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Abstract 

Snoddy and Kurtz (2020) demonstrated spontaneous transfer 
of relational categories to new learning. Recognition memory 
data suggested that transfer was driven by schematization 
during learning. In the present study, we explored whether 
schema abstraction underlies transfer and recognition effects. 
Participants were assigned to condition based on the type of 
initial learning: classification with comparison, supervised 
observation with comparison, single-item supervised 
observation, or baseline (no learning). After initial learning, 
participants underwent a study phase and recognition test on 
novel stimuli followed by a target category learning task 
involving the same underlying category structures expressed in 
a new domain. During the recognition test, all conditions led to 
increased false alarms relative to baseline. Only the 
comparison conditions exhibited analogical transfer on the 
target category learning task. Results suggest that comparison 
facilitates the transfer of relational categories (due to schema 
abstraction), but recognition memory effects may be driven by 
more general categorization mechanisms. 

Keywords: category learning; relational categories; 
comparison; analogical transfer; recognition memory 

Introduction 

Categorization enables us to organize knowledge, summarize 

like instances, and generalize knowledge to novel situations. 

The extant category learning literature has chiefly focused on 

attribute categories (e.g., bird), which are characterized by 

similarity in members’ intrinsic features (i.e., birds have 

wings, feathers, etc.; Gentner & Kurtz, 2005). In contrast, 

relational categories capture extrinsic similarity in relational 

structure (i.e., turning on a lamp and melting ice both reflect 

dispersion of energy) between members (Gentner & Kurtz, 

2005). As structural similarity is the basis of relational 

categories, they are not confined to a single domain like 

attribute categories (Gentner & Kurtz, 2005) and provide a 

way to study cross-domain generalization of  concepts.   

Cross-domain generalization of relational concepts is 

similar, if not identical, to analogical transfer—applying 

knowledge of a relational principle (e.g., natural selection) 

acquired in one domain (e.g., biology) to solve a problem in 

another (e.g., business). The canonical analogical transfer 

effect is that when the problem-solving task is administered 

as a separate, unrelated experiment (i.e., spontaneously), 

transfer is notoriously difficult to achieve, however, transfer 

readily occurs when participants are given a hint about 

relevant prior knowledge (Gick & Holyoak, 1980). The ease 

of hint-aided transfer demonstrates that the chief difficulty in 

spontaneous transfer stems from accessing germane, albeit 

superficially dissimilar knowledge.  

A key finding in the transfer literature is that comparison 

of multiple analogs during study improves spontaneous 

transfer (Gick & Holyoak, 1983). The benefits of comparison 

arise from a structural alignment process that supports the 

formation of abstract schemas (i.e., abstract representations 

of relational structure) by filtering out surface-level 

mismatches such that the core relational structure remains 

(Gick & Holyoak, 1983; Markman & Gentner, 2000). These 

abstract schemas are more accessible in memory because 

they lack superficial mismatches with retrieval cues that are 

prohibitive to spontaneous access (Gentner, Rattermann, & 

Forbus, 1993). The primary goal of the present work is to test 

whether comparison is able to support spontaneous transfer 

via schema abstraction in relational category learning.  

Prior work has begun to explore the effect of comparison 

in relational category learning. Kurtz, Boukrina, and Gentner 

(2013) demonstrated that comparison-based classification led 

to improved cued, cross-domain transfer relative to single-

item classification. In related work, Patterson and Kurtz 

(2020) found a comparison advantage over single-item 

presentation under a supervised observational learning mode 

(i.e., labelled pairs), but not with a guess-and-correct 

classification task. These studies suggest that comparison is 

able to support transfer of relational categories. However, as 

both studies cued relevant knowledge by employing the same 

category labels in the training and transfer phases, their 

results most closely align with hint-aided transfer in Gick and 

Holyoak (1980, 1983). As hint-aided transfer does not 

involve spontaneously accessing knowledge, it remains 

unclear whether comparison-based category learning leads to 

improved transfer through better encoding of the category 

structures or if it can also encourage spontaneous access. 

Snoddy and Kurtz (2020) explored whether category 

learning tasks are capable of supporting spontaneous access 

and subsequent transfer. Participants who underwent single-

item classification to acquire relational categories during a 

base category learning phase (BCL) demonstrated larger 

improvements across training in a target category learning 

phase (TCL)—where the same underlying category 

structures from BCL were presented in a new domain with 

novel category labels—relative to participants learning the 

category structures for the first time. These results suggested 

that participants were leveraging knowledge of the category 

structures acquired during BCL to facilitate performance on 

TCL; thus, providing evidence of relational categories being 

spontaneously transferred across domains. We sought to 
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extend Snoddy and Kurtz (2020) by testing whether 

comparison-based relational category learning can further 

improve spontaneous transfer by better supporting access. 

If comparison effectively encourages access in relational 

category learning, such effects should be evidenced in 

memory measures as categorization and recognition memory 

are thought to be driven by a shared system (Nosofsky & 

Zaki, 1998). De Brigard, Brady, Ruzic, and Schacter (2017) 

found that learning about an attribute category led to an 

increase in both hits (i.e., correct recognition of studied 

items) and false alarms (i.e., spurious recognition of novel 

items as being previously studied) for novel category-

consistent items relative to non-learned items on a 

recognition memory test. De Brigard et al. (2017) explained 

these effects in terms of a schematization process—category 

learning encourages a focus on diagnostic information, which 

in turn leads to novel recognition items being treated as if 

they had been experienced during learning. 

 For relational categories, focusing on diagnostic 

information involves attending to structural information 

while discounting the superficial information (i.e., schema 

abstraction). To extend De Brigard et al. (2017) to relational 

categories, Snoddy and Kurtz (2020) included study and 

recognition test phases between BCL and TCL. Their results 

provided suggestive evidence for a schematization account—

category learning led to an increase in false alarms, but not 

hits. This suggested that category learning encouraged 

abstraction, which provided a familiarity-based route to hits 

and false alarms, whereas the baseline led to a superficial bias 

that supports only hits (Yonelinas, 2002). A comparison-

based task, which better supports schema abstraction, should 

result in a larger false alarm rate than a single-item task, 

which would provide convergent evidence for this account.  

The motivation of the present study is to explore the role 

of comparison-based relational category learning on both 

spontaneous transfer and recognition memory. To this end, 

the design was based on that of Snoddy and Kurtz (2020). 

BCL training provided an opportunity to acquire relational 

categories; it included comparison-based tasks, a single-item 

supervised observation task (OBS-SINGLE), and a no 

learning Baseline task. Due to the results of Patterson and 

Kurtz (2020), both classification-based (CLASS-COMP) and 

observation-based (OBS-COMP) comparison tasks were 

included. Observation tasks do not provide a measure of 

training accuracy, so a test was included at the end of BCL to 

assess mastery of the category structures. 

After BCL, participants underwent a recognition memory 

phase to test the schematization account. Participants were 

then told that they were moving on to a new experiment, and 

the TCL phase was administered in a new stimulus domain to 

serve as an opportunity to spontaneously transfer knowledge 

of the category structures acquired during BCL. Due to 

differences between BCL tasks, a condition-neutral task was 

used during TCL: yes/no endorsement of whether an item-

label pairing is correct (cf. Patterson & Kurtz, 2020). We also 

sought to explore the effect of providing a hint on transfer 

success. Two different hints were used to test whether initial 

learning in the transfer domain alters the hint’s effectiveness. 

A second observation comparison task (OBS-COMP-HINT) 

was given a hint at the onset of TCL, while the remaining 

tasks received the hint halfway through TCL training. 

If comparison effectively encourages schema abstraction, 

then comparison-based category learning tasks will lead to 

larger transfer effects during TCL learning than both OBS-

SINGLE and Baseline. If the recognition effects are driven 

by a process akin to schema abstraction, then comparison 

tasks should lead to an increased rate of false alarms during 

the recognition test. The inclusion of OBS-SINGLE and 

Baseline allows for an extension of Snoddy and Kurtz (2020) 

to a more difficult transfer assessment (i.e., transfer to a new 

task). Comparison of spontaneous and hint-aided transfer was 

exploratory. 

Method 

Participants 

A total of 283 undergraduate students from Binghamton 

University participated. Participants were randomly assigned 

to Baseline (N = 57), CLASS-COMP (N= 60), OBS-COMP 

(N = 56), OBS-COMP-HINT (N = 64), or OBS-SINGLE (N 

= 56) conditions. 

 

 

Figure 1: A description of each of the three category 

structures, category labels, and sample stimuli. 

 

Materials and Design 

The stimuli consisted of 84 images in the domains of rock 

arrangements and mobile-like displays adapted from 

previous work (Kurtz et al., 2013; Patterson & Kurtz, 2020; 

Snoddy & Kurtz, 2020). Each stimulus instantiated one of 

three mutually exclusive category structures: 1) support, 2) 

monotonicity, or 3) symmetry (for a description the category 

structures and example items from each domain, see Figure 

1). Both superficial attributes of individual elements (rocks 

or geometric shapes) within each item as well as the number 
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of intra-item elements were varied and not predictive of 

category membership. The Mobile domain was associated 

with a distinct set of category labels (“Zibble”, “Wuggy”, and 

“Doppa”) from the Rock domain (“Besod”, “Makif”, and 

“Tolar”) and inverted the same category structures over the 

x-axis. Following from previous work (Kurtz et al., 2013; 

Patterson & Kurtz, 2020), the Rock domain was used for 

training (BCL and recognition memory) whereas the Mobile 

domain was used for the transfer assessment (TCL). 

For each participant, the 48 items in the Rock domain were 

randomly assigned to either BCL (24 items) or recognition 

phases (24 items); there was no item overlap between phases. 

The pseudo-random assignment of items to phases ensured 

that all categories were always equally represented. Twelve 

BCL items were randomly selected to be presented during the 

BCL test. Recognition items were randomly assigned to the 

study set and used as old items on the test (12 items) or to be 

used as novel lures at test (12 items). To control for the 

number of training items between phases, a randomly 

selected subset of 24 Mobile items (out of 36 possible) were 

presented during TCL. 

Procedure 

Due to Covid-19 restrictions, participants were recruited 

through the university subject pool for a web-based 

experiment conducted through a JavaScript program on 

participants’ computers (phones/tablets were prohibited). To 

create the appearance that BCL/recognition and TCL phases 

were separate experiments, this study was embedded within 

a larger experimental session (none of the other experiments 

involved analogy or relational categories). The phases of this 

experiment were presented in a fixed order (BCL/recognition 

followed by TCL); the order of the  overall experimental 

session was randomized across participants. (For an overview 

of the experimental design and procedure, see Table 1). 

 

Table 1: Summary of the Experimental Design and Procedure 

  

 
 

BCL Phase Participants in the category learning conditions 

began the experiment with the BCL phase (except Baseline, 

which omitted the BCL phase). The experiment instructions 

began with a cover story about rock arrangements made by 

the (fictious) “Ladua culture.” Participants were tasked with 

trying to figure out what makes a given arrangement belong 

to a specific “type of rock arrangement” and told they would 

later be tested on their knowledge. Task-specific instructions 

were appended to the general instructions that identified:  1) 

whether participants would be presented with a single item 

on each trial (OBS-SINGLE) or a pair of items from the same 

category (comparison conditions), and 2) whether the correct 

type would be shown for each item (observation conditions) 

or participants would make a decision about the correct type 

and receive corrective feedback (CLASS-COMP).  

For the OBS-SINGLE condition, a single stimulus was 

presented in the center of the screen at the start of each trial. 

After 500 MS, the correct category label was presented below 

each item (e.g., “This is a Besod”). Participants were 

prompted to engage in self-paced study of the item-label 

pairing and advanced to the next trial by clicking a button 

located at the bottom of the screen. This task was repeated 

across three blocks of training. Within each block, all 24 

items were sequentially presented in a randomized order. 

Participants in the OBS-COMP and OBS-COMP-HINT 

conditions received a similar task as the OBS-SINGLE 

condition. The critical differences were that a pair of same-

category stimuli were presented side-by-side in the center of 

the screen and the presentation of the category label was 

modified to reflect the pair of items (e.g., “These are both a 

Besod”). Participants engaged in self-paced study of the pairs 

of same category-items across three blocks of training. To 

control for item exposure, each block of the comparison tasks 

consisted of 12 sequentially presented same-category pairs 

(Kurtz et al., 2013; Patterson & Kurtz, 2020). Items were 

randomly assigned to pairs at the start of each block. 

In the CLASS-COMP condition, a pair of same-category 

stimuli were presented side-by-side in the center of the screen 

on each trial. After 500 MS, participants were told that both 

items belonged to the same category and queried to provide a 

classification response by clicking on one of the three 

displayed response buttons containing a category label. 

Corrective feedback was provided after each response 

(“Correct! Both of these are a Besod” or “Incorrect… Both 

of these are a Besod”). Participants completed three blocks of 

training for the 12 pairs of same-category items.  

After BCL training, the BCL single-item classification test 

was administered. Participants were presented with 

instructions stating that they would be tested on their 

knowledge of the category structures from the training phase. 

For each of the 12 test items, a single stimulus was presented 

in the center of the screen. After 500 MS, participants were 

queried to provide a classification response by clicking on 

one of the three displayed response buttons containing a 

category label. No corrective feedback was provided. 

 

Recognition Memory Phase Participants then proceeded to 

the recognition memory phase (Baseline began the 

experiment here). During the study portion of this phase, 

participants received instructions stating that they were now 

in the “study phase”, they would see a series of new items, 

and their task was to study each item so that they could 

recognize it as belonging to the “study set” later. Participants 
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were then sequentially presented with 12 items for self-paced 

study. Each item was centered on the computer screen with a 

“next item” button below it that participants clicked when 

ready to advance. An inter-trial interval of 500 MS was used 

for both study and recognition test. No information about 

category membership was provided in either task. 

The recognition test was administered immediately after 

study. Instructions stated that participants would be shown a 

series of items and their task was to decide whether each item 

was presented in the “study set”. All 24 recognition items (12 

old items from study and 12 novel lures) were sequentially 

presented in a randomized order. Upon presentation of each 

item, participants were prompted to decide whether the item 

was from the study set via  a “yes” or “no” judgement. No 

corrective feedback was provided. At the end of the 

recognition test, participants were thanked and told they 

would be advancing to the next experiment. 

 

TCL Phase All participants were told that they were 

beginning a new experiment and proceeded to the TCL phase. 

To this end, the same changes used to distinguish between 

experiments within the session were applied to the BCL and 

TCL phases—TCL started with a general, transitional 

experiment instruction screen and a new color scheme and 

font was used during TCL. Further changes were made to 

induce this context shift: 1) task instructions were presented 

in generic terms instead of a cover story, 2) items were from 

the Mobile domain, and 3) a new set of category labels was 

used. This context shift provides limited retrieval cues—

aside from structural similarity of BCL and TCL items—and 

creates an opportunity to transfer knowledge of the category 

structures from BCL to facilitate learning during TCL.  

Due to differences in BCL tasks, TCL used a condition-

neutral endorsement task. Participants were sequentially 

presented with each of the 24 items from the Mobile domain 

in a randomized order. Items were pseudo-randomly paired 

with a label such that half of the items were paired with the 

correct category label. On each trial, participants were asked 

to judge whether the item-label pairing was correct (“Is this a 

Doppa?”) by clicking response buttons labeled “yes” and 

“no.” Corrective feedback was provided after each response. 

TCL was divided into spontaneous and hint-aided phases. 

During spontaneous transfer, participants were presented 

with a generic version of the instructions from BCL. OBS-

SINGLE, OBS-COMP, and CLASS-COMP conditions then 

underwent 3 blocks of endorsement training for all 24 items. 

After completing the third block of training, participants were 

shown a second instruction screen that contained a hint, 

which stated that the categories from BCL will be helpful in 

learning the present ones. Participants in these conditions 

then underwent an additional 3 blocks of hint-aided 

endorsement training, where a reminder of the hint (“*Hint*: 

think about the categories of rock arrangements") was 

appended to each trial’s instructions. In OBS-COMP-HINT, 

participants received the same hint-aided instructions at the 

start of the first block of TCL followed by six blocks of hint-

aided endorsement training. Participants in the Baseline 

condition did not receive hint-aided instructions (as there is 

no relevant prior knowledge to cue) and underwent 6 blocks 

of spontaneous endorsement training.  

Results 

All analyses used mixed-effects logistic regression models 

that predicted trial-wise performance. Specific dependent 

measures and predictor variables are described for each 

analysis. A random effect structure that allowed both 

participant and item to vary as random intercepts accounted 

for the most variance while still allowing models to converge. 

BCL Test 

There were no a priori predictions regarding BCL test 

performance, but any differences between conditions would 

suggest that test performance needs to be controlled for in 

subsequent analyses. The mixed-effects model predicted 

trial-wise accuracy with BCL task. There were no significant 

differences between conditions (all ps > .444; see Figure 2).  

This suggests that all training tasks led to comparable levels 

of mastery of the category structures. 

 

 
 

Figure 2: BCL test accuracy by BCL training task. Points 

reflect individual participants’ unadjusted mean accuracy, 

boxplots reflect unadjusted descriptive statistics, diamonds 

reflect adjusted mean accuracy, and the dashed line reflects 

chance performance. 

 

Recognition Test 

To test the predictions of the schematization account—more 

false alarms in comparison conditions than OBS-SINGLE, 

more false alarms in OBS-SINGLE than Baseline, and an 

exploratory analysis of hit rates—two separate mixed effects 

logistic regression models that predicted the outcome of 

interest (false alarm or hit rates) with BCL task were used. 

The first analysis was for the novel lures not presented during 

the study phase (Figure 3, left panel). In support of our 

prediction, the Baseline condition led to significantly fewer 

false alarms than CLASS-COMP (β = 0.707, SE = 0.206, 
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Wald Z = 3.434, p < .001), OBS-COMP (β = 0.499, SE = 

0.209, Wald Z = 2.383, p = .017), OBS-COMP-HINT (β = 

0.498, SE = 0.212, Wald Z = 2.348, p = .019), and OBS-

SINGLE (β = 0.641, SE = 0.209, Wald Z = 3.069, p = .002). 

In contrast to our prediction, OBS-SINGLE did not 

significantly differ from any of the comparison conditions 

(all ps > .489). There were no significant differences between 

the comparison conditions (all ps > .304). Similar to Snoddy 

and Kurtz (2020), these results demonstrated that prior 

category learning (regardless of the category learning task) 

increased the likelihood of false alarms. However, providing 

increased support for schema abstraction in the comparison 

conditions did not appear to further increase false alarm rate. 

 

 
 

Figure 3: Proportion of false alarms and hits by BCL 

condition. Points reflect individual subjects’ unadjusted 

proportion and boxplots reflect unadjusted descriptive 

statistics. Diamonds reflect adjusted proportions.  

 

With respect to the analysis of old items presented during 

the study phase (Figure 3, right panel), the Baseline condition 

led to a significantly larger hit rate than OBS-COMP-HINT 

(β = 0.41, SE = 0.184, Wald Z = 2.223, p = .026), but did not 

significantly differ from the other conditions (all ps > .155). 

OBS-SINGLE did not significantly differ from any of the 

comparison conditions (all ps > .217). For the comparison 

conditions, only CLASS-COMP led to a significantly higher 

hit rate than OBS-COMP-HINT (β = 0.373, SE = 0.181, Wald 

Z = 2.063, p = .039); there were no other significant 

differences between the comparison conditions (all ps > 

.213). As in Snoddy and Kurtz (2020), prior category learning 

did not produce a consistent increase in hit rate relative to 

Baseline. Overall, these findings provided a successful 

replication of Snoddy and Kurtz (2020)—prior BCL leads to 

an increase in false alarm rate but not hit rate, regardless of 

the BCL task, relative to a no learning baseline condition. 

TCL Training (Transfer) 

Separate models were applied to spontaneous endorsement 

(blocks 1-3) and hint-aided endorsement (blocks 4-6) data. 

Each model predicted trial-wise endorsement accuracy with 

BCL task, block, and their interaction.  

 

Spontaneous Transfer The primary prediction for 

spontaneous transfer was that all category learning tasks 

would lead to improved endorsement accuracy relative to 

Baseline. In support of this prediction, the Baseline condition 

was associated with significantly lower endorsement 

accuracy than CLASS-COMP (β = -0.5, SE = 0.187, Wald Z 

= -2.668, p = .008) and OBS-COMP (β = -0.406, SE = 0.189, 

Wald Z = -2.146, p = .032) conditions. In contrast, there was 

no significant difference between Baseline and the OBS-

SINGLE condition (β = 0.259, SE = 0.187, Wald Z = 1.382, 

p = .167). There was a significant effect of block in all 

conditions—Baseline (β = 0.459, SE = 0.044, Wald Z = 

10.331, p < .001), OBS-SINGLE (β = 0.222, SE = 0.043, 

Wald Z = 5.148, p < .001), OBS-COMP (β = 0.301, SE = 

0.045, Wald Z = 6.62, p < .001), and CLASS-COMP (β = 

0.28, SE = 0.045, Wald Z = 6.239, p < .001)—where 

endorsement accuracy increased across blocks of training. 

Significant simple interaction terms qualified these effects. 

There were larger improvements across endorsement training 

in the Baseline condition relative to CLASS-COMP (β = 

0.179, SE = 0.063, Wald Z = 2.841, p = .005), OBS-COMP 

(β = 0.158, SE = 0.064, Wald Z = 2.49, p = .013), and OBS-

SINGLE (β = 0.238, SE = 0.062, Wald Z = 3.843, p < .001) 

conditions (Figure 4). These results provide evidence of 

transfer in the comparison conditions, but not OBS-SINGLE, 

and demonstrate that transfer occurred in the early blocks of 

training. As OBS-SINGLE did not lead to a transfer effect, it 

suggests that the single-item classification transfer effect 

observed by Snoddy and Kurtz (2020) does not extend to a 

more difficult transfer assessment without the additional 

support conferred by comparison. 

 

 
 

Figure 4: Lines reflect adjusted mean TCL endorsement 

accuracy across blocks of training for each BCL task. Right 

offset points are unadjusted means. Error bars are ± 1 SEM. 

Solid lines reflect spontaneous transfer instructions and 

dashed lines reflect hint-aided instructions. The vertical 

black line reflects the introduction of hint-aided instructions.  
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A second spontaneous transfer prediction was greater TCL 

accuracy in the comparison conditions than OBS-SINGLE. 

In contrast to this prediction, there were no significant 

differences between OBS-SINGLE and the comparison 

conditions (all ps > .199) nor significant simple interactions 

(all ps > .204). While exploratory, there was no significant 

difference (β = -0.094, SE = 0.19, Wald Z = -0.496, p = .62) 

nor interaction (β = -0.021, SE = 0.064, Wald Z = -0.33, p = 

.741) between OBS-COMP and CLASS-COMP. In contrast 

to the cued-transfer results of Patterson and Kurtz (2020), 

both observational and classification comparison tasks 

appeared to be comparably effective in supporting 

spontaneous transfer. 

 

Hint-aided Transfer The first hint-aided transfer analysis 

explored the effect of providing a hint at the onset of TCL by 

contrasting the first three blocks of OBS-COMP-HINT with 

the other conditions undergoing spontaneous transfer. 

Performance in OBS-COMP-HINT was comparable to the 

other comparison conditions. OBS-COMP-HINT did not 

significantly differ in endorsement accuracy from OBS-

SINGLE, OBS-COMP, and CLASS-COMP (all ps > .292); 

likewise, no simple interactions reached significance (all ps 

> .47). OBS-COMP-HINT led to increased endorsement 

accuracy relative to Baseline (β = 0.46, SE = 0.191, Wald Z = 

2.411, p = .016). There was a significant effect of block in the 

OBS-COMP-HINT condition (β = 0.254, SE = 0.046, Wald 

Z = 5.533, p < .001), and a significant simple interaction 

where OBS-COMP-HINT led to smaller improvements 

across training relative to Baseline (β = -0.205, SE = 0.064, 

Wald Z = -3.207, p = .001). This suggests that providing a 

hint at the onset of training did not improve endorsement 

accuracy (relative to a comparable condition undergoing 

spontaneous transfer). It also provided further evidence that 

observational and classification comparison tasks produce 

comparable transfer benefits (cf. Patterson & Kurtz, 2020).  

Given that the spontaneous transfer effects occurred at such 

an early point of training, a hint may not be required to 

facilitate transfer in the comparison tasks.  

A second hint-aided transfer analysis explored the effect of 

providing a hint in the midst of learning (i.e., at block 4) 

relative to continued first-time (Baseline) and hint-aided 

(OBS-COMP-HINT) learning (Figure 4). There were no 

significant differences between conditions (all ps > .145), 

however, we note a non-significant trend for greater accuracy 

in CLASS-COMP relative to OBS-SINGLE (β = 0.535, SE = 

0.294, Wald Z = 1.818, p = .069). There was no effect of block 

for Baseline, OBS-SINGLE, CLASS-COMP, and OBS-

COMP-HINT (all ps > .393), yet accuracy increased across 

training in the OBS-COMP condition (β = 0.141, SE = 0.055, 

Wald Z = 2.568, p = .01). Increased improvement across 

training in the OBS-COMP condition was reflected via a 

significant simple interaction term between Baseline and 

OBS-COMP (β = 0.179, SE = 0.075, Wald Z = 2.375 , p = 

.018), such that there were larger increases in accuracy across 

training in the OBS-COMP condition. We note similar non-

significant trends for OBS-COMP relative to OBS-SINGLE 

(β = 0.126, SE = 0.074, Wald Z = 1.698, p = .09) and CLASS-

COMP (β = 0.135, SE = 0.077, Wald Z = 1.759, p = .079). All 

other simple interaction terms were non-significant (all ps > 

.206). These results failed to demonstrate that a mid-training 

hint improved accuracy; except for the OBS-COMP 

condition where a hint may have enabled continued learning. 

The limited evidence of the hint’s effectiveness in only the 

OBS-comp condition is loosely consistent with the cued-

transfer advantage in the observational comparison condition 

observed by Patterson and Kurtz (2020).  

Discussion 

The results supported our main prediction that comparison-

based encoding would improve spontaneous transfer of 

relational categories. We found evidence of spontaneous 

transfer in the early TCL blocks of both OBS-COMP and 

CLASS-COMP relative to Baseline. Along with the results of 

Snoddy and Kurtz (2020), this provides further evidence of 

the viability to study transfer through category learning tasks 

and supports extending our theoretical conception of transfer 

from a one-shot application of knowledge to solve a problem 

(e.g., Gick & Holyoak, 1980. 1983) to using prior knowledge 

to facilitate learning in a new domain. 

In contrast to our predictions, OBS-SINGLE did not differ 

from Baseline or the comparison tasks. These results 

occurred despite category learning tasks attaining 

comparable levels of mastery during BCL, which suggests 

that the extent to which a category learning task supports 

schema abstraction may be a critical factor in spontaneous 

transfer success. When BCL and TCL tasks were congruent, 

Snoddy and Kurtz (2020) found evidence of  transfer in a 

single-item presentation—a task which provides limited 

support for schema abstraction. In the present experiment, 

BCL and TCL phases involved different category learning 

tasks, which creates another dimension over which 

knowledge must be transferred (Barnett & Ceci, 2002). With 

the lack of congruent BCL and TCL tasks, the limited 

abstraction afforded by single-item presentations may not be 

sufficient to effectively support transfer. Increased support 

for schema abstraction in the comparison tasks may have 

better facilitated access and led to only those tasks showing 

evidence of transfer relative to Baseline.  

Such an interpretation builds upon the cued-transfer effects 

of Kurtz et al. (2013) and Patterson and Kurtz (2020) to 

demonstrate that comparison-based category learning tasks 

can also promote spontaneous transfer. Further, these results 

suggest that comparison plays a similar role in analogical 

transfer (e.g., Gick & Holyoak, 1983) and the transfer of 

knowledge to facilitate performance in a subsequent category 

learning task—comparison supports the spontaneous access 

of prior knowledge and subsequent transfer. Future work 

should explore whether BCL and TCL task congruence 

mediates transfer effects in single-item presentations. 

The present findings appear inconsistent with Patterson 

and Kurtz (2020), as observational and classification 

comparison tasks produced comparable performance on both 

transfer tasks (although there was a marginal effect during 
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hint-aided transfer). However, Patterson and Kurtz (2020) 

found that observational comparison led to improved old-

item test performance, which suggests that classification-

based comparison may result in slower acquisition that may 

have been detrimental to performance on subsequent tasks. 

The present experiments increased the length of BCL training 

to avoid such differences in initial learning, which may have 

led to comparable performance between observational and 

classification comparison during the transfer assessment. As 

the present experiment involved a spontaneous transfer 

assessment and training-based assessments (as opposed to 

unsupervised test trials), the present results may better reflect 

a boundary condition on the benefits of observational 

comparison performance as opposed to a failure to replicate 

Patterson and Kurtz (2020). 

In contrast to analogical transfer experiments (Gick & 

Holyoak, 1980, 1983), we failed to find robust evidence of a 

hint improving transfer both when a hint was provided at the 

onset of learning and when it was provided in the midst of 

TCL training (aside from limited evidence that a hint allowed 

for OBS-COMP to continue learning). As the present study 

strengthened the hint relative to Snoddy and Kurtz (2020), it 

further demonstrates an incompatibility between hint-aided 

transfer and the category learning approach (for more on this 

incompatibility, see Snoddy and Kurtz, 2020). As the 

spontaneous transfer effects occurred early in TCL training, 

the structural similarity between domains may have been 

readily apparent and obviated the benefit of a hint. This 

suggests that spontaneous access may be easier to achieve 

when transferring knowledge acquired during one category 

learning task to another than during problem-solving. 

However, we cannot rule out that the ease in access stems 

from the particular category structures and stimulus sets used 

in the present experiment. Future work should explore 

whether similar effects emerge when using other categories. 

The recognition data provided partial support for our 

hypotheses—all category learning conditions led to a 

significantly higher rate of false alarms than the Baseline 

condition, yet there were no differences amongst the category 

learning conditions. Such an effect is consistent with the 

results of Snoddy and Kurtz (2020)—a prior category 

learning opportunity, regardless of the task, led to increased 

false alarms (and had no consistent effect on hit rate). As in 

Snoddy and Kurtz (2020), this reflects a partial extension of 

the results of De Brigard et al. (2017) to relational categories.  

The different pattern of results between TCL and 

recognition phases (i.e., no effect of comparison on 

recognition memory) suggest that schema abstraction does 

not play a critical role in false alarms. This suggests that 

learning about the category structures, regardless of whether 

an abstract representation is formed, may be sufficient to 

increase false alarms through familiarity (Yonelinas, 2002). 

Such a familiarity-based pathway to recognition may result 

from participants experiencing a structure-based reminding 

of BCL items or categories (Ross, 1984) or through 

categorizing the BCL items with respect to known categories. 

An alternative explanation of this effect is that BCL may 

serve to prime known relational structures and increase the 

rate of false alarms (Popov, Hristova, & Anders, 2017). 

Future work should further explore the mechanism behind 

such recognition effects in relational category learning. 
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