish executing the driving

decision.

Results and demo videos. The results show that our adversarial traffic cone can always

fool the Apollo system in the entire trip across the 100 runs, leading to a 100% vehicle

collision rate. We inspect the experiment log and find that the adversarial cone evades

both the camera and LiDAR perception pipelines at every frames before fusion, which thus

fundamentally defeats the basic design assumption of using MSF for defense. In contrast, in

the benign case, Apollo is always able to correctly detect the benign cone and stop in front of

it to avoid collision (i.e., 0% crash rate). Across different runs, the vehicle driving trajectories

differ slightly due to the simulation randomness and sensor messaging delay/dropping, but

our attack shows a high robustness against such trajectory variances when the victim is

approaching.

Fig. 3.11 shows the key screenshots on both the LGSVL and Apollo sides during the simu-

lation. As shown, in the benign case, the victim can detect the traffic cone and successfully

make a stop decision to decrease its speed to 0 km/h. However, in the adversarial case, the

victim cannot detect the traffic cone even when it is right in front of it. Thus, it maintains

the original speed and directly crashes into it. We also record short demo videos from the
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Figure 3.11: Screenshots of Apollo and LGSVL in the end-to-end attack evaluation with
benign and adversarial traffic cones. Across 100 runs, the crash rate is 100% for adversarial
case, and 0% for benign case.

simulation, available at [23].

3.7 Limitations and Defense Discussion

3.7.1 Limitations of Our Study

End-to-end physical-world evaluation. In this work, our attack is designed with a prac-

tical attack model (§3.4.1) and evaluated on real-world driving dataset and miniature-scale

physical-world settings (§3.5.5). However, we did not perform an end-to-end attack evalua-

tion on a real AV in the physical world due to the cost and safety considerations. As a best

effort, we evaluate such end-to-end attack impacts using a production-grade AD simulator

(§3.6). Note that AD companies such as Waymo also heavily rely on simulation-based eval-
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Figure 3.12: Evaluation results of 4 DNN input transformation based defense methods for
our attack on A5-L+○A5-C with traffic cone object. Benign detection rates mean detected
by either LiDAR or camera. Attack success rate means that both LiDAR and camera fail to
detect. For all x-axes, values from left to right mean higher to lower camera/LiDAR input
quality (e.g., more smoothing or compression). Detailed setup in Appendix 3.E.

uations when developing and testing AD systems for safety and budget considerations [18].

Attack generality evaluation. In our evaluation, we target the MSF algorithms used

in representative industry-grade AD systems such as Baidu Apollo [53], which generally

adopt a rule-based fusion design. As introduced in §3.2.1, there also exists other types of

fusion design: DNN-based fusion [86, 304, 115, 180, 179, 102, 163] or even context-aware

sensor fusion [201], which improve both the efficiency and robustness of the AD systems.

Thus, it is still unclear how effective MSF-ADV can be for these MSF algorithms. Note

that this is not a limitation of our attack methodology: as described in §3.4.5, our design is

generally applicable to different fusion designs. Also, since rule-based fusion design is more

preferable for the system development in the industry (§3.5.1), our current evaluation results

can potentially lead to more impacts to AD systems in practice. Thus, we left the attack

evaluation of other MSF algorithms as future work.

3.7.2 Defense Discussion

3.7.2.1 DNN-Level Defense

Our attack exploits vulnerability in DNNs used in MSF, and thus a direct defense direction

is to secure these DNNs. In the recent arms race between adversarial attacks and defenses,
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various defense/mitigation techniques have been proposed, e.g., input transformation [306,

206, 105], adversarial training [200], and certified robustness [174, 168]. However, almost all

of them focus on image classification models under digital-space attacks, instead of object

detection models under physical-world attacks. To the best of our knowledge, no prior works

has considered defending against adversarial 3D objects in MSF context.

Experiment methodology. In this case, as a best effort to understand the effective-

ness of existing defenses in our attack setting, we perform experiments mainly on two

easily-adaptable defense strategies: (1) camera/LiDAR input transformation without model

re-training, for which we evaluate 4 popular methods: bit-depth reduction [306], median

smoothing [306], JPEG compression [105], and autoencoder reformation [206]; and (2) aug-

menting training data, denoted as AUG, which re-trains the model with adversarial inputs

mixed in training dataset [262, 123, 221]. AUG is only applied to YOLO v3 (Y3) since Apollo

does not release training dataset for its models. Additionally, we also explored adversarial

training [318] for Y3, but different from the standard adversarial training, we only applied 2

steps PGD attack to approximate the solutions of inner maximal problem for efficiency due

to the complexity of our attack pipeline (e.g., rendering, pre-processing, and attacking two

models together) caused by our problem settings and evaluated system. Such a strategy has

been adopted in some recent works to improve efficiency of adversarial training [291, 318].

More details are in Appendix 3.E. Note that we do not evaluate certified robustness [174, 168]

since its designs today focus on small 2D digital-space perturbations (e.g. ℓ2=0.5 on Ima-

geNet [90, 313]), and their extensions to either 3D space or physical-world attacks are still

open research problems.

Results. Fig. 3.12 shows the results for the 4 input transformation based defenses on our

attack on A5-L+○A5-C for traffic cone. For each method, we explore different parameters to

explore the trade-off between benign detection rate and attack success rate. As shown, with

the decrease of the LiDAR/camera input quality (left to right for all the x-axes), the attack
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success rate will eventually increase for all 4 methods since the input quality becomes so low

that both camera and LiDAR models cannot detect the object even in the benign case. For

some methods, the attack success rate first decreases before such increase, which is likely

because the input quality reduction disrupts our adversarial shape perturbations. Overall,

median smoothing achieves the highest defense effectiveness by decreasing the attack success

rate to 66% without affecting the benign detection rate. Note that it is known that all these

methods can be bypassed by adaptive attacks [74, 323, 134, 250]. Thus, an interesting

future work is to explore the effectiveness of these methods under adaptive attack designs of

MSF-ADV.

Table 3.7 shows the results for AUG. For a fair comparison, the original model in the table

is also newly-trained using the same setup. As shown, AUG is able to decrease the attack

success rate to 69% with 100% benign detection rate. Our preliminary exploration of adver-

sarial training with 2-step PGD does not show higher effectiveness: even with 900 epoch of

training, the attack success rate is only reduced to 95% with 100% benign detection rate.

The potential reason of the lower effectiveness is that 2 steps PGD is not enough to generate

effective adversarial objects during training. Compared to some prior works [318, 291], this

suggests that our attack poses more challenges in balancing the trade-off between efficiency

and effectiveness in adversarial training. We plan to systematically investigate this in the

future.

Overall, the most effective defense found in these experiments can only decrease the attack

success rate to 66%, which is not quite enough to render this attack vector practically unex-

ploitable. Leveraging the analysis insights, we plan to explore more effective defense designs

by exploring (1) other input transformation considering the success of medium smoothing,

and (2) more efficient and effective adversarial training designs for our attack. As certified

robustness can provide strong theoretical guarantees, we also plan to explore the extensions

of it to 3D space and physical-world attacks.
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Table 3.7: Results of augmenting training data (AUG) for our attack on A5-L+○Y3 compared
to original model for bench object. Detailed setup in Appendix 3.E.

Y3 test Benign Attack

set mAP det. rate succ. rate

Original 44% 100% 100%

AUG 32% 100% 69%

3.7.2.2 Fuse More Perception Sources

At MSF algorithm level, one defense direction is to fuse more perception sources, e.g., more

cameras/LiDARs sharing an overlapped view but mounted at different positions, assuming

that our attack may be more difficult to optimize if the fused camera/LiDAR perception

results are from very different viewing angles and positions. Also, we may consider including

RADAR into MSF, which is less preferred in state-of-the-art MSF designs (§3.2.1) but may

help improve their security. Note that this cannot fundamentally defeat our attack since

RADAR point clouds may also be affected by shape manipulations and their state-of-the-art

object detection algorithms are still DNN-based [280]. Nevertheless, including RADAR may

make it more difficult to attack if the RADAR perception model is more robust. We leave

a systematic exploration of these to future work.

3.8 Related Work

Autonomous Driving (AD) system security. Since AD systems heavily rely on sensors,

prior works have studied sensor attacks in AD context such as spoofing/jamming attacks

on camera [310, 213], LiDAR [254, 72], RADAR [310], ultrasonic [310], and IMU [272].

In comparison, these works mainly focus on vulnerabilities at sensor level, while we focus

on those at the higher autonomy software level, i.e., the “brain” of AD systems. At such

level, prior works have studied the security of camera/LiDAR object detection [110, 83,
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329, 72, 37] and tracking [149], localization [253], lane detection [240, 242, 178], traffic light

detection [263], and end-to-end AD [221, 268]. However, so far all of them only consider

attacks on camera or LiDAR perception alone, while we are the first to study the security

of MSF-based AD perception and address the corresponding design challenges (§3.3.2).

Adversarial attacks. Various adversarial attacks have been proposed to generate adversar-

ial attacks in the digital space [123, 76, 220, 209, 262, 221, 301, 271, 296, 169, 298, 227, 300,

302, 299]. In comparison, we focus on physical-world attack vectors. Multiple prior works

have designed and evaluated adversarial attacks in the physical world [110, 173, 64, 267, 324,

83, 187, 329, 56]. However, none of them have considered MSF-based AD perception, and

as described in §3.3.2, blindly combining their designs cannot directly achieve our goal due

to various unique design challenges.

3.9 Conclusion

This paper presents a first study on the security issues of MSF-based AD perception, that

challenges the basic design assumption for MSF as a defense strategy in AD context. We

design a novel attack method, MSF-ADV, with adversarial 3D object as the attack vec-

tor, and address design challenges in non-differentiable target camera and LiDAR sensing

systems and non-differentiable computation of cell-level aggregated features for LiDAR. We

perform evaluations on MSF algorithms included in industry-grade AD systems using real-

world driving scenarios. Our results show that our attack achieves over 90% success rates

across different object types and MSF algorithms, while being stealthy, robust, transferable

and physical-world realizable. In simulation evaluation, our attack can cause 100% vehicle

collision rate. We also evaluate and discuss defenses. Considering the critical role of per-

ception for safe AV driving, we hope that our findings and insights can help the community

develop effective defenses in practice.
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Appendix 3.A Realizability loss Lr(·) in §3.4.5

To realize our attack goal in §3.3.1, Sa needs to be 3D-printed and placed on top of the

road surface in the physical world. To facilitate this, we design the realizability loss Lr(·) in

our objective function to (1) improve the printability of Sa by 3D printers, and (2) prevent

the generation of Sa that is underneath the road surface. Our formulation of Lr(·) is in

Eq. (3.9), where the first and second parts are for achieving (1) and (2) respectively. The

first part is a Laplacian loss [176], where V a is the vertex set of Sa, and for va
i ∈ V a,

Γ(va
i ) denotes the set of connected neighboring vertices of va

i . Since our attack generation

is performed by only moving the vertex positions in the benign object S (§3.4.1), there is

always a corresponding vertex vi in the vertex set V of S that va
i is moved from. The

distance between va
i and vi is denoted as ∆v = va

i − vi. Thus, the first part in Eq. (3.9)

penalties the differences between the position change of each vertex in Sa and those of its

neighboring vertices. This can thus improve the smoothness of the surface of Sa, which can

lower the precision requirements of the 3D printer [29] and thus improve the printability of

Sa. We also use a popular mesh simplification method, Quadric Edge Collapse Decimation

(QECD), as an optional post-processing step to further improve printability.

In the second part, zai and zi denotes the height values of va
i and vi. This part minimizes

the distance between the lowest height among all vertices in Sa and that in S, which thus

penalties the moving of the vertices in Sa towards under the road surface. β1 is a hyper-

parameter for this part in Eq. (3.9).

Lr(S
a, S) =

∑

va
i ∈V a

∑

va
q∈Γ(va

i )

∥∥∆va
i −∆va

q

∥∥2
2
+ β1 · ∥ min

va
i ∈V a

zai − min
vi∈V

zi∥22 (3.9)
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Table 3.A.1: Detailed settings for attack parameters in §3.5.

Parameter Value

PGD initial point (§3.4.5) 0.01

PGD constraint (§3.4.5) 0.02

Tanh approximation parameter µ (§3.4.4) 100

Preventing division by zero ε (§3.4.4) 10−7

X sample range (§3.4.5) (5, 35)

Y sample range (§3.4.5) (−0.3, 0.3)
yaw sample angles (§3.4.5) (−5◦, 5◦)
Learning rate (§3.4.5) 0.001

Lr(·) coefficient λ (§3.4.5) 20

Height loss coefficient β1 (Appendix 3.A) 0.001

Precision of 3D printer used in §3.5.5 0.38mm

Appendix 3.B Attack Stealthiness User Study

In this section, we conduct a user study to evaluate the stealthiness of the adversarial 3D

objects. We go through the IRB process and our study is determined as the IRB Exempt,

due to not involving collection of any Personally Identifiable Information (PII) or target any

sensitive population.

Evaluation methodology. In this study, we select traffic cone as the evaluation target

due to its high attractiveness for the attacker (§3.5.1). We evaluate 4 red traffic cone with

different shapes: the benign shape (Benign) the adversarial shape generated by MSF-ADV

(Adv), and two benign but broken shapes similar to Fig. 3.2 (Benign B1 and B2 ). We

consider Benign B1 and B2 since our attack is designed to mimic benign traffic objects with

a broken look (§3.4.1). We randomly select two images (S1, S2 ) from KITTI and render

these shapes into these two images at two different positions (near or far way from the victim

AV, denoted as N or F ) to generate four realistic driver’s scenario (S1-N, S1-F, S2-N, S2-F )

on the roadway for each shape.

For each of the 4 rendered images above, we ask whether the red traffic object in the image
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is a valid traffic cone. Note that the driving images are selected by ensuring no extra red

object. Images of them are on our website [23]. Among the 4 rendered images, we also ask in

which one the red traffic object has the most anomalous shape compared to a normal traffic

cone. “No Anomaly” option is included to avoid randomly picking from the participants.

To understand the distribution of the participant’s background, we also ask for demographic

information and background information related to driving.

Evaluation setup. We use Amazon Mechanical Turk [4] to perform the user study. In

total, we collected results from 105 participants (55.24% male and 44.76% female) with 35.3

average age. We confirmed that all of them have driving experience by asking them the age

when first licensed and the weekly driving mileage. All the benign objects, including Benign

B1 and B2 can be correctly detected by the latest Apollo MSF combination (A5-L+○A5-C)

while Adv cannot. The full survey is available at [31].

Results. Fig. 3.B.1 (a) shows the ratio of users thinking that the given traffic cone object

is a valid traffic cone. As shown, Benign and Adv have similar ratios (around 60%) and

are higher than Benign B1 and B2 since the broken shapes may be more obvious than that

of Adv after our surface smoothing and PGD-based perturbation bounding (§3.4.5). Note

that even for Benign there are around 40% users thinking that it is invalid. This might be

because the rendered color and shading inevitably have infidelity compared to the real-world

background images. Fig. 3.B.1 (b) shows the selection ratios for the cone object with the

most anomalous shape. As shown, Benign B1 and “No Anomaly” are the most popular

choices across and Adv is always the lowest. The results show that our generated adversarial

traffic cone is generally viewed at least as innocent as the original benign cone, and also less

suspicious than certain benign ones with broken shapes.
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Figure 3.B.1: User study results of the attack stealthiness. (a) shows the ratio of users
thinking a given object is a valid traffic cone; (b) shows the selection ratios for traffic cones
with the most anomalous shape. S1 and S2 : 2 different real-world driving images; N and
F : near and far rendering positions.

Appendix 3.C Attack Effectiveness under Different At-

tack Settings

In this section, we perform experiments to understand how sensitive our attack is to different

attack parameter settings.

Experimental setup. We target 5 key attack parameters in Table 3.A.1 to perform ex-

periments: µ, λ, β1, Learning rate, and PGD initial. For each parameter, we experiment

with values that are one magnitude higher or lower than the default value. The experiments

are performed on A5-L+○A5-C with traffic cone. The results are averaged over 20 attack

scenarios randomly selected from the 100 scenarios in §3.5.1.

Results. Table 3.C.1 shows the results. As shown, our attack is most sensitive to µ. Con-

sidering that µ is used in our differentiable approximation of the point-inclusion calculation

(Eq. (3.8) in §3.4.4), these results show that our differentiable approximation design is crit-

ical to the attack success. Different learning rates, λ, and PGD initial are also shown to

impact the results, but such impacts are limited to when the values are above or below a

certain magnitude.
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Table 3.C.1: Attack success rate for A5-L+○A5-C with traffic cone under different attack
parameter settings. Descriptions of these attacker parameters are in Table 3.A.1. Gray cells
are default settings. KAP: Key attack parameters; ASR: Attack success rate

µ λ β1 Learning rate Initialization

KAP 10 100 1000 2.0 20.0 200.0 0.01 0.001 0.0001 0.01 0.001 0.0001 0.1 0.01 0.001

ASR 75% 100% 60% 100% 100% 65% 100% 100% 100% 75% 100.0% 100% 45% 100.0% 100%

Appendix 3.D Printability Evaluation

To perform our attack, the adversarial objects generated digitally need to be (1) printable

by today’s 3D printers, and (2) the easier to be printed the better, e.g., requiring less

printing precision and thus printable by cheaper 3D printers. In this section, we evaluate

such printability of our attack.

Evaluation metrics. To evaluate whether it is printable or not, we first use PreForm,

a commercial printability checking tool [16] that can determine whether their 3D-printing

service can print a given 3D mesh. We also leverage the object watertightness [271] as

another metric, which measures whether the object mesh could hold water if filled. Thus,

any 3D object needs to be watertight to have a volume and thus can validly exist (and thus

3D-printed) in physical world. This is the most basic metric for any object meshes to be

printable.

For whether the object is easy to print, we use the self-intersection ratio and curvature.

Self-intersection ratio measures the percentage of the object mesh’s 2D faces that have

intersections with its other faces. High self-intersection ratio means the mesh need to be

printed by a higher precision printer with higher cost. The second metric we use is the

curvature of the object, which measures how smooth the object surface is. The more smooth

the surface is, the less printing precision is required and thus the easier to print. We calculate

this metric using the average per-vertex Gaussian curvature value.
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Table 3.D.1: Printability evaluation results of MSF-ADV on A5-L+○A5-C with traffic cone.
LP: Laplacian loss in Eq. (3.9).

Printable? Easy to Print?
Technique

used PreForm Watertight Self-intersect Curvature

Success
Rate

None 100% 100% 88.73% 1.68± 1.56 100%

LP 100% 100% 14.43% 0.69± 0.65 100%

QECD 100% 100% 38.96% 1.42± 1.30 90%

LP + QECD 100% 100% 0.46% 0.67± 0.50 92%

Experimental setup. As described in §3.4.5 and Appendix 3.A, our design includes two

methods to improve the printability: the Laplacian loss (LP) in Lr(·) in Eq. (3.9), and

QECD [21] as an optional post-processing step. Thus, in our experiment we evaluate the

printability of our adversarial objects with and without these two methods. We use the same

scenario and parameter settings as §3.5.2.

Results. Table 3.D.1 shows the evaluation results for A5-L+○A5-C using traffic cones. As

shown, with or without using any printability improvement methods, the objects generated

by our method are all watertight and determined as printable by the PreForm software

since our attack method only manipulates the vertex positions of the benign object without

changing the original vertex connection relationships.

For the two metrics on whether the object is easy to print, both the self-intersection ratio and

the average curvature value are greatly reduced by applying either LP or QECD. LP alone

is particularly cost-effective: it is able to substantially reduce the self-intersection ratio by

74.3% and the curvature value by 58.9% without hurting the attack success rate. However,

QECD alone hurts self-intersect ratio, curvature value and attack success rate. The decrease

of the attack success rate is because QECD is a mesh simplification method that may slightly

change the object shape, which thus may interfere with the originally well-optimized shape

of the adversarial object. Combining QECD and LP together achieves the highest reduction

in both metrics, with only 0.46% self-intersection ratio and 0.67 curvature value. Note that,
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the average curvature for the benign traffic cone object is 0.72. Thus, both LP alone and the

combination achieve a similar level of surface smoothness comparable to a normal real-world

object, which thus are printable enough in practice. While the combination reduces the

self-intersection ratio compared to LP alone, it incurs 8% success rate decrease due to the

use of QECD. Thus, there exists a trade-off. If the attacker does not care about the printing

cost, they can choose to use LP alone to better ensure the attack success; otherwise, they

can combine it with QECD to reduce the printing costs.

Appendix 3.E Details of the DNN-Level Defenses Eval-

uation

We describe the details of the defense methods.

Bit-Depth reduction [306]. We follow the setting in prior work [306]. We reduce the bit

depth for the image input and the LiDAR point cloud. For a camera image, it consists of

RGB channel with 8-bit depth (0-255) for each of them. For a LiDAR point cloud, each

point has 4 fields: x, y, z, i, where x, y, and z represents the 3D position, and i is intensity.

Each field is a floating point with 32-bit. We use the formulation: round(x∗(2bit−1))
(2bit−1)

to reduce

the bit-depth. In our experiments, we evaluate 5 different bit-depths ranging from 5-bits

to 1-bit for both camera and LiDAR inputs. Higher bit-depth number means higher input

quality after the bit-depth reduction.

Median smoothing [306]. We follow the setting in prior work [306] and apply the median

smoothing to both LiDAR and camera inputs by taking a median around each LiDAR point

or camera pixel with a different kernel size. We evaluate 7 different kernel sizes ranging from

5 to 35. Larger the kernel size means higher smoothness and lower input quality.
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JPEG compression [105]. We follow the setting in [105] and apply the JPEG only to

images since JPEG compression is specific to images. Our attack is successful only when it

succeeds for both camera and LiDAR models, therefore, securing the camera model alone is

still an effective defense strategy. We use Python Image Library (PIL) [24] to control the

compression quality with argument “quality”. We use 9 values from 10 to 90 with step 10 to

explore the defense effectiveness at different compression rates. Lower values means higher

compression rates and thus lower image quality.

Autoencoder reformation [206]. Autoencoder reformation is a part of MagNet de-

fense [206]. We apply it only on image since it is designed for camera-based adversarial

examples.

We evaluate 4 different autoencoder architectures, denoted as C, A-1, A-2, and A-3. C is the

same architecture in the MagNet paper [206] for the CIFAR-10 dataset. Since the input size

in our setting is much larger than that in CIFAR-10, we also evaluate 3 other architectures,

A-1, A-2, and A-3, by adding 1, 2, 3 average pooling layers to C. From C, to A-3, the latent

space dimension size decreases, which thus means more compression and lower input quality.

All the autoencoder are trained with real-world images in KITTI dataset [119](§3.5).

Adversarial training (AT) [318]. Since Apollo does not release the training dataset for

its models, we can only evaluate this method on Y3 (YOLO v3). Since our attack needs

to succeed for both camera and LiDAR, a secure camera model is still an effective defense

strategy. We adapt our method to the state-of-the-art adversarial training-based method

for camera-based object detection [318]. We follow their algorithm but change the attack

in the training loop to ours. Since our attack is performed by adding an object instead of

perturbing an existing one, an additional challenge is how to assign ground-truth bounding

boxes and labels to our adversarial objects. To address this, we render benign object to the

same position and use its detection results as ground-truth results for adversarial one. In

AT, we only use bench object to perform experiment.
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While adversarial training can be highly robust, it is known to be expensive and nearly

intractable for large-scale problems [248, 291]. In our case, this problem further exacerbates

as the cost of our attack is higher than 2D digital-space attacks. Thus, we employ an

acceleration method found in a recent work [291] that allows a much smaller number of PGD

steps (instead of a full optimization cycle) in each training iteration by randomly initializing

the adversarial inputs. Specifically, we use a PGD with 2 step and randomly initialize the

adversarial mesh during each training iteration. Besides, we train our model from a pre-

trained Y3 model, which can converge much faster and also improve robustness [136, 84].

We use the original Y3 training set COCO [13]. We train the model for over 900 epoch, and

the model converges after ∼83 epoch.

Augmenting training data (AUG) [262, 123, 221]. Prior works show that re-training

the model with adversarial inputs mixed in the original training data can improve the model

robustness [262, 123, 221]. Same as for adversarial training, this method is only applied to

Y3, and we use the same method as in adversarial training to generate the adversarial inputs

and their ground-truth bounding boxes and labels. We use same COCO training dataset

and the number of training epoch. In this case, the model converges at ∼48 epoch.
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Chapter 4

ControlLoc: Physical-World Hijacking

Attack on Camera-based Perception

in Autonomous Driving

4.1 Introduction

Autonomous Driving (AD) vehicles, also known as self-driving cars, are increasingly becom-

ing an integral part of our daily lives [89, 143, 225]. Various companies [166], such as Tesla,

are at the forefront of developing AD technologies. To ensure security and safety, AD ve-

hicles such as Tesla employ camera-based perception to detect environmental elements such

as traffic signs, pedestrians, and other vehicles in real time. These camera-based perception

systems predominantly involve Deep Neural Networks (DNNs) [231, 53, 160] such as object

detection, owing to the superior performance of DNNs [94, 58, 142, 48, 184].

Given that failing to detect the objects can lead to violent crashes [319, 258], camera-based

perception in AD (referred to as AD perception throughout this paper) in ensuring safety
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and security has prompted extensive research into exploring its vulnerabilities. For instance,

previous studies have highlighted the potential for adversarial attacks, including the use of

adversarial patch [289, 148, 330, 283, 111], to fool object detection in AD perception. Such

attacks cause the AD systems to ignore objects, posing significant safety risks.

However, it is essential to recognize that AD perception extends beyond object detection to

include Multiple Object Tracking (MOT) [53, 160, 150, 252]. MOT plays a pivotal role in AD

perception by enhancing robustness against object detection errors. It ensures that only ob-

jects detected with consistent and stable accuracy across multiple frames are considered in the

tracking results and, consequently, the driving decisions. Specifically, MOT tracks detected

objects, estimates their velocities, and generates movement trajectories, called trackers. The

tracker management module adds a layer of robustness against detection inaccuracies by

not hastily discarding unmatched trackers or instantly creating new ones for newly detected

objects. This multi-frame consistency requirement presents a significant challenge to attacks

that solely target object detection. For instance, for an adversarial attack on object detec-

tion alone to significantly impact the AD perception pipeline, it must achieve at least a 98%

success rate across 60 consecutive frames [150], which is infeasible for previous attacks on

object detection [289, 330, 148, 283].

Therefore, a digital adversarial hijacking attack [150] to fool the entire AD perception has

been proposed with adversarial patches as the attack vector. This hijacking attack neces-

sitates precise control over the position and shape of the object, which is more challenging

compared to prior attacks [71, 239, 335, 148] that focus solely on manipulating an object

confidence or classification scores. This attack is also powerful since it can achieve a persis-

tent attack effect lasting for dozens of frames with just a few frames of successful attacks.

Such a lasting impact is particularly valuable, as existing attacks on object detection alone

require consistent success to achieve similar significant attack impacts. Despite this poten-

tial, the prior attack [150] has shown limited effectiveness even in the digital space and is
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Figure 4.1.1: Illustration of our attack vector in the physical world: advertising monitor,
mimicking taxi advertisement (left) or a car with a monitor on its back (right).

ineffective in the physical world. This can be attributed to the lack of precise detection

bounding box (BBOX) filtering and the inability to address the coupling between the score

and shape of BBOX. The detailed analysis and experiment results of the ineffectiveness for

this adversarial hijacking attack [150] in both digital and physical domain are demonstrated

in §4.4, §4.5.3, and §4.5.4.

In this paper, we propose the first physical-world adversarial hijacking attack named Con-

trolLoc on the entire AD perception. To perform tracker hijacking attacks against MOT,

the first step is to shift the target object’s BBOX location a certain distance in a specified

direction, and then disappear the surrounding BBOXes, as illustrated in Fig. 4.2.2 (c). This

places higher demands on the attack capability and requires an attack vector able to dis-

play dynamically, as common static patches, such as printed ones, are insufficient to meet

these requirements. We employ a monitor as the attack vector, and physical-world exper-

iments show that it performs effectively under diverse lighting conditions. This approach

also enhances stealth, as embedding adversarial patches into just a few frames (4-5) of a be-

nign advertisement video makes the attack almost indistinguishable from standard roadside

billboards or vehicle advertisements, as depicted in Fig. 4.1.1.

ControlLoc adopts a strategic two-stage approach. In the initial stage, we focus on finding

the most effective location for placing the adversarial patch to facilitate successful hijack-
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ing attacks. Subsequently, the second stage is to generate the adversarial patch, guided

by the optimal locations identified in the preceding phase. This step involves erasing the

target object’s BBOX from the detection outputs, with a fabricated BBOX of a similar

shape in a direction specified by the attacker based on the attack goals and scenarios. This

process is designed to simulate movement in a chosen direction, deceiving the AD percep-

tion. We propose two loss functions in the second stage, introduced in §4.4.5, aimed at

generating the adversarial patch to achieve the attack goal: a score loss, which controls

the appearing or disappearing of the bounding boxes, and a regression loss, which is for

shape and positioning of fabricated BBOX. Given the inherent challenges arising from the

interdependence of these loss functions, we propose a novel optimization strategy, detailed

in §4.4.5, which demonstrates superior performance compared to existing methods in prior

works [150, 148, 283, 330]. Due to these, ControlLoc can significantly outperform the existing

hijacking attack [150].

Our evaluation results demonstrate that ControlLoc achieves outstanding performance across

all different AD perceptions, including the combinations between four object detectors and

four MOT algorithms with the two attack goals mentioned above. Note that we include the

AD perception adapted in open-source industry-grade full-stack AD systems [53, 160]. On

two driving datasets, ControlLoc achieves an impressive average attack success rate (ASR)

of 98.1%. Furthermore, when compared with a baseline attack [150], the ASR of ControlLoc

is quadruple that of the baseline. Additionally, our newly proposed optimization method in

this problem domain surpasses the previous method by demonstrating the trend of different

loss function values.

To understand the attack effectiveness in the physical world, we further evaluate ControlLoc

with a real vehicle, where we put the generated adversarial patch on the rear of the car

(and the location is specified by our patch location preselection in the first stage). The

results show a 79% average ASR across different outdoor backgrounds, light conditions,
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hijacking directions, attack goals, angles, and backgrounds while the baseline attack [150]

shows ineffectiveness, i.e., 0%? average ASR. To assess how ControlLoc affects the AD

behavior, such as collisions or unnecessary emergency stops, we conduct tests using Baidu

Apollo [53], an industry-grade full-stack AD system with the LGSVL simulator [234], a

production AD simulator with an average effectiveness of 84.4%. We also evaluate various

existing directly adaptable DNN-level defenses and discuss future defense directions.

To sum up, we make the following contributions:

• We propose the first practical hijacking attack on AD perception using the monitor as

the attack vector, to alter the location and shape of objects. This attack can cause

vehicle collisions or unnecessary emergency stops.

• We introduce a novel attack framework, ControlLoc, to generate physical-world adver-

sarial patches. This includes patch location preselection, BBOX filters, loss function

designs, and a novel optimization method.

• We evaluate ControlLoc on multiple AD perception systems including industry-grade

ones. ControlLoc is effective in the real world with a real vehicle across different back-

grounds, outdoor light conditions, hijacking directions, and angles. It causes AD system-

level effects like collisions in a production AD simulator.

4.2 Background and Related Work

4.2.1 Camera-based Perception in AD

Camera-based perception in AD critically depends on object detection and multiple object

tracking (MOT) to accurately recognize and classify surrounding entities, such as cars. As

depicted in Fig. 4.2.1, the process initiates with a series of images. The AD perception
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algorithm employs an object detector [338] to generate a bounding box (BBOX) and classify

the object. Subsequently, the results from object detection, combined with existing tracking

data, are input into the MOT [78]. This is tasked with updating the tracking information,

such as the BBOX, object velocity, and track identification (track id). Finally, this data

is relayed to other downstream modules in AD, such as the planning module [317], which

facilitates decision-making processes. Since only the detection results with sufficient consis-

tency and stability across multiple frames can be included in the tracking results, the MOT

module can improve the robustness of AD perception.

Object Detection Object detection plays a pivotal role in AD perception, predominantly

utilizing Deep Neural Networks (DNN) to identify or categorize various road objects [77].

State-of-the-art DNN-based object detectors are fundamentally divided into two main cat-

egories: one-stage and two-stage detectors [338]. One-stage detectors, such as YOLO [156,

231, 230], are renowned for their rapid detection speeds, making them highly suitable for

real-time applications such as AD systems. In contrast, two-stage detectors, such as Faster

R-CNN[232], are celebrated for their accuracy in detection. Given the real-time requirement

of AD systems, industry-grade full-stack AD systems, such as Baidu Apollo [53], predom-

inantly employ one-stage detectors. Furthermore, object detection can be categorized into

anchor-based and anchor-free approaches [322]. Anchor-based detection methods leverage a

large number of preset anchors, then predict the category and refine the coordinates of these

anchors, and finally output these refined anchors as detection results. Conversely, anchor-free

detection [269], directly predicts the bounding boxes of objects, offering a more generalizable

solution. This paper explores both anchor-based and anchor-free object detection methods.

Multiple Object Tracking (MOT) The current state-of-the-art MOT can be broadly clas-

sified into two main approaches [190, 95]: detection-based tracking, also known as tracking-

by-detection, and detection-free tracking. The former method employs object detectors to

identify objects, which are then used as inputs for MOT, while the latter relies on manu-
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ally cropped or marked objects as inputs [190]. Tracking-by-detection has emerged as the

predominant technique in MOT, particularly within the context of AD [190, 95, 326]. This

predominance is attributed to the inherent unpredictability of the number and locations

of objects, coupled with the expectation that objects can periodically enter and exit the

camera field of view [95]. These conditions render tracking-by-detection algorithms espe-

cially well-suited for integration into AD systems [95]. In this paper, we concentrate on

the tracking-by-detection paradigm. As illustrated in Fig. 4.2.1, this methodology involves

associating the results of object detection at time t with existing trackers from the previous

time step (track|t− 1) and forecasting the current state of the trackers at time t (track|t),

which includes the velocity and location of every tracked object. To mitigate the impact

of false positives and missed detection by the object detectors, MOT modules typically ini-

tiate a tracker for an object only after it has been consistently detected across H frames.

Similarly, a tracker is removed only after the object has not been detected for R consec-

utive frames [336, 53, 160, 150]. Consequently, merely compromising the object detection

component may not sufficiently disrupt the AD perception [252, 150]. Therefore, this paper

introduces a novel and practical physical-world adversarial hijacking attack strategy target-

ing the entire AD perception including both object detection and MOT.

4.2.2 Attacks on AD Camera-based Perception

Attacks on Object Detection Recent studies have highlighted the vulnerability of DNN

models to adversarial examples or attacks, a vulnerability that has been extensively ex-

plored [124, 75, 219, 323, 303]. Further investigations have extended these findings to adver-

sarial attack in the physical world [289, 148, 111, 330, 283, 186, 71, 239, 305]. Specifically,

within the context of AD, prior research has successfully executed physical-world adversarial

attacks targeting camera-based object detection alone [289, 148, 283, 330]. However, the

entire AD perception framework encompasses both object detection and MOT. Given the
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Figure 4.2.1: AD system pipeline: The camera captures images for object detection and
multiple object tracking (MOT). Results are sent to the planning and then control modules.

Figure 4.2.2: Attack goals: (a) move-in attack and (b) move-out attack. (c) shows hijacking
attack flow. Rather than aiming for a stable and continuous attack success, ControlLoc
achieves a sustained attack effect by successfully attack just a few frames. As shown in the
figure, this brief success can have a lasting impact on the MOT, even if the OD recovers to
benign detection.

nature of MOT, for an attack targeting only object detection to be effective, it must achieve

at least a 98% success rate across 60 consecutive frames—a highly challenging task that for

existing object detection attacks to meet [289, 150, 211]. Thereby, this paper proposes a

novel, effective, and practical method for the physical-world adversarial hijacking attack on
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the entire AD perception.

Attacks on Object Tracking Various attacks targeting object tracking have been pro-

posed, spanning both the digital [85, 311] and physical domains [211, 96]. Among them,

AttrackZone [211] represents a notable physical domain attack against siamese-based track-

ing [172, 171], which is a single object tracking (SOT) [328], employing a projector to intro-

duce adversarial perturbations. However, contemporary AD systems employ MOT rather

than SOT [53, 160, 81, 170, 252] due to the requirement to identify and track multiple objects

simultaneously [170]. Given the limited application of SOT in AD contexts, the end-to-end

impact of AttrackZone on AD vehicles is uncertain, casting doubts on its practical value. In

contrast, we introduce a novel attack against the realistic entire AD perception, i.e., object

detection plus MOT, leveraging an adversarial patch effective in different light conditions,

angles, and backgrounds with a novel attack optimization method.

Attacks on the Entire AD Perception Attacks targeting the entire AD perception, such

as on availability [193] and integrity [150], have been documented in the literature. Notably,

Jia et al. [150] introduce a digital adversarial hijacking attack for the entire AD perception,

encompassing object detection and MOT. Despite the innovative approach, the effectiveness

of their attack is fundamentally limited as shown in §4.5.3 even in the digital space not to

mention in the physical domain. In contrast, our work presents a physical-world hijacking

attack that not only breaks the AD perception but also enhances effectiveness compared to

the prior attack.

4.3 Attack Goal and Threat Model

Attack Goal. In this paper, we primarily focus on attack goals with significant safety

implications for AD, such as vehicle collisions or unnecessary emergency stops [276]. We

specifically explore physical-world attack vectors within the AD landscape, employing the
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adversarial patch due to its high practicality and realism [330, 283, 111, 335, 203]. Our

research outlines two main hijacking attack goals: the move-in attack and the move-out

attack, shown in Fig. 4.2.2 (a) and (b), respectively. The move-in attack is designed to deceive

the victim AD vehicle into an unnecessary emergency stop by inducing a false perception of

an object on its current trajectory. On the other hand, the move-out attack manipulates the

AD system to overlook actual obstacles by altering the perceived location of these obstacles

to the roadside, thereby leading the vehicle into a collision. These tactics aim to demonstrate

the potential for adversarial interventions to disrupt the safety and operational integrity of

AD systems.

Threat Model. To achieve the attack goals outlined above, this paper delves into a white-

box threat model for AD perception consists of object detection and MOT. This threat

model assumes that the attacker possesses detailed knowledge of the target object detection,

including its architecture and parameters, a promising threat model that aligns with the

ones in the existing literature on adversarial vulnerabilities of AD perception [150, 148, 71,

239, 211, 330, 111]. For MOT, the threat model only assume the attacker knows the key

parameter settings, i.e., under what conditions the tracking results and detection results

are successfully associated, without needing to know other MOT algorithms, such as which

Kalman filter is used, etc. This enables our attack to exhibit transferability across various

MOT algorithms [326, 53, 160, 46, 103] To improve the attack effectiveness, especially in

the real world, we assume that the attacker can collect videos of a targeted road where

she plans to launch the attack [71, 239] for attack preparation. To effectively attack AD

perception, we employ a monitor as an attack vector, a method with significant potential for

dynamically displaying adversarial patches, despite being rarely explored in the context of

physical-world adversarial attacks. From the perspective of attack mechanisms, this endows

attackers with enhanced capabilities by enabling the display of patches with varying attack

effects, particularly in scenarios involving MOT, where continuous video frames serve as

input.
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Figure 4.4.1: Overview of our ControlLoc, a two-stage hijacking attack via adversarial
patches.

4.4 ControlLoc Attack Methodology

4.4.1 Attack Design Overview

We provide a detailed overview of our ControlLoc. This hijacking attack flow is illustrated

in Fig. 4.2.2 (c). As depicted, the process begins with the AD perception system correctly

detecting and tracking the object. When the vehicle enters the effective attack range, Con-

trolLoc removes the bounding box (BBOX) of the target object from the detection results

and fabricates a similar-shaped BBOX, which is slightly shifted with an attacker-desired

direction. This fabricated BBOX is then associated with the original tracker of the target

object, effectively hijacking the tracker. Although the tracker hijacking typically lasts for

only a few frames, its adversarial effects can persist longer, depending on the design of the

MOT, particularly the common H and R shown in Fig. 4.2.2 (c) and introduced in §4.2. To

achieve the above attack strategy, we propose a dual-stage attack method, of which overview

is in Fig. 4.4.1.
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Stage I: This stage shown in Fig. 4.4.1 is an optimization-based approach to preselect the

patch location. The details of this part will be introduced in §4.4.2. This strategy leverages

masks and adversarial perturbations to identify areas that are most conducive to successful

attack execution. These areas are then further refined based on potential patch placement

locations, such as the rear of the vehicle. Subsequently, a sliding window is utilized to

precisely obtain the optimal location. This process (Stage I) can be a pre-processing step to

enhance the efficiency and effectiveness of attack generation.

Stage II: This stage as shown in Fig. 4.4.1 can be divided into several distinct steps, outlined

below, focusing on generating a physical-world adversarial patch for hijacking attacks.

Step 1: Finding Target Fabricated Bounding Box. In Fig. 4.4.1, an iterative process is

employed to find the target fabricated BBOX based on the Intersection over Union (IOU)

value between the candidate and the original BBOX. The key insight is that the fabricated

BBOX should closely match the original BBOX, but with a shift as large as possible towards

the attack direction. The details are outlined in §4.4.3.

Step 2: Bounding Box Filter. In DNN-based object detection, many proposed BBOXes are

irrelevant for attack generation, often identifying background elements or unrelated objects.

To ensure the effective generation of the patch, it is crucial to filter the relevant BBOXes.

This BBOX filter process is conducted based on the understanding of the object detection

designs and is elaborated upon in §4.4.4.

Step 3: Loss Function Design and Optimization Method. This step introduces novel loss

functions and a new optimization method detailed in §4.4.5. The designed loss function

includes score loss and regression loss to create or remove BBOXes. We propose a new

optimization strategy that markedly enhances the effectiveness of the traditional standard

Lagrangian relaxation method. To bolster attack robustness, we integrate Expectation over

Transformation (EoT), drawing upon prior research [283, 330].
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4.4.2 Patch Location Preselection

To effectively generate our attack, it is crucial to strategically position a patch in the most

vulnerable area near the vehicle. We formulate this problem as an optimization problem to

find the ideal region for patch placement [87]. The detailed process is illustrated in Fig. 4.4.1.

The objective function, denoted as Lmask, is formulated as follows:

argmin
p,m
Ladv(x

′) + α · LM ′(m,∆h,∆w) (4.1)

where LM ′ = ∥max(M ′)− 1

hw

h∑

j=1

w∑

i=1

M ′[i, j]∥1 (4.2)

M ′[i, j] =

∆h−1∑

z1=0

∆w−1∑

z2=0

M [i+ z1, j + z2]W [z1, z2] (4.3)

M [i, j] =
1

2
× tanh(γ ·m[⌊ i

s
⌋, ⌊j

s
⌋]) + 1

2
(4.4)

x′ = x⊙ (1−M) + p⊙M (4.5)

Equation equation 4.1 is to identify the most vulnerable region leveraging the mask denoted

as M , which controls the strength of the perturbation p. The final patch location aims to

contain as many pixels with high values of M as possible, to cover the most vulnerable areas.

When using this method, two main concerns must be addressed. First, the values of M need

to be kept as close to 0 or 1 as possible to reflect the binary decision of either applying or

not applying the patch. Second, it is important to keep that the high-value pixels of M are

clustered closely, as the patch needs to form a contiguous block.

To address the first concern, M is computed by unconstrained mask parameters m, as shown

in Equation equation 4.4. The transformation using the tanh function in Equation equa-

tion 4.4 constrains the mask M within [0, 1] range. Tuning the hyperparameter γ drives

mask values closer to 0 or 1 and modulates the convergence speed of the process. The hy-

perparameter s modulates the mask granularity. The variable p signifies the perturbations
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applied to the original image x through Equation equation 4.5 to obtain the input x′ for

Ladv. The details of Ladv will be introduced in §4.4.5. The variables h and w represent the

height and width of the image x.

To address the second concern, upon generating a sensitivity mask indicative of the per-

turbation mask M , a sliding window W of the same size (∆h,∆w) as the patch is applied

to process this mask. The calculated averaged values within the window are referred to as

M ′ shown in Equation equation 4.3, which scores each potential location by averaging the

values within the window. Furthermore, leveraging the mask M ′, we formulate a novel loss

function LM ′ , which plays a pivotal role in determining the unique and most effective patch

location. Specifically, by minimizing LM ′ , we can encourage M to cluster within a uniquely

rectangular box of dimensions (∆h,∆w). The clustering effect is super important for the

effectiveness of an adversarial patch, as the patch must form a contiguous block. Therefore,

ControlLoc focuses on finding the optimal placement for a tightly grouped continuous block

rather than scattered discrete points. α is a hyperparameter.

Moreover, recognizing physical constraints on the capabilities of the attackers, only des-

ignated areas are considered viable for patch placement. Therefore, consistent with prior

works [203, 212], we restrict the attack areas to the rear side of the vehicle in both digital

and physical-world experiments. Thereby, we limit the mask M to these regions. Notably,

selecting the patch location can precede attack generation steps, serving as a potential and

effective pre-processing step. Furthermore, our patch selection method incurs negligible com-

putational overhead, as we only required 20 iterations in our experiments to determine the

optimal location shown in §4.5.3.

4.4.3 Finding Target Fabricated Bounding Box

The core idea behind finding a target fabricated BBOX is to create a scenario where, when

our attack has ended, the tracking system loses track of the original object. This is achieved
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Algorithm 4.1: Find target fabricated BBOX location

Input: Bo: Original object BBOX; v⃗: Attacker desired directional vector; TIOU:
IOU threshold for data association between trackers and detection results.

Output: Bt: Target fabricated BBOX location.
1 k ← 1
2 Bt ← Bo

3 while IOU(Bt, Bo) > TIOU do
4 Bt ← Bo + v⃗ · k
5 k = k + 1

6 end
7 Bt ← Bo + v⃗ · (k − 1)
8 return Bt

by manipulating the BBOX of the target object to maximize its deviation from the benign,

within its original data association range, directing towards a directional vector v⃗ determined

by the attack goal. Unlike previous research [150], which seeks the optimal BBOX location

based on the specific tracking algorithm, we employ a tracking-agnostic strategy since the

adversarially modified BBOX does not require precise alignment with the adversarial patch’s

physical location.

To achieve that, the key insight of this approach is that the fabricated BBOX should match

the original BBOX, but with a shift as large as possible towards the direction v⃗. Thus,

the fabricated BBOX must overlap the benign BBOX with an IOU above a predefined

threshold TIOU, while also being slightly shifted towards the original BBOX position. It’s

noteworthy that this IOU threshold generally remains consistent across different MOT [103,

326, 150, 53, 160], enabling the application of a general threshold that facilitates a black-box

attack model. This general property is critical, as it does not require detailed knowledge

of the specific MOT algorithms in use. Our method for iteratively determining the target

fabricated BBOX location is outlined in Algorithm 4.1 to find the desired deviation and

illustrated in Fig. 4.4.1.
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4.4.4 Bounding Box Filter

In DNN-based object detection, most proposed BBOXes do not contribute to patch genera-

tion, as they frequently identify irrelevant objects or background elements. To generate the

patch effectively, it requires the selection of appropriate BBOXes for fabrication or erasure.

This selection hinges on the understanding of object detection. Our approach is adaptable

to both anchor-based and anchor-free detection (§4.2.1).

The mainstream object detectors, including one-stage detectors such as the YOLO series,

or two-stage detectors such as the RCNN series, introduced in §4.2, can adopt grid-based

designs [231, 230, 156, 189, 133, 233]. Grid-based detectors separate the input image into

fixed-size grids, with each cell responsible for predicting BBOXes for objects within its

vicinity. To ascertain the location of these BBOXes, an offset is calculated from the top-

left corner of each cell. A detailed illustration and example for this process is provided in

Appendix 4.C, which precisely obtains the BBOX location.

By leveraging the intrinsic property of grid-based detectors above, we introduce the Center

bounding box filter (C-BBOX), an effective method for filtering BBOX adaptable for both

anchor-based and anchor-free object detection detailed in §4.2. The details of the C-BBOX

process are in Algorithm 4.2. C-BBOX first calculates the scaling ratio scale between the

input image size and the feature map size, i.e., the size of each grid cell. Then the C-BBOX

extracts the grid cell corresponding to Bt (§4.4.3) based on scale.

C-BBOX is compatible with anchor-based and anchor-free models. For anchor-based detec-

tors, where each grid corresponds to multiple anchors, C-BBOX extracts the BBOX having

the largest IOU with Bt as Bf in Algorithm 4.2 (top(A) is to obtain the index of maximum

value in vector A). For anchor-free detectors, where each grid has a unique anchor, C-BBOX

applies a corrective vector in the hijacking direction to accurately filter the BBOXes since

such detectors allow for greater flexibility in BBOX placement.
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Algorithm 4.2: C-BBOX

Input: Bt: Target BBOX; sizef : Feature map size; sizex: Image size; v⃗: Attack
directional vector, ks: Step size.

Output: Bf : BBOX needed to be fabricated.
1 (cx, cy)← center point of Bt ;
2 scale = sizex sizef idgrid = int(cx/scale, cy/scale) ;
3 grid← grid cell corresponding to idgrid ;
4 if detector is anchor based then
5 anchors← all anchors of grid ;
6 indexanchor = top(IOU(Bt, anchors)) ;
7 Bf = anchors[indexanchor] ;

8 else if detector is anchor free then
9 cx = cx + ks · v⃗

|v⃗| ;

10 idgrid = int(cx/scale, cy/scale) ;
11 Bf ← the anchor of grid corresponding to idgrid;

12 return Bf ;

Moreover, C-BBOX assists in pinpointing BBOXes for erasure in anchor-based models by

identifying the cell corresponding to the original BBOX, thereby enabling the precise removal

of undesired BBOXes. For anchor-free detectors, we use the IOU BBOX filter, similar to

previous research [148], to identify BBOXes for erasure. This method initially eliminates

predictions with confidence below the NMS threshold. Subsequently, it filters the BBOX by

the IOU between each remaining proposal BBOX and Bt.

For detectors not based on grid structures, bipartite matching [73], is used to distinguish be-

tween BBOXes for fabrication and those for erasure. This approach ensures our method’s ap-

plicability across various object detection designs. With the filter methods in Equation equa-

tion 4.6, we extract the BBOXes needed to be fabricated Bf and erased Be.

Bf , Be = F (Obbox, Bt, Bo) (4.6)

where Obbox is all proposal BBOXes before NMS, Bo is the original BBOX, and F (·) is the

BBOX filter function.
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Algorithm 4.3: Generating Adversarial Patch

Input: x: Input image; Bt: Target BBOX; Bo: Original object; D(·): Object
detector; N : Attack iterations; NMS(·): NMS function; Tconf : Score
threshold.

Output: ∆: Adversarial patch.
1 Initial ∆← ∆0 ;
2 for n = 1 to N do
3 Obbox = D(x+∆) ;
4 Bf , Be = F (Obbox, Bt, Bo) ;
5 B′ = NMS(Obbox) ;
6 if Bf ∩B′ ̸= ∅ and Be ∩B′ = ∅ then
7 Ladv = Lr(Bf , Bt) ;

8 else
9 Ladv = Ls(Bf , Be, Tconf ) ;

10 L = Ladv + µ2 · LTV ;
11 ∆ = Adam(∆,L) ;
12 return ∆ ;

4.4.5 Loss Design and Optimization Method

As detailed in Algorithm 4.3, ControlLoc involves enhancing the confidence score of Bf to

ensure its preservation after NMS, while concurrently adjusting its dimensions and location

to closely match Bt. Conversely, it is imperative to diminish the confidence scores of Be to

preclude their inclusion in the detection outcomes. Similar to the existing adversarial patch

attacks [330, 283], we also formulate the adversarial patch generation as an optimization

problem. The optimization of this attack poses a multiple-objective problem, requiring the

simultaneous optimization of the score loss Ls for the extracted boxes as well as the shape

and location loss, collectively referred to as regression loss Lr. Specifically, for an input

image x and an object detection model D(·) that excludes NMS, the optimization task can

be represented in Equation equation 4.7, aiming to minimize ∆ subject to the conditions

that Bf is encompassed within B′ and Be is excluded from B′, where B′ is all BBOXes after
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NMS.

argmin
∆

L{F [D(x,∆), Bt, Bo]}

s.t. Bf ∈ B′ and Be ∩B′ = ∅
(4.7)

where ∆ is adversarial patch and F is from Equation equation 4.6.

Score Loss. To effectively manipulate BBOXes in ControlLoc, adjusting their scores is

essential. This adjustment aims to enhance the scores of newly generated BBOXes denoted

as Lf while simultaneously reducing the scores of removed BBOXes denoted as Le. To

accomplish this, we introduce a novel score loss, defined in Equation equation 4.8.

Ls =
1

|Be|
∑

c∈Be

1
c · c2conf

︸ ︷︷ ︸
Le

+µ1 ·
1

|Bf |
∑

c∈Bf

(1− cconf )
2

︸ ︷︷ ︸
Lf

(4.8)

cconf = cobj ·max{cclassi}, i ∈ [1, Nc] (4.9)

where Nc is the number of classes; the indicator function 1
c checks whether the score of a

BBOX c exceeds the score threshold Tconf ; it is set to 1 if true, and 0 otherwise. This for-

mulation aims to adjust scores, enhancing the detection of relevant objects while minimizing

the impact of irrelevant ones. Hyperparameters µ1 is to balance Le and Lf .

Regression Loss. To optimize the position and shape of the fabricated BBOXesBf—aiming

to effectively redirect the tracking from the target object—we introduce a regression loss

function, as delineated in Equation equation 4.10.

Lr =

LIOU︷ ︸︸ ︷
1

|Bf |
∑

c∈Bf

− log(IOU(c, Bt))

+ β · 1

|Bf |
∑

c∈Bf

(center(c)− center(Bt))
2

︸ ︷︷ ︸
Lcenter

(4.10)
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where the regression loss Lr comprises two components: LIOU and Lcenter. The IOU loss aims

to reduce the discrepancy in the overlap between the fabricated BBOX Bf and the target

BBOX Bt, ensuring accurate coverage and alignment. Thus, the center loss, weighted by a

factor β, seeks to minimize the distance between the centroids of Bf and Bt such that the

tracker can be moved away.

Total variation Loss. To make the generated adversarial patch smooth, and thus increase

the effective range of the attack, the total variation loss in Equation equation 4.11 is used

to reduce the color changes between the adjacent pixels.

LTV =
∑

i,j

√
|∆i+1,j −∆i,j|2 + |∆i,j+1 −∆i,j|2 (4.11)

Optimization Method. Simultaneously optimizing multiple loss functions, particularly

Ls and Lr, requires a sophisticated strategy. Existing literature [150] typically employs the

standard Lagrangian relaxation method for this task. This approach involves aggregating the

different loss functions into a single objective, each modulated by predetermined coefficients,

followed by gradient descent for an optimal solution.

In our case, this method is fundamentally ineffective. Notably, it does not perform well

across various coefficient configurations, as detailed in §4.5.3. The inefficacy of simultane-

ously optimizing multiple loss functions, i.e., Ls and Lr, is largely attributed to the negative

coupling effects in gradients. Essentially optimizing Lf in Ls determines the location of Bf

at a coarse-grained level. Subsequent optimization of Lr refines the location and shape of

Bf . Thus, the appropriate sequence of optimization should initially focus on Lf in Ls, to

ensure that Bf is correctly identified in the detection results after NMS. Then, the subse-

quent step involves adjusting the location and shape of Bf . However, employing the standard

Lagrangian relaxation method to achieve dual optimization presents challenges. The interac-

tion between Lr and Lf in Ls often leads to a negative coupling effect in our problem space,
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where an excessive gradient on one side can restrict improvements in the other, hindering

effective optimization.

Thus, we propose a new optimization method to address the limitations in the standard

Lagrangian relaxation method for hijacking attack generation mentioned above:

argmin
∆

Ladv + µ2 · LTV

where Ladv = 1[Bf ∩B′ ̸= ∅ and Be ∩B′ = ∅] · Lr

+ 1[Bf ∩B′ = ∅ or Be ∩B′ ̸= ∅] · Ls

(4.12)

Our method optimizes either Ls or Lr based on the condition specified shown in Equa-

tion equation 4.12, rather than attempting to minimize a combination of the two loss func-

tions simultaneously. This selective approach ensures that the optimization process is more

targeted and effective. The purpose of optimizing Ls in our selective approach is to satisfy

the non-linear constraint in the equation. In other words, Ls only needs to be optimized to

the point where Bf becomes the sole BBOX around the object, rather than being minimized

as much as possible. This approach avoids waste of perturbation [65]. Another advantage

lies in its ability to address the issue of imbalanced gradients between the two loss functions,

particularly in the context of the coupled problem of location, shape and score of BBOX in

object detection. The attack generation is in Algorithm 4.3. µ2 is a hyperparameter.

Attack Robustness Enhancement. To enhance the attack robustness, particularly in

physical world, we incorporate the Expectation over Transformation (EoT) [55, 111, 148,

283] illustrated in Fig. 4.4.1. This involves applying various transformations, such as color

modification. Our attack does not rely on a large EoT distribution across varying distances,

unlike previous methods that aim to conceal objects across varying distances. This is a

key advantage of our approach, as we only require short-term success to create a lasting

impact. For angle transformations, we incorporate perspectives from behind the vehicle (to
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Table 4.5.1: The effectiveness of attacks on four object detection (OD) models, i.e., ApoD,
Y3, Y5, and YX, with four MOT algorithms, i.e., ApoT, BoT-SORT, ByteTrack, and Strong-
SORT. The evaluation metrics include the attack success rate (ASR) and the average number
of frames to execute an effective attack (Frame #). BS: BoT-SORT; BT: ByteTrack; SS:
StrongSORT.

BDD dataset [315] KITTI dataset [120]Attack
scenario

OD\MOT ApoT BS BT SS ApoT BS BT SS Ave.

ASR 100% 100% 100% 90% 90% 100% 100% 90% 96.3%
ApoD

Frame # 3.1 2.8 2.6 2.5 2.4 2.4 2.7 2.6 2.6

ASR 100% 100% 100% 100% 100% 100% 100% 100% 100%
Y3

Frame # 3.2 2.9 3.4 2.7 2.5 2.6 3.1 2.4 2.9

ASR 100% 100% 100% 100% 100% 100% 100% 100% 100%
Y5

Frame # 3.1 2.8 2.9 2.6 2.7 2.3 3.0 2.9 2.8

ASR 100% 100% 100% 100% 100% 100% 100% 90% 98.8%

Move-in

YX
Frame # 3.8 3.0 3.1 2.7 2.6 2.9 3.5 2.3 3.0

ASR 100% 100% 100% 100% 90% 100% 100% 100% 98.8%
ApoD

Frame # 3.6 2.6 2.5 2.4 2.9 2.6 2.4 2.8 2.7

ASR 100% 100% 100% 100% 100% 100% 100% 100% 100%
Y3

Frame # 4.0 2.8 2.7 2.2 2.9 2.4 2.4 2.2 2.7

ASR 100% 100% 100% 100% 100% 100% 100% 100% 100%
Y5

Frame # 3.5 2.7 2.6 2.3 2.8 2.2 2.4 2.2 2.6

ASR 90% 90% 90% 90% 80% 90% 100% 100% 91.3%

Move-out

YX
Frame # 4.5 2.9 2.9 2.8 2.7 2.4 2.9 2.4 2.9

ASR 98.8% 98.8% 98.8% 97.5% 95.0% 98.8% 100% 97.5% 98.1%
Ave.

Frame # 3.6 2.8 2.8 2.5 2.7 2.5 2.8 2.5 2.8

simulate ‘move-out’ attacks) and from adjacent lanes (to simulate ‘move-in’ attacks) into our

transformation set. This ensures the attack remains effective under typical driving camera

angles. The disappearing patch attack is detailed in Appendix 4.B.

4.5 Evaluation

4.5.1 Evaluation Methodology and Setup

AD Perception. We include different AD perception systems, i.e., different object detection
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(a) Y3, cov=0.1 (b) Y5, cov=0.1 (c) ApoD, cov=0.1 (d) YX, cov=0.1

(e) Y3, cov=1 (f) Y5, cov=1 (g) ApoD, cov=1 (h) YX, cov=1

(i) Y3, cov=10 (j) Y5, cov=10 (k) ApoD, cov=10 (l) YX, cov=10

Figure 4.5.1: Comparison between our attack and the baseline attack [150] under four differ-
ent object detection models (Y3, Y5, ApoD, and YX) with three different parameter values
of ApoT (cov = 0.1, 1, 10). λ is the hyperparameter in [150]. Maximum attack capability
assumes the attacker can arbitrarily control BBOX locations.

(a) SLRM: 	η = 1 (b) SLRM: 	η = 10 (c) SLRM: 	η = 100 (d) SLRM: 	η = 1000 (e) ControlLoc

Figure 4.5.2: Comparison of loss value between our optimization method in ControlLoc and
the standard Lagrangian relaxation method (SLRM) with different hyperparameter values η.
The detailed loss designs are in §4.4.5: Equation equation 4.8 and Equation equation 4.10.

models and MOT. For object detection, we encompass both anchor-based and anchor-free

detectors. Our examination mostly leverages algorithms in open-source industry-grade full-

stack AD systems to affirm the practicality and representativeness of our findings. We select a
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variety of object detection models, including the Baidu Apollo Object Detection (ApoD) [53];

YOLO v3 (Y3) [231] as incorporated in Autoware.AI [160]; YOLO v5 (Y5) [156] which is

highlighted in recent security research on AD [148]; and YOLOX (YX) [118], an anchor-

free detector in the latest Baidu Apollo Beta. For MOT, our focus extends to leading and

representative algorithms that underscore the diversity and advancement in the field. This

includes the the MOT used in Baidu Apollo [53](ApoT); BoT-SORT [46]; ByteTrack [326],

and StrongSORT [103]. We all use their default configurations.

Datasets. We select two widely recognized datasets in the AD research [71, 150, 315, 120]:

the Berkeley Deep Drive (BDD) dataset [315] and the KITTI dataset [120]. Within the BDD

dataset, we randomly chose 20 clips specifically for their relevance to our attack goals: 10

clips are for the object move-in scenario, and another 10 are chosen for the object move-out

scenario. A similar selection process is applied to the KITTI dataset. We manually identify

a target vehicle within each clip. To align our study with realistic conditions, we impose

restrictions on adversarial patch size, for which our patch average size is 12% of the target

vehicle in pixels.

4.5.2 Attack Effectiveness

Evaluation Metrics. The success of the attack is defined as the attack is considered

successful when, at the end of the attack, the detection BBOX of the target object can no

longer be associated with any existing trackers. Such metric is widely used in the security

analysis of tracking [150, 211]. We measure the attack success rate (ASR) and the average

number of frames to conduct an effective attack (Frame #). Note that the Frame # is within

the attack successful cases.

Results. The attack effectiveness on four object detectors and four MOT algorithms across

two datasets, aiming for two specific attack goals, is detailed in Table 4.5.1. The attack
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boasts an average success rate of 98.1% and necessitates an average of 2.8 frames to achieve

efficacy in general. Among the MOT algorithms evaluated across the two datasets, ApoT

emerges as the most robust one, evidenced by its lowest average attack success rate of 96.9%

and the highest average of 3.2 frames required for a successful attack. These findings suggest

that attacking ApoT demands a higher frame count and has a lower attack success rate,

rendering it less vulnerable compared to other MOT algorithms. Regarding object detection,

YX demonstrates the lowest attack success rate at 95.1% and requires the highest average

of 3.0 frames for a successful attack. This robustness could be attributed to its anchor-free

object detection design, which appears more robust against hijacking attacks. Within the

anchor-based object detection models, ApoD shows the lowest attack success rate at 97.6%,

suggesting that the design of object detection and MOT in Apollo tends to be more robust.

Note that YX is also adapted in Apollo as introduced in § 4.5.1. An additional observation

is that the move-in attack achieves a higher success rate of 98.8% but generally requires

more frames (average of 2.8) compared to the move-out attack, which has a success rate of

97.5% with an average of 2.7 frames. This suggests that, although move-in attacks might be

easier to successful than move-out attacks, the latter tend to reach attack goals faster within

successful cases. From Table 4.5.1, StrongSORT exhibits greater robustness compared to

others, except ApoT. This is likely due to a Noise Scale Adaptive Kalman filter [103] design,

which adjusts measurement noise covariance based on confidence scores of detection results.

4.5.3 Comparison with Baselines

4.5.3.1 Comparison with Prior Attack [150]

Methodology and Setup. For the camera-based perception pipeline, we chose different

object detectors coupled with ApoT due to their adoption in an industry-grade full-stack

AD system. The evaluation utilizes the BDD dataset as outlined in §4.5.1. Following the

methodology of prior research as our baseline [150], we employ λ to denote the weighting
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factor between two loss functions in the baseline method, L1 and L2, thus defining the

combined loss function as L = L1 + λ · L2. The L1 is for erasure and L2 is for fabrication.

We also explore the impact of varying λ values: 0.1, 1.0, and 10.0. Additionally, for ApoT,

we investigate its performance across different tracking parameters, cov: noise covariance in

Kalman filter [150] following the same setup as the baseline [150].

Results. The results, as depicted in Fig. 4.5.1, unequivocally demonstrate the superior

efficacy of ControlLoc, achieving an impressive 99.4% attack success rate on Y3, ApoD, and

Y5 models, and a 90% attack success rate on the YX model. This starkly contrasts with

the outcomes from existing research [150], which has an 8.3% attack success rate on the YX

model and 24.8% on the other models tested. This substantial discrepancy underscores the

enhanced capability of our ControlLoc to manipulate the target object’s position effectively,

thereby hijacking its tracker. A critical observation from our analysis reveals that prior

research [150] tends to fail in maintaining the target’s BBOX: at low λ values, leading to its

disappearance, or conversely, at high λ values, resulting in no significant change or generating

multiple BBOXes. In stark contrast, our ControlLoc demonstrates remarkable effectiveness

and robustness to different cov values of ApoT. In certain instances, ControlLoc achieves

similar performance to maximum attack capacity, which assumes the attacker can arbitrarily

manipulate the BBOXes.

4.5.3.2 Comparison with Traditional Optimization

This part compares our novel optimization method with the traditional standard Lagrangian

relaxation method (SLRM) in this hijacking attack context. Our method, delineated in

Equation equation 4.12, diverges from SLRM, which merges score loss (Ls) and regression

loss (Lr) using a hyperparameter η in the form Lr + η · Ls. Notably, the score loss encom-

passes two components, Lf and Le, as specified in Equation equation 4.8. To facilitate a

detailed comparison, we use Lf and Le for Ls. Previous research leveraging SLRM [150]
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Table 4.5.2: ASR comparison between our patch location preselection (§4.4.2) in ControlLoc
and a random location preselection on the rear of the vehicle.

Random Ours

Move-in Move-out Move-in Move-out

ASR 20% 20% 90% 80%

demonstrates its inadequacy in generating effective adversarial patches for tracker hijacking.

This limitation is illustrated through the three losses, Lr, Lf , and Le, which fail to optimize

simultaneously under varying hyperparameter η settings, as depicted from Fig. 4.5.2 (a) to

(d). The primary challenge arises from the low initial score of the fabricated BBOX (Bf ),

resulting in a correspondingly weak gradient. Thus, SLRM hinders the minimization of Lf ,

particularly when with high regression loss. This typically leads to a negligible reduction in

Lf , as evidenced in Fig. 4.5.2 (a) to (c), where Lf barely decreases unless η is substantially

increased, for example, to around 1000, as shown in Fig. 4.5.2 (d). However, elevating the

η introduces a new problem: the regression loss (Lr) fails to be well optimized, shown in

Fig. 4.5.2 (d). This damages the attack’s effectiveness, preventing the fabricated BBOX

from associating with the target tracker. However, our optimization approach successfully

mitigates these issues, showing its efficacy in Fig. 4.5.2 (e).

4.5.3.3 Baseline Evaluation for Stage I in §4.4.2.

This part assesses the benefit of Stage I by comparing two scenarios: Stage I for patch

location preselection and a random patch location on the rear of the vehicle. For a fair

comparison, we maintain consistent patch sizes and conduct 1,000 iterations for each attack

generation. Specifically, for Stage I, we involve 20 iterations to determine the optimal patch

location. The results, in Table 4.5.2, reveal that attacks employing Stage I achieve an average

attack success rate of 85.0% across two attack goals, whereas those with a random patch

location exhibit a significantly lower attack success rate of 20.0%. This underscores the

importance of Stage I in ControlLoc.
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Table 4.5.3: Physical-world attack evaluation regarding ASR for ControlLoc and baseline
attack [150] under different outdoor light conditions, i.e., sunny, cloudy, and night; angles,
i.e., L1 to L4 defined by the lateral distance shown in Fig. 4.5.3, where L1 and L2 correspond
to the move-out attack, while L3 and L4 are used for the move-in attack; and background,
i.e., B1 to B6, including common roadside and intersection scenarios encountered during
driving. The results are averaged over 5 videos.

B1 B2 B3 B4 B5 B6

[150] Ours [150] Ours [150] Ours [150] Ours [150] Ours [150] Ours

Sunny day (∼20,000 lux)

L1 0% 60% 0% 80% 0% 60% 0% 60% 0% 60% 0% 40%

L2 0% 100% 0% 100% 0% 100% 0% 80% 0% 80% 0% 80%

L3 0% 100% 0% 80% 0% 80% 0% 60% 0% 80% 0% 80%

L4 0% 80% 0% 80% 0% 80% 0% 80% 0% 60% 0% 80%

Cloudy day (∼8,000 lux)

L1 0% 60% 0% 80% 0% 80% 0% 60% 0% 60% 0% 80%

L2 0% 80% 0% 80% 0% 80% 0% 80% 0% 80% 0% 80%

L3 0% 100% 0% 100% 0% 100% 0% 100% 0% 80% 0% 100%

L4 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100%

Night (∼70 lux)

L1 0% 60% 0% 60% 0% 60% 0% 40% 0% 60% 0% 40%

L2 0% 80% 0% 80% 0% 80% 0% 60% 0% 60% 0% 60%

L3 0% 80% 0% 100% 0% 100% 0% 80% 0% 80% 0% 80%

L4 0% 80% 0% 80% 0% 80% 0% 80% 0% 80% 0% 80%

4.5.4 Physical-World Attack Evaluation

Evaluation Setup and Methodology. To systematically evaluate the effectiveness of

ControlLoc in the physical world, we conduct experiments on real driving roads under var-

ious physical-world factors, including angle, light conditions, and background. Specifically,

we conduct experiments on driving routes at four different angles, as illustrated in Fig. 4.5.3,

capturing video at a constant speed as the vehicle approaches from a distance to achieve

both move-in and move-out attack goals depending on the positioning of the vehicle. The

angles are defined based on the lateral distance from the vehicle, i.e., L1 to L4 shown in

Fig. 4.5.3 with around 1 m per segment. Among them, L1 and L2 correspond to the move-
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Figure 4.5.3: Physical-World attack evaluation setups.

out attack, while L3 and L4 are used for the move-in attack. Our attack goals align with the

angles, as introduced in §4.3. Additionally, we evaluate the system under three different light

conditions: the sunny day (approximately 20,000 lux), the cloudy day (approximately 8,000

lux), and nighttime (approximately 70 lux). Furthermore, we experiment with six different

backgrounds B1 to B6, including common roadside and intersection scenarios encountered

during driving, to explore hijacking attacks from both directions: right-to-left (B1-B3) and

left-to-right (B4-B6). The combination of these various physical-world factors results in a to-

tal of 72 scenarios. We conduct physical-world attack evaluation in controlled environments.

For our attack, we insert a single-frame adversarial patch for moving the target object and a

three-frame adversarial patch for hiding the target object in a benign advertisement video,

with a resolution of 1080P. The video is displayed on a 32-inch monitor, which is smaller

than the physical monitors typically used in existing research on AD security [203]. For

each scenario, we collect five video clips for analysis. For object detection and MOT, we

utilize the systems implemented in Baidu Apollo, specifically ApoD and ApoT, due to their

representativeness. The camera used for these recordings has the same configurations—such

as focal length and video resolution—as the camera used in the Baidu Apollo project [53].
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For the baseline [150], the hyperparameter λ is set to 10, as this value yields the best per-

formance in §4.5.3, and we utilize the same EoT as used in ControlLoc. We ensure that all

other factors that could influence the results, such as video recording, are consistent.

Results and Visualization. The effectiveness of ControlLoc comparing with baseline

attack [150], under variations in angle, light conditions, and background, is presented in

Table 4.5.3. Our ControlLoc achieves a 79% average attack success rate, while the base-

line [150] shows no effectiveness, evidenced by a 0% attack. This ineffectiveness arises from

their lack of a precise BBOX filtering method and the shortcomings of their optimization

approach, which makes it difficult to address the imbalanced gradients between the score loss

and regression loss. As a result, the patch used to manipulate the BBOX fails to function

effectively. Notably, on cloudy day, ControlLoc has better effectiveness, yielding an 87% at-

tack success rate compared to a 77% attack success rate on the sunny day and a 73% attack

success rate at night. The root cause is that the patches displayed on the monitor experience

minimal distortion under cloudy light conditions. In contrast, the stronger light on sunny

day lowers the brightness of the displayed patches, while the weaker light at night increases

their brightness, causing glare. Additionally, the attack success rate shows limited variation

across different backgrounds, indicating that our attack is largely insensitive to background

changes. As for the attack goals, the move-in attack (L3, L4) achieves a higher success rate

of 87.0%, making it more effective than the move-out attack (L1, L2), which has a success

rate of 70.5%. This observation is consistent with the findings from digital-space evaluations

( §4.5.2).

Figure 4.5.4: Attack effectiveness regarding attack success rate and model utility regarding
mAP (mean Average Precision) of five common input transformation-based defenses. The
x-axis represents the strength of each defense.
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Table 4.5.4: AD system-level evaluation (vehicle collision or unnecessary emergency stop
rate) under different speeds using Baidu Apollo and LGSVL. 20 runs for each cell.

Move-out Move-in

L1 L2 L3 L4

Speed (km/h) 20 40 20 40 20 40 20 40

Benign 0% 0% 0% 0% 0% 0% 0% 0%

ControlLoc 65% 75% 70% 80% 100% 95% 100% 90%

4.5.5 System-Level Attack Effect Evaluation

Evaluation Setup and Methodology. To study the AD system-level attack effects of

ControlLoc, we perform an attack evaluation on Baidu Apollo [53], an industry-grade full-

stack AD system, using LGSVL simulator [234], a production-grade AD simulator. Our

experiments are conducted on the Borregas Ave map and the Lincoln2017MKZ AD vehicle.

To enhance the perception fidelity of simulators, we model the location of the tracker after it

has been hijacked and inject it into the AD system from our physical-world attack evaluation

results in §4.5.4 including the four different drive trajectories with different angles/lateral

distances as shown in Fig. 4.5.3. Our evaluation focuses on two representative scenarios as

shown in Fig. 4.2.2. Move-in attack (Fig. 4.2.2 (a)) is a common scenario for other vehicles

to park on the side of the road and move-out attack (Fig. 4.2.2 (b)) is another common

driving scenario. We perform 20 runs on each scenario with 20 km/h and 40 km/h.

Results. The outcomes are summarized in Table 4.5.4. Our ControlLoc achieves an aver-

age AD system-level attack effectiveness rate of 84.4% for critical scenarios such as vehicle

collisions or unnecessary emergency stops while maintaining normal operation in benign sit-

uations with a 0% incidence of attack effects on the AD system. The efficacy of the move-in

attack at 96.3% is notably superior to that of the move-out attack, which has a 72.5% rate.

Notably, the attack effectiveness at high speeds (40 km/h) reaching 85% surpasses that at

lower speeds (20 km/h), which is 83.8% in the move-out scenarios. This is critical as high
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speed poses significant safety risks.

4.6 Discussion

4.6.1 Defenses

DNN-Based Defense. Prior research has focused on enhancing the robustness of DNNs

against adversarial attacks. Such efforts fall into two broad categories: certified defenses [175,

297, 294] and non-certified defenses [307, 105, 325]. Certified defenses offer provable guaran-

tees of robustness but are generally time-intensive, rendering them impractical for real-time

systems, like AD systems. Furthermore, there is a notable absence of certified defenses specif-

ically designed to defend against attacks on the entire AD perception. Thus, we evaluate

several non-certified defense strategies: input-transformation defenses, which are directly

adaptable. These include JPEG compression [105], bit depth reduction [307], Gaussian

noise [325], median blur [307], and non-local means [307, 323]. Due to their easily adaptable

nature, these methods have been assessed in recent security studies [71, 239, 335, 323]. We

use the BDD dataset and the perception module in Baidu Apollo, i.e., ApoD and ApoT.

The effectiveness of these defense measures is quantified by the attack success rate, while

the impact on benign performance is assessed using the mean Average Precision (mAP).

As shown in Fig. 4.5.4, we observe that median blur can partially mitigate the attacks,

particularly with large kernel sizes (e.g., 8). However, it remains possible for the attack to

succeed, and importantly, this harms the model, which inevitably causes serious consequences

in safety-critical applications [335]. Thus, these defenses are not practically applicable.

Sensor Fusion Based Defense. Employing multi-sensor fusion (MSF) for improving per-

ception robustness, such as integrating LiDAR, represents a strategic defensive approach.

However, incorporating additional sensors like LiDAR substantially raises system costs.
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Thus, many AD systems primarily utilize camera-based perception, such as Tesla [153] and

OpenPilot [91]. Additionally, relying solely on MSF may not adequately defend against

ControlLoc. This vulnerability is attributed to the potential for attackers to simultaneously

attack all perception sources [71]. Furthermore, recent research [87] shows the feasibility

of attacking the MSF-based perception by attacking only camera-based perception. While

the MSF may compromise the attack, its defensive potential remains to be systematically

explored in future research.

Collision Avoidance System Based Defense. Collision avoidance systems (CAS), like

Autonomous Emergency Braking (AEB), use RADAR or ultrasonic sensors to prevent or

reduce the severity of collisions [71, 40, 164]. While helpful, they cannot fully prevent

collisions or eliminate the need for robust defense methodologies against ControlLoc. First,

AD systems must independently handle as many safety hazards as possible, rather than

relying solely on CAS, which should serve as backup safety measures for emergencies. Second,

CAS is insufficient for defending against move-in attacks, making them inadequate against

ControlLoc. Additionally, these systems are not perfect, achieving only a 27% reduction in

bodily injury claim frequency and a 19% reduction in property damage frequency [106, 314].

Thus, AD systems must be designed to handle safety hazards independently.

4.6.2 Limitation and Future Work

Despite promising outcomes in physical-world tests, the full impact of end-to-end attacks on

AD systems, especially commercial vehicles like Tesla, remains to be fully understood. Con-

straints such as cost and safety lead us to use simulations [71], a common industry practice,

for preliminary AD system-level assessments [71, 283]. More comprehensive and realistic

evaluations can be a future work. Our research predominantly examines one-stage detectors

used in industry-grade AD systems. However, considering the existence and application of

two-stage detection, systematic investigation can be a future direction for attack generality.
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4.7 Conclusion

In this paper, we present ControlLoc, a novel physical-world adversarial patch attack to ex-

ploit vulnerabilities in AD perception including object detection and MOT. With a two-stage

attack methodology, ControlLoc significantly outperforms the existing attack, achieving an

impressive average success rate of 98.1% across diverse AD perception systems. The effec-

tiveness of ControlLoc is validated in real-world conditions with a 79% average attack success

rate. AD system-level impact such as vehicle collisions is also evaluated using a production

AD simulator with 84.4% attack effectiveness.

Appendix 4.A Ethics Considerations

When addressing the ethics related to the evaluation of physical-world attacks, it is im-

perative to underscore the evaluation taken to ensure both safety and responsibility. Our

experimental setup is located on a low-traffic road within our institute, under controlled con-

ditions to ensure minimal traffic. All equipment was operated by individuals experienced in

outdoor vehicle experiments. This can effectively avoid the risk of unintended consequences

to the uninvolved public. Additionally, we confirm that no harm is caused to the commercial

vehicles in our physical-world experiments. These vehicles are for data collection.

Acknowledging the potential ramifications our findings may have on the security of AD

systems, we commit to executing a responsible vulnerability disclosure. We will ensure that

all necessary precautions are taken before making our research publicly available.
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Appendix 4.B Disappearing Patch Attack Generation

We adopt a dual-patch attack strategy to perform the hijacking attack. This approach

consists of one patch designed for moving the BBOX’s location of the target object and

a second for making the object disappear. The disappearing patch attack can draw upon

methodologies similar to previous studies [148, 283, 330] detailed as follows.

Utilizing the BBOX filter described in §4.4.4, we can efficiently identify and remove the

BBOXes that should be excluded. We denote these BBOXes as the set B′
e. To achieve the

goal, we reduce the scores of all BBOXes in B′
e, as formulated in Equation equation 4.13,

aligning with the methodology used in previous research [330, 283, 148, 111].

Le′ =
1

|B′
e|

∑

c∈B′
e

c2conf (4.13)

where the cconf is detailed in Equation equation 4.9. The attacker can display these patches

on a monitor.

Appendix 4.C Location of BBOXes for Grid-Based Ob-

ject Detector

𝐂𝐱

𝐂𝐲

𝐝𝐱

𝐝𝐲 𝐛𝐱 = 𝐂𝐱 + 𝐝𝐱
𝐛𝐲 = 𝐂𝐲 + 𝐝𝐲

Figure 4.C.1: The center coordinates of bounding boxes prediction method adopted by grid-
based detection algorithms.
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To ascertain the location of BBOXes for grid-based object detectors, an offset is calculated

from the top-left corner of each cell as shown in Fig. 4.C.1. For instance, YOLO v5 [156]

determines the location coordinates relative to each cell’s position. The detection model

computes tx and ty for each BBOX within the output feature map. If a cell is positioned

away from the image’s top-left corner by (cx, cy), these predictions will be adjusted based

on Equation equation 4.14.

bx = dx + cx, where dx = σ(tx)

by = dy + cy, where dy = σ(ty)

(4.14)

where σ(.) is the Sigmoid function. This process, utilized by grid-based detectors, calculates

the offset (dx, dy) to the center coordinates (bx, by) of each BBOX, ensuring that the center

of any predicted BBOX remains within the confines of its cell.

(a) [150] with small λ (b) [150] with suitable λ (c) ours

Figure 4.C.2: Comparison of detection results between the baseline method [150] and our
method.

Appendix 4.D Comparison Figure

Fig. 4.C.2 illustrates comparison with [150]. When λ is small, the BBOXes around the object

are disappear. And when λ is set to a appropriate value, more than one BBOXes appear

around objects, interfering with the association between the tracker and the target BBOX.
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This issue arises because previous works lack precise BBOX filtering, unlike our proposed

BBOX filter. Furthermore, without our new optimization method to address the imbalance

gradients between the score loss and regression loss, even if the target BBOX appears, its

shape cannot successfully associate and hijack the tracker.

Appendix 4.E Patch Location under Different Frames

We select several consecutive frames from a video clip and obtain their respective optimal

patch positions via the method in Stage I, as illustrated in Fig. 4.E.1. The results demon-

strate that the patch positions do not vary significantly across these frames and can be

encompassed within the positional transformation distribution in the EoT. This observation

indicates that our method is effective for continuous video frames. The results demonstrate

that our method can maintain relatively stable patch positions as the patch sizes (∆h and

∆w) vary with the changing relative distance between the AD vehicle and the Attacker’s

vehicle. Furthermore, such minor changes in position can be encompassed within the posi-

tional transformation distribution in the EoT. This observation indicates that our method

is effective for continuous video frames.

Figure 4.E.1: Patch location under different frames. The white square in each image frame
indicates the patch’s optimal location.
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Chapter 5

Does Physical Adversarial Example

Really Matter to Autonomous

Driving? Towards System-Level Effect

of Adversarial Object Evasion Attack

5.1 Introduction

Autonomous Driving (AD) vehicles are now a reality in our daily life, where a wide variety

of commercial and private AD vehicles are driving on the road. For instance, the millions

of Tesla cars [158] equipped with Autopilot [265] are publicly available. To ensure safe and

correct driving, a fundamental pillar is perception, which is designed to detect surrounding

objects in real time. Due to the safety- and security-criticality of AD perception, various

prior works have studied its security, especially the ones that aim at causing the evasion

of critical physical road objects (e.g., STOP signs and pedestrians), or physical adversarial

object evasion attack [148, 305, 83, 293, 330, 70, 110, 186, 69].
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Although these attacks are all motivated by causing erroneous driving behaviors at the

AD system level (e.g., vehicle collisions and traffic rule violations), we find that so far they

predominately only evaluate the attack success at the targeted AI component level alone (e.g.,

judged by per-frame object misdetection rates [83, 110, 305, 330, 148]), without further

evaluation at the system level. Specifically, to systematically perform such system-level

evaluation, we need to measure the end-to-end system-level attack success metrics (e.g.,

collision rates) with the full system-level attack context enclosing the attack-targeted AI

component, for example, the remaining AD system pipeline such as object tracking, planning,

and control, closed-loop control, and the attack-targeted driving scenario. In this paper, we

call such system-level attack context system model for such adversarial attacks (§5.2). This

thus raises a critical research question: can these existing works on physical adversarial object

evasion attacks effectively achieve the desired system-level attack effects in the realistic AD

system settings?

To systematically answer this critical research question, we conduct the first measurement

study on representative prior object-evasion attacks with regard to their capabilities in caus-

ing system-level effects (§5.3). We propose a general framework, i.e., a system model, includ-

ing perception modeling from the physical world, to measure STOP sign-evasion attack which

is our target due to its high representativeness [252] and its direct impacts on driving cor-

rectness and road safety. Our results show that all the representative existing works cannot

cause any STOP sign traffic rule violation within the system model including a represen-

tative closed-loop control AD system in the common speed range for STOP sign-controlled

roads in the real world even though the most effective attack can achieve more than 70%

average attack success rate at the AI component alone.

We further investigate the root causes and find that all the existing works have design

limitations on achieving effective system-level effects due to the lack of a system model

in AD context for attack design: 1) physical model-inconsistent object size distribution

103



in pixel sampling and 2) lack of vehicle plant model and AD system model consideration

(detailed in §5.4). We further propose SysAdv, a system-driven attack design, which can

be integrated with all state-of-the-art attack methods to significantly improve system-level

effects by overcoming the two limitations.

We evaluate our novel proposed attack design in our platform and show that the system-level

effect can be significantly improved in §5.5, i.e., the system violation rate can be increased

by around 70%. To further validate the generality of our attack, we also examine generality

on different AD system parameters (§5.5.2) and different object types (§5.5.3), which shows

improvement at both component- and system-level. Demo videos are at the project website:

https://sites.google.com/view/cav-sec/sysadv.

To sum up, this paper makes the following contributions:

• We conduct the first measurement study on the system-level effect of the representative

prior object-evasion attacks with our proposed novel evaluation framework (i.e., sys-

tem model) including 4 popular object detectors and 3 state-of-the-art object-evasion

attacks.

• We identify the limitations of prior works which hinder them in potently achieving

system-level effects and propose SysAdv, a system-driven adversarial object-evasion

attack with the system model in AD context.

• We further evaluate SysAdv and show that the system-level effect of SysAdv can be

significantly improved, i.e., the system violation rate increases by around 70%.
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5.2 Related Work and Background

Camera-based AD perception. Camera-based AD perception generally leverages DNN-

based object detection to detect or recognize road objects of various categories (e.g., traffic

signs, vehicles, and pedestrians) in consecutive image frames [77]. State-of-the-art DNN-

based object detectors can be classified into two categories: one-stage object detector, and

two-stage object detector [338]. The former, such as YOLO [230, 231, 156], usually has higher

detection speed, while the latter, such as Faster R-CNN [232], usually has higher detection

accuracy. In this paper, we focus on the security aspects of camera-based AD perception

and perform the corresponding experiments on both object detector categories. We perform

the measurement study of physical adversarial object evasion attack in AD perception §5.3

including these two kinds of object detectors.

Physical adversarial object evasion attacks in AD context. Recent works find that

DNN models are generally vulnerable to adversarial attacks [123, 76, 198, 301, 323, 192].

Due to the direct reliance of camera-based AD perception on DNN object detectors, various

prior works have explored the feasibility of adversarial attacks in AD context [148, 330, 305,

337, 285, 252, 282, 97, 192, 240, 191, 242]. Among them, physical adversarial object evasion

attacks, which typically use physical-world attack vectors such as malicious patches to cause

the disappearance of road objects (e.g., pedestrians and traffic signs) [148, 110, 330, 305, 83,

293], are especially severe due to their direct impacts on driving correctness and road safety.

However, as detailed in later sections, we find that so far the considerations and integration

of the corresponding system models (detailed below) in the prior works are far from enough

in both attack designs and evaluation, which substantially jeopardizes the meaningfulness of

their designs from the end-to-end AD driving perspective (§5.3).

Gap between AI component errors and their system-level effect. We do not in-

tend to claim to be the first to point out, analyze, measure, or optimize the gap between
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AI component errors and their system-level effect in general; there exists a large body of

prior works in various other problem contexts (e.g., computer vision system [145, 229, 147],

image analysis [131, 320], camera surveillance [126, 127], video analytics [266, 125], plan-

ning [224, 223, 270], and control [270]) across academia and industry that have studied the

characterization and/or optimization of end-to-end system performance [122, 66] with regard

to AI/vision component errors. Nevertheless, to the best of our knowledge, none of them 1)

quantified such gaps in the context of adversarial attacks on autonomous systems, especially

those in real-world system setups; and 2) identified novel designs that can systematically

address or fill such gaps on autonomous systems, which we believe are our novel and unique

contributions.

Systems model for AD AI adversarial attacks. To understand the end-to-end system-

level impacts of an adversarial attack against a targeted AI component in an AD system

(e.g., whether it can indeed effectively cause undesired AD system-level property violations),

we need to systematically consider and integrate the overall system semantics and context

that enclose such AI component into the security analysis [99, 247]. In this paper, we call

a systematic abstraction of such system semantics and context the system model of such

AD AI adversarial attacks. Specifically, in the AD context we identify 3 essential sub-

components in such system model: 1) the AD system model, i.e., the full-stack AD system

pipeline that encloses the attack-targeted AI components and closed-loop control, e.g., the

object tracking, planning, and control pipeline for the object detection AI component; 2)

the vehicle plant model [214, 99], which defines the physical properties of the underlying

vehicle system under control, e.g., maximum/minimum acceleration/deceleration, steering

rates, sensor mounting positions, etc.; and 3) the attack-targeted operation scenario model,

which defines the physical driving environment setup, driving norms (e.g., traffic rules), and

the system-level attack goal (e.g., vehicle collision, traffic rule violation, etc.) targeted by

the AD AI adversarial attack.
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Figure 5.2.1: Illustration of the system model for adversarial object-evasion attacks in AD
context.

System model for adversarial object-evasion attacks. Fig. 5.2.1 illustrates the afore-

mentioned system model defined for the adversarial object-evasion attack. The AD system

model for object detection, the targeted AI component in adversarial object-evasion attacks,

mainly includes its downstream tasks of object tracking, planning, and control, and closed-

loop control. The vehicle plant model mainly includes the physical properties related to

longitudinal control, e.g., the minimum brake distance (dmin), and the distance to the stop

line (stop to avoid violating traffic rules or crashes) where the stop line is out of sight in

the camera image doos (depending on the hood length and the camera mounting position).

The operation scenario model includes the speed limit, lane width, the relative positioning

and facing of the object to the ego lane, the driving norm that the vehicle typically drives

at constant speed before it starts to see the object (dmax), and the system-level attack goal

that triggers the traffic rule violation (i.e., hit into the object or exceeding the stop line).

We will use this system model in our studies in the following sections. There exists sev-

eral example attacks for the system model such as STOP sign-evasion attack, which is the

most extensively-studied physical adversarial object evasion attack in AD context [252], and

thus will be the main focus of our study in later sections; pedestrian-evasion attack [305];

car-evasion attack [277]; etc.
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(a) Benign (b) RP!-Y2 (c) SIB-Y3 (d) SIB-FR (e) FTE-Y3 (f) FTE-Y5

Figure 5.3.1: Visualisation of STOP signs attack reproduction (in Table 5.3.1) for measure-
ment study in physical world.

5.3 System-Level Effect of Prior Works

Scientific gap in existing works: Lack of system-level evaluation. Despite a plethora

of published attack works on physical adversarial object evasion attacks in AD context (§5.2),

we find that actually all of them only evaluate their attack effect at the targeted AI component

level (i.e., judged by per-frame object misdetection rates [110, 305, 330, 148]), without any

evaluation at the system level, i.e., with the corresponding system models for such attacks as

described in §5.2. However, in the Cyber-Physical System (CPS) area, it is widely recognized

that in AD system, AI component-level errors do not necessarily lead to system-level effects

(e.g., vehicle collisions) [99, 247, 150]. Thus, without system-level evaluation, it can be highly

difficult to scientifically know whether the attack is actually meaningful from the end-to-end

AD driving perspective. We view this as a critical scientific gap in this current research

space, and to address this, we perform a measurement study on the existing works about

their system-level effects. We choose to focus on adversarial STOP sign-evasion attck as our

target due to its high representativeness in this research space and also its direct impacts on

driving correctness and road safety (§5.2).
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5.3.1 Attack Formulation and Selection

Attack formulation. We assume that the attacker can arbitrarily manipulate pixels within

restricted regions known as adversarial patch attack [63, 330, 110]. Such a patch attack is

easy to deploy in the real-world and very stealthy. We consider the patch stays on the STOP

sign shown in Fig. 5.3.1.

Selection of prior STOP sign attack works and their reproduction. There are

various prior works on physical adversarial STOP sign-evasion attacks [188, 148, 110, 330,

309, 187, 83]. To perform our system-level effect measurement, we select the most effective

ones at AI component level as representative examples. Four model designs (including one-

stage and two-stage object detectors in §5.2) have been covered. For each model, we select

the most effective attack design published so far which are shown in Table 5.3.1. However,

all the STOP sign attacks in Table 5.3.1 do not provide the source code. Since we tried to

contact the authors of the attacks for the source code but they all cannot provide it, we try

our best to reproduce some of the works. Currently, we only have the reproduction for RP2

and FTE. For SIB, we directly use the STOP sign images shared by the authors of that

paper used for their physical-world experiments. We print the high-resolution STOP signs

on multiple ledger-size papers and concatenate them together to form full-size real STOP

signs which are shown in Fig. 5.3.1.

To demonstrate the reproduction correctness, we utilize their original evaluation setups for

our trials. Our results are generally similar to theirs confirming the correctness of reproduc-

tion. For instance, the original RP2 paper [110] reports an attack success rate of approxi-

mately 63.5% from 0 to 30 feet. With the same setup (outdoor), our results provide a 61.0%

attack success rate — nearly mirroring the original. Note that SIB attack on the FR in

Table 5.3.3 seems anomalous: it records around 47% attack success rate only from 40 to 45

meters, while consistently registering 0% in others. Despite the patch being provided by the
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(a) Physical-world scene (b) Simulation scene

Figure 5.3.2: Experiment scenes. (a) Real-world scene with real road and injected STOP
sign; (b) SVL simulation scene with the San Francisco map in a sunny day at noon.

authors, the pre-trained FR can be different, where we use MMDetection [82], a PyTorch-

based object detection toolbox. Given such potential low transferability, the attack may be

less effective compared to their original results. However, this is our best effort to reproduce

their results faithfully.

5.3.2 Measurement Methodology and Setup

To measure system-level effects, we adopt a simulation-centric evaluation methodology, which

has been widely adopted both in academia [275, 238] and in industry [287, 146] due to

the inherent limitations of real-road AD testing in cost, safety, efficiency, and corner-case

coverage. In this study, we use SVL, a production-grade high-fidelity AD simulator designed

for AD systems [234]. As repeatedly demonstrated in various prior works, the end-to-end

AD system-level evaluation results in SVL can highly correlate with the same setup tested

in the physical world [275, 238]. To ensure the fidelity of our evaluation results, we improve

the fidelity of the rendering process by modeling the perception results in the real world with

a practical setup (details below). Note that the attacks themselves are agnostic to map and

time by design, and thus are not generally affected by their changes. In SVL, we use San

Francisco map on a sunny day at noon, which is the most representative setup.

110



Perception results modeling from physical world. To enhance the perception fidelity

of simulators, we model the perception results using a practical setup in the real world.

This approach represents our best effort to improve the fidelity of the simulation due to the

experimental feasibility. Previous studies collect video frames by directly moving towards

the STOP sign and simulate varying view angles by rotating the STOP sign itself. This

approach is not practical since the vehicles do not directly drive towards the STOP sign,

and the STOP sign should instead be located on the roadside as shown in Fig. 5.2.1. To

improve such unrealistic setups, we follow the system model defined in §5.2. We recorded

several pieces of video along the driving direction D using an iPhone 12 Pro Max starting

from 45 m to 4 m (4 m is the doos in §5.2). We choose 45 m since 1) it is the minimal

brake distance for speed above 50 mph, which exceeds the usual maximum speed of STOP

sign areas, and 2) it is already much larger than the maximum distance evaluated in all

the prior STOP sign-evasion attack works. We separate the whole range into 9 pieces, each

spanning 5 m except the one near the STOP sign, which is 1 m long. Then, we record a

video in each region and feed the video into the object detectors to model the perception

results. We perform these experiments on sunny days as shown in Fig. 5.3.2. With that,

we perform perception results injection at the output of the object detection task in the AD

system, i.e., first read the ground-truth STOP sign detection results from the simulator and

then drop/keep the detection results based on detection rate. For instance, if the attack

success rate is 60% for a range, we will randomly drop the STOP sign detection results with

a possibility of 60% in that range.

Evaluated AD system pipeline. The AD system pipeline includes representative down-

stream tasks after object detection, which contains 1) a tracking step using a general Kalman

Filter based multi-object tracker [190]; 2) a planning step using a lane-following planner from

Baidu Apollo [54], an industry-grade full-stack AD system; and 3) a control step using clas-

sic controllers, i.e., PID for longitudinal control used in OpenPilot [217], a production-grade

Level-2 AD system, and Stanley [138] for lateral control.
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Table 5.3.1: Selection of the representative prior works. Specifically, for each of the 4 model
types targeted by prior works, we select the most effective attack design published so far.

Model YOLO v5 (Y5)YOLO v3 (Y3)YOLO v2 (Y2)Faster RCNN (FR)

Attack FTE [148] SIB [330] RP2 [110] SIB [330]

Table 5.3.2: System-level violation rate in the simulation-based testing and component-level
overall ASR for model Y2, Y3, Y5, and FR in benign and attacked scenarios. 10 runs for
each cell with different initial AD position. B: benign; Sys: system; Comp: component;
ASR: attack success rate.

Y2 Y3 Y5 FREval.
level

Speed
(mph)

B RP2 B SIB FTE B FTE B SIB

Sys (violation) 25, 30, 350% 0% 0% 0% 0% 0% 0% 0% 0%

Comp (ASR) Overall - 71.2% - 53.1%53.3% - 41.0% - 5.2%

Speed selection. The driving speed is from 25 to 35 mph, with a step size of 5 mph,

which is the most common speed range for STOP sign-controlled roads in the real world. 25

mph [57] is the common speed limit for the STOP sign-controlled road intersections, which

is more likely to avoid a crash, and 35 mph [67] is the most common speed limit for city

streets, which STOP signs are designed for.

5.3.3 Measurement Results

We evaluate the targeted AD system-level attack effect, i.e., STOP sign violation rate, by

defining the STOP sign violation rate as
Nviolation

Ntotal

, in which Nviolation means the number

of runs where the AD vehicle exceeds the stop line and Ntotal is the number of total runs.

Table 5.3.2 shows the results where each speed has 10 runs with random initialization of

the AD vehicle position while the perception results modeling from real world is shown in

Table 5.3.3. To our surprise, none of the existing representative attacks can trigger STOP

sign violations in any of the common speeds for STOP sign-controlled roads when the benign

performs well, though most of the attacks are effective in the component (i.e., with about 45%

average attack success rate across the 5 attacks). After inspecting the details, we find that

112



Table 5.3.3: Detection rates of different objectors in benign, RP2-, SIB-, and FTE-attacked
scenarios tested in the physical world for perception results modeling (shown in §5.3.2). Each
detection rate below is calculated with at least 400 video frames.

OD

Dis. range (m)
4 - 5 5 - 10 10 - 1515 - 2020 - 2525 - 3030 - 3535 - 4040 - 45

Benign 100% 100% 71.3% 31.3% 0% 0% 0% 0% 0%
YOLO v2 (Y2)

RP2 [110] 58.2%90.0% 76.2% 34.6% 0.1% 0% 0% 0% 0%

Benign 100% 100% 100% 100% 80.1% 11.8% 6.7% 1.0% 0%

SIB [330] 93.7% 100% 100% 90.4% 38.2% 0% 0% 0% 0%YOLO v3 (Y3)

FTE [148] 89.9% 100% 100% 87.3% 42.9% 0.6% 0% 0% 0%

Benign 100% 100% 100% 100% 98.7% 89.4% 52.3% 25.3% 0%
YOLO v5 (Y5)

FTE [148] 91.2% 100% 100% 99.7% 88.2% 48.4% 3.9% 0% 0%

Benign 100% 100% 100% 100% 100% 100% 100% 100% 100%
Faster-RCNN (FR)

SIB [330] 100% 100% 100% 100% 100% 100% 100% 100% 53.2%

the STOP sign is always tracked at the object tracking step before reaching the minimum

brake distance of the AD vehicle due to the low attack success rate in such regions. Taking

SIB attack on Y3 as an example, the brake distance for 30 mph is around 15 m. In the

benign scenario, the detection rate for 15-20 m is 100%, while the SIB attack can still have

90.4% detection rate as shown in Table 5.3.3, which is not enough to make the tracking

vanish before the minimum braking distance.

5.4 System-Driven Attack Design

After realizing that existing works cannot provide any system-level violation in AD context,

we propose SysAdv, a system-driven attack design, which can be integrated with all the

existing attacks to improve system-level effects.
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5.4.1 System-Driven Attack Design Framework

For the attack design in the prior works [110, 330, 148, 83], we can abstract the key part for

attack generation:

argmin
pa

Es∼S [L(M(pa, O, s, B), γ)] (5.1)

S is the distribution to sample different object sizes in pixels, which is a very important factor

in achieving the robust attack at different distances between the AD vehicle and the object.

The L is the loss function used in the prior attacks to achieve high attack effectiveness, pa is

the adversarial patch, O is the object, and function M(pa, O, s, B) indicates applying pa to

O, then resizing object size in pixel to s, and applying O into the background B, γ means

other inputs for loss function in the prior works (e.g., the bounding box information and

threshold) related to the object detector alone. After investigation on Eq. (5.1), we find out

that the system model can be involved into two parts, i.e., S and function M(.), which do

not rely on object detector alone.

After exploring all the prior works, we discover that all of them do not consider such a system

model information into their attack designs, which hinder them to achieve potent system-

level effects in AD context. Thus, we propose two novel system-driven designs to significantly

improve the system-level effects. Specifically, we involve the system model information into

S and function M(.) from Eq. (5.1).
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(a) Distribution of exiting work (b) Distribution from simulation (c) Distribution from theoretical analysis
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Figure 5.4.1: Different STOP sign size distribution: (a) state-of-the-art existing work [148],
(b) our experimental analysis, and (c) our theoretical analysis.
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Figure 5.4.2: Theoretical analysis of §5.4.2, i.e., the camera pin-hole model.

5.4.2 Physical Model-Inconsistent Object Size Distribution in Pixel

Sampling

In the prior works [330, 148, 110], to make the attack robust to different distance, Expectation

over Transformation (EoT) [55] is used to uniformly sample the object size (S in Eq. (5.1))

in a certain range [83, 148, 55]. However, with system model (§5.2), we find that this

assumption is not held, which leads to the first observation: physical model-inconsistent object

size distribution in pixel sampling. To justify the observation, we perform the experimental

and theoretical analysis with STOP sign system model as an example.

Experimental analysis. With the same setup in §5.3, we simulate the real driving scenario

in SVL. The STOP sign size in pixels and the distance between the vehicle and the STOP

sign can be directly obtained from SVL (§5.3.2). With that, we can get the frequency

distribution histogram over different STOP sign sizes in pixels as shown in the Fig. 5.4.1

(b), in which the AD vehicle runs for 30 rounds at speed 25 mph. The distribution shown
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in Fig. 5.4.1 (b) is not uniform, which is wrongly assumed by the prior works [83, 148]. To

compare, we sample the STOP sign size from the most recent prior work [148], which designs

an algorithm to determine the STOP sign size in a uniform way. We run that algorithm

30k times and collect the STOP sign size shown in Fig. 5.4.1 (a). The difference between

Fig. 5.4.1 (a) and (b) indicates that our observation is held experimentally.

Theoretical analysis. Assuming a uniform motion for AD vehicles, we leverage the camera

pin-hole model (Fig. 5.4.2) for the theoretical analysis. From Fig. 5.4.2, we abstract the

relationship of real object size (L), real distance(D), focal length(f), and object size in

pixel(s) with similar triangles: L
D

= s
f
. With the system model shown in Fig. 5.2.1, we

assume that the initial vehicle to STOP sign distance is the road length D0 and the current

vehicle to STOP sign distance is D. Due to uniform motion, the vehicle traveled distance

can be formulated as D1 = v ∗ t, where v is the vehicle speed (usually it is the speed limit)

and t is the time. To build the relationship between s and the sampled frequency (i.e., the

frame number) F , we formulated the time t as t = F
η
, where the η is the image capturing

frequency from the camera. Due to D1+D = D0 and the camera pin-hole model (Fig. 5.4.2),

we can obtain the following equation:

D0 = D + v ∗ F
η

=
L ∗ f
s

+ v ∗ F
η
→ F = (D0 −

L ∗ f
s

) ∗ η
v

(5.2)

Eq. (5.2) is the CDF of s, since the F is accumulated frames. To obtain PDF, CDF’s

derivative is calculated:

F ′ =
dF

ds
=

η ∗ L ∗ f
v ∗ s2 (5.3)

From Eq. (5.3), the probability distribution is definitely not uniform. We also plot Eq. (5.3)

as shown in Fig. 5.4.1 (c) with η = 20, L = 1.5, v = 25mph, and f = 25mm (commonly

used in AD system such as Baidu Apollo). The distribution is similar to the distribution in
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the experimental analysis shown in Fig. 5.4.1 (b), which supports our observation.

Our system-driven solution (S1). With that, we propose our system-driven solution

(S1) to address this inconsistency above. Leveraging the system model in Fig. 5.2.1, we

define a novel object size distribution based on Eq. (5.3): S = {s1, s2, ..., sN} as a discrete

distribution, where si is the object size in pixels. Based on the Eq. (5.3), the probability of

si can be abstract as p(si) =
1
s2i
/
∑N

k=1
1
s2k
. Such new object size distribution can be used to

address the inconsistency observation and easily integrated into the attack design (Eq. (5.1)).

However, to get the detailed distribution, we have to know the range of S, which will be

addressed in the following system-driven solution (S2) in §5.4.3.

5.4.3 Lack of Vehicle Plant Model and AD System Model Con-

sideration

In the EoT process, uniformly sampling the object size (S in Eq. (5.1)) in a range is generally

used. In the prior works, they just treat it as hyper-parameters without any reasons [83,

148]. In practice, not every range is equivalently important to achieve system-level effects.

Taking STOP sign case as an example, within dmin in Fig 5.2.1, despite applying maximum

deceleration, AD vehicle still cannot fully stop before the stop line. Thereby, such a range

is not important to achieve system-level effects. However, none of the prior works involve

the system-critical range related to the vehicle plant model and AD system model in their

attack designs, which leads to the second observation: lack of vehicle plant model and AD

system model consideration.

Note that previous studies which indiscriminately utilize a broad range of object sizes for

attacks have exhibited reduced effectiveness in comparison to those employing a small size

range. For example, when the object size is small (implying the AD vehicle is far away from

the object), attack convergence becomes challenging [148], which indicates that it is harder
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Table 5.4.1: Attack success rate of RP2 for Y2 evaluated in simulation with both small and
large STOP sign pixel sizes.

Distance (m)

4 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35
Ave

Small 6.7% 37.1% 68.3% 81.1% 100% 100% 100% 70.5%Comp.
ASR Large 98.6% 6.1% 0% 1.0% 58.5% 99.1% 100% 51.9%

to attack. Therefore, generally, utilizing a more optimally defined range, as opposed to an

excessively broad one, enhances the efficacy of the attack.

To elucidate the disparity in attack effectiveness between utilizing a broad versus a narrow

object size range, we conducted experiments comparing the attack success rates with small

and large range of the STOP sign size. We follow a similar evaluation setup as in §5.3.2

but use a pure simulation-based setup for RP2 attack. Specifically, the small range for the

STOP sign spans from 30 px to 100 px, whereas the large range extends from 30 px to 416

px, representing the maximum range at which the benign STOP sign is detectable. Results

presented in Table 5.4.1 reveal a superior average attack success rate for the small range

over the large range. Although the large range demonstrates promising convergence at close

distances, its performance diminishes between 5 to 30 m. This suggests that simply opting

for a larger range does not guarantee enhanced performance.

Our system-driven solution (S2). We introduce our Solution (S2) to ascertain the

system-critical range from the vehicle plant model and the AD system model. With these,

we directly deduce the dmin and dmax values as shown in Fig. 5.2.1. Then, we convert these

distances to the corresponding object sizes in pixels (S). From the system model (Fig.5.2.1),

it’s evident that the minimum braking distance can be used as dmin. Within this distance,

detection results have a negligible impact on system-level effects. As for the dmax, several

tasks in the AD system, such as object detection and tracking, can influence its determina-

tion. For object detection, the maximum distance can be the furthest benign distance where

an object is detected. For object tracking, we select a conservative tracking [150] since at-

tackers might not always access the precise tracking parameters of the targeted AD system
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and a conservative tracking provides a broader system-critical range generally. To achieve

system-level effects, the object should not be tracked when the vehicle reaches the dmin.

Due to conservative tracking, such tracking distance (i.e., if within this distance, the object

can never be detected, the tracker will be deleted) usually exceeds the distance where the

object detector can detect the object. Thus, simplifying this, we select the distance where

the benign object can be detected with a small detection rate as dmax. Having deduced the

dmin and dmax, the next step involves translating these distances into pixel object sizes (S)

and determining the appropriate object location in the background (function M(.) in §5.4.1).

We suggest two methodologies to solve address it: 1) camera-based rendering [301, 66, 70]

and 2) manual annotation [305]. Employing these methods allows us to acquire precise

specifications about position and pixel size range (in §5.5.1 and §5.5.3).

5.5 Evaluation

We adopt the same evaluation methodology and setup as §5.3.2. The printed STOP signs

with the newly generated patches are in Fig. 5.5.1. We evaluate some attacks on one-stage

object detectors, i.e. Y2, Y3, and Y5 due to their better real-time performance compared to

two-stage ones [338]. RP2 and FTE are selected as the evaluated attacks. Attack generality

is evaluated in §5.5.2 and §5.5.3. The combination for attacks and object detectors are RP2,

FTE-Y3, and FTE-Y5.

5.5.1 System-level Attack Effectiveness Evaluation

Attack generation. We adopt the attack methodology in §5.4. We employ a camera-based

rendering method and utilize the nuScenes dataset [66] to translate the system-critical range

from the physical world to the pixel range in images. Notably, nuScenes offers APIs that
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Table 5.4.2: Attack success rates (ASRs) of RP2, FTE-Y3, and FTE-Y5 on STOP sign-
evasion attack (§5.5) and ADV-Tshirt on pedestrian-evasion attack (§5.5.3) for our attack
design evaluation with perception results modeling from physical world. + S1: with S1 only;
+ S2: with S2 only; + S1 + S2: with S1 and S2; + S1 + S2 (TV): + S1 + S2 with TV
loss (§5.5.1). Bolded numbers indicate the cases where our design outperforms the original
baseline attack (“Original”) within the system-critical range.

Dis. (m): Gray: ASR within the system-critical range

OD Attack design 4 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 30 30 - 35 35 - 40 40 - 45

Original [110] 41.8% 10.0% 23.8% 65.4% 99.9% 100% 100% 100% 100%

+ S1 4.4% 13.7% 51.2% 99.3% 100% 100% 100% 100% 100%

+ S2 5.6% 44.9% 57.8% 98.7% 100% 100% 100% 100% 100%
Y2

RP2

+ S1 + S2 36.1% 65.8% 88.0% 100% 100% 100% 100% 100% 100%

Original [148] 10.1% 0% 0% 12.7% 57.1% 99.4% 100% 100% 100%

+ S1 0% 0% 0% 14.0% 72.2% 95.9% 100% 100% 100%

+ S2 0% 0% 0% 13.4% 81.4% 94.4% 97.2% 100% 100%
Y3

FTE-Y3

+ S1 + S2 5.3% 0% 34.7% 94.0% 99.4% 100% 100% 100% 100%

Original [148] 8.8% 0% 0% 0.3% 11.8% 51.6% 96.1% 100% 100%

+ S1 0.3% 0% 0% 1.3% 13.9% 69.3% 94.1% 99.0% 100%

+ S2 1.5% 0% 0.1% 1.7% 32.7% 81.9% 99.0% 100% 100%

+ S1 + S2 16.5% 0% 4.3% 47.2% 93.4% 99.7% 100% 100% 100%

Y5
FTE-Y5

+ S1 + S2 (TV) 43.6% 51.7% 42.1% 26.3% 23.8% 66.1% 97.7% 99.7% 100%

Original [305] 13.5% 0% 31.3% 86.1% 96.1% 90.7% 86.0% 100% 100%
Y2

ADV-Tshirt + S1 + S2 0% 0% 34.2% 89.0% 91.7% 83.5% 78.5% 98.7% 100%

Original [305] 3.8% 0% 3.8% 32.2% 75.7% 89.8% 90.5% 91.5% 95.1%
Y3

ADV-Tshirt + S1 + S2 0% 0% 33.6% 88.2% 91.3% 92.4% 89.7% 90.7% 87.7%

Original [305] 35.9% 6.8% 17.1% 36.7% 37.4% 72.0% 88.6% 92.3% 91.5%
Y5

ADV-Tshirt + S1 + S2 2.6% 1.0% 61.6% 74.7% 58.3% 89.6% 90.5% 64.1% 61.1%

facilitate rendering objects within images. Specially, we render the four corners of the STOP

sign and obtain its size in pixels by measuring the distance between these four corner points

in the image. With S1 and S2, we can embed the system-model property into the attack

generation process to improve system-level effects. To further validate the effects of S1 and

S2, we perform ablation studies by generating the attack with S1 only and S2 only, and

comparing them to the attack generated with/without both S1 and S2. Details of attacks

without S1 and S2 (i.e., original attacks) are in §5.3.
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Table 5.5.1: System-level violation rate tested in simulation and component-level ASR eval-
uation including baseline comparison (i.e., Original and ablation studies). Each cell contains
10 runs with different initial positions of the AD vehicle. S1: with S1 only; S2: with S2 only;
S1 + S2: with S1 and S2; SCR: System-critical range (§5.4.3). ∗ with special improvements
(§5.5.1).

RP2 FTE-Y3 FTE-Y5
Eval. level

Speed
(mph)

[110] S1 S2 S1 + S2 [148] S1 S2 S1 + S2 [148] S1 S2 S1 + S2

25 0% 90% 100% 100% 0% 0% 0% 40% 0% 0% 0% 10%∗

30 - - - - 0% 0% 30% 100% 0% 0% 0% 80%

System
(violation

rate) 35 - - - - - - - - 0% 30% 40% 100%

p-value - 0.00 0.00 0.00 - - 0.08 0.00 - 0.08 0.04 0.00

Overall 71.2% 74.2% 78.6% 87.8% 53.3% 53.6% 54.0% 70.4% 41.0% 42.0% 46.3% 62.3%Component
(ASR) SCR 33.1% 54.7% 67.1% 84.6% 33.8% 36.4% 37.8% 65.6% 26.6% 29.8% 35.9% 57.4%

Results. The STOP sign attack images are in Fig. 5.5.1, which are printed in physical

world and the perception modeling results from the physical world are in Table 5.4.2. From

the results in Table 5.4.2, almost all the results (bolded in the table) with our system-driven

attack improvement can outperform the original attack. As shown in Table 5.5.1, with our

system-driven attack designs, the system-level violation rate can increase by around 70% on

average, where we only include the results where the benign cases have a 0% system-level

violation rate. The p-value (Table 5.5.1) is generally at the statistically significant level (e.g.,

generally < 0.05 or at a similar magnitude, especially for S1+S2). With S1 + S2, the overall

component attack success rate can increase by around 33% on average. Especially, in the

system critical range, the attack success rate can increase by 122%, which can significantly

improve the system-level effects. Taking FTE-Y5 at 35 mph as an example, the brake

distance of 35 mph is around 20 m and the attack success rate from 20 - 35 m shown in

Table 5.4.2 is around 98%, which shows a high chance to make the STOP sign not tracked

before the brake distance, which leads to the 100% violation rate (Table 5.5.1).

For FTE-Y5 at 25 mph, due to the low effectiveness (i.e., around 4%) from 10 m to 15

m, the tracker cannot be deleted, which leads to 0% system violation. Thus, we provide
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a RP!-Y2

S1 S2

(b) FTE-Y3 (c) FTE-Y5

S1+S2 S1 S2 S1+S2 S1 S2 S1+S2 TV*

Figure 5.5.1: Visualization of STOP sign attacks with system-driven design. S1: with S1
only; S2: with S2 only; S1 + S2: with both S1 and S2; TV∗: S1 + S2 with TV loss (§5.5.1).

Table 5.5.2: System-level violation rate tested in simulation on different AD parameter
settings which are highly critical to the system-level effects. The perception modeling results
from physical world are in Table 5.3.3 and Table 5.5.1.

Tracking param (H, R) (4, 6) [54] (3, 5) [160] (4, 40) [334]

Brake (m/s2) -3.4 -6.0 -3.4 -6.0 -3.4 -6.0

Original [148] 20% 0% 50% 0% 40% 0%

Ours 100% 100% 100% 90% 100% 100%

a special improvement by applying the total variation (TV) loss as prior works [110, 301]

which benefits the attack effectiveness. The perception modeling results from the physical

world are in Table 5.4.2 and the attack visualization is shown in Fig. 5.5.1. The system

violation rate increases to 10% after improvement as shown in Table 5.5.1 with ∗. Based on

results in Table 5.4.2, the attack success rate in a near distance is generally lower, which

aligns well with the results of prior work [330]. This leaves space for future works: improving

component attack success rate in the near distance.

The results of the ablation study are also summarized in Table 5.5.1. Although in the

majority of cases, S1 cannot significantly improve the system-level effects (20% on average),

the component attack success rate in the system-critical range is improved. Compared to

S1, S2 has better results (around 28% on average). Only combining S1 and S2 can further

benefit the system-level effects (around 70% on average), which shows the necessity of both

S1 and S2.
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Table 5.5.3: Pedestrian collision rate tested in simulation with ADV-Tshirt attack on differ-
ent object detectors. 10 runs for each cell with different initial AD vehicle position.

YOLO v2 (Y2) YOLO v3 (Y3) YOLO v5 (Y5)Speed
(mph)

Original [305] Ours Original [305] Ours Original [305] Ours

25 20% 50% 0% 50% 0% 70%

30 100% 100% 50% 100% 10% 80%

35 100% 100% 80% 100% 60% 90%

5.5.2 Generality on Different AD System Parameters

Methodology and setup. We select the most safety-critical parameters on system-level

effects in AD systems for this evaluation including the tracking parameters (H, R), where the

tracking creates a tracker for an object only when it is continuously detected for H frames,

and deletes its tracker only when the object continuously disappears for R frames [336, 54,

160, 150], and the brake deceleration where we use the safe vehicle deceleration and max

vehicle deceleration [93]. We select the tracking parameters from Baidu Apollo [54] and

Autoware.AI [160], and the representative research paper [334]. All the parameter details

are in Table 5.5.2 and for others, we follow the same setup in §5.5.1. We select the FTE-Y5

since it is the most representative attack so far and 35 mph as the target speed due to its

high safety impact.

Results. The system-level attack effect results (violation rate) are summarized in Ta-

ble 5.5.2, where we compared our attack with the original naive attacks (§5.3). The results

show that our attack can outperform the original attack in all the different AD parameter

settings on the system-level effect. On average, we have around 98% system violation rate (5

times larger than the original one) while the original naive attack only has 18%. The results

further point out that our attack is general to different critical AD system parameters.
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Original Original OriginalOur Our Our

YOLO v2 (Y2) YOLO v3 (Y3) YOLO v5 (Y5)

Figure 5.5.2: Visualization of ADV-Tshirt attack with and without system-driven design.

5.5.3 Generality on a Different Object Types

Methodology and setup. We select the “pedestrian” as our target object type since

making the pedestrian vanish will cause a significant impact on AD. We select the most

representative patch attack – adversarial T-shirt [305], which is called ADV-Tshirt in our

paper. For object detectors, we select Y2, Y3, and Y5 and follow the same setup in ADV-

Tshirt paper [305], and we collect the videos from the real world (similar methodology in §5.3)

for attack generation and manually annotate the four corner points for placing the patch

(obtaining the size and position §5.4.3). Each video segment has around 200 frames. We

perform digital perception result modeling with real-world data we collected.

Results. The perception results modeling results for ADV-Tshirt are shown in Table 5.4.2

and the generated patches are visualized in Fig. 5.5.2. We define the system-level effect

metric as pedestrian collision rate:
Kcollision

Ktotal

, in which Kcollision means the number of runs

where the AD vehicle crash into the pedestrian, and Ktotal is the number of total runs.

The system-level evaluation with the comparison with the original attack [305] is shown in

Table 5.5.3. In average, our attack designs can achieve around 82% pedestrian collision rate

while the original attack can only achieve around 47% pedestrian collision rate. Especially,

for the most advanced object detector such as Y3 and Y5, our pedestrian collision rate has

significant improvement compared to the original attack. Y2 is more fragile than others

which makes the original attack have very high attack effectiveness in the component level
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and leads to pedestrian collision rates at the similar level as ours. The results show the

generality of our attack designs to different object types which further shows the generality

to different system models (§5.2).

5.6 Discussion

Potential mitigation. The ongoing tug-of-war between adversarial attacks and their de-

fenses has yielded a range of mitigation strategies, such as adversarial training [199]. Since

several object-evasion attacks in AD context have been identified [330, 148], there is an

immediate need for defense exploration. Before pursuing novel mitigation strategies, it is

imperative to first measure how existing defenses affects system-level attack effectiveness in

AD, especially the ones with theoretical guarantees [297, 295], which should be a future work.

Another promising direction involves cross-checking with alternate perception sources. For

example, AD systems might verify camera-based pedestrian detection with LiDAR percep-

tion. Despite not offering a fundamental defense strategy [70], they may make system-level

attack effects more difficult to achieve. Thus, we leave a systematic exploration of these

defenses to future work.

Limitation and future work. First, although we leverage the perception results that

modeling from the physical world and demonstrate the system-level effects in AD system

with LGSVL, the feasibility of the attack effects on real AD systems in physical world remains

unclear. Thus, the exploration of the attack practicality is a valuable future work. Second,

our attack is within white-box threat model, which is less practical compared to black-box

one. Thereby, the development of a novel attack with a practical threat model is a potential

future work. Third, although we explore the generality on different AD system parameters

in §5.5.2, our evaluation results and findings are limited by the current AD system setups

introduced in §5.3.2. Therefore, the system-level effect measurement on commercial AD
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systems such as Tesla is an important future direction.

5.7 Conclusion

In this paper, we ask whether previous works can achieve system-level effects (e.g., vehi-

cle collisions, traffic rule violations) under real AD settings. Then, we perform the first

measurement study to answer this research question. Our evaluation results show that all

representative prior works cannot achieve any system-level effects in a closed-loop AD setup

due to the lack of the system model. With our newly proposed system-driven designs, i.e.,

SysAdv, the system-level effects can be significantly improved. We hope that the concept of

the system model could guide future security analysis/testing for real/practical AD systems.

126



Chapter 6

SlowTrack: Increasing the Latency of

Camera-Based Perception in

Autonomous Driving Using

Adversarial Examples

6.1 Introduction

Autonomous Driving (AD) vehicles, manufactured by various companies, have become ubiq-

uitous in our daily lives. For instance, numerous Tesla vehicles are equipped with the Autopi-

lot feature [158, 265] running in the real world. For these vehicles, camera-based perception

is pivotal, enabling them to detect real-time environmental objects such as pedestrians to

ensure safety. Given its significance for safety and security, various prior works [70, 252, 239,

283] have studied its security, especially on integrity such as making the object vanished or

changing the label of the objects to cause traffic rule violations or safety hazards. We refer

127



to these as system-level effects throughout this paper.

Nevertheless, the availability aspect (real-time performance) of the system, which is crucial

for safety (e.g., causing vehicle collision [275]) has been relatively underexplored, especially

for the complete camera-based AD perception pipeline. While some existing AD security

analysis has studied availability in object detection [249, 80], they do not encompass the

entire AD perception since usually, object detection is a part of the AD perception [150]. In

addition, in the Cyber-Physical System area, it is widely recognized that small component

level errors do not necessarily lead to system-level effects [252, 283]. Thus, these studies

leave a critical research gap: their proposed attack strategies may not be effective enough to

conduct system-level effects in end-to-end AD systems. As we demonstrate later, existing

attacks targeting only object detection do not consistently produce highly potent system-

level effects due to lack of entire AD perception consideration.

To fill in this critical research gap, in this paper, we are the first to study availability-based

adversarial attacks across the entire camera-based AD perception including both object

detection and tracking. Our proposed novel attack framework, SlowTrack, is designed to

increase the latency of camera-based AD perception. Instead of solely targeting object de-

tection, which might not yield potent system-level effects due to the limited increase of the

latency, we realize the untapped potential of object tracking response time to generate a

much more effective latency attack. To illustrate, an attacker focusing only on object detec-

tion might attempt to dramatically increase the number of proposed bounding boxes [80].

Object tracking might filter out a majority of these boxes and in common object detection

post-processing [155, 327], the maximum number of detection is provided to ensure perfor-

mance. Thus, the effectiveness of these attack is limited. Due to the importance of object

tracking, we first perform availability attack surface analysis by theoretically analyzing the

time complexity of the state-of-the-art representative tracking algorithms. Then, we propose

a two-stage attack strategy and formulate the attack as an optimization problem, shown in
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Fig. 6.3.1. Additionally, our novel loss function designs, encompassing score loss, bounding

box area loss, and feature match loss, fully leverage the entire tracking-by-detection pipeline

to generate effective latency-based attack.

Our experimental evaluation of SlowTrack targets four state-of-the-art camera-based AD

perception pipelines. We find that SlowTrack, when compared with existing object detection

latency attacks, provides significant improvements in latency under comparable perturbation

levels. For instance, SlowTrack on average induces latency 2.9 times more than that for

existing approaches [80, 249]. We also demonstrate the system-level effects of our SlowTrack

using Baidu Apollo [52] LGSVL [234] AD simulator. The results show that SlowTrack

induces a 70% vehicle crash rate in two representative AD scenarios while existing methods

achieve only a 30% rate. Demo videos are at the project website: https://sites.google.com

/view/cav-sec/slowtrack

To sum up, our contributions are as follows:

• We are the first to study availability-based adversarial attacks considering the entire

AD perception pipeline and find that previous object detection-based latency attack

strategies may not induce potent system-level effects.

• We propose a novel attack framework SlowTrack to systematically generate the latency

adversarial attacks on camera-based AD perception by designing a two-stage attack

strategy and proposing three novel loss functions.

• SlowTrack is tested on four popular camera-based AD perception pipelines across dif-

ferent hardware, showing increase in latency and boost in system-level effects.
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6.2 Background and Related Work

Camera-based AD perception. In the AD system, camera-based perception is primarily

constituted by object detection and multi-object tracking (MOT) [52, 160]. This process aims

to identify objects in each image frame and track their movement over time [150]. Tracking-

by-detection has become the dominant MOT paradigm [326] and is widely used in industry-

grade full-stack AD systems such as Baidu Apollo [52] and Autoware.AI [160]. It incorporates

a detection module, a data association module, and a tracker management module. The

detection module identifies objects in an image, noting their location, confidence, class scores,

as well as other features for later data association. Data association then compares these

detection with existing trackers based on features such as location and appearance, matching

them based on similarity.

Tracking-by-detection, despite varying in matching strategies, shares a similar tracking man-

agement [150] to build and delete the moving trajectories, called trackers, and mark trackers

and detection boxes as different states. Specifically, unmatched detection boxes are marked

as unconfirmed and will be deleted unless they are continuously detected for H frames.

Matched trackers are marked as re-find or remain activated depending on the trackers’ pre-

vious states, while unmatched trackers are marked as lost, and will be deleted if no objects

are associated with them for R frames. All of these trackers involved in matching constitute

tracker pool and trackers with activated states are outputs.

Prior works [150, 192, 252] show that MOT poses a general challenge to cause AD system-

level attack impact for existing attacks that target object detection since MOT is designed

to be robust against errors in object detection. Given this challenge, our work introduces an

innovative latency attack against the most representative and popular MOT (tracking-by-

detection) and demonstrates the heightened system-level attack effects in AD.
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Adversarial attack in AD. DNNs are vulnerable to adversarial attacks [75, 243, 191],

which are maliciously crafted samples to force DNNs to misbehave. Various prior works have

explored the adversarial attacks in AD [69, 240, 242, 241, 211, 97]. While a majority of these

attacks target integrity, our research concentrates on availability, which is another critical

problem in AD [275]. Although some attack works study availability [182, 80, 249, 278], none

of them consider the whole AD perception pipelines, which leads to suboptimal system-level

effects in AD [150].

Availability-based latency attack. Availability-based latency attack can induce delays

in the outputting function. Such adversarial methods, when applied to DNN, have been

investigated recently [249, 80, 182]. However, their oversight of MOT within AD perception

restricts their potential to achieve potent system-level effects. Thus, in this work, we perform

the first availability-based latency attack on the whole AD perception to significantly boost

system-level effects.

6.3 Methodology

6.3.1 Availability Attack Surface Analysis

To understand the vulnerability of the tracking-by-detection paradigm to latency attacks,

we analyze the time complexity of the main three key steps (detection, data association,

and tracker management) presented in Algorithm 6.4. The time consumption of the image

preprocessing and backbone network of the detector hinges upon the computational dimen-

sion [255] and the number of computations [139, 130]. Given that the dimensions of the

input images are unchanged and the majority of the detection model activation values are

inherently non-zero for the most of images [249], we do not prioritize the time complexity of

this segment.
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Algorithm 6.4: Tracking-by-detection

Input: Video sequence V; detector Det; detection filter F
Output: Activated trackers T of the video

1 Initialization: T ← ∅
2 for frame fk in V do

/* detection module */

3 Dk ← Det(fk)
4 ↓ O(n2) + O(n)
5 Dreserved ← F (Dk)

6 ↓ O(m)
/* predict locations of trackers */

7 for t in T do
8 t← KalmanFilter(t)
9 end

10 ↓ O(mn′)
/* trackers management */

11 Details in [193]

12 end
13 Return: T

The boxes obtained by the detection module usually need to be filtered before being passed

to subsequent modules. Prevailing filtration techniques encompass non-maximum suppres-

sion (NMS) and score filtering with time complexity of O(n2) and O(n) respectively, where

n denotes the number of outputs from the detection network. However, since most track-

ing algorithms [327] confine the maximum number of detection to |D|max , the maximum

time complexities of these are O(|D|2max) and O(|D|max). Then, data association matches

the reserved detection boxes and tracker pool with features, and the time complexity of this

process is O(mn′), where m represents the number of trackers in tracker pool and n′ repre-

sents the number of reserved detection boxes. In the tracker management module, trackers

are created and deleted according to the matching results and are marked with different

states with a time complexity of O(m). Meanwhile, the velocity and location of the trackers

are also updated with a time complexity of O(m).
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6.3.2 Threat Model, Formulation, and Attack Overview

Threat model. Our attack method assumes white-box settings for the detection model,

wherein both its architecture and parameters are known. For the tracking, we do not force

the attackers to know the specific parameters and implementation details, which is a similar

threat model as prior latency attack works [249, 80].

Formulation. Detectors often restrict the maximum number of detection boxes. This

constraint results in a worst-case time complexity for the detection module of O(|D|2max) ,

effectively reducing the impact of previous latency attacks on object tracking [80, 249]. Thus,

we propose an attack methodology that focuses on increasing the latency of the subsequent

tracking stage under the constraint of limiting the maximum number of detection boxes.

For a camera-based perception pipeline P , given the original image x, the attack goal is to

craft an adversarial example x∗ to maximize the tracking pipeline latency, while keeping the

added adversarial perturbations imperceptible. We formulate it as the following optimization

problem:

argmax
x∗

T (P (x∗)) s.t.




|D|max = N

∆(x∗, x) ≤ ϵ

(6.1)

, where T indicates the time function. Our attack strategy is designed to create detection

boxes that exploit vulnerabilities in the tracker management module of AD. Specifically, for

avoiding the temporary loss of objects in consecutive video frames due to occlusion, etc., the

lost tracker will not be deleted immediately until the object is lost for R consecutive frames.

Leveraging this mechanism, we are able to inject more and more trackers into the tracking

module by strategically creating detection boxes through carefully designed perturbations.

The detection boxes that appear in each frame are not associated with existing trackers

and cause new tracking boxes to be created. As a result, the worst-case time complexity
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of the tracking module under our attack method is O(R|D|2max), where m = R|D|max and

n′ = |D|max. Thus, it can lead to more computation cost than detection attacks in prior

works.

Overview. In this paper, we propose SlowTrack, the first adversarial attack maximizing the

latency of the whole camera-based perception pipeline, leveraging object tracking, which can

significantly increase the latency of AD perception under the constraint shown in Eq (6.1).

The two attack stages of SlowTrack are: 1) in the attack initialization stage, make detection

boxes created as many new trackers as possible, which requires detection boxes not to be

associated with existing trackers, 2) make the lost trackers re-found before they are deleted,

and kept in track pool, which requires detection boxes to be associated with corresponding

trackers. Thus, we need to construct sets of detection boxes with the same matching features

and make these sets of boxes appear or disappear in the corresponding video frames using

adversarial attacks. To our best knowledge, representative tracking algorithms always use

motion-based features for association. Thus, we divide the images into different regions and

use the candidates in these regions as sets, which facilitates the inter-association of detection

boxes within sets and the disassociation of detection boxes between sets.

The overview of SlowTrack is in Fig. 6.3.1. Assuming that we divide the image into 3

regions, in frame 0, we select the top region and make the detection boxes appear in it,

which are initialized as new track boxes. Similarly, in frame H = 1 we make the fake

detection boxes appear in the middle region, not associated with the existing track boxes,

and make the tracker management module create new track boxes, while the track boxes

in frame 0 do not disappear. These frames are not associated with existing frames, making

the tracker management module create new trackers, and the trackers initialized in frame

0 are not deleted, allowing to inject |D|max trackers into the track pool. Meanwhile, we

make the detection boxes of the corresponding region reappear before the R frames to keep

the trackers. Since the tracker management module only initializes the detection boxes
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Figure 6.3.1: Overview of our SlowTrack attack.

that detected H frames consecutively, our attack strategy can be formulated: divide the

image into K regions, each of which needs to be selected for H frames consecutively in the
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Algorithm 6.5: Generate Attack Strategy
Input: A video sequence V = [v0, v1, ..., vK−1]; reserved age R; hit count H
Output: attack strategy S
/* region idx is selected image region */

1 Initialization: S ← ∅; region idx = 0; n = 0
2 while n < K do

/* Re is the next time each region needs to be reactivated */

3 if n == 0 then
4 S ← S ∪ {region idx}
5 Reregion idx = n+R+ 1
6 region idx = region idx+ 1

7 end
8 else
9 Remin, idx← minimum value and index in Re

10 if Remin − n<H then
11 S ← S ∪ {idx}
12 Reidx = n+R+ 1

13 end
14 else
15 for i = 1 to H do
16 S ← S ∪ {region idx}
17 end
18 Reregion idx = n+R+ 1
19 region idx = region idx+ 1
20 n = n+H − 1

21 end

22 end
23 n = n+ 1

24 end
25 Return: S

initialization stage, and then be selected once more before R frames. We use the greedy

algorithm with the maximum value of K: R−H + 1 (when R−K = H − 1, no region can

be added).

Attack Strategy Generating. Algorithm 6.4 outlines the full process of Tracking-by-

detection. We analyze the representative tracker management module, which is also used in

some joint-tracking algorithms and propose the attack strategy generation algorithm shown

in Algorithm 6.5. Specifically, we use a greedy algorithm to generate attack strategy to

continuously inject different regions of detection boxes into the tracker management module.

Such an attack strategy can also be generalized to different joint-tracking algorithm.
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6.3.3 Loss Function Design

Score loss. To boost the number of selected boxes, it is necessary to raise the number

of prediction candidates that bypass the detection filter, which selects candidates based on

their confidence scores. Thus, to increase confidence score of selected candidates Csel, we

propose a novel score loss:

Lscore =
1

|Csel|
∑

c∈Csel
max((Tconf − cconf ), λ)

where Tconf represents the filtering confidence threshold set by the detection model, cconf

represents the confidence scores of the object detector, and λ is a hyper-parameter.

Bounding box area loss. To make more candidates to be reserved in the NMS employed

by some detection filters, we need to compress the dimensions of the boxes to reduce the

IOU between the candidates. This is expressed as:

Larea =
1

|Csel|
∑

c∈Csel
( bwc ·bhc
SW×SH

)2

where the bounding box is b, with bw and bh being its width and height. SW and SH are the

width and height of the input image. This loss is added only when the filter contains NMS.

Feature matching loss. To successfully match the selected detection box with correspond-

ing lost tracker so that the lost tracker is re-found before being deleted, the feature distance

for the data association module needs minimizing.

Lmatch = Ψ(Ti, F ′(Csel))

where Ψ is the feature distance function in data association, Ti represents i-th set of trackers,

and F ′ represents detection filters without score threshold filtering.
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Pairwise computation for obtaining feature distances could be expensive if feature extraction

is complex or if the number of detection boxes is too large. Therefore, we propose a less

computationally intensive method to make the corresponding trackers and detection frames

match successfully. The images that need to appear with the same batch of detection boxes

use the same perturbation. However, this makes the perturbation accumulation more ob-

vious and the result of the attack decreases. Therefore, for balance, we use the universal

perturbation method in the attack initialization stage and feature matching loss after that.

Finally, the adversarial loss is represented by:

Ladv = λ1Lscore + λ2Larea + λ3Lmatch (6.2)

Similar to existing works [75], to make the perturbation invisible, we constrain the L2 norm:

min
x∗
Ladv + µ∥x∗ − x∥2

where µ is the hyper-parameter and x is the original image.

6.4 Experiments

6.4.1 Experimental Setup

Datasets and models. We use the BDD [246] and MOT17DET (MOT17) [207] datasets

to evaluate SlowTrack. MOT17 includes 14 videos with more than 10K images and BDD

contains 100K images with various attributes such as weather, scene, and time of day, re-

sulting in a diverse dataset. For MOT17, we use all the data while for BDD, we randomly

select 10 videos. As for the models, we select the most representative perception models:

SORT (Y5) [61] (a Kalman filtering-based MOT generally used in AD [52, 252], with YOLO
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(b) S2(a) S1

AD vehicle Other vehicle Vehicle trajectory

Figure 6.4.1: Two scenarios (S1 and S2) for our simulation evaluation setup on the system-
level effects.

Model Attack Titan V 2080 Ti 3090

PS 211 199 160

Overload 406 411 337SORT (Y5)

SlowTrack 847 1082 1018

PS 417 359 259

Overload 970 914 685FairMOT

SlowTrack 1848 1731 1726

PS 174 188 166

Overload 379 427 330ByteTrack

SlowTrack 584 621 555

PS 2395 2460 2372

Overload 3093 3195 2485BoT-SORT

SlowTrack 3768 4101 3245

Table 6.4.1: Latency Time (ms) on MOT 17 dataset.
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w/o Lscore w/o Larea w/o Lmatch SlowTrack

R-Track 0.0 153.2 171.4 225.5

R-Lat 0.0 34.0 38.3 50.9

#Track 0.1 63.9 66.9 73.5

Table 6.4.2: Ablation study for loss designs (Lscore, Larea, and Lmatch in Eq. (6.2)) on R-
Track, R-Lat, and #Track with SORT (Y5) and MOT17 using 2080 Ti. w/o: without

S1 S2
Model

PS Overload SlowTrack PS Overload SlowTrack

SORT(Y5) 10% 30% 100% 20% 40% 90%

FairMOT 20% 40% 100% 20% 40% 100%

ByteTrack 0% 40% 80% 0% 40% 90%

BoT-SORT 40% 50% 100% 50% 50% 100%

Table 6.4.3: System-level evaluation (vehicle crash rate) with Baidu Apollo and LGSVL
simulator. 10 runs for each cell.

v5 [155] as detector), FairMOT [327], ByteTrack [326], and BoT-SORT [46]. We use the

default parameter for each model.

Evaluation metrics. We design the metrics as follows:

R-Track =
Track-Lat(x∗)− Track-Lat(x)

Track-Lat(x)

R-Lat =
Total-Lat(x∗)− Total-Lat(x)

Total-Lat(x)

#Track =
Tracker#(x∗)− Tracker#(x)

Tracker#(x)

where R-Track and R-Lat represent the rate of increase for the tracking latency and whole

perception latency and #Track represents the rate of increase for the number of tracker.

To measure the imperceptibility, we use average L2 norm [75, 323]. We define system-level

effects metric as vehicle crash rate:
Ncrash

Ntotal

, where Ncrash denotes the number of runs causing

vehicle crashes and Ntotal is the number of total runs.

Testing hardware. Given that latency is intrinsically tied to the hardware device, we test
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SlowTrack on multiple hardware: TiTAN V, GeForce RTX 2080 Ti (shown to be used in

real AD [252]), and GeForce RTX 3090.

Baselines comparison. To our best knowledge, we are the first to propose a latency

attack against whole camera-based AD perception pipeline, while the existing attacks focus

on object detection alone. Thus, we select two representative latency attacks on object

detection as our baselines: PS [249] and Overload [80].

Simulation evaluation. To study the system-level effects, we perform an end-to-end at-

tack evaluation on Baidu Apollo [52], an industry-grade full-stack AD system, with LGSVL

simulator [234], a production-grade AD simulator. Our experiments are conducted on the

Borregas Ave map and the Lincoln2017MKZ AD vehicle with default configuration. To

simulate our attack impact, we model the latency of the camera-based AD perception and

inject it into the AD system. Due to the representativeness of SORT (Y5), we use its latency

results tested on 2080 Ti GPU (used in genuine AD vehicles [252]), as our latency modeling

results. Our evaluation focuses on two representative scenarios as shown in Fig. 6.4.1, where

the blue vehicle is the victim AD vehicle and the blue and red lines are the trajectories

of the two vehicles. S1 (Fig. 6.4.1 (a)) is a common driving scenario for other vehicles to

change the lane line and S2 (Fig. 6.4.1 (b)) is another common driving scenario for the STOP

sign-controlled intersection. We perform 10 runs on each scenario and compare SlowTrack

with the two baselines.

6.4.2 Experimental Results

Effectiveness. As shown in Table 6.4.4, we compare our SlowTrack with the baselines.

SlowTrack can increase the number of tracker up to 1334.9 on FairMOT, which is much

better than existing works: at most 939.9 on FairMOT. Especially, for the tracking stage,

SlowTrack provides 453.8 times slowing on average compared to the existing works which
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Table 6.4.4: Effectiveness results of tracking-stage and whole perception latency with number
of trackers and average L2 norm in different models and hardware. Bold denotes the best
results (i.e., highest R-Track, R-Lat, #Track, and lowest L2) in each row. M.: Model; D.:
Dataset; H.: Hardware; SY: SORT (Y5); FM: FairMOT; BT: ByteTrack; BS: BoT-SORT.

PS [249] Overload [80] SlowTrack
M. D. H.

R-TrackR-Lat#Track L2 R-TrackR-Lat#Track L2 R-TrackR-Lat#Track L2

Titan V 73.1 6.2 156.1 12.1 247.0 17.5

2080 Ti 64.9 11.7 205.1 34.7 310.3 49.4BDD

3090 76.4 6.2

69.1 0.042

186.3 13.8

94.6 0.011

338.3 23.0

141.8 0.010

Titan V 37.5 3.8 93.0 8.7 208.4 18.5

2080 Ti 33.2 8.6 82.6 19.3 225.5 50.9

SY

MOT17

3090 39.8 3.7

32.4 0.041

111.1 9.8

47.0 0.013

283.9 25.7

73.5 0.013

Titan V 517.7 10.4 1505.9 29.1 2647.6 51.3

2080 Ti 390.1 8.7 1258.7 26.7 2260.7 48.1BDD

3090 236.0 3.8

401.1 0.036

836.4 13.3

939.9 0.029

1572.9 25.2

1334.9 0.028

Titan V 67.4 8.6 181.7 21.5 341.0 41.5

2080 Ti 49.3 7.1 149.0 19.9 279.5 38.4

FM

MOT17

3090 32.4 3.2

48.7 0.036

108.5 10.1

106.2 0.026

220.7 21.3

159.0 0.026

Titan V 40.2 2.5 173.0 9.2 290.0 14.7

2080 Ti 39.5 2.3 184.0 9.0 266.4 12.5BDD

3090 57.8 3.0

79.2 0.032

217.7 10.1

224.7 0.027

341.4 15.1

307.0 0.022

Titan V 29.0 1.9 95.0 5.4 173.0 9.8

2080 Ti 26.9 1.8 97.7 5.4 168.7 9.5

BT

MOT17

3090 45.2 2.4

38.0 0.030

115.2 5.9

78.3 0.025

204.0 10.5

130.1 0.022

Titan V 53.2 19.4 79.0 28.9 92.1 33.6

2080 Ti 57.6 19.6 89.1 30.6 103.6 35.5BDD

3090 61.0 22.1

70.0 0.033

93.9 34.1

221.9 0.029

135.3 49.7

280.8 0.025

Titan V 31.7 14.0 42.1 18.5 52.2 23.0

2080 Ti 34.2 14.6 45.6 19.5 59.1 25.3

BS

MOT17

3090 44.0 19.9

40.7 0.034

47.2 21.1

83.9 0.025

69.4 30.8

127.6 0.025

only have 256.4 times for Overload and 89.1 times for PS. As for the latency of the whole

camera-based AD perception, we find that SlowTrack can provide 28.4 times slowing down

on average, which is 2.9 times more than the two existing works. Especially, for the practical

SORT (Y5) on 2080 Ti, we observe 50.9 times slowing down, while existing works can only

have 19.3 times at most. For the imperceptibility, our average L2 norm (around 0.021

on average) is very small compared to the baselines and existing adversarial attacks on
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integrity [323].

We measure the latency time in Table 6.4.1. For instance, while existing representative attack

Overload [80] can trigger 411 ms latency on SORT (Y5) and MOT17 dataset with 2080 Ti,

SlowTrack can provide 1,082 ms, which is 1.6 times more than Overload. Thus, SlowTrack

can significantly outperform the existing baselines on camera-based AD perception, with

similar levels of imperceptibility.

Ablation study. The ablation study evaluating the designs of Eq. (6.2) is presented in

Table 6.4.2. In this study, each loss component is sequentially removed, and the attack is

tested on the most practical SORT (Y5) tracking method and the MOT17 dataset, utilizing a

2080 Ti. The findings in Table 6.4.2 highlight the indispensability of all three loss designs in

achieving high attack effectiveness. Notably, the Lscore performs as the most pivotal element

in enhancing attack effects. In the absence of Larea and Lmatch, the R-Lat experiences

reductions of approximately 33% and 25%, respectively. Thereby, these results indicate the

importance of integrating all three loss designs together.

Generality to different thresholds. The effectiveness of SlowTrack is most impacted

by different thresholds: confidence score threshold in object detection, maximum number

of detection boxes, IOU threshold for NMS, and IOU threshold for data association. To

evaluate their impact, we vary the thresholds with different values and measure the #Track

on the MOT17 dataset with 2080 Ti. The results are shown in Fig. 6.4.2. SlowTrack can

generally generate stable results across different threshold parameters, which indicates that

setting better thresholds cannot fully defend against SlowTrack. For instance, setting the

confidence score threshold to 0.2, the #Track of SORT (Y5) is around 92.1 while setting the

confidence score threshold to 0.4, the #Track is around 67.8. Additionally, finetuning the

thresholds usually will significantly reduce the benign performance. Thus, the results show

the generality of SlowTrack to different thresholds.
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Table 6.4.5: Variances of R-Track and R-Lat in repeated experiments (5 times) with different
hardware on MOT17 dataset.

Titan V 2080 Ti 3090
Model

R-Track R-Lat R-Track R-Lat R-Track R-Lat

SORT(Y5) 0.032 0.001 0.106 0.007 0.459 0.007

FairMOT 0.402 0.004 0.963 0.010 0.835 0.005

ByteTrack 0.156 0.002 0.075 0.003 0.050 0.001

BoT-SORT 0.006 0.001 0.158 0.032 0.192 0.054

(a) Confidence Thresh-
old

(b) Max. Number of
Detections

(c) IOU Threshold for
NMS

(d) IOU Threshold for
Match

Figure 6.4.2: Attack effectiveness under different thresholds.

End-to-end simulation evaluation results. As shown in Table 6.4.3, SlowTrack can

achieve 95% vehicle crash rate on average while for other attacks, they can only have around

30%. Note that the vehicle crash rate in benign cases is always 0%. The results demonstrate

that the existing latency attacks on object detection alone cannot trigger sufficient latency

to highly effectively cause vehicle crashes, which motivates our new attack design on entire

perception. SlowTrack significantly improves the system-level effects.

Running time variance. Recognizing the potential variability of system latency due to

many factors, we repeat our experiments 5 times [236] and measure the variance of R-Track

and R-Lat. As shown in Table 6.4.5, the variance is negligible compared to the original

values [182].
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6.5 Discussion

6.5.1 Physical-World Attack Realizability

Our study investigates the runtime robustness of camera-based AD perception by adversarial

attacks. Such attack is physically realizable as demonstrated in AttrackZone attack [211],

which leverages the projector to project the noise-level adversarial attack in physical world

at night. To improve our attack realizability, we take a small step forward to generate a

patch-based adversarial attack which is generally demonstrated as a physical-world realizable

attack [283, 282].

Adversarial patch generation. To formulate the patch into a patch δ, we design the

following method:

min
δ

Ex∼XLadv(x+ δ)

where the Ladv is introduced in Eq. (6.2), X denotes EoT [55] distribution for robustness

such as different pre-processing method.

Evaluation setup and preliminary results. We use a similar setup in the experiment

section, where we select the most practical model: SORT (Y5) and MOT17 dataset with 2080

Ti. The results values for R-Lat, R-Track, and #Track are 82.3, 336.1, and 80.9, respectively,

aligning closely with the findings in Table 6.4.4. These results suggest that the patch attack

can potentially induce substantial system-level effects with practicality. Note that the patch

results are slightly better than the noise attack. Since the perturbation strength of the patch

is much larger, it enables the attacker to generate bounding boxes with high confidence and

to precisely dictate their locations. Thus, the tracking can be easily controlled by the attacker

and the attack effects can be improved. However, the patch attack requires more complex
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designs such as patch size and patch location, which are correlated with the practicality

and effectiveness. In this paper, we only provide a preliminary evaluation demonstrating the

potential to transfer the noise attack to the patch attack. We leave the study on patch-based

attack as our future work.

6.5.2 Limitations and Future Work

First, although we have some physical-world realizability improvements and some existing

works demonstrate that such attack is realizable, it is still unclear whether SlowTrack can

indeed work well in physical world, which can be a potential future direction to explore.

Second, exploring SlowTrack under a black-box threat model, a more practical one, is another

potential future work. Third, while several availability-based latency attacks in AD have been

identified, the exploration of defense directions in this context remains limited. Consequently,

we consider the investigation of defenses as a part of our future work.

6.6 Conclusion

This paper presents a first study on availability-based latency adversarial attacks consider-

ing the entire camera-based AD perception pipeline, i.e., both object detection and object

tracking. We design a novel attack framework, SlowTrack, with a two-stage attack strategy

and three novel loss functions. Our results show that SlowTrack can outperform all the exist-

ing latency attacks on camera-based object detection and significantly improve system-level

effects, i.e., 95% vehicle crash rate. Due to the critical role of perception, we hope that our

findings and insights can inspire more future research into this largely overlooked research

perspective.
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Chapter 7

Revisiting Physical-World Adversarial

Attack on Traffic Sign Recognition: A

Commercial Systems Perspective

7.1 Introduction

In the rapidly evolving landscape of Autonomous Driving (AD) technology, AD vehicles,

such as the millions of Tesla cars [158] running on the public road, are becoming an integral

part of our daily lives. Compliance with traffic signs is essential for all vehicles, no matter

if they are high-autonomy AD vehicles (e.g., those for robo-taxi [286]), semi-autonomous

AD vehicles (e.g., those with Tesla Autopilot [264]), or conventional human-driven vehicles.

Failure to obey these rules can lead to accidents, posing a threat to human life.

Due to the importance of traffic sign detection, a natural question is whether AD vehicles

are truly as secure as we hope. To answer this critical question, recent research in secu-

rity analysis of Traffic Sign Recognition (TSR) systems has highlighted vulnerabilities to
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a wide range of physical adversarial attacks that can significantly impair the traffic sign

detection accuracy [187, 330, 283, 148, 213, 110, 83, 243, 186, 332]. Among them, the

most representative and also the most widely-exploited attack vectors are physical patches

or posters [187, 283, 330, 110, 148, 83, 243], which are low-cost, highly deployable, and

demonstrated capable of causing various highly severe attack effects. For instance, they

can make critical legitimate traffic signs undetectable, or hiding attacks, and trigger false

detection at any attacker-chosen positions, or appearing attacks. Such attacks can cause

various potential safety hazards such as traffic sign violations, unexpected emergency brak-

ing, speeding, etc. Due to such a high potential for practical impacts, these physical-world

adversarial attacks on TSR have drawn wide attention across not only the technology com-

munity [135, 108, 256, 216, 45] but also the general public [100, 162, 121, 210, 114].

Despite such high practical impact potentials, so far existing works generally only considered

evaluating the attack effects on academic TSR models, leaving the impacts of these attacks

on real-world commercial TSR systems largely unclear. A few recent works tried to under-

stand such commercial TSR system-level impacts, but their evaluation is all limited to one

particular vehicle model [148, 243], sometimes even an unknown one [148], making both the

generalizability and representativeness of these evaluation results questionable. This thus

raises a critical research question: Can any of the existing physical-world TSR adversarial

attacks achieve a general impact on commercial TSR systems today?

To answer this critical research question, in this paper, we perform the first large-scale

measurement of physical-world adversarial attacks against commercial TSR systems. In this

measurement, we focus on hiding attacks as they can most directly impair the function of

a commercial TSR product (i.e., by nullifying the TSR function), and test their black-box

transfer attack effectiveness against commercial TSR systems, which is the most practical

threat model against commercial systems and also the exact setup used by prior works to

claim their attack effects on commercial systems [148, 243]. In total, we were able to include
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four different commercial vehicle models in this testing, all of which are from the top 15 best-

selling vehicle brands in the US to ensure high representativeness (§7.2.1). As estimated later

in §7.3.2, this setup can be generalizable to at least 33.2% of the commercial TSR systems

sold in the U.S. in 2023, which is significantly improved over prior works (at most 3.8% or

unknown). We tested all prior works that demonstrated black-box attack transferability in

the physical world, which are presumably those having the highest potential to successfully

attack commercial systems.

Our testing results reveal that it is actually possible for existing attack works from academia

to have a highly-reliable 100% attack success rate against certain commercial TSR system

functionality, which is much higher than expected if compared to the transfer attack success

rates reported by the corresponding original papers (e.g., for one such case the reported was

<20%). Meanwhile, we do not see generalizability of such attack capabilities over different

commercial vehicle models and sign types. Over the entire 30 attack test combinations of

different sign types, attack methods, surrogate models, and vehicle models, the vast majority

(28/30) do not show any successful attack effects, leading to a 6.67% overall transfer attack

success rate against commercial TSR systems, which is almost a magnitude lower than those

reported in the original papers (51.6% on average).

The much lower-than-expected black-box transfer attack success rate on commercial systems

suggests the potential existence of deeper challenges for such attacks to take effect at the

TSR system level. Through our investigations, we find that one major factor might be an

unexpected spatial memorization design that commonly exists in commercial TSR systems

today. Specifically, this design exhibits an effect that once a sign is detected, both the

detected sign type and the detected location are persistently memorized until the sign’s

reaction task is finished. Different from methods like object tracking that can only temporally

memorize a detection result for a very short time (typically < 3 sec), the spatial memorization

we observed will only forget/clear a detection result after the sign’s reaction need in the
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spatial domain is met (e.g., when the vehicle passes the detected sign), regardless of time.

Such a spatial memorization design can significantly impact the success of existing adversarial

attacks at the TSR system level. For example, for hiding attacks, to achieve a system-level

success in which the TSR system is unable to show the sign display at the sign’s reaction

task period, the attack has to be continuously successful at all possible detection moments

that can trigger such memorization before the vehicle passes the sign. For appearing attacks,

such an impact on the TSR system-level attack success is the opposite: as long as the attack

can succeed in any of such detection moments, the TSR system-level attack effect can be

achieved.

Since such a spatial memorization design commonly existing in commercial TSR systems

today may create a significant discrepancy between the TSR model-level attack effect and

that at the TSR system level, we further mathematically model its impact on the TSR

system-level attack success for both hiding and appearing attacks, which results in new

attack success metric designs that can systematically consider the spatial memorization

effect. Through both theoretical proof and numerical analysis using these new metric designs,

we find that due to spatial memorization, hiding attacks are theoretically harder (if not

equally hard) than appearing attacks in achieving TSR system-level attack success. Such an

attack hardness gap can be huge (⩾93.8% absolute differences in attack success rate values).

Meanwhile, due to the lack of consideration of spatial memorization, existing TSR model-

level attack success metrics can be highly misleading in judging the TSR system-level attack

success, with a potential of having ∼50% absolute attack success rate value differences.

Due to such potential huge differences in judging the TSR system-level attack success, we

then use the new attack success metrics to revisit the evaluations, designs, and capabilities of

existing attacks in this problem space. These efforts lead to various new findings compared to

existing knowledge in this problem space, some of which directly challenge the observations or

claims in prior works due to the introduction of the new attack success metrics. For example,
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we find that while some prior works in this problem space can be claimed as effective using

prior success metrics (e.g., with ∼50% to 90% success rates), when spatial memorization

is considered, their success rates can drop significantly to ⩽6.6% even in white-box attack

settings, making it no longer approximate to claim them as effective at the TSR system level.

As another example, also due to spatial memorization, we find that the benefits of certain

prior attack designs can be seemingly high (e.g., >20% attack success rate increase) using

prior metrics, but are actually nearly negligible (e.g., only 1% increase) at the TSR system

level after spatial memorization is considered. The code and data will be made available at

our website: https://sites.google.com/view/av-ioat-sec/commercial-tsr-test.

To sum up, this paper makes the following contributions:

• First large-scale commercial system measurements: We conduct the first large-scale mea-

surement of physical-world adversarial attacks against commercial TSR systems. Our

testing results reveal that although it is possible for existing attack works from academia

to have highly reliable (100%) attack success against certain commercial TSR system

functionality, such black-box commercial system attack capabilities are not generaliz-

able, leading to a much lower-than-expected overall black-box transfer attack success

rates.

• Discovery and analysis of spatial memorization: We discover a spatial memorization

design that commonly exists in today’s commercial TSR systems, which can keep mem-

orizing a sign detection result until the sign’s reaction need in the spatial domain is

met (e.g., when the vehicle passes the detected sign’s position). This discovery is cru-

cial as it is shown to be capable of creating a significant discrepancy between the TSR

model-level attack effect and that at the TSR system level.

• New attack success metric designs : We mathematically model the impact of this design

on the TSR system-level attack success for both hiding and appearing attacks, resulting

in new attack success metric designs that can systematically consider the spatial mem-
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Table 7.1.1: Top 15 leading car brands in the United States based on vehicle sales in
2023 [260]. The ones with direct evidence of equipping front windshield cameras for TSR
from their official websites or vehicle manuals are marked with check-marks. The vehicle
models from 4 out of the 5 highlighted brands below (with bold and underline) are tested in
our study (we choose to not directly reveal which four for anonymity purpose).

Car brand Sales number TSR

Ford 1,904,038 ✓

Toyota 1,888,941 ✓

Chevrolet 1,702,700

Honda 1,156,591 ✓

Nissan 834,091 ✓

Hyundai 796,506 ✓

Kia 782,468 ✓

Jeep 641,166 ✓

Subaru 632,083

GMC 563,692 ✓

Ram 539,477 ✓

Tesla 498,000 ✓

Mazda 365,044 ✓

BMW 361,654 ✓

Volkswagen 329,025 ✓

orization effect. We then use them to revisit the evaluations, designs, and capabilities

of existing attacks in this problem space.

• New observations: Through the commercial TSR system measurements, new metric

designs and analysis, and the revisiting of existing attacks, we uncover a total of 7 novel

observations compared to existing knowledge in this problem space, some of which

directly challenge the observations or claims in prior works due to the introduction of

the new attack success metrics.
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Table 7.1.2: Existing works with successfully demonstrated traffic sign hiding or appearing
attack effects in the physical world using sticker patches or whole-sign posters. HA: Hiding
Attack. AA: Appearing Attack. As shown, the commercial system testing aspect is currently
under-studied. Highlighted in gray rows are the works that have demonstrated black-box
attack transferability in the physical world and thus have the highest potential to successfully
attack commercial systems, which are thus the targets of our study later in §7.3 and §7.4.

Existing Demonstrated Commercial

works Year HA AA transferability? system testing?

AEFD [187] 2017 ✓ No None

RP2 [110] 2018 ✓ ✓ Yes None

SIB [330] 2019 ✓ ✓ Yes None

1 unknown
FTE [148] 2022 ✓ ✓ Yes

vehicle model

SysAdv [283] 2023 ✓ No None

DM [243] 2024 ✓ Yes 1 Tesla model

7.2 Background and Related Work

In the section, we introduce the background for Traffic Sign Recognition (TSR) systems,

physical-world adversarial attacks against TSR system, security of autonomous driving (AD)

systems, and the threat model for this study.

7.2.1 Traffic Sign Recognition (TSR) System

As a key component of Advanced Driver Assistance Systems (ADAS), Traffic Sign Recogni-

tion (TSR) system is defined as a system that employs camera sensors to detect road signs,

including but not limited to speed limit and STOP signs [47, 290, 137]. Today, this tech-

nology is highly prevalent across various vehicle brands to enhance both safety and driving

comfort. Table 7.1.1 shows the top 15 leading car brands in the United States based on

vehicle sales in 2023 [260]. We surveyed their official websites and vehicle manuals, and were

able to find direct evidence of equipping front windshield cameras for TSR for at least 13

out of these 15 brands.
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Recent advancements in Deep Neural Networks (DNNs) have propelled significant progress

in various domains, including TSR systems, which now increasingly rely on DNN-based

methodologies for real-time object detection [237, 148, 330, 50]. These systems process

camera sensor data through DNN-based object detectors to identify road signs efficiently.

Current state-of-the-art object detection models are categorized into two primary types:

one-stage and two-stage detectors [338]. One-stage detectors, such as YOLO [231], are cele-

brated for their rapid detection capabilities. Conversely, two-stage detectors, exemplified by

Faster R-CNN [232], are noted for their exceptional accuracy. Prior research [330, 283, 237]

focusing on the security aspects of TSR systems has examined models from both categories

for evaluation comprehensiveness. In line with these research, our analysis also encompasses

object detectors from both categories, aiming to provide a comprehensive assessment of TSR

systems security.

7.2.2 Physical-World Adversarial Attacks against TSR

DNN models today are shown to be generally vulnerable to adversarial examples (or ad-

versarial attacks) [262, 123, 76, 220, 200, 221, 323, 71]. Such vulnerabilities are espe-

cially extensively studied and demonstrated in the vision domain [262, 123, 76, 220, 200,

221, 323, 150, 193, 242, 151, 283, 239]. Due to the increasing real-world penetration of

TSR systems and their fundamental reliance on the camera inputs, TSR models soon be-

came a natural target of adversarial attack research, including many that were able to

achieve particularly high realism with successfully demonstrated attack effect in the physical

world [110, 187, 330, 83, 213, 335, 283, 243, 237, 186, 104, 332, 195].

Among them, the most representative and also the most widely-exploited attack vectors

are physical patches/posters, e.g., by physically printing attack patterns on sticker patches

and attaching them to the legitimate traffic sign surface [110, 283, 330, 132], or on whole-
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sign posters that replace or spoof the entire traffic sign surface [187, 148, 330, 110, 243].

These attacks are low-cost, highly deployable, and demonstrated capable of causing var-

ious severe attack effects, most notably (1) making critical legitimate traffic signs unde-

tectable, most representatively hiding attack, or HA [110, 330, 283, 148]; and (2) triggering

false detection at any attacker-chosen positions, most representatively appearing attack, or

AA [110, 330, 148, 243]. For drivers who are relying on such a driver assistance function,

or higher-autonomy AD systems that try to automatically react to real-time TSR results

(e.g., in Tesla [26]), such attacks, especially the hiding ones, can directly impair the TSR

function and cause various potential safety hazards such as traffic sign violations, unexpected

emergency braking, speeding, etc. Due to such a high potential for practical impacts, these

physical-world adversarial attacks on TSR have drawn wide attention in not only the technol-

ogy community [135, 108, 256, 216, 45] but also the general public [100, 162, 121, 210, 114].

Despite such a high practical impact potential, so far these works generally only considered

evaluating the attack effects on academic TSR models, leaving the impacts of these attacks

on real-world commercial TSR systems largely unclear. Table 7.1.2 summarized all the prior

works so far that were able to successfully demonstrate using physical patches/posters to

trigger HA or AA attack effects in the physical world. As shown, although many of them have

demonstrated the attack transferability across academic models, which could be viewed as an

indicator of high potential black-box attack capability against commercial systems, very few

have actually evaluated the attacks against real commercial vehicle systems. For the only

two works that have done so, the evaluation is limited to one particular vehicle model (for

one of them it is even an unknown vehicle model) [148, 243], making both the generalizability

and representativeness of these evaluation results questionable.

The observations above thus raise a critical research question: Can any of these existing

physical-world TSR adversarial attacks achieve a general impact on commercial TSR systems

today? In this work, we thus aim to systematically answer this critical research question by
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performing the first large-scale testing of representative existing attacks against commercial

TSR systems of top popularity on the consumer market today. Leveraging the observa-

tions and insights from the testing, we also further systematically revisit existing evaluation

metrics and attack designs in this problem space.

7.2.3 Security of Autonomous Driving (AD) systems

Due to the fundamental reliance of AD systems on environmental sensing, prior works have

extensively investigated sensor attacks within the AD context. These include spoofing or jam-

ming attacks targeting cameras [310, 213, 244, 161], LiDAR [72, 254, 68, 152], RADAR [310],

etc., highlighting vulnerabilities at the sensor level. In contrast, our study focuses on the

vulnerabilities at the autonomous AI algorithm level, specifically targeting the TSR func-

tions in AD systems, which is highly crucial for safe and correct driving automation. While

the existing body of literature covers security aspects of various components such as camera

object detection [110, 83, 330, 148, 71, 283], object tracking [150, 193], lane detection [239],

and end-to-end AD systems [221, 268], there is a notable gap in large-scale studies on their

effectiveness in real-world commercial AD systems. In this work, we thus aim to bridge this

critical research gap by conducting the first large-scale measurements of physical-world ad-

versarial attacks on commercial TSR systems, which not only expands the understanding of

such security vulnerabilities in real-world AD systems but also provides various new insights

into the design and evaluation of existing works in this problem space.

7.2.4 Threat Model

To understand the impacts of these existing physical-world TSR attack works from the com-

mercial systems perspective, we consider the most realistic transferability-based black-box

threat model, i.e., generating the adversarial attack pattern using publicly-accessible surro-
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gate TSR models and then applying it to the attack-targeted TSR systems with unknown

model parameters and architectures. We choose this because (1) as with most commercial

products, commercial TSR systems, especially the most popular ones today in Table 7.1.1,

are by default closed-source to the public and so far there is no effective approach to gen-

erally reverse-engineer them; and (2) this is also the setup used by existing physical-world

TSR attack works to claim their attack effects on commercial systems [148, 243]. For attack

goals, we consider both traffic sign hiding and appearing attacks as highlighted in §7.2.2,

with a more specific focus on the hiding attack side as it can most severely impair a com-

mercial TSR product by completely nullifying a TSR system’s functionality. For attack

vectors, we follow the most representative and practical physical patch/poster attack vec-

tors (§7.2.2). Specifically, we use sticker patches for hiding attacks (HA) and whole-sign

posters for appearing attacks (AA), which are the most practically-deployable attack vectors

on both sides [110, 330, 148, 283, 243].

7.3 Large-Scale Commercial TSR Systems Testing and

Observations

In this section, we report our efforts on the first large-scale testing of existing physical-world

TSR model attacks on commercial TSR systems. In this testing, we specifically focus on

the hiding attacks (HA) as they can make critical traffic signs undetectable and thus most

directly impair the function of a commercial TSR product (§7.2.4). We first detail the

experimental setup and then report our key observations.
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Table 7.3.1: Attack success rates for our reproduced RP2, SIB, and FTE attacks compared to
those in the original papers following the same surrogate model and attack distance setups.

Attack success rate RP2 [110] SIB [330] FTE [148]

Reported by the papers 63.5% 60.5% 98.8%

Our reproduced attacks 60.5% 84.5% 98.7%

7.3.1 Attack Setup

Traffic Sign Selection. Our study considers two types of traffic signs: the STOP sign and

the 25 mph speed limit sign. We choose these two types of signs since (1) STOP and speed

limit signs are the most popular targets in prior works for demonstrating the adversarial

attack effects in the physical world [188, 148, 110, 330, 309, 187, 83, 243, 283, 237]; and

(2) both are highly safety-critical as missing STOP signs can lead to intersection collisions

and 25 mph speed limit sign is usually for residential or school districts where children can

be outside or crossing the street [215]. Meanwhile, these two sign types are also the only

two types of signs with demonstrated physical-world black-box attack transferability in prior

works [110, 330, 148].

Selected Attacks. As shown in Table 7.1.2, there are three prior works so far that were able

to demonstrate black-box attack transferability for the hiding attack effect in the physical

world: RP2[110], SIB [330], and FTE [148]. Specifically, FTE was able to demonstrate this

against a commercial vehicle model, despite an unknown one [148]. These three works have

the highest potential to successfully attack commercial systems; thus, we aim to include all

of them in our testing. Unfortunately, at this point, none of these three works have open-

sourced their methods. Thus, we have to reproduce them. We tried our best to reproduce

them, which included both following their papers closely and consulting with the original pa-

per authors for all three, and the reproduced attack success rates are shown in Table 7.3.1.

Note that there are some performance discrepancies between our reproduced version and

the original one. These discrepancies can be due to various factors, most likely the differ-
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ences in the experimental setups such as the hyperparameters used in attack generation, the

real-world data collected for physical-world robustness, and realizability optimization, etc.

Despite our best efforts to replicate their original experimental setup, including consulting

the original paper authors, it is fundamentally impossible for us to exactly replicate their

setup due to the lack of open-sourcing in these prior works.

Surrogate Model and Dataset Selection. As detailed in §7.2.4, in this testing, we adopt

the most realistic transferability-based black-box threat model. To achieve this, we carefully

select surrogate models and datasets, based on the selection by previous research in this

field [237, 283, 148]. Specifically, we utilize the Microsoft COCO dataset [181] to study

adversarial attacks on STOP signs and the ARTS dataset [50] for speed limit signs. Our

surrogate model selection covers both one-stage and two-stage TSR model designs (S7.2.1) to

increase the chance of successful transfer attacks. Specifically, we choose YOLO v5 (denoted

as Y5 ) for the one-stage model and Faster RCNN (denoted as FR) as the two-stage one, both

of which are from the most widely-used model families in prior works [148, 330, 110, 83, 335].

In particular, Y5 is also the one that has been used to demonstrate a successful transfer attack

to a commercial vehicle model [148]. For Faster RCNN, we adopt the latest official PyTorch

implementation that uses the ResNet-50-FPN-V2 backbone [177]. For the Microsoft COCO

dataset, the models are obtained directly from the Y5 official website [155] and the PyTorch

models [226]. For the ARTS dataset, we conduct our own model training. The benign

performances of these models have an mAP (mean Average Precision) of 0.831 for Y5 and

an mAP of 0.871 for FR, which are consistent with those reported in prior research [237].

Test Environment Setups. Our experiments are performed outdoors during sunny after-

noons between 1 pm and 4 pm, to simulate the most common real-world attack scenarios.

To maintain consistent testing conditions, we measure the ambient light levels using a light

meter, ensuring that all tests are conducted within a light range of 25,000 to 30,000 lux.

Visual representations of the real-world environment and its bird’s-eye view illustration are
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Figure 7.3.1: Experiment setup for commercial TSR system testing. We cover the vehicle in
the photo for anonymity purpose.

Table 7.3.2: Four of the five commercial vehicle models below are tested in our study (denoted
as C1 to C4 in Table 7.3.3). Each model has functions to detect a STOP sign, speed limit
signs, or both. We choose not to directly reveal the exact models for C1 to C4 for anonymity
purpose. Note that this is the least anonymization to protect the affected companies (i.e.,
only 1 confusing vehicle model), and this is also part of the agreement with the companies
during our responsible vulnerability disclosure.

Tesla Model 3 2023 Toyota Camry 2023 Nissan Sentra 2023 Mazda CX-30 2023 Hyundai Tucson 2024

provided in Fig. 7.3.1. We select a spacious rooftop parking structure as the location for

these experiments ensuring no presence of other vehicles or humans to maintain safety. The

placement of traffic signs is carefully designed to follow traffic laws in the U.S. as outlined in

previous studies [283]. For the testing distance, we carefully set the start point to be farther

than the detection distance in the benign case for each vehicle model (∼50 meters). For the

testing speed, we test at the maximum-allowed speed limit of our rooftop parking structure

(5 mph) to ensure safety.
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Table 7.3.3: TSR functions of the four vehicle models tested in our measurement study.
These four models are among the five in Table 7.3.2. We choose to not directly reveal the
exact vehicle brands and models for anonymity purpose.

TSR functionality

Vehicle model STOP sign Speed limit sign

Car 1 (denote as C1) ✓ ✗
Car 2 (denote as C2) ✓ ✓
Car 3 (denote as C3) ✗ ✓
Car 4 (denote as C4) ✗ ✓

7.3.2 Commercial Systems Under Test and Metric

Commercial Systems Under Test. We were able to include 4 different vehicle models in

this testing through borrowing or renting. These four vehicle models are among the five in

Table 7.3.2. As shown, all of them are among the top 15 popular vehicle brands in the US

based on vehicle sales (Table 7.1.1) and all of them are from the most recent model years,

either 2023 or 2024. Note that we choose to not directly reveal the exact vehicle brands and

models for anonymity purpose; this is already the least anonymization to protect the affected

companies (i.e., only 1 confusing vehicle model), and this is also part of the agreement with

the companies during our responsible vulnerability disclosure. In the paper, we denote the

four vehicle models we tested as C1 to C4. Table 7.3.3 shows the TSR functionality support

we found for C1 to C4 using benign STOP and speed limit signs. As shown, two of them can

support STOP sign detection, while three of them can support speed limit sign detection.

In particular, C2 can support both.

Generalizability of the systems under test. While the rankings of the vehicle sales in

Table 7.1.1 have quantifiably shown the representativeness of the vehicle models under test,

it is better if we can further quantify the generalizability of this tested system setup. To

achieve this, we use the market share of the tested vehicle models as an estimate. Specifically,

in 2023 the U.S. automotive industry sold around 15.6 million vehicles [204]. Based on the
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data in Table 7.1.1, at most 13.3 million of these 15.6 million vehicles are TSR-equipped.

The total sales of the 5 possible vehicle brands in our test account for 33.2% of such upper-

bound number of TSR-equipped vehicles sold in 2023. Thus, our current testing results can

be estimated as generalizable to at least 33.2% of the commercial TSR systems sold in the

U.S. in 2023. Using this estimation, our commercial TSR systems testing results can also

be shown to be much more generalizable than prior works in Table 7.1.2 (i.e., at most 3.8%

for [243] and unknown for [148]).

TSR System-Level Attack Success Metric. In prior works, the TSR adversarial attack

success rates are generally calculated by TSR model-level metrics, i.e., first determining

the attack success at TSR model output level per frame and then aggregating the per-

frame results over one or multiple distance ranges [330, 110, 252, 186, 335, 283, 237] or a

certain number of consecutive frames [330, 252]. However, we find that the TSR systems

in commercial vehicle models today do not generally show real-time traffic sign detection

results to end users; instead, the duration and timing of the detection result display are more

generally based on the system-level needs for different sign types. For example, for speed limit

signs, we find that all the vehicle models supporting them (C2 to C4) do not immediately

show the speed limit sign detection results when the sign is actually detected; instead, the

detection results will only be on display after the vehicle passes the sign (more precisely,

always when the vehicle body is halfway past the sign in our experiments). This TSR system-

level design aligns with system-level needs for such traffic sign detection functionality, as

a newly-detected speed limit should be applied after the vehicle drives past the physical

location of the sign [257]. This design can also be viewed as reasonable if we consider the

design of the speed limit sign display is to indicate the speed limit of the current road segment,

so it is indeed correct to only show the new speed limit after it enters the corresponding road

segment. If it shows the new speed before that, the car can be speeding before it enters a

road segment with a higher speed limit.
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Table 7.3.4: Commercial TSR systems testing results against vehicle model C1 to C4 with
comparisons to the black-box transfer attack success rates reported by the original papers.
The testings for each benign or attack setup are repeated 3 times. Ave.: Ave. over all
attacks.

C1 C2 C3 C4
Original paper
transferability

Surrogate
model STOP STOP Speed limit Speed limit Speed limit

Ave.

Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%

Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
RP2 18.9%

FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%

Y5 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%
SIB 46.1%

FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
FTE 89.8%

FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Ave 51.6% 0% 33.3% 0% 0% 0% 6.67%

For the STOP sign, we have a similar observation: although it is different from speed limit

signs in that it should be displayed before the vehicle passes the sign, we find that in C2 once

the sign is detected, the TSR system will keep having the sign display instead of showing the

real-time detection results until it passes the sign (this is also the spatial memorization effect

that we will investigate more later in §7.3.3). This again aligns well with the system-level

needs, as a detected STOP sign should take effect until it is passed.

Due to these observations, we need to use an attack success metric defined at the TSR sys-

tem level to most generally and practically-meaningfully capture the impacts of adversarial

attacks on commercial TSR systems. To this end, we thus define the TSR system-level at-

tack success per each traffic sign reaction task on the TSR system user side, i.e., when the

TSR system user needs to react to a sign, if the TSR system is able to correctly display the

sign, the attack fails; otherwise, the attack succeeds. For example, for speed limit sign, the

attack success is judged by whether the system can have the sign displayed at the time when

the vehicle passes the sign, while for STOP sign it is judged by whether the system can have

the sign displayed before the vehicle passes the sign.

163



RP!

SIB

FTE

Y5 FR Y5 FR

Figure 7.3.2: Visualisation of the hiding attacks (HA) generated for STOP and speed limit
signs, which are used in our commercial TSR systems testing. They are generated by the
three most promising prior works (RP2 [110], SIB [330], FTE [148]) using surrogate models
of both representative one-stage and two-stage TSR model designs.

7.3.3 Testing Results and Observations

Overall Testing Results. Table 7.3.4 summarizes the overall testing results and the repro-

duced attack visualization is in Fig. 7.3.2. As shown, there are 30 attack test combinations

in total, each for one combination of the 2 sign types, 3 attack methods, 2 surrogate models,

and 4 vehicle models. For each benign and attack setup, we repeat the testing three times.

As shown, we are indeed able to find attack setups in which existing physical-world adversar-

ial attack works from academia can reliably work on a certain commercial TSR system, more

specifically the RP2 attack using FR as the surrogate model, and the SIB attack using Y5

as the surrogate model. In these setups, the attack can always succeed over the three runs,

leading to a 100% success rate. Such a high black-box transfer attack effectiveness is even
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higher than expected as the transfer attack success rates are actually less than 50% for both

and even less than 20% for RP2. This suggests that for certain commercial TSR systems,

although from top brands in the US (Table 7.1.1), their TSR functionality can actually be

much more vulnerable than academic TSR models under black-box transfer attacks. Inter-

estingly, both successful attack setups are against C2, the only vehicle model among the four

that can support both STOP and speed limit signs. We have already performed responsible

vulnerability disclosure to the C2 manufacturer to report these.

While there do exist successful attack cases, we do not see generalizability of such attack

effects over the entire testing results. Over the entire 30 attack test combinations, the

vast majority (28/30) do not show any successful attack effects, leading to a 6.67% overall

transfer attack success rate against commercial systems. As shown in the table, this is

almost a magnitude lower than those reported in the original papers [110, 330, 148] (51.6%

on average). Even for these two successful attack setups, the attack effect is limited to the

STOP sign detection and cannot even generalize to the speed limit sign detection for the

same vehicle model (C2). This could be due to the need to customize the detection accuracy

for certain sign types because of real-world deployment or customer needs. Interestingly,

although FTE was able to demonstrate a successful transfer attack against a commercial

vehicle model in its paper, we were not able to find any successful attack results against

any of the four commercial vehicle models in our tests. This further reveals the lack of

generalizability of the reported commercial TSR system attack success in the original FTE

paper, which cannot be revealed without the large-scale commercial system testing efforts

in this paper.

Note that we have performed statistical testing for the results above to understand their

statistical significance. While the overall transfer attack success rate against commercial

systems over all 30 attack test combinations (6.67%) is statistically significant, the statistical

significance for the result of each test combination cannot be calculated since the variance
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Table 7.3.5: TSR detection result memorization rates when we hide the sign for a long
time (20-60 seconds) after a short sign display time (1-3 seconds). The experiment setup
is described in Fig. 7.3.3. As shown, three out of the four vehicle models exhibit a spatial
memorization design, i.e., keeping memorizing a sign detection result until the sign’s reaction
need in the spatial domain is met (e.g., when the vehicle passes the detected sign), regardless
of time. Notice the observed much longer memorization time (60 sec) than that from typical
temporal memorization designs such as object tracking (typically <3 sec [334, 252, 283, 150]).

Sign disappearing time after the short sign display

STOP sign Speed limit signVehicle model
Sign

display
time

20 sec 40 sec 60 sec 20 sec 40 sec 60 sec

1 sec 0% (0/3) 0% (0/3) 0% (0/3) - - -
C1

3 sec 0% (0/3) 0% (0/3) 0% (0/3) - - -

1 sec 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)
C2

3 sec 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3)

1 sec - - - 100% (3/3) 100% (3/3) 100% (3/3)
C3, C4

3 sec - - - 100% (3/3) 100% (3/3) 100% (3/3)

for each is 0 (all failure or all success as shown in Table 7.3.4). While it may be possible

that some variance can appear if we significantly increase the number of attempts per test

combination (e.g., to over 30) to make statistical significance calculable, we cannot afford

this due to inherent limitation for any outdoor vehicle testing setups. Note that our current

setup is already scientifically more rigorous than all prior works in this as they only tried

once for each attack test. More detailed discussions are in §7.5.2.

Observation 1: It is in fact possible for existing physical-world adversarial attack works

from academia to have highly reliable (100%) attack success against certain commercial

TSR system function in practice. However, such black-box commercial system attack

capability is currently not generalizable over different representative commercial system

models and sign types. Overall, the black-box transfer attack success rate on commercial

systems (at least on our setup that can account for at least 33.2% of commercial TSR

systems sold in the U.S. in 2023, as estimated in §7.3.2) is much lower than that on

academic models in prior works.
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Spatial Memorization of TSR Results. The much lower-than-expected black-box trans-

fer attack success rate on representative commercial systems suggests the potential existence

of deeper challenges for such attacks to take effect at the TSR system level. Through our

investigations, one major factor might be an unexpected spatial memorization design that

commonly exists in commercial TSR systems today. Specifically, this design exhibits an ef-

fect that once a traffic sign is detected, both the detected sign type and the detected location

are persistently memorized until the sign’s reaction task is finished. Different from simple

object tracking that can only temporarily memorize a detection result for a very short time

(typically at most 3 seconds [334, 252, 283, 150]), the spatial memorization we observed will

only forget/clear a detection result after the sign’s reaction need in the spatial domain is

met (e.g., when the vehicle spatially passes the position of a detection STOP sign or speed

limit sign), regardless of time.

Table 7.3.5 shows our experimental investigation of this design in the four commercial vehicle

models. Fig. 7.3.3 illustrates the experimental setup. As shown, in the experiments we first

keep the tested vehicle stationary and show the traffic sign on the roadside in front of the

vehicle for 1 to 3 seconds (sign display time. Then, we hide the traffic sign and wait for

20 to 60 seconds (sign disappearing time). Then, we test whether the sign detection result

triggered at the sign display time is still memorized by the TSR system after the sign has

disappeared for a certain time by driving the vehicle past the original sign-display position.

For the STOP sign, the memorization is judged by whether the sign display disappears after

driving past the original sign-display position, and for the speed limit sign, this is judged

by whether the sign display appears after driving past the original sign-display position. As

shown, for three out of the four vehicle models (C2 to C4), the sign detection result can

retain even after the sign has already disappeared for 60 seconds, which is way longer than

the typical temporal memorization time from object tracking (3 seconds [334, 150]), and will

only be cleared/forgotten when the vehicle passes the position of the detected sign.
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Such a spatial memorization design can significantly impact how we judge the adversarial

attack effect at the TSR system level. For example, for hiding attacks, to achieve a system-

level success in which the TSR system is unable to show the sign display at the sign’s

reaction task period, the attack has to be continuously successful at all possible detection

moments that can trigger such memorization before the vehicle passes the sign. As shown

in our experiments in Table 7.3.5, such a detection moment can be as short as 1 second. In

most recent prior works, the attack success is most commonly judged by first separating the

entire sign detection distance range into small distance segments and claiming high attack

effectiveness as long as the majority of the distance segments have high success rates [330,

148, 186]. However, due to such spatial memorization, the TSR system-level hiding attack

success can only be achieved when all these distance segments have high success rates, instead

of just the majority, which thus may make the TSR system-level hiding attack success harder

than expected. For appearing attacks, such an impact on the system-level attack success is

the opposite, as it does not really need the majority of the segments to have high success

rates; as long as one of them can have a high success rate, the system-level attack effect is

achieved.

Observation 2: We discover a spatial memorization design that commonly exists in to-

day’s commercial TSR systems, which can keep memorizing a sign detection result until

the sign’s reaction need in the spatial domain is met (e.g., when the vehicle passes the

detected sign’s position). This design may create a significant discrepancy between the

TSR model-level attack effect and that at the TSR system level.

7.4 Revisiting Existing Metric and Attacks

As discussed above, the newly-discovered spatial memorization design in commercial TSR

systems today may create a significant discrepancy between the TSR model-level attack effect
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Figure 7.3.3: Experimental setup for our investigation into the spatial memorization design
in commercial TSR systems. As shown, we first show the sign to the vehicle for a short time
(sign display time), and hide the sign and wait for a certain time duration (sign disappearing
time). After that, we drive the vehicle past the original sign-display position to measure
whether the sign detection result is spatially memorized.

and that at the commercial TSR system level. Thus, in this section we aim to mathematically

model the impact of this design on the TSR system-level attack success on both hiding and

appearing attack sides, and then use the resulting new TSR system-level metrics to revisit

the evaluations, designs, and capabilities of existing attacks in this problem space.

7.4.1 Revisiting Existing Attack Success Metrics

Limitation of Existing Model-Level Attack Success Metrics. In prior works, the

TSR model-level attack success metric is generally measured by averaging the per-frame

attack success among a set of frames sampled in the sign detection distance range [148, 283,

330, 110]. In this paper, we denote such metrics for object hiding and appearing attacks as

fHA and fAA, respectively. However, such averaged per-frame attack success rates do not
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Figure 7.4.1: Illustration of the potentially mislead-
ing effect of existing TSR model-level metrics with
respect to the TSR system-level attack success. As
shown, although fHA and fAA are both 50% for this
scenario, the TSR system-level attack success rates
are in fact 0% for hiding attack (HA) and 100% for
appearing attack (AA) due to spatial memorization.
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Figure 7.4.2: Setup for calculating the
proposed surrogate TSR system-level
attack success metric designs (SysHA
and SysAA, detailed design in §7.4.1).

take the distribution of the attack effects within a targeted distance range into consideration.

Due to the spatial memorization design, a certain distance range segment with an especially

high or low attack success rate can directly lead to overall TSR system-level attack success

or failure (as found in §7.3.3, the detection result can be memorized within 1 second), which

can thus make such existing metrics highly misleading with respect to the TSR system-level

attack effect.

Fig. 7.4.1 shows an illustrative example of such a misleading effect. As shown, there are two

distance range segments, S1 and S2, and the attack success rates are both f 1
HA = f 1

AA = 0%

for S1 and f 2
HA = f 2

AA = 100% for S2. As shown, using the existing fHA and fAA metrics,

the attack success rates in this entire distance range will be the average of the attack success

rates in S1 and S2, and thus are fHA = fAA = 50%. However, due to spatial memorization,

on the hiding attack side the 100% f 2
HA cannot directly lead to the overall system-level

attack success, as the TSR system can still 100% detect the sign in S1, memorize it, and

correctly display it at the sign’s reaction task period, leading to actually a 0% TSR system-

level attack success rate. On the appearing attack side, although f 1
HA is 0%, the attack can

always (100%) trigger a fake sign detection in S2 that will be memorized and displayed, and

thus the end-to-end TSR system-level attack success rate is actually 100%. As can be seen,

due to spatial memorization, the TSR system-level attack success rate can be completely

different from that from fHA and fAA, which can lead to highly problematic judgments of
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an attack’s capability at the TSR system level, e.g., concluding that an attack is reasonably

effective (50%) when it actually cannot work at all (0%).

New Metric Design: Surrogate TSR System-Level Attack Success Metrics. To

avoid such misleading effects of existing TSR model-level attack success metrics, the most

direct solution is to perform system-level evaluations on commercial TSR systems like our

efforts in §7.3. However, it is highly difficult and also too costly for the academic commu-

nity to always acquire a substantial number of commercial vehicles for experiments. And

also since these commercial TSR systems are black-boxes, it is difficult to perform model

design-level security research such as vulnerability cause analysis and defense evaluations.

To address this, we thus propose to design surrogate TSR system-level attack success met-

rics that model the spatial memorization effect on top of the existing model-level metrics,

which can make them directly calculable using the more readily-accessible academic TSR

model-based setups.

We start with hiding attacks. The symbols for calculating the metric are illustrated in

Fig. 7.4.2. As shown, d denotes the benign-case detection distance of the targeted TSR

model. In alignment with existing model-level metric calculation, we divide d into n mea-

surement segments, denoted as Si, i ∈ {1, . . . , n}, and for each segment the averaged per-

frame attack success rates can be calculated, denoted as f 1
HA, f

2
HA, . . . , f

n
HA. To incorporate

the spatial memorization effect, we consider the minimum time to spatially memorize a de-

tected sign as t. To map this spatially memorizable detection time to the detection distance

range segments, we calculate the distance traveled by the vehicle during t as v ∗ t, with v

being the vehicle speed. In this paper, we call each such distance segment of v ∗ t as spatial

memorization segments, denoted as Ssm
j , j ∈ {1, . . . ,m},m = d

vt
.

Due to spatial memorization, to achieve the TSR system-level attack success, a hiding attack

needs to achieve attack success at every spatial memorization segment in d; otherwise, the

sign can be detected and memorized, making the attack fail at the system level. Thus, the
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system-level attack success rate should be the product of fHA for all Ssm
j , i.e.,

∏m
j=1 f

j
HA.

However, to allow flexibility of the fHA success rate measurements, which can incur heavy-

weight physical-world experiments, we do not prefer to require the measurement of fHA

exactly at the v ∗ t granularity; instead, we aim to design the metric to be calculable for

any distance choices for Si. To achieve this, we thus use the f i
HA to approximate the f j

HA for

all Ssm
j inside a measurement segment Si; the resulting surrogate TSR system-level metric,

which we call SysHA, is shown in Eq. equation 7.1. Note that for cases when a Ssm
j spans

multiple measurement segments Si, we use the average fHA of these segments f i
HA as the fHA

for Ssm
j .

SysHA =
n∏

i=1

(f i
HA)

m
n =

n∏

i=1

(f i
HA)

d
nvt (7.1)

On the appearing attack side, we can use a similar design to model the impacts of spatial

memorization on TSR system-level attack success. Here, the difference is that the system-

level attack success can be achieved as long as the appearing attack can succeed (and thus

spatially memorized) in one of the spatial memorization segments Ssm
j . Thus, the proba-

bility to achieve an eventual sign appearing at the TSR system level is the negation of the

probability that the appearing attack cannot succeed (and thus memorized) in any of the

Ssm
j , i.e., 1 −∏m

j=1(1 − f j
AA). Following the same design in SysHA to allow measurement

flexibility of fAA, we use f
i
AA to approximate f j

AA for each Ssm
j . The resulting surrogate TSR

system-level metric for appearing attack, which we call SysAA, is thus:

SysAA = 1−
n∏

i=1

(1− f i
AA)

d
nvt (7.2)

Implications to TSR System-Level Attack Hardness. As informally discussed in §7.3.3,

the spatial memorization design may make hiding attacks harder than expected and appear-

ing attacks easier than expected. Now with the mathematical modeling of the spatial mem-
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orization’s impacts on the TSR system-level attack success above, we can both theoretically

and numerically analyze such impacts of the spatial memorization on the TSR system-level

attack hardness.

Theorem: When f i
HA = f i

AA, where i ∈ {1, . . . , n}, SysAA ⩾ SysHA always holds.

Proof. To prove this theorem, Eq. equation 7.2 can be reformulated to the sum of the

probabilities of all possible attack result scenarios that can lead to a successful system-level

appearing attack. To derive that, we denote the power set of all the measurement segments as

P(S), where S = {Si|i ∈ {1, . . . , n}}. Each possible attack result scenario can be described

in the form of two subsets of S: A and S \ A, where A is a subset of P(S), i.e., A ∈ P(S).

Among them, the appearing attack for all Si ∈ A can succeed, and that for all Sj ∈ (S \A)

fails. Due to spatial memorization, as long as A ̸= ∅, the TSR system-level appearing attack

effect can be achieved. Thus, SysAA can be represented as:

SysAA =
∑

A∈(P(S)\∅)


∏

Si∈A

(f i
AA)

d
nvt

∏

Sj∈(S\A)

(1− f j
AA)

d
nvt


 (7.3)

When f i
HA = f i

AA, SysHA =
∏n

i=1(f
i
HA)

d
nvt =

∏n
i=1(f

i
AA)

d
nvt , which is actually one instance of

A ∈ (P(S) \ A), i.e., A = S. Thus, we can calculate SysAA− SysHA:

SysAA− SysHA =

∑

A∈P(S)\{∅,S}


∏

Si∈A

(f i
AA)

d
nvt

∏

Sj∈(S\A)

(1− f j
AA)

d
nvt




(7.4)

For ∀A ∈ P(S) \ {∅, S}, f i
AA ⩾ 0 and (1 − f j

AA) ⩾ 0, where Si ∈ A and Sj ∈ (S \ A),

we can have
∏
(f i

AA)
d

nvt

∏
(1 − f j

AA)
d

nvt ⩾ 0, thus SysAA − SysHA ⩾ 0, and consequently,

SysAA ⩾ SysHA.
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Numerical Analysis. The theoretical analysis above can mathematically reveal that

SysAA can always be equal or larger than SysHA when fHA and fAA are equal. However,

it cannot reveal how large the gap between SysHA and SysAA can be. Thus, we further

perform a numerical analysis of SysHA and SysAA. In this analysis, we set n = m, and

x = f i
HA = f i

AA for all i ∈ {1, . . . , n}. Thus, SysHA = xm and SysAA = 1 − (1 − x)m. In

Fig. 7.4.3, we plot the values of SysHA, SysAA, fHA, and fAA when m = 2, . . . , 5. This is a

realistic approximation of m since as found in §7.3.3, commercial TSR systems can spatially

memorize a detection result within one second. At normal driving speed, the traffic sign

can appear for at least 2-5 seconds, and thus there at least exist 2-5 spatial memorization

segments. As shown, SysAA is always greater than SysHA when x is between 0 and 1, and

the difference (SysAA− SysHA) is at least 50% (when m = 2) and can be as high as 93.8%

when m = 5. This means that even when hiding attacks and appearing attacks seem to have

similar model-level attack effectiveness, due to the spatial memorization design the TSR

system-level attack effectiveness can have huge differences (⩾93.8% differences in absolute

attack success rate values).

Meanwhile, we can also observe that SysHA and SysAA can both differ significantly from

fHA and fAA results. As shown, when m = 5, SysAA can be much higher than fAA (46.9%

difference in absolute attack success rate values), and SysHA can be much lower than fHA

(also 46.9% difference in absolute attack success rate values). This thus numerically proves

the potentially misleading effect of existing TSR model-level metrics with respect to the TSR

system-level attack effect, which can lead to a misjudgment of the attack effectiveness to the

extent of nearly 50% in absolute attack success rate values.

About the novelty and importance of the new metric design. Note that the metric

and the concept of spatial memorization might seem straightforward, but no prior research

has discovered and analyzed the impact of this important TSR system-level design from the

security perspective, nor formulated it mathematically. Before this paper, it was unknown
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that such a design is commonly used in commercial TSR systems. Additionally, as dis-

cussed above, mathematically modelling and quantifying its impacts on adversarial attack

success rates as a metric is crucial for the research community to systematically understand

real-world system vulnerabilities, especially from the commercial TSR systems perspective.

Meanwhile, our theoretical and empirical analyses above further provide mathematically

provable insights about the design-level implications and the magnitude of such impacts

from the spatial memorization design. These thus all make our newly-proposed surrogate

TSR system-level attack success metrics valid and significant scientific contributions.

Meanwhile, we would also like to clarify that we do not intend to claim that the existing

TSR model-level metrics do not have important value when compared with our proposed

surrogate TSR system-level metric. As explained above, the design of this new metric and

the later experimental comparisons of the results from these two metrics are only for the

purpose of scientifically understanding how much the newly-observed spatial memorization

design in commercial TSR systems today can affect the judgment and understanding of the

capability of a certain attack design at the TSR system level.

Observation 3: Due to spatial memorization, hiding attacks are theoretically harder (if

not equally hard) than appearing attacks in achieving TSR system-level attack success.

Such an attack hardness gap can be huge (e.g., ⩾93.8% absolute differences in the attack

success rate values). Meanwhile, due to the lack of consideration of spatial memorization,

existing TSR model-level attack success metrics can be highly misleading in judging the

TSR system-level attack effect, with a potential of having ∼50% absolute attack success

rate value differences.
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7.4.2 Revisiting Existing Attacks

In this section, We use the SysHA and SysAA metrics to revisit the evaluations, designs,

and attack capabilities of the important prior works in this problem space.

Specifically, we revisit (1) both hiding and appearing attacks, with RP2 [110], SIB [330],

FTE [148] as representative examples on the hiding side, and SIB [330] and DM [243] as

representative examples on the appearing side; (2) both white-box and black-box transfer

attack setups, with the original white-box attack setups evaluated in the original papers (e.g.,

YOLO v2 (Y2) for RP2, YOLO v3 (Y3) for SIB, and YOLO v5 (Y5) for FTE) on the white-

box side, and a set of representative transfer target models on the black-box transfer attack

setup side. Specifically, this transfer target model set includes 6 models in total, 3 from

the one-stage model design family (YOLO v8 (Y8) [157], YOLOS (YS) [112], DETR [73])

and 3 from the two-stage model design family (two versions of Faster RCNN with different

backbones [226], and Mask RCNN [226]).

In all the experiments, we focus on STOP sign as the representative attack target since it

is used the most commonly in prior works in their physical-world evaluation (in Table 7.1.2,

five out of the six prior works only used STOP sign in their physical-world experiments for

TSR), which can thus best suit our need in this section to revisit the evaluation of prior

works. All the attacks are physically printed out and measured outdoor. The distance range

measured is 0 to 30m following the setups in prior works [110, 330, 148]. For each attack

setup, we calculate the SysHA or SysAA attack success rate by averaging the SysHA or

SysAA values across the full combinations of a set of common speeds (25 mph, 30 mph, and

35 mph, the most common speed limits for STOP sign-controlled roads [283]) for v and all

possible minimum spatial memorization time t (0.05 seconds to 1 second with a step of 0.05

seconds considering the common camera frame rate 20Hz [53] and the 1-second upper-bound

of t found from our experiments in §7.3.3).
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Figure 7.4.3: Numerical analysis of the attack success rate values from SysHA, SysAA, fHA,
and fAA when m = 2, . . . , 5. Here, we set n = m and x = f i

HA = f i
AA for all i ∈ {1, . . . , n}.

In the following, we report the most notable findings our these revisiting experiments.

White-Box Attack Effectiveness. We start by revisiting the prior works in white-box

attack setups. The impact of the spatial memorization design on the TSR system-level

attack success is orthogonal to the attacker’s knowledge level (e.g., white- or black-box) of the

targeted TSR model, and thus it is of interest to use our new metrics to revisit existing attacks

even in the white-box attack setting. Table 7.4.1 shows the white-box attack effectiveness of

representative existing hiding attacks measured by both fHA and SysHA. When using fHA,

the attack success rates are similar to those reported in the original papers [110, 330, 148]

and can be claimed as effective (from ∼50% to 90%). However, as numerically analyzed

in §7.4.1, due to spatial memorization the TSR system-level attack success rate can be much

lower. As shown, when using SysHA, the attack success rates decrease significantly by 2

to 9 times, with the absolute success rate value drops of at least 40%. Most notably, the
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Table 7.4.1: White-box attack effectiveness for representative prior works on hiding attacks
measured by fHA and SysHA. As shown, while the fHA results can indeed be claimed as
effective, it may not be appropriate to claim so with SysHA. This suggests a potential lack
of TSR system-level attack effectiveness even in the white-box setting for existing works.

fHA

Distance ranges (meters)

0-5 5-10 10-15 15-20 20-25 25-30
Ave.

SysHA

RP2 41.8% 10.0% 23.8% 65.4% 99.9% 100% 56.8% 6.6%

SIB 84.6% 56.6% 82.0% 99.2% 100% 100% 87.1% 45.1%

FTE 88.9% 57.1% 13.6% 3.1% 47.8% 74.5% 47.5% 5.2%

attack success rates for RP2 and FTE are dropped to at most 6.6%. Thus, it may not

be appropriate to claim that these attacks can be effective at the TSR system level. This

suggests a potential lack of TSR system-level attack effectiveness for existing works even in

the white-box settings.

Observation 4: When spatial memorization is considered, prior works in this problem

space may not be claimed as effective at the TSR system level even in white-box attack

settings. Our newly-proposed surrogate TSR system-level metrics can help improve this

in the future as they can be leveraged to better approximate the impact of spatial memo-

rization on the TSR system-level attack success.

Black-Box Transfer Attack Effectiveness. We next revisit the black-box transfer attack

effectiveness of existing works. Table 7.4.2 shows the results for representative prior works

on hiding attacks measured by both fHA and SysHA. As shown, when using fHA, all prior

works show a descent transfer attack success rates at ∼40%, which is very similar to the

reported numbers from the original papers on average (∼50%). However, when using SysHA,

the success rates becomes much lower, which are generally decreased by around 3 times for

all three attacks. This is in fact quite similar to the observations from the commercial TSR

testing in §7.3.3 and Table 7.3.4, which found that the black-box transfer attack success

rates against commercial TSR systems are almost a magnitude lower than those reported

178



Table 7.4.2: Black-box transfer attack effectiveness for representative prior works on hiding
attacks measured by fHA and SysHA. Each success rate value is an average over the results
from 6 representative transfer target models: 3 one-stage models (Y8, YS, DETR) and 3 two-
stage models (two Faster RCNN with different backbones, MaskRCNN), which are detailed
more in §7.4.2. As shown, although the fHA values show descent transfer attack success rates
similar to those reported by the original paper, those calculated by SysHA are much lower,
similar to the observations from the commercial TSR testing in §7.3.3 and Table 7.3.4.

Transfer attack success rates (averaged over a set of six transfer target models (§7.4.2)

fHAOriginal paper
transferability 0-5m 5-10m 10-15m 15-20m 20-25m 25-30m Ave.

SysHA

RP2 18.9% 36.4% 32.0% 29.6% 46.0% 61.3% 50.0% 42.6% 14.5%

SIB 46.1% 20.7% 26.5% 37.2% 42.6% 54.9% 51.2% 38.9% 12.4%

FTE 89.8% 29.2% 36.4% 29.3% 34.0% 45.5% 40.1% 35.7% 11.0%

Ave. 51.6% 28.8% 31.6% 32.0% 40.9% 53.9% 47.1% 39.1% 12.6%

by the original papers on average. This suggests that spatial memorization may indeed be

a major factor for the observed much lower-than-expected black-box transfer attack success

rates against commercial TSR systems.

Observation 5: When spatial memorization is considered, the black-box transfer attack

success rates of prior works at TSR system level can be much lower than expected (only

∼13%) for hiding attack. This suggests that existing hiding attack works are unlikely to

have direct impacts on real-world commercial TSR systems in general, which is consistent

with our observations in our large-scale commercial TSR systems testing. This suggests

that future work in this problem space should focus more on black-box attack settings,

which can be more generally enabled by our newly-proposed surrogate TSR system-level

attack success metrics.

Hiding vs. Appearing Attack Effectiveness. As numerically analyzed in §7.4.1, it can

be much harder to achieve hiding attack success than to achieve appearing attack success

at the TSR system level due to spatial memorization. Now with concrete attack examples

from prior works, we can more directly study such attack hardness gaps. Table 7.4.3 shows
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Table 7.4.3: Attack capability comparison between the hiding and appearing attacks pro-
posed from the same prior work (SIB [330]) measured by fHA, SysHA, fAA, and SysAA. As
shown, if using the prior TSR model-level attack success metrics (fHA, fAA), the judgment of
the attack capability differences between the proposed hiding and appearing attacks can be
the completely opposite to those using SysHA and SysAA due to the consideration of spatial
memorization.

Hiding attack Appearing attack

SIB [330] fHA SysHA fAA SysAA

White-box attack 87.1% 45.1% 29.1% 87.6%

Black-box transfer attacks 38.9% 12.4% 31.7% 64.2%

the comparison of the attack success rates for the hiding and appearing attacks from the

same prior work SIB [330]. The success rates are calculated for both prior TSR model-level

metrics (fHA, fAA) and our newly-proposed surrogate TSR system-level metrics (SysHA,

SysAA) under both white-box and black-box transfer attack settings. Here, the black-box

transfer attack success rates are calculated by averaging results over a set of 6 representative

target models (§7.4.2).

As shown, in both white-box and black-box transfer attack settings, SysHA is lower than

fHA and SysAA is higher than fAA, which is consistent with our numerical analysis results

(§7.4.1) and is caused by the spatial memorization effect. Interestingly, if we only use prior

TSR model-level metrics (fHA, fAA) to judge the attack capabilities between the proposed

hiding and appearing attacks, the conclusion will be that the proposed hiding attack is

more effective (if not much more effective) than the proposed appearing one, as the fHA

results are always higher than the fAA results in both white-box and black-box transfer

attack settings; in particular, in the white-box setting, the fHA success rate is ∼3 times

of the fAA one. However, when using SysHA and SysAA, the conclusion is the completely

opposite: the appearing attack success rate is always higher than the hiding attack one in

both white-box and black-box transfer attack settings, and the former can be ∼2-5 times

higher. This suggests that if not considering spatial memorization, the judgment of the

TSR system-level attack capabilities across hiding and appearing attacks can be completely
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Table 7.4.4: The white-box appearing attack effectiveness of RP2 [110] with and without
the Nested AE (NAE) design measured by fAA and SysAA. As shown, when using fAA,
the NAE design can indeed “significantly improve the robustness of adversarial attack in
various distances” according to the original paper that proposed NAE as the key new design
contribution [330]: it improves fAA in every distance range segments, leading to a 22% im-
provements on average). However, when using SysAA with spatial memorization considered,
the success rate improvement is almost negligible (∼1%).

fAA
RP2 [110]

0-5m 5-10m 10-15m 15-20m 20-25m Ave.
SysAA

w/o NAE 86.8% 100% 64.7% 66.9% 19.5% 67.6% 98.2%

w/ NAE 100% 100% 100% 88.3% 25.8% 82.8% 100%

wrong. This further highlights the importance of systematically modelling the impacts of

spatial memorization on the TSR system-level attack success, which is exactly what we aim

to achieve in the design of SysHA and SysAA.

Observation 6: Using the hiding and appearing attacks proposed from the same prior

work, the hiding one can indeed be much harder (2-5 times) than the appearing one in both

white-box and black-box transfer attack settings after spatial memorization is considered.

However, if using the prior TSR model-level attack success metrics, the judgment of such

relative attack hardness differences can be the completely opposite, which thus highlights

the necessity of the design of the new SysHA and SysAA metrics.

Judgement of the Value of New Attack Designs. As numerically analyzed in §7.4.1,

spatial memorization can significantly impact the attack success at the TSR system level,

with a potential of having ∼50% absolute attack success rate value difference. Due to this,

it is possible that certain new attack designs proposed in prior works can be seemingly

highly beneficial to the attack success when judged using the prior TSR model-level metrics,

but when judged with the consideration of spatial memorization, the benefits to the attack

success are actually very minimal. This thus may significantly change how we judge the

practical value of certain prior attack designs at the TSR system level. Table 7.4.4 shows

our investigation into one such example. As shown, in this experiment we compare the white-

181



RP! w/o Nested AE RP! w/ Nested AE

Figure 7.4.4: Visualisation of the adversarial patterns with and without the Nested AE
(NAE) design reproduced by us using RP2 (the original design has not been open-sourced).
As shown, the “nested” adversarial pattern feature is highly consistent with that reported
in the original paper (e.g., Fig. 5 in [330]).

box appearing attack effectiveness of RP2 [110] with and without a specific attack design

called Nested AE, which we denote as NAE. This design is proposed by Zhao et al. [330] as

a key new appearing attack design contribution. In this design, the key idea is to decouple

the task of varying distance attack into two pieces: long-distance and short-distance attacks,

and distribute them to different regions on the adversarial pattern printed on a whote-sign

poster, with the goal of systematically increasing the distance of an appearing attack [330].

Fig. 7.4.4 shows a visualization of the adversarial patterns with and without the NAE design

reproduced by us (like what we reported in §7.3.1 for prior works on appearing attacks,

this prior attack design also has not been open-sourced so far). As shown, we are able to

reproduce the designed adversarial pattern features, with an inner STOP sign-like adversarial

pattern “nested” at the center of an outer adversarial pattern, with the inner one for short-

distance attack effect and the outer one for long-distance attack effect, which is consistent

with the reported adversarial pattern features in the original paper (can be seen by Figure 5

in [330]). As shown by our results in Table 7.4.4, when using fAA, such a design can indeed

“significantly improve the robustness of adversarial attack in various distances” as claimed

in the original paper [330]: it improves fAA in every distance range segments from 0 to 30m,

which is able to increase the average fAA success rates by 22%, from lower than 70% to

182



higher than 80%. However, when using SysAA with spatial memorization considered, the

success rate improvement is almost negligible (∼2%), from 98.2% to 100%. This is mainly

because due to spatial memorization, it can be much easier to achieve a TSR system-level

appearing attack success compared to the attack capabilities that can be reflected by the

direct TSR model-level metrics like fAA. Thus, even with a naive attack design, the attack

success rates at the TSR system level can already be very high, which can thus make the

necessity and practical value of more sophisticated appearing attack designs very low.

Observation 7: Due to spatial memorization, the benefits of certain attack designs can

be seemingly high (e.g., >20% attack success rate increase) using prior TSR model-level

success metrics, but actually nearly negligible (e.g., only 1% increase) at the TSR system

level. This thus highlights the necessity of attack success metrics that can incorporate the

impact of spatial memorization, such as SysHA and SysAA, with regard to the judgment

of the necessity and practical value of any given attack designs in this problem space, for

both the designs in the past or those in the future.

7.5 Discussions

In this section, we provide detailed discussion on the ethics, limitations, and future work.

7.5.1 Ethics

In discussing the ethical considerations of our measurement study, it is crucial to highlight

the measures taken to ensure safety and responsibility. Our experiments with commercial

vehicles are conducted on the roof of a parking structure, a controlled environment where

we can ensure the absolute absence of other vehicles and people when performing the exper-

iments. Additionally, we take precautions to make sure that the adversarial attacks are not
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visible anywhere from public roads, thereby eliminating any risk to others.

Recognizing the direct impacts of our study on the security of commercial vehicles, we

have performed responsible vulnerability disclosure to all the potentially affected vehicle

manufacturers following the ethical standard in the security community. Specifically, this

involved informing the vehicle manufacturers for all the vehicle models we tested (i.e., C1 to

C4) about our testing results, especially those with vehicle models that were tested vulnerable

such as the the vehicle manufacturer for C2; we have already done all these. This proactive

approach allows the manufacturers to address and mitigate any potential risks posed by

these attacks, ensuring the safety and security of their vehicles. Additionally, even in this

submission version, we do not directly reveal the exact vehicle brands and models for C1 to

C4 to protect the potentially-affected companies (§7.3).

7.5.2 Limitations and Future Work

Threats to Validity for the Statistical Significance in Commercial Systems Test-

ing Results. To scientifically interpret our commercial system testing results, it is important

to understand their statistical significance. First, for the overall transfer attack success rates

against commercial systems over all 30 attack test combinations, the result (6.67% in Ta-

ble 7.3.4) is statistically significant with p < 0.02 using Z-Test [167], Binomial Test [274],

One-Sample T-Test [235], and Wilcoxon Signed-Rank Test [292]. Second, for the result of

each test combination, we technically cannot compute the statistical significance values since

the variance for each is 0 (all failure or all success as shown in Table 7.3.4) and statistical test-

ing methods are designed for data samples with variance (and thus their calculation generally

requires division by the standard deviation [273, 274, 167, 292, 235, 259, 245, 197, 140, 62],

which is 0 in our case). For our case, this may not be addressable by simply increasing the

number of attempts, since the root cause is the lack of variation in the results, which is likely
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to continue since the output of each test run for us is binary (failure or success). In hypothe-

sis testing, if all observed values are exactly the same as the hypothesized value (i.e., there is

no variation in the data), it means that the data perfectly matches the null hypothesis [251]

and there is no need to conduct further statistical tests to determine significance, as the

data inherently confirms the hypothesis [116, 117]. In our experiments, this is indeed the

case as (1) we observe no variations during the 3 attempts and (2) considering the spatial

memorization design, in each attempt there are also multiple TSR model-level tests when

the vehicle approaches the sign, but still no variations were observed, which made us believe

that the results are unlikely to change even if we try a few more times (we cannot afford a

significant increase in the number of attempts as we explain below). Note that this is also

already statistically more rigorous than all prior works in this: they only tried once for each

attack test [243, 148] (we have confirmed this with the authors), which is not enough to even

calculate variance.

Nevertheless, it is indeed possible that if we significantly increase the number of attempts,

some variations will appear and thus allow us to calculate statistical significance. However,

since we need to manually drive the car past the sign and circle back to the same starting

point for each attempt, and also need to manually take down and put up new adversarial

patterns, at 3 attempts and 14 different tested signs (2 benign, 12 attacks) we need to spend

over 2 hours per vehicle model. If we largely increase the attempt number, it may not be

possible to control the lighting conditions to be comparable across these tests, which is one

of the most critical factors for the effectiveness of physical-world adversarial attacks [330,

148, 309]. For example, if we conduct at least 30 attempts per test as commonly suggested in

statistical testing [218], it will cost at least 10 hours in total and the lighting conditions will

be completely changed. Note that this is an inherent limitation for any outdoor experimental

setup on commercial vehicles. To address this, one possibility is to use an indoor vehicle

testing facility with controlled lighting conditions. However, we are not aware of any prior

works in AD security that can have such a setup, and also it is unclear whether such a setup
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can accurately simulate outdoor conditions, as the targeted physical environment for TSR

adversarial attacks is outdoor. We thus leave the solution exploration of this to future work.

More Root Cause Analysis for Commercial TSR System Testing Results. In this

work, we were able to perform the first large-scale measurement of existing physical-world

adversarial attacks on commercial TSR systems by performing black-box transfer attack

testing on the commercial systems. Although this was able to fill the critical research gap in

achieving a more general understanding of existing attacks’ impacts on real-world commercial

TSR systems, certain aspects remain partially understood , for example the reason why the

TSR function of certain commercial systems can actually be much more vulnerable than

academic TSR models, and also why the two successful attack setups are limited to the

STOP sign detection. There are multiple possible causes we can speculate, e.g., for the

former due to the need to reduce false alarm rates in real-world deployment, or due to the

long deployment cycle to integrate latest academic model designs; and for the latter due to

the need to customize the detection accuracy for certain sign types because of real-world

deployment or customer needs. However, due to the black-box nature of these commercial

systems, it requires more systematic follow-up studies to scientifically answer these questions,

which we believe is one of the most highly desired future works.

Defense-Side Explorations. In this work, we mainly focus on measuring and understand-

ing the potential gap between existing academic research and real-world commercial systems

on the attack side. In the future, it is also of interest to explore such a potential gap on the

defense side. Such a gap may indeed exist, for example, due to spatial memorization, hiding

attacks can be easier to be defended against at the TSR system level than expected, since

as long as the defense method can prevent the hiding attack success in any of the spatially

memorizable sign detection periods, it can prevent the hiding attack success at the TSR

system level. For appearing attacks, this will be the opposite since to prevent the appearing

attack success at the TSR system level, the defense method has to prevent the appearing
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attack success in all of the spatially memorizable sign detection periods. We thus leave a

systematic investigation of these aspects to the future work.

About misclassification attacks. In this work, we focus on the two most representative

TSR adversarial attack types so far with highly demonstrated physical-world realism, hiding

and appearing attacks (§7.2.2). Meanwhile, there are also prior works studying misclassifica-

tion attacks on TSR models (i.e., changing the detection from one sign to another) [148, 111],

which is less studied in the security community (potentially due to their relatively indirect

attack consequences compared to direct sign hiding or appearing) but can also be of in-

terest to be studied from the commercial systems perspective, especially if we consider the

potential impact from spatial memorization. Specifically, for such attacks, if the attack

doesn’t always succeed/fail in every spatial-memorization segment, the detected sign class

will change across spatial-memorization segments. The impact of spatial memorization will

depend on whether a later-detected different sign class will override a previously-memorized

sign class. For example, if the design is to not override, the TSR system-level success depends

on the model-level success of the first/farthest-to-the-sign spatial-memorization segment. If

the design is to override, for speed limit signs the TSR system-level success depends on the

last/nearest-to-the-sign spatial-memorization segment, while for STOP sign the driver will

see alternating/simultaneous display of correct and incorrect signs and thus it may require

to newly define the TSR system-level success from the driver’s perspective. To effectively

answer these new questions, a separate follow-up study is required since it will require new

research methodology designs starting from the commercial system testing stage, which we

thus leave to future work.

Impact from Other Possible Data Sources for TSR. Our current commercial TSR

system testing results are unlikely to be influenced by other possible sources for TSR such

as GPS/map. For example, since all the tested signs are temporarily placed at rooftop of a

parking structure, no existing maps can have these sign information. Thus, the failed attack
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attempts cannot be due to possible sign information retrieved from GPS/map. Meanwhile,

out of the 13 car brands providing TSR in Table 1, for 12 of them (including all the brands

we tested) we cannot find any evidence that fusion is used; specifically, for them their official

websites or vehicle manuals only mention the use of camera without any mention of the use of

other sources. Nevertheless, systematically understanding whether fusion can be an impact

factor on the current results (and if so, how much) can be an interesting follow-up research

direction, especially those on designing new analysis methods to systematically understand

the root causes of many current observations given the black-box nature of these systems as

discussed above. We thus leave this to future work.

7.6 Conclusion

In this paper, we conduct the first large-scale measurement of physical-world adversarial

attacks against commercial TSR systems. Our testing results reveal that although it is

possible for existing attack works from academia to have highly reliable (100%) attack success

against certain commercial TSR system functionality, such black-box commercial system

attack capabilities are not generalizable, leading to a much lower-than-expected black-box

transfer attack success rates overall. We find that one potential major factor is the spatial

memorization design that commonly exists in today’s commercial TSR systems. We design

new attack success metrics that can mathematically model the impacts of this design on the

TSR system-level attack success, and use them to revisit existing attacks. Through these

efforts, we uncover 7 novel observations, some of which can directly challenge the observations

or claims in prior works due to the use of our new metrics. We hope that the results and

new insights from this work can help inspire and facilitate more practically meaningful and

impactful research in this critical problem space.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This dissertation aims to bridge the two general yet crucial limitations of prior security

analysis in autonomous systems: the limited practicality in real-world autonomous system

setups, either due to 1) their sole focus on the AI component alone, which makes it non-trivial

to transfer their component-only attack effects to the system level, or 2) their research scope

limited to academic prototypes instead of real-world systems. This dissertation focuses on

novel vulnerability discovery, measurement, and attack designs for safety-critical autonomous

systems from practicality perspectives. The research contributions can be summarized as

follows:

Gap between AD system level and AI component level:

• MSF-ADV (Chapter 3): I am the first to study security issues of MSF-based AD per-

ception and the first to challenge the basic MSF design assumption in the AD context. I

successfully design and engineer a physical-world adversarial attack aiming at generating
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adversarial 3D object to mislead a victim AD vehicle to fail in detecting it and thus crash

into it. I adopt an optimization-based approach that addresses two main design challenges:

non-differentiable target camera and LiDAR sensing systems, and non-differentiable cell-

level aggregated features used by LiDAR. I also design strategies to enhance the attack

robustness, stealthiness, and physical-world realizability. I evaluate the attack on MSF

algorithms in representative production-grade AD systems in real-world driving scenar-

ios. The attack is shown to achieve more than 91% success rates across different object

types and MSF algorithms. Such high effectiveness can also be achieved with (1) high

stealthiness, (2) high robustness to victim positions, (3) high transferability across MSF

algorithms, and (4) high physical-world realizability after being 3D-printed and captured

by LiDAR and camera devices. To understand the end-to-end safety impact, I further

evaluate the proposed attack on a production-grade simulator, and show that the attack

can cause a 100% vehicle collision rate to a production-grade AD system. I also evaluate

and discuss defense strategies.

• ControlLoc (Chapter 4): I propose the first practical hijacking attack on AD percep-

tion using the monitor as the attack vector, to alter the location and shape of objects.

This attack can cause vehicle collisions or unnecessary emergency stops. I introduce a

novel attack framework, ControlLoc, to generate physical-world adversarial patches. This

includes patch location preselection, BBOX filters, loss function designs, and a novel op-

timization method. I evaluate ControlLoc on multiple AD perception systems including

industry-grade ones. ControlLoc is effective in the real world with a real vehicle across

different backgrounds, outdoor light conditions, hijacking directions, and angles. It causes

AD system-level effects like collisions in a production AD simulator.

• SysAdv (Chapter 5): I conduct the first measurement study on the system-level effect of

the representative prior object-evasion attacks with my proposed novel evaluation frame-

work (i.e., system model) including 4 popular object detectors and 3 state-of-the-art
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object-evasion attacks. I identify the limitations of prior works which hinder them in

potently achieving system-level effects and propose SysAdv, a system-driven adversarial

object-evasion attack with the system model in AD context. I further evaluate SysAdv

and show that the system-level effect of SysAdv can be significantly improved, i.e., the

system violation rate increases by around 70%.

• SlowTrack (Chapter 6): I am the first to study availability-based adversarial attacks

considering the entire AD perception pipeline and find that previous object detection-

based latency attack strategies may not induce potent system-level effects. I propose

a novel attack framework SlowTrack to systematically generate the latency adversarial

attacks on camera-based AD perception by designing a two-stage attack strategy and

proposing three novel loss functions. SlowTrack is tested on four popular camera-based

AD perception pipelines across different hardware, showing increase in latency and boost

in system-level effects.

Gap between academic prototypes and real-world systems: In Chapter 7, I conduct

the first large-scale measurement of physical-world adversarial attacks against commercial

TSR systems. Our testing results reveal that although it is possible for existing attack works

from academia to have highly reliable (100%) attack success against certain commercial

TSR system functionality, such black-box commercial system attack capabilities are not

generalizable, leading to a much lower-than-expected overall black-box transfer attack success

rates. I discover a spatial memorization design that commonly exists in today’s commercial

TSR systems, which can keep memorizing a sign detection result until the sign’s reaction need

in the spatial domain is met (e.g., when the vehicle passes the detected sign’s position). This

discovery is crucial as it is shown to be capable of creating a significant discrepancy between

the TSR model-level attack effect and that at the TSR system level. I mathematically

model the impact of this design on the TSR system-level attack success for both hiding and

appearing attacks, resulting in new attack success metric designs that can systematically
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consider the spatial memorization effect. I then use them to revisit the evaluations, designs,

and capabilities of existing attacks in this problem space. Through the commercial TSR

system measurements, new metric designs and analysis, and the revisiting of existing attacks,

I uncover a total of 7 novel observations compared to existing knowledge in this problem

space, some of which directly challenge the observations or claims in prior works due to the

introduction of the new attack success metrics.

8.2 Future Work

Following my current research, I plan to keep exploring, analyzing and solving security prob-

lems in the safety-critical autonomous systems. I am dedicated to improving the practicality

of the current security research such as delving deeper into the system and AI component

gaps by providing general solution to measure the difference between AI component level

effect and system level effect and improve their effectiveness. This includes developing gen-

eral/unified solutions to quantify and bridge the discrepancies between AI component level

effects and system level effects. This will also enhance our understanding of the actual im-

pact of these vulnerabilities, leading to more effective and practical security solutions. My

research goal is to develop a set of general security solution frameworks for autonomous

systems that can be applied across application domains. Below, I elaborate on the specific

research paths I intend to pursue along my vision.

• Extending beyond integrity and availability to other security properties such

as authenticity and confidentiality: This dissertation primarily addresses the in-

tegrity of autonomous systems and conducts some of the initial exploratory studies on

their availability. Although availability has received less attention, other crucial security

properties, such as authenticity and confidentiality, remain under-explored in this research

field. Building on the methods developed for integrity and availability, my future research
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aims to expand into these additional security areas. For example, as autonomous systems

increasingly rely on high-resolution sensors, such as cameras and LiDAR, sensitive or pri-

vate data may be inadvertently collected during vehicle operation. This raises potential

confidentiality concerns, particularly when this data is transmitted to external servers.

Addressing such security vulnerabilities presents a significant scientific gap, which my

research intends to explore further.

• Extensive AI component-level and system-level security research: It is a widely

held belief that AI component-level errors do not inherently result in system-level conse-

quences. My initial explorations, especially those emphasizing integrity and availability

in AD perception [283, 70, 194, 195], illuminate some facets of this issue. Yet, the vast

expanse of this field is largely uncharted. Numerous studies [252] have a narrow focus

on single-component security, often presupposing that theoretical insights will seamlessly

apply to real-world autonomous system contexts. This perspective overlooks the im-

perative of empirically validating how such vulnerabilities affect operations in tangible

settings. Therefore, this necessitates a synthesis of research and extensive engineering

undertakings—possibly providing general/unified platform as well as revisiting and fine-

tuning methodologies from past research and rigorously testing them in an real-world

autonomous systems. Thus, novel security analysis on both AI component level and

system level can be proposed.

• Physical-world realizable security analysis with realistic threat model: Contem-

porary AI-based research primarily navigates within digital confines, often overlooking the

real-world implications of such theoretical threats, especially in autonomous systems. This

gap necessitates a shift towards assessing these digital vulnerabilities’ practical impacts

and risks in physical scenarios. My research aims to bridge this divide, focusing on the

tangible aspects of theoretical threats. By employing empirical analyses and real-world

testing based on previous studies [71, 239, 283], the initiative will evaluate the robustness
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of current autonomous systems against actual physical-world adversarial tactics. This ap-

proach seeks not only to bring depth to our understanding of autonomous system security

but also to enhance real-world safety protocols by grounding digital threats in reality. In

addition, a substantial portion of AI-related autonomous system security research relies on

threat models that do not always align with real-world conditions, such as assuming direct

access to system internals or compromised training data. These unrealistic bases may di-

minish the practicality of security strategies. My goal is to cultivate more practical threat

models, anchoring security assessments in feasible attack scenarios to foster defenses that

are genuinely equipped to counteract realistic threats in AI-related autonomous systems.

• Systematical commercial system security analysis: Building on practical security

research in autonomous systems, it is imperative to delve into the nuances of commer-

cial systems. While these systems are inherently robust, handling real-world intricacies,

the exploration of their potential vulnerabilities remains superficial. My research [284]

provides an initial step on this direction. I aim to keep going beyond theoretical un-

derstanding, pioneering in-depth offensive security analyses specifically for these sophis-

ticated environments. My research endeavors to enhance the resilience of safety-critical

autonomous systems, guiding their evolution in both security and safety realms.

• Defensive research: Currently, while a plethora of security vulnerabilities in autonomous

systems has been identified, the landscape of effective defensive solutions remains sparse,

particularly in the realm of attack prevention.

– Model-Level defense. Certain safety-critical vulnerable AI components in au-

tonomous systems—such as lane detection [239] and MSF perception [71]—lack ro-

bust defenses. While generic AI defenses, such as input transformation, do exist [71],

they often fail to defend against the attacks on autonomous systems [71, 239]. Conse-

quently, more advanced defense mechanisms, such as certified robustness [175], have

been proposed for various tasks, including classification and object detection, due
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to their ability to provide strong theoretical guarantees. However, applying certified

robustness in current autonomous systems poses significant challenges: low efficiency

that damages real-time applicability especially in AD systems; vulnerability to adap-

tive attacks [132]; and difficulties in defending against adversarial attacks in the 3D

domain [71]. These limitations motivate my research to leverage invariable factors

such as physics invariance to narrow the scope of potential perturbations, enabling

the development of robust and efficient defenses for real-world autonomous systems.

– System-Level defense. To mitigate these vulnerabilities, a fundamental approach

is to perform the system-level defense. This can be achieved through various strate-

gies such as sensor fusion: enhancing robustness by integrating more sensor sources

and infrastructure-based defense: combining results from infrastructure [191]. Cur-

rently, these technologies are still in their early stages of development. Moving for-

ward, my plan is to continue developing innovative methodology to generally enhance

the system-level robustness of autonomous systems.

195



Bibliography

[1] 3D Printing Online. https://formlabs.com/software/.

[2] 40+ Corporations Working On Autonomous Vehicles. https://www.cbinsights.com/r
esearch/autonomous-driverless-vehicles-corporations-list.

[3] Adding Gaussian Noise. https://pytorch.org/docs/stable/tensors.html.

[4] Amazon Mechanical Turk. https://www.mturk.com.

[5] Apollo Models. https://github.com/ApolloAuto/apollo/tree/r5.5.0/modules/percepti
on/production/data/perception/lidar/models/cnnseg.

[6] Autoware Self-driving Vehicle on a Highway. https://www.youtube.com/watch?v=
npQMzH3j d8.

[7] Autoware.AI. https://www.autoware.ai//.

[8] Avis will Service Waymo’s Self-driving Minivans. https://www.theverge.com/2017/6/
26/15873236/avis-waymo-google-self-driving-cars-vans.

[9] Baidu Launches Public Robotaxi Trial Operation. https://www.globenewswire.com
/news-release/2019/09/26/1921380/0/en/Baidu-Launches-Public-Robotaxi-Trial-Op
eration.html.

[10] Baidu launches their open platform for autonomous cars–and we got to test it. https:
//technode.com/2017/07/05/baidu-apollo-1-0-autonomous-cars-we-test-it/.

[11] Brake Distance. http://www.csgnetwork.com/stopdistcalc.html.

[12] Carma Platform. https://github.com/usdot-fhwa-stol/carma-platform.

[13] COCO Dataset. http://cocodataset.org/.

[14] Curvature. https://en.wikipedia.org/wiki/Gaussian curvature.

[15] Experimental Security Research of Tesla Autopilot. https://keenlab.tencent.com/en/
whitepapers/Experimental Security Research of Tesla Autopilot.pdf.

[16] FormLabs. https://formlabs.com/software/.

196

https://formlabs.com/software/
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://pytorch.org/docs/stable/tensors.html
https://www.mturk.com
https://github.com/ApolloAuto/apollo/tree/r5.5.0/modules/perception/production/data/perception/lidar/models/cnnseg
https://github.com/ApolloAuto/apollo/tree/r5.5.0/modules/perception/production/data/perception/lidar/models/cnnseg
https://www.youtube.com/watch?v=npQMzH3j_d8
https://www.youtube.com/watch?v=npQMzH3j_d8
https://www.autoware.ai//
https://www.theverge.com/2017/6/26/15873236/avis-waymo-google-self-driving-cars-vans
https://www.theverge.com/2017/6/26/15873236/avis-waymo-google-self-driving-cars-vans
https://www.globenewswire.com/news-release/2019/09/26/1921380/0/en/Baidu-Launches-Public-Robotaxi-Trial-Operation.html
https://www.globenewswire.com/news-release/2019/09/26/1921380/0/en/Baidu-Launches-Public-Robotaxi-Trial-Operation.html
https://www.globenewswire.com/news-release/2019/09/26/1921380/0/en/Baidu-Launches-Public-Robotaxi-Trial-Operation.html
https://technode.com/2017/07/05/baidu-apollo-1-0-autonomous-cars-we-test-it/
https://technode.com/2017/07/05/baidu-apollo-1-0-autonomous-cars-we-test-it/
http://www.csgnetwork.com/stopdistcalc.html
https://github.com/usdot-fhwa-stol/carma-platform
http://cocodataset.org/
https://en.wikipedia.org/wiki/Gaussian_curvature
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://formlabs.com/software/


[17] Genetic Algorithm. https://pypi.org/project/geneticalgorithm/.

[18] Inside Waymo’s Secret World for Training Self-Driving Cars. https://www.theatlant
ic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-fa
cilities/537648/.

[19] Intro to Rendering, Ray Casting. https://ocw.mit.edu/courses/electrical-engineering-
and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6 837F
12 Lec11.pdf.

[20] LARGE-FORMAT 3D PRINTER FOR INDUSTRIAL APPLICATIONS. https://bi
grep.com/bigrep-one/.

[21] Mesh Simplification. http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlid
es/08 Simplification.pdf.

[22] Navigant Research Names Waymo, Ford Autonomous Vehicles, Cruise, and Baidu the
Leading Developers of Automated Driving Systems. https://www.businesswire.com/n
ews/home/20200407005119/en/Navigant-Research-Names-Waymo-Ford-Autonomo
us-Vehicles.

[23] Our Project Website. https://sites.google.com/view/cav-sec/msf-adv.

[24] Pillow (PIL Fork). https://pillow.readthedocs.io/en/stable/.

[25] Pony.ai Tech. https://www.pony.ai/en/tech.html.

[26] Tesla AutoPilot: Traffic Light and Stop Sign Control.

[27] Traffic Cone. https://en.wikipedia.org/wiki/Traffic cone.

[28] Tri. Interpolation. en.wikipedia.org/wiki/Trilinear interpolation.

[29] Understanding Accuracy, Precision, and Tolerance in 3D Printing. https://formlabs.c
om/blog/understanding-accuracy-precision-tolerance-in-3d-printing/.

[30] UPS joins race for future of delivery services by investing in self-driving trucks. https:
//abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-drivin
g/story?id=65014414.

[31] User Study: Anomalous Traffic Cone Survey. https://drive.google.com/file/d/1Eqt
QL6m1ZPNOQGs6pbAM25WFT8D58EC2/view.

[32] Velodyne Alpha Prime. https://autonomoustuff.com/product/velodyne-vls-128/.

[33] Waymo has launched its commercial self-driving service in Phoenix - and it’s called
‘Waymo One’. https://www.businessinsider.com/waymo-one-driverless-car-service-la
unches-in-phoenix-arizona-2018-12.

[34] Waymo Tech. https://waymo.com/tech/.

197

https://pypi.org/project/geneticalgorithm/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6_837F12_Lec11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6_837F12_Lec11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-837-computer-graphics-fall-2012/lecture-notes/MIT6_837F12_Lec11.pdf
https://bigrep.com/bigrep-one/
https://bigrep.com/bigrep-one/
http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf
http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/08_Simplification.pdf
https://www.businesswire.com/news/home/20200407005119/en/Navigant-Research-Names-Waymo-Ford-Autonomous-Vehicles
https://www.businesswire.com/news/home/20200407005119/en/Navigant-Research-Names-Waymo-Ford-Autonomous-Vehicles
https://www.businesswire.com/news/home/20200407005119/en/Navigant-Research-Names-Waymo-Ford-Autonomous-Vehicles
https://sites.google.com/view/cav-sec/msf-adv
https://pillow.readthedocs.io/en/stable/
https://www.pony.ai/en/tech.html
https://en.wikipedia.org/wiki/Traffic_cone
en.wikipedia.org/wiki/Trilinear_interpolation
https://formlabs.com/blog/understanding-accuracy-precision-tolerance-in-3d-printing/
https://formlabs.com/blog/understanding-accuracy-precision-tolerance-in-3d-printing/
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://drive.google.com/file/d/1EqtQL6m1ZPNOQGs6pbAM25WFT8D58EC2/view
https://drive.google.com/file/d/1EqtQL6m1ZPNOQGs6pbAM25WFT8D58EC2/view
https://autonomoustuff.com/product/velodyne-vls-128/
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://waymo.com/tech/


[35] YOLOv3 Darknet. https://pjreddie.com/darknet/yolo/.

[36] Does your car have automated emergency braking? It’s a big fail for pedes-
trians. https://www.zdnet.com/article/does-your-car-have-automated-emergency-
braking-its-a-big-fail-for-pedestrians/, 2019.

[37] Model Hacking ADAS to Pave Safer Roads for Autonomous Vehicles. https://www.m
cafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-fo
r-autonomous-vehicles/, 2020.

[38] LGSVL Simulator. https://www.lgsvlsimulator.com/, 2022.

[39] AASHTO. Policy on Geometric Design of Highways and Streets (7th Edition). 2018.

[40] M. Abdulhamid and O. Amondi. Collision Avoidance System using Ultrasonic Sensor.
Land Forces Academy Review, 25(3):259–266, 2020.

[41] A. Abed Abud, B. Abi, R. Acciarri, M. Acero, M. R. Adames, G. Adamov,
M. Adamowski, D. Adams, M. Adinolfi, A. Aduszkiewicz, et al. Separation of track-
and shower-like energy deposits in protodune-sp using a convolutional neural network.
The European Physical Journal C, 82(10):903, 2022.

[42] B. Abi, R. Acciarri, M. Acero, G. Adamov, D. Adams, M. Adinolfi, Z. Ahmad,
J. Ahmed, T. Alion, S. Alonso Monsalve, et al. Neutrino interaction classification
with a convolutional neural network in the dune far detector. Physical Review D,
102(9):092003, 2020.

[43] A. A. Abud, B. Abi, R. Acciarri, M. Acero, M. Adames, G. Adamov, M. Adamowski,
D. Adams, M. Adinolfi, C. Adriano, et al. Reconstruction of interactions in the
protodune-sp detector with pandora. The European Physical Journal C, 83(7):618,
2023.

[44] A. A. Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov,
M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, et al. Highly-parallelized sim-
ulation of a pixelated lartpc on a gpu. Journal of instrumentation, 18(04):P04034,
2023.

[45] E. ACKERMAN. Slight Street Sign Modifications Can Completely Fool Machine
Learning Algorithms. https://spectrum.ieee.org/slight-street-sign-modifications-can
-fool-machine-learning-algorithms, 2017.

[46] N. Aharon, R. Orfaig, and B.-Z. Bobrovsky. BoT-SORT: Robust Associations Multi-
Pedestrian Tracking. arXiv preprint arXiv:2206.14651, 2022.

[47] H. Akatsuka and S. Imai. Road Signposts Recognition System. Technical report, SAE
Technical Paper, 1987.

198

https://pjreddie.com/darknet/yolo/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://www.lgsvlsimulator.com/
https://spectrum.ieee.org/slight-street-sign-modifications-can-fool-machine-learning-algorithms
https://spectrum.ieee.org/slight-street-sign-modifications-can-fool-machine-learning-algorithms


[48] A. Alexos, J. Liu, A. Tiwari, K. Bhardwaj, S. Hayes, P. Baldi, S. Bukkapatnam,
and S. Bhandarkar. Machine learning-enhanced prediction of surface smoothness
for inertial confinement fusion target polishing using limited data. arXiv preprint
arXiv:2312.10553, 2023.

[49] R. Alika, E. M. Mellouli, and E. H. Tissir. Optimization of Higher-Order Sliding
Mode Control Parameter using Particle Swarm Optimization for Lateral Dynamics of
Autonomous Vehicles. In IRASET, pages 1–6. IEEE, 2020.

[50] F. Almutairy, T. Alshaabi, J. Nelson, and S. Wshah. Arts: Automotive repository
of traffic signs for the united states. IEEE Transactions on Intelligent Transportation
Systems, 22(1):457–465, 2019.

[51] M. Alzantot, Y. Sharma, S. Chakraborty, H. Zhang, C.-J. Hsieh, and M. B. Srivastava.
Genattack: Practical Black-box Attacks with Gradient-free Optimization. In GECCO,
2019.

[52] apollo. Baidu Apollo team (2017), Apollo: Open Source Autonomous Driving. https:
//github.com/ApolloAuto/apollo, 2023.

[53] B. Apollo. Baidu Apollo. http://apollo.auto, 2022.

[54] B. Apollo. Baidu Apollo. https://www.apollo.auto/, 2022.

[55] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing Robust Adversarial
Examples. In International conference on machine learning, pages 284–293. PMLR,
2018.

[56] A. Athalye and I. Sutskever. Synthesizing Robust Adversarial Examples. In Interna-
tional Conference on Machine Learning (ICML), 2018.

[57] D. Atlanta. 25 MPH Speed Limit - Frequently Asked Questions, 2020.

[58] P. F. Baldi, S. Abdelkarim, J. Liu, J. K. To, M. D. Ibarra, and A. W. Browne. Vitre-
oretinal surgical instrument tracking in three dimensions using deep learning. Trans-
lational vision science & technology, 12(1):20–20, 2023.

[59] D. Belayneh, F. Carminati, A. Farbin, B. Hooberman, G. Khattak, M. Liu, J. Liu,
D. Olivito, V. B. Pacela, M. Pierini, et al. Calorimetry with deep learning: particle
simulation and reconstruction for collider physics. The European Physical Journal C,
80(7):1–31, 2020.

[60] J. Beltran, C. Guindel, F. M. Moreno, D. Cruzado, F. Garcia, and A. De La Escalera.
Birdnet: a 3D Object Detection Framework from Lidar Information. In ITSC, pages
3517–3523. IEEE, 2018.

[61] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple Online and Realtime
Tracking. In 2016 IEEE international conference on image processing (ICIP), pages
3464–3468. IEEE, 2016.

199

https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
http://apollo.auto
https://www.apollo.auto/


[62] K. A. Bollen and K. H. Barb. Pearson’s r and coarsely categorized measures. American
Sociological Review, pages 232–239, 1981.
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Slowdown attacks on adaptive multi-exit neural network inference. arXiv preprint
arXiv:2010.02432, 2020.

[140] H. Hsu and P. A. Lachenbruch. Paired t test. Wiley StatsRef: statistics reference
online, 2014.

[141] B. Huang and H. Ling. SPAA: Stealthy Projector-based Adversarial Attacks on Deep
Image Classifiers. ArXiv, 2020.

[142] M. D. Ibarra, J. K. To, J. Liu, S. Abdelkarim, A. Herekar, B. D. Kuppermann, P. Baldi,
and A. Browne. Automated detection of the spatial location of vitreoretinal instru-
ments from retinal images using deep learning methods. Investigative Ophthalmology
& Visual Science, 63(7):210–F0057, 2022.

[143] D. Ingram. Waymo will launch paid robotaxi service in Los Angeles on Wednesday.
https://www.nbcnews.com/tech/innovation/waymo-will-launch-paid-robotaxi-servi
ce-los-angeles-wednesday-rcna147101, 2024.

205

https://www.nature.com/articles/d41586-019-03013-5
https://www.nature.com/articles/d41586-019-03013-5
https://www.kbb.com/what-is/traffic-sign-recognition/
https://www.kbb.com/what-is/traffic-sign-recognition/
https://www.nbcnews.com/tech/innovation/waymo-will-launch-paid-robotaxi-service-los-angeles-wednesday-rcna147101
https://www.nbcnews.com/tech/innovation/waymo-will-launch-paid-robotaxi-service-los-angeles-wednesday-rcna147101


[144] R. Ivanov, M. Pajic, and I. Lee. Attack-resilient Sensor Fusion. In DATE, pages 1–6.
IEEE, 2014.

[145] R. C. Jain and T. O. Binford. Ignorance, myopia, and naivete in computer vision
systems. CVGIP: Image Understanding, 53(1):112–117, 1991.

[146] V. L. Jessie Smith. Scaling Simulation. https://aurora.tech/blog/scaling-simulation/,
2021.

[147] Q. Ji and R. M. Haralick. Error propagation for computer vision performance charac-
terization. In International Conference on Imaging Science, Systems, and Technology,
Las Vegas, 1999.

[148] W. Jia, Z. Lu, H. Zhang, Z. Liu, J. Wang, and G. Qu. Fooling the Eyes of Autonomous
Vehicles: Robust Physical Adversarial Examples Against Traffic Sign Recognition Sys-
tems. In NDSS, 2022.

[149] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei. Fooling Detection
Alone is Not Enough: Adversarial Attack Against Multiple Object Tracking. In ICLR,
2019.

[150] Y. J. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. W. Wei. Fooling
Detection Alone is Not Enough: Adversarial Attack against Multiple Object Tracking.
In International Conference on Learning Representations (ICLR’20), 2020.

[151] L. Jiang, X. Ma, S. Chen, J. Bailey, and Y.-G. Jiang. Black-box Adversarial Attacks
on Video Recognition Models. In ACM International Conference on Multimedia, 2019.

[152] Z. Jin, X. Ji, Y. Cheng, B. Yang, C. Yan, and W. Xu. PLA-LiDAR: Physical Laser
Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle. In IEEE
S&P, 2023.

[153] P. Jing, Q. Tang, Y. Du, L. Xue, X. Luo, T. Wang, S. Nie, and S. Wu. Too Good to
Be Safe: Tricking Lane Detection in Autonomous Driving with Crafted Perturbations.
In 30th USENIX Security Symposium (USENIX Security 21), pages 3237–3254, 2021.

[154] Y. Jo, S. Yang, and S. Joo Kim. Investigating Loss Functions for Extreme Super-
Resolution. In CVPR Workshops, pages 424–425, 2020.

[155] G. Jocher. ultralytics/yolov5. https://github.com/ultralytics/yolov5, 2020.

[156] G. Jocher. YOLOv5. https://github.com/ultralytics/yolov5, 2022.

[157] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics yolo (version 8.0.0) [computer soft-
ware]. https://github.com/ultralytics/ultralytics, 2023.

[158] M. Kane. Tesla Sold 2 Million Electric Cars: First Automaker To Reach Milestone,
2021.

[159] H. Kato, Y. Ushiku, and T. Harada. Neural 3D Mesh Renderer. In CVPR, June 2018.

206

https://aurora.tech/blog/scaling-simulation/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics


[160] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,
A. Monrroy, T. Ando, Y. Fujii, and T. Azumi. Autoware on Board: Enabling Au-
tonomous Vehicles with Embedded Systems. In 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS), pages 287–296. IEEE, 2018.
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