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Abstract. Digital fringe projection is a surface-profiling technique that is gaining popularity due to8

the increasing availability and quality of low-cost projection equipment and digital cameras. Noise in9

the pixel field of imaged targets induces error in the reconstructed phase and ultimately the surface10

profile measurement. In this paper, we present an approximate analytical probability density function11

for the estimated phase given an arbitrarily-correlated Gaussian pixel noise structure. This probability12

density function can be used to estimate the single point phase measurement uncertainty from easily13

obtainable pixel intensity noise statistics. We confirm the accuracy of the new model by comparing it14

to a Monte-Carlo simulation of the phase distribution. A complimentary graphics model is proposed15

which simulates the physical process of full-field phase measurement using a pin-hole camera model16

and three-dimensional point clouds of the measurement surface, allowing for another level of model17

verification.18

1 Introduction19

Digital fringe projection (DFP) is a technique which is widely used to perform certain measure-20

ments, including shape sensing and texture assessment [1]. It is comprised of a structured light system21

with (at minimum) three components: a camera, a projector, and a computer. DFP’s early predecessor,22

pattern interference analysis, began with investigation of Moiré patterns such as in [2–6]. Electronic23

speckle pattern interferometry was developed shortly thereafter, as in [7, 8], to produce controlled and24

dynamic interference patterns for measuring strain deflections and other small scale displacements.25

DFP was born from the concepts of these optical interference techniques and the advancement of the26

portable projector, where the interference patterns can simply be projected with white, non-collimated,27

non-polarized light. Applications for DFP are widely varying, and can be found in fields such as28

biomedical [9–11], material science [12–14], and electronics inspection [15,16].29

Several sources of error effect the accuracy of DFP measurement, including nonlinear projector30

gamma [17–19], phase-to-height calibration error [20,21], and pixel intensity noise caused by fluctuation31

in environmental lighting during DFP measurement and electronic noise within the camera and32

projector [22–25]. The current work is focused on quantifying phase error converted from pixel intensity33

noise, a source of error affecting a wide range of profiling techniques [23]. Unlike other sources of error,34

pixel noise error contributions are unavoidable despite the optimization of DFP system setup [22].35

A study by G. Notni et al. has reported that pixel noise error is large enough to dwarf the error36

contribution from spatial and intensity quantification [26], and techniques which aim to reduce the37

contribution of pixel intensity noise have been explored in [24, 25] where new phase shifting algorithms38



2

were proposed to mitigate pixel error. However, none of these works undertook a rigorous measurement39

model of the measurement process in which pixel intensity gets phase converted (and thus, ultimately,40

leads to height measurement error). There has been substantial work done on analyzing the inherent41

error caused by nonlinear projector gamma [17–19] and the effect of linearizing the phase-to-height42

transformation [20, 21]. However, to the authors’ knowledge and assessment of the open literature,43

there are no studies that provide single-point phase measurement uncertainty analysis from pixel44

intensity noise in the DFP application space. The work of G. Notni et al. [26] summarized a variety of45

quantization errors due to the nature of the digital camera and projector in DFP phase measurement,46

but it did not include phase-converted pixel intensity noise analysis nor an analytically derived model47

for the phase measurement dispersion caused by the quantization errors.48

Though previous work generating a three-dimensional (3D) graphics model to mimic the ex-49

perimental process of DFP has been published, these authors have not used their models to analyze50

phase measurement error using Monte-Carlo simulations to generate model inputs for pixel noise. A51

study done by J. Molimard et. al, used a Monte-Carlo framework in attempt to quantify the phase52

measurement error caused by phase-to-height calibration [27], but not the phase distribution error53

based on input pixel noise. Thus, the work presented in this study advances the DFP measurement field54

by deriving the statistical uncertainty model for single-point phase measurement from pixel intensity55

noise. This model is verified against a Monte-Carlo perturbation simulation with varying degrees of56

cross-pixel noise correlation, and a 3D graphics model for ensuring that assumptions made regarding57

the carrier phase are valid. The purpose of developing these models is to create a method to estimate58

the point-wise phase measurement uncertainty by using quantifiable and easy-to-measure pixel noise59

statistics.60

In the DFP measurement process, these phase measurements are made by projecting a series of61

patterns onto a scene and recording the resulting deformation of the patterns caused by the measured62

object. A schematic of the fringe deformation process in shown in Figure 1, where the phase (related to63

height) of point Q is to be measured. A common implementation of DFP is, essentially, a differential64

phase measurement; a series of fringe images are first projected onto a flat reference plane (mathematical65

or physical, denoted by the subscript r in Figure 1), and then placing the measurement object (denoted66

by the subscript o in Figure 1) into the scene, which deforms the incident projected fringe pattern.67

The camera records images of the incident fringes on both surfaces, where the intensity I(r,o) of any68

fringe incident on the measurement surface (either r or o) at any given location xr,o is given by [28]69

I(r,o) = A(r,o) +B(r,o) cos
(
2πx(r,o)/P

)
, (1)

where φ(r,o) = 2πx(r,o)/P is the fringe phase, P is the fringe pitch, and A(r,o) and B(r,o) are the ambient70

light intensity and the projected fringe contrast, respectively, at the arbitrary point x(r,o). In order to71

recover differential information between object and reference phases, which is functionally related to72

the object height [29], N phase-shifted images are generated and projected onto both reference and73

object with (equipartitioned) spatial shifts δk = 2πk/N , k = 1...N (often called "bins"), such that the74

intensities in Equation 1 may be each written as75

I(r,o),k = A(r,o),k +B(r,o),k cos
(
φ(r,o) + δk

)
, (2)
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Figure 1: A general schematic of reference based fringe projection.

and it may be readily shown that the individual phases at the point of interest are recovered by76

φ(r,o) = arctan
(
−∑N

k=1 I(r,o),k sin δk∑N
k=1 I(r,o),k cos δk

)
, (3)

if the projected fringe intensities are evenly spaced without nonlinear projector gamma issues. The77

final required differential phase measurement (referred onward as true phase) φ between object and78

reference is given by79

φ = φo − φr

= arctan
(
−∑N

k=1 Io,k sin δk∑N
k=1 Io,k cos δk

)
− arctan

(
−∑N

k=1 Ir,k sin δk∑N
k=1 Ir,k cos δk

)
(4)

= 2π (xo − xr)
P

. (5)

Equation 5 represents the exact phase that is related (proportionally, under some projection assumptions)80

to the height of the object. In this article, we will not be exploring the subsequent relationship between81

phase and object height, which is discussed thoroughly in [29]. The fundamental objective of this work82

going forward is to develop a model that statistically characterizes the true phase φ estimated by the83

process in Equations 2-5 when the images from Equation 2 have arbitrarily-correlated Gaussian noise.84

2 Single Point DFP Phase Noise Model85

2.1 Output Phase Noise Formulation86

The idealized intensity formulation presented in Equation 2 may be modified in both reference87

and object images to account for pixel noise. Assuming the noise may be modeled additively to the88

idealized intensities, the i-th and j-th image intensities of the reference and object images, respectively,89
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taken from the reference and object location xr,o, are given by90

Ir,i = Ar +Br cos (2πxr/P + 2πi/N + φc) + εr,i, i = 1...N (6)
Io,j = Ao +Bo cos (2πxo/P + 2πj/N + φc) + εo,j

= Ao +Bo cos (2πxr/P + φ+ 2πj/N + φc) + εo,j, j = 1...N, (7)

where we have used the definition of φ from Equation 5. We added the term φc to account for the91

spatial phase offset of the measurement point in relation to the projected fringe pattern. The current92

work focuses on deriving the single-point phase measurement distribution, and since xr is completely93

arbitrary, we may choose xr = 0 without loss of generality in subsequent analysis. Inserting Equations94

6 and 7 into Equation 4, we obtain the measured/estimated differential phase φm, after employing the95

difference-of-arctangents trigonometric formula:96

φm = − arctan
∑N

i,j=1 sin
(

2π(i−j)
N

) (
Ao +Bo cos

(
2πi
N

+ φ+ φc
)

+ εo,i
) (
Ar +Br cos

(
2πj
N

+ φc
)

+ εr,j
)

∑N
i,j=1 cos

(
2π(i−j)
N

) (
Ao +Bo cos

(
2πi
N

+ φ+ φc
)

+ εo,i
) (
Ar +Br cos

(
2πj
N

+ φc
)

+ εr,j
)


= arctan
 sinφ+ 2

N

∑N
i=1 sin

(
2πi
N

+ φ+ φc
)
εr,i
Br
− sin

(
2πi
N

+ φc
)
εo,i
Bo
− 4

N2
∑N
i,j=1 sin

(
2π(i−j)
N

)
εo,i
Bo

εr,j
Br

cosφ+ 2
N

∑N
i=1 cos

(
2πi
N

+ φ+ φc
)
εr,i
Br

+ cos
(

2πi
N

+ φc
)
εo,i
Bo

+ 4
N2
∑N
i,j=1 cos

(
2π(i−j)
N

)
εo,i
Bo

εr,j
Br

 .
(8)

We see that each intensity noise term scales by its respective fringe contrast so that we may redefine a97

scaled noise as εo,i = εo,i/Bo, εr,i = εr,i/Br, and εr,j = εr,j/Br. It is clear that if all input noise is zero,98

i.e., εr,i = εr,j = εo,i = 0, then φm = arctan (sinφ/ cosφ) = φ, as would be expected.99

Finally, we define the residual phase measurement noise as κ = φm−φ, which may be written, after100

again using the difference-in-arctangents formula and performing some mathematical manipulations,101

κ = arctan
 2

N

∑N
i=1 sin

(
2πi
N

+ φc
)
εr,i − sin

(
2πi
N

+ φ+ φc
)
εo,i − 4

N2
∑N
i,j=1 sin

(
2π(i−j)
N

+ φ
)
εo,iεr,j

1 + 2
N

∑N
i=1 cos

(
2πi
N

+ φc
)
εr,i + cos

(
2πi
N

+ φ+ φc
)
εo,i + 4

N2
∑N
i,j=1 cos

(
2π(i−j)
N

+ φ
)
εo,iεr,j

 .
(9)

Equation 9 is an exact noise transfer function, converting reference and object image intensity noise to102

output phase noise. As above, we observe that if all of the ε terms are zero, then κ = 0, as expected.103

We note that the last term in both numerator and denominator are of order ε2; for all practical scaled104

noise values, these terms are negligible compared to the other terms, so we may express an approximate105

noise transfer function as106

κ≈ arctan
 2

N

∑N
i=1 sin

(
2πi
N

+ φc
)
εr,i − sin

(
2πi
N

+ φ+ φc
)
εo,i

1 + 2
N

∑N
i=1 cos

(
2πi
N

+ φc
)
εr,i + cos

(
2πi
N

+ φ+ φc
)
εo,i

 . (10)

Our subsequent goal is to find a probability density function (PDF) p (κ), based on the approximate107

(but still retaining fundamental nonlinearity) transfer function given in Equation 10, given arbitrarily-108

correlated Gaussian intensity noise structure among and between the εo,i and εr,i.109
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2.2 Probability Density Function Model110

We begin our model derivation by first assuming formally that the pixel intensity noise for111

the reference and the object images are each jointly normally distributed [30–32], allowing arbitrary112

image-to-image correlation, i.e., εr,i ∼ N (µr,i, σr,i,Σr,ij) and εo,i ∼ N (µo,i, σo,i,Σo,ij), i = 1...N , where113

µ is the pixel intensity noise mean, σ is the pixel intensity noise standard deviation, and Σ is the114

image-to-image pixel intensity noise correlation. We also generally assume that the reference and115

object images could also be correlated with correlation matrix Σor,ij; in other words, this allows for116

the (general) possibility that the i-th object image noise could be correlated with the j-th reference117

image noise (in addition to the initial assumption that individual reference and object images may be118

intra-correlated). Thus, a global correlation matrix Σij could be constructed as119

Σij =
 Σo,ij Σor,ij

Σro,ij Σr,ij

 . (11)

The upper left and lower right square sub-matrices describe the intra-image correlation structure in the120

object and reference images, respectively, while the upper right and lower left sub-matrices describe121

any correlation structure between object and reference images. The following expectation operations,122

where E [∗] is the expectation operator, are defined as123

E [εr,i] = µr,i

E [εo,i] = µo,i

E [εo,iεo,j] = µo,iµo,j + ρo,ijσo,iσo,j

E [εr,iεr,j] = µr,iµr,j + ρr,ijσr,iσr,j

E [εo,iεr,j] = µo,iµr,j + ρor,ijσo,iσr,j, (12)

where Σr,ij = ρr,ijσr,iσr,j, Σo,ij = ρo,ijσo,iσo,j, Σor,ij = ρor,ijσo,iσr,j, while ρ∗ is a correlation coefficient124

and σ∗ is a standard deviation.125

We note that the form of Equation 10 could be written as κ = arctan (Y/X), where the numerator126

Y and denominator X are given by127

Y = 2
N

N∑
i=1

sin
(2πi
N

+ φc

)
εr,i − sin

(2πi
N

+ φ+ φc

)
εo,i

X = 1 + 2
N

N∑
i=1

cos
(2πi
N

+ φc

)
εr,i + cos

(2πi
N

+ φ+ φc

)
εo,i. (13)

Both Y and X are just weighted sums of Gaussian variables, so the probability density functions of Y128

and X will remain Gaussian; we take expectations of Y and X in order to calculate the mean values129

associated with their Gaussian densities, µY and µX :130

µY = E [Y ]

= 2
N

N∑
i=1

sin
(2πi
N

+ φc

)
E [εr,i]− sin

(2πi
N

+ φ+ φc

)
E [εo,i]
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= 2
N

N∑
i=1

sin
(2πi
N

+ φc

)
µr,i − sin

(2πi
N

+ φ+ φc

)
µo,i (14)

µX = E [X]

= 1 + 2
N

N∑
i=1

cos
(2πi
N

+ φc

)
E [εr,i] + cos

(2πi
N

+ φ+ φc

)
E [εo,i]

= 1 + 2
N

N∑
i=1

cos
(2πi
N

+ φc

)
µr,i + cos

(2πi
N

+ φ+ φc

)
µo,i. (15)

Similarly, we compute the variances of Y and X, σ2
Y = E [Y 2]− E2 [Y ] and σ2

X = E [X2]− E2 [X], by131

taking appropriate expectations:132

σ2
Y = 4

N2

N∑
i,j=1

sin
(2πi
N

+ φ+ φc

)
sin

(2πj
N

+ φ+ φc

)
E [εo,iεo,j]

−2 sin
(2πi
N

+ φ+ φc

)
sin

(2πj
N

+ φc

)
E [εo,iεr,j] + sin

(2πi
N

+ φc

)
sin

(2πj
N

+ φc

)
E [εr,iεr,j]− µ2

Y

= 4
N2

N∑
i,j=1

sin
(2πi
N

+ φ+ φc

)
sin

(2πj
N

+ φ+ φc

)
ρo,ijσo,iσo,j

−2 sin
(2πi
N

+ φ+ φc

)
sin

(2πj
N

+ φc

)
ρor,ijσo,iσr,j + sin

(2πi
N

+ φc

)
sin

(2πj
N

+ φc

)
ρr,ijσr,iσr,j.

(16)

The derivation of the terms E[Y 2] and E2[Y ] employed usage of a double sum across indices i, j in133 ∑N
i,j=1 to indicate the product of two series. Similarly,134

σ2
X = 4

N2

N∑
i,j=1

cos
(2πi
N

+ φ+ φc

)
cos

(2πj
N

+ φ+ φc

)
ρo,ijσo,iσo,j

+2 cos
(2πi
N

+ φ+ φc

)
cos

(2πj
N

+ φc

)
ρor,ijσo,iσr,j + cos

(2πi
N

+ φc

)
cos

(2πj
N

+ φc

)
ρr,ijσr,iσr,j.

(17)

Finally, since X and Y are in general correlated, we compute their covariance cov[X, Y ] = E [XY ]−135

E [X]E [Y ] as136

cov (X, Y ) = − 4
N2

N∑
i,j=1

sin
(2πi
N

+ φ+ φc

)
cos

(2πj
N

+ φ+ φc

)
ρo,ijσo,iσo,j

+ sin
(

2π(i− j)
N

+ φ

)
ρor,ijσo,iσr,j − sin

(2πi
N

+ φc

)
cos

(2πj
N

+ φc

)
ρr,ijσr,iσr,j.

(18)

The covariance between X and Y is composed of contributions from possible intra-image correlation137

within the reference and object images (ρo,ij and ρr,ij), as well as reference-to-object image correlation138

(ρor,ij). In general, all the order statistics of X and Y depend on input noise statistical parameters as139

well as the true phase φ.140

Thus, we may conclude that X and Y are jointly normally distributed, with individual means141

µX and µY , variances σ2
X and σ2

Y , and correlation coefficient ρXY = cov (X, Y ) /√σXσY , all given by142
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Equations 14-18, such that their joint probability density function may be given by143

p (X, Y ) = 1
2πσXσY

√
1− ρ2

XY

e

−1
2(1−ρ2

XY )

(
(X−µX)2

σ2
X

+ (Y−µY )2

σ2
Y

− 2ρXY (X−µX)(Y−µY )
σXσY

)
. (19)

Now that we have the joint density for X and Y , we can use the change-of-variables technique by144

making a coordinate transformation X = X and κ = arctan (Y/X) so that we obtain the probability145

density function of κ explicitly as146

p(κ) =
∫ ∞
−∞

p(X, Y )
|∂κ/∂Y |

dX

=
∫ ∞
−∞

p(X, Y )
|X/ (X2 + Y 2) |dX

=
∫ ∞
−∞

p(X,X tan κ)|X| sec2 κdX, (20)

since Y = X tan κ.147

The integrand and integration range in Equation 20 require separation into two regions, one148

for the case X > 0 (|κ| < π/2) and for the case X < 0 (π > |κ| > π/2). Both integrations admit149

closed-form solutions, given by150

p (κ) =
e−z3 sec2 κ

(
1 +
√
πz2e

z2
2 (erf (z2)±1)

)
2πz1

√
1− ρ2

XY

, (21)

where151

z1 = σ2
Y − 2ρXY σXσY tan κ+ σ2

X tan2 κ

σXσY (1− ρ2
XY ) ,

z2 = µY σX (ρXY σY − σX tan κ) + µXσY (σXρXY tan κ− σY )
√

2σXσY
√

1− ρ2
XY

√
σ2
Y − 2ρXY σXσY tan κ+ σ2

X tan2 κ
,

z3 = µ2
Y σ

2
X + µ2

Xσ
2
Y − 2µXµY σXσY ρXY

2σ2
Xσ

2
Y (1− ρ2

XY ) , (22)

and erf(∗) is the standard error function. The minus (−) sign is taken in Equation 21 when |κ| < π/2152

(when X > 0), while the plus (+) sign is taken when π > |κ| > π/2 (when X < 0).153

2.3 Special Case154

While Equation 21 together with the definitions in Equation 22 completely determine the155

probability density function of κ for any arbitrarily-correlated pixel intensity noise, one special case156

should be mentioned. If no correlation exists between the pixel intensity noise of phase shifted images157

within either the object or the reference images, i.e., ρo,ij = ρr,ij = δij (the identity matrix, where158

δij = 0 for i 6= j and δij = 1 for i = j), no correlation exists between the images of the reference and159

object, i.e. ρor,ij = 0 for all i and j, the intensity noise is unbiased, i.e., µo,i = µr,i = 0, and the noise160

standard deviations in each object and each reference image are the same for all images, i.e., σo,i = σo161
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and σr,i = σr, then the order statistics for X and Y reduce to162

µY = 0
µX = 1

σ2
Y = 2 (σ2

o + σ2
r)

N

σ2
X = 2 (σ2

o + σ2
r)

N
ρXY = 0, (23)

such that the probability density function of κ, Equation 21, may be written163

p (κ) =

e
−N

4(σ2
o+σ2

r)

 e

N cos2 κ
4(σ2

o+σ2
r)√π

√
N cos2 κ

(
erf
(

1
2

√
N cos2 κ
σ2
o+σ2

r

)
±1
)

2
√
σ2
o+σ2

r

+ 1


2π , (24)

where the plus (+) sign is taken when |κ| < π/2 (when X > 0), while the minus (−) sign is taken when164

π > |κ| > π/2 (when X < 0). Note that with these assumptions, p(κ) is independent of the carrier165

phase offset location of the measurement point φc.166

3 Multi-Point Graphics Model167

Figure 2: Example images generated by the graphics model. A shows the simulated object surface, B shows the wrapped object
phase map captured by an offset camera, C shows the differential measured phase map, φ.

The phase uncertainty p(κ) defined in Section 2 probabilistically quantifies the error in a single-168

point phase measurement based on pixel intensity noise. In order to ensure its validity for physical DFP169

measurements, we developed a multi-point graphics model of the physical process including the spatial170

relationship of projected sinusoidal fringes (carrier phase). The model uses a simulated 3D surface171

and a simplified pin-hole camera model which can be located anywhere in the scene. The model is172

constructed to closely parallel the physical process of performing a DFP surface or shape measurement,173

and to incorporate camera effects. We claim that each measurement pixel in the phase map generated174

by the graphics model follows the uncertainty model that we have presented in Section 2. Figure 2175

shows an example of the capabilities of the graphics model. This is the procedure by which the model176

produces a simulated phase map:177
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Figure 3: Simulated data progression in the multi-point graphics model. (A) Shows the simulated object surface, which is a
raised rectangular area. (B) shows the image of the flat reference plane with simulated fringe projection pattern and uncorrelated
random noise, where pixel value is intensity. (C) shows the image of the object surface with simulated fringe projection pattern and
uncorrelated random noise, where pixel value is intensity. (D) shows the wrapped phase object image. (E) shows the unwrapped
phase object image. (F ) shows the final phase difference (or true phase φ) map. Simulation parameters including [R|t] and [A]
matrices located in the appendix.

1. A plane is constructed as a matrix of 3D points with {X,Y,Z} values, centered on {0,0,0} to178

serve as the reference surface, and an object surface is defined similarly. In this study, the object179

surface includes a raised rectangle, apparent in Figure 3. The simulation parameters are located180

in Table 1 in the Appendix.181

2. A camera location is defined in the scene, and its translation and rotation vectors are calculated182

and combined to construct the extrinsic camera matrix, [R|t], shown below. The intrinsic camera183

matrix, [A], is defined, containing focal lengths (fx and fy), skew (s), and principal point offsets184

(xf and yf ), shown in Equations 25 and 26.185

[R|t] =


r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3

 (25)

186

[A] =


fx s xf
0 fy yf
0 0 1

 (26)

3. Fringe projection parameters are defined such as fringe pitch P and number N of bins used. Since187

a flat reference plane is used for the present work, P is assumed to be constant throughout the188

measurement area. Then, to simulate fringe projection, each pixel on the object and reference189

surface is assigned an intensity value for each bin, Ik based on its spatial location and the projected190
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fringe pattern. The equation used for fringe pattern intensity generation is located in Table 1 in191

the Appendix.192

4. The world coordinates, {X,Y,Z}, of each point on the reference plane and on the object surface193

are transformed and scaled using S to pixel coordinates, u, v using194

S


u

v

1

 = [A][R|t]


X

Y

Z

1

 (27)

5. The pixel coordinates (and their corresponding intensity values) are used to generate a 2-195

dimensional interpolator. Flat reference and object plane fringe images are generated (now in196

pixel coordinates) using the interpolator. Pixel intensity noise can be added to the reference and197

the object images. Examples of these images are shown in Figure 3 B and C.198

6. Each set of camera-captured fringe images from both the reference plane and object surface199

are combined according to Equation 3 to create the reference phase map and object phase map200

(object phase map shown in Figure 3 D). Both phase maps are unwrapped to remove the 2π201

discontinuities caused by the arctangent function in Equation 3; the unwrapped object phase202

map is shown in Figure 3 E. The reference phase map is subtracted from the object phase map,203

to make the measured phase map φ, as seen in Figure 3 F ).204

In subsequent sections, we use the multi-point graphics model to verify the phase measurement205

uncertainty distributions derived in Section 2 for a variety of noise conditions.206

4 Model Verification & Results207

4.1 Model Verification208

PDFs of phase uncertainty p(κ) from the analytical model were verified against histograms from209

the multi-point graphics model and histograms of Monte-Carlo based simulations with varying levels of210

noise correlation, overall standard deviations, and biases. The histograms generated by the multi-point211

graphics model were constructed by recording the distributions of phase values of a single measurement212

point over an ensemble of 4,000 separate simulations with unique image noise following the noise213

structure parameters. We chose a measurement point corresponding to a phase offset of 0, i.e., located214

at a maximum or minimum intensity "trough" or "crest" of the projected fringes. The Monte-Carlo215

simulations generated object and reference phase values by adding simulated noise to the intensity216

terms, I, in Equation 4, representing an example utilizing 4 bins (N = 4). In all simulations using the217

single point phase uncertainty model, φc was set to 0. The specific simulation parameters for each of218

the comparisons in Figure 4 are noted in the appendix. Figure 4 compares the analytically derived219

p(κ), histograms of the multi-point graphics model, and histograms from the Monte-Carlo simulations220

for a variety of noise standard deviations, correlation structure, and biases.221
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Figure 4: Distributions of analytical phase uncertainty p(κ) compared to phase distributions from the multi-point graphics
model and Monte-Carlo simulations. (A) shows the comparison for a variety of inter-bin noise correlation ρr,o. (B) shows the
comparison for a variety of pixel noise standard deviations in the reference and object images, σr,o. (C) shows the levels of pixel
noise standard deviation where our approximate model starts to deviate from the Monte-Carlo distributions, due to the neglect
of ε2 terms in Equation 10. (D) shows an example fringe pattern from the multi-point graphics model corresponding to a pixel
intensity noise standard deviation of 0.8, where our analytical model and graphical model start to diverge from the Monte-Carlo
simulations. (E) shows the comparison for a variety of pixel noise bias in the reference and objects images, µr and µo. (F ) shows
the comparison of analytical phase uncertainty p(κ), histograms of a sampled area from a single simulation of the multi-point
graphics model, and Monte-Carlo simulation for noise structured according to the special case in section 2.3.
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The expression for p(κ) is able to accurately represent the phase distributions observed for single222

measurement points created from the multi-point graphics model and Monte-Carlo distributions of223

phase uncertainty across all levels of pixel noise correlation ρr, ρo and realistic levels of pixel noise,224

σr, σo. The analytical p(κ), histograms of selected points from the multi-point graphics model, and225

histograms made by Monte-Carlo simulations are shown in Figure 4A and B. Figure 4C shows the levels226

of pixel noise which invalidates the assumption made in Equation 10 in which we neglect ε2 terms; when227

σr = σo = σ > 0.8, non-negligible disagreement exists between the analytical model and Monte-Carlo228

simulations. Phase information produced by the multi-point graphics model also was inaccurate for229

pixel standard deviations of 0.8 and higher due to numerous unwrapping errors. The figure shows230

the distributions of the multi-point model for σ ≈ 0.8, but we chose to leave out multi-point phase231

distributions for higher levels of noise for graph legibility. We argue that in practical application, fringe232

images with σ << 0.8 are generally easily obtained with most optical architectures. Figure 4D shows a233

typical fringe pattern obtained by the multi-point graphics model for a pixel noise standard deviation234

of 0.8; the fringe pattern is hardly apparent through the pixel noise. This figure is generated with235

uncorrelated random pixel noise and a fringe pitch of 100 pixels.236

Adding biased noise (µr 6= 0, µo 6= 0) creates disagreement between the derived phase uncertainty237

distribution p(κ), sampled phase measurement points from the multi-point graphics model, and the238

Monte-Carlo simulation at smaller levels of σr and σo (approximately 0.16), as shown in Figure 4E.239

We hypothesize that introducing bias creates a non-negligible contribution from the ε2 terms which240

were neglected in Equation 10 which causes the significant disagreement between p(κ), the multi-241

point graphics model, and the Monte-Carlo simulations. Also, biased noise may invalidate the phase242

reconstruction method (Equation 1), which assumes that the projected fringes are equally spaced across243

a 2π interval. From an experimental perspective, introducing biased pixel intensity error can represent244

the physical influences of nonlinear gamma error, where the ideal sinusoidal fringes are distorted,245

detailed in [29]. This severely affects phase measurement; gamma calibration routines such as gamma246

interpolation or a gamma look-up-table have been established to linearize the gamma curve of most247

commercial projectors to ensure optimal sinusoidal fringes.248

Figure 4F compares p(κ) to the sampled phase measurements of the multi-point graphics model249

and Monte-Carlo simulation. The noise structure of this example corresponds to the special case250

noise structure described in section 2.3. In contrast to the other verification subplots of Figure 4, the251

normalized histogram of the multi-point graphics model is built by considering the phase values of many252

points included in the raised rectangle image corresponding to a single simulation; an image of this253

surface and resulting phase map is shown in Figure 3. In total, 3,504 points within the raised rectangle254

were taken from the multi-point graphics model for comparison. We chose to provide this form to255

show that for a case with the noise assumptions described in the special case, the uncertainty of each256

measurement point is independent of carrier phase, allowing the comparison of the distribution of phase257

values inside a measurement area (multi-point graphics model) to the phase uncertainty distribution of258

a single point p(κ).259
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4.2 Results260

To evaluate the effects of the input noise statistical parameters ρr, ρo, ρor, σr, and σo upon the261

converted phase noise described by p(κ), uncertainty surfaces were generated by plotting p(κ) as a262

function of φ. First we provide results created by the phase uncertainty analytical model in Figures 5-263

10. Second, we provide the influence of dual parameter variation on phase uncertainty, shown in Figure264

11. The closed-form nature of our phase uncertainty model allows for the formulation of continuous265

3-dimensional surfaces describing phase measurement uncertainty distributions p(κ) as a function of any266

of the pixel noise parameters. Each surface is simulated with φc = 0 for simplicity, representing analysis267

on a point with no phase offset from the carrier phase, with other parameters chosen to display the268

complex range of noise distributions possible. We observed a strongly nonlinear relationship between269

p(κ) and φ under most σr, σo, ρr, ρo, ρor conditions, but we will start with showing a case where p(κ) is270

nearly independent of φ. The σr and σo selections in Figures 5- 10 were selected inside the accuracy271

bounds of our uncertainty model, and to showcase nonlinear dependence on φ of p(κ). From a practical272

standpoint, large variance across bins between σr and σo can occur when there are temporal noise273

sources which are non-constant during measurement.274

Figure 5 compares the phase uncertainty of noise realizations with constant σr and σo across bins,275

with increasing levels of ρr and ρo, where Figure 5A shows noise generated according to the special case276

from Section 2.3 (in which p(κ) is independent of φ). Figures 5B-D show that increasing levels of ρr277

and ρo have substantial effect on tightening the dispersion in p(κ) but do not contribute substantially278

to increased φ dependence, or any bias. Figures 6 and 7 show the φ-dependence of p(κ) for noise279

realizations with identical levels of ρr and ρo as Figure 5, but with larger variations in σr and σo. We280

observed p(κ) having a strong periodic dependence on φ, proportional to magnitudes of ρr, ρo in both281

figure sets. The period of dependence was observed to be π. Figures 6D and 7D show cross sections282

of the uncertainty surfaces p(κ) from noise realized in Figures 6C and 7C. In Figure 6D, p(κ) was283

observed to have low skew and bias at maximum value, generally balanced at κ = 0. Figure 7D shows284

that for increased σr and σo, p(κ) exhibited a substantial negative skew and a larger bias in maximum285

value, for increasing ρr and ρo. Figure 8 shows p(κ) sensitivity to bin index of σr, σo, i.e. which image286

(bin) has high or low σ. A-D shows p(κ) surfaces with equivalent levels of ρr and ρo, simply in different287

orders. We observed that noise realizations with alternating high and low σr, σo created the largest φ288

dependency, as seen in Figure 8D. Figures 9A-B and 10A-B show p(κ) surfaces with varying levels of289

ρor, for low and high ρr, ρo cases, respectively. We observed that the periodic dependency on φ was of290

period 2π; Figures 9C-D and 10C-D show cross-sections of the p(κ) surfaces plotted in Figures 9C and291

10C with surfaces segmented into φ = 0, π and φ = π, 2π, respectively. Considerable bias and skew in292

p(κ) was observed in both cases.293

We also compared the influence on p(κ) of two separate simulation parameters. Figure 11294

illustrates the relative effects on p(κ) standard deviation of parameters such as σ,N, and ρ. Figure295

11A shows the effect of σr = σo = σ and the number of bins N used for phase measurement on p(κ).296

This figure shows that increasing N can significantly reduce the phase measurement uncertainty. Such297

a strategy is hence effective for low fringe contrast phase measurements. Figure 11A also be used to298

determine the number of bins required for a target p(κ) structure, with an experimental setup that299

has an expected (measured) pixel noise standard deviation. While increasing N helps to reduce phase300
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Figure 5: Analytical phase measurement uncertainty
distribution surfaces, shown as a function of true phase
φ. Figures A-D show the effect of increasing inter bin
correlation ρo ≈ ρr matrices with off-diagonal terms ≈
0.001, 0.15, 0.38, 0.62 in A-D, respectively. Each bin has
similar noise standard deviation; σr = {0.1, 0.1, 0.1, 0.1},
σo = {0.2, 0.2, 0.2, 0.2}.

Figure 6: Analytical phase measurement uncertainty dis-
tribution surfaces, shown as a function of true phase φ. Fig-
ures A-C show the effect of increasing inter bin correlation
ρo ≈ ρr matrices with off-diagonal terms ≈ 0.15, 0.38, 0.62
in A-C, respectively. (D) shows p(κ) cross sections from
(C), for φ = kπ/12, k = 1, 2.., 6. Noise standard devi-
ation varies across bin index; σr = {0.2, 0.01, 0.01, 0.2},
σo = {0.3, 0.02, 0.01, 0.2}.

Figure 7: Analytical phase measurement uncertainty
distribution surfaces, shown as a function of true phase
φ. Figures A-C show the effect of increasing inter-bin
correlation ρo ≈ ρr matrices with off-diagonal terms ≈
0.15, 0.38, 0.62 in A-C, respectively. (D) shows p(κ) cross
sections from (C), for φ = kπ/12, k = 1, 2.., 12. Noise
standard deviation varies substantially across bin index;
σr = {0.5, 0.03, 0.03, 0.5}, σo = {0.6, 0.04, 0.01, 0.5}.

Figure 8: Analytical phase measurement uncertainty dis-
tribution surfaces, shown as a function of true phase φ.
Figures A-D show the effect of changing the bin-index of
low and large noise standard deviations. Noise correlation
matrices are constant across A-D, with off-diagonal terms
of ρo = ρr ≈ 0.6. Noise standard deviation for
(A): σr = {0.5, 0.03, 0.03, 0.5}, σo = {0.6, 0.04, 0.01, 0.5},
(B): σr = {0.03, 0.5, 0.5, 0.03}, σo = {0.6, 0.04, 0.5, 0.01},
(C): σr = {0.5, 0.5, 0.03, 0.03}, σo = {0.04, 0.01, 0.5, 0.6},
(D): σr = {0.5, 0.03, 0.5, 0.03}, σo = {0.04, 0.6, 0.01, 0.5}.
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Figure 9: Analytical phase measurement uncertainty dis-
tribution surfaces, shown as a function of true phase φ. Fig-
ures A-B show the effect of increasing reference-object cor-
relation ρor matrices with off-diagonal terms ≈ 0.32, 0.64,
respectively. The reference and object images have low cor-
relation; matrices ρo and ρr off diagonal terms≈ 0.18 for A-
B. C-D shows p(κ) cross sections from (B), for φ = kπ/12,
and φ = π + kπ/12, k = 1, 2, 3..., 12, respectively. Noise
standard deviation varies substantially across bin index;
σr = {0.5, 0.03, 0.03, 0.5}, σo = {0.6, 0.04, 0.01, 0.5}.

Figure 10: Analytical phase measurement uncertainty
distribution surfaces, shown as a function of true phase
φ. Figures A-B show the effect of increasing reference-
object correlation ρor matrices with off-diagonal terms
≈ 0.32, 0.64, respectively. The reference and object im-
ages have high correlation; matrices ρo and ρr off diag-
onal terms ≈ 0.73 for A-B. C-D shows p(κ) cross sec-
tions from (B), for φ = kπ/12, and φ = π + kπ/12, k =
1, 2, 3..., 12, respectively. Noise standard deviation varies
substantially across bin index; σr = {0.5, 0.03, 0.03, 0.5},
σo = {0.6, 0.04, 0.01, 0.5}.

uncertainty, it does have asymptotic behavior for large N . Figure 11B shows the diagonal-symmetric301

effects of increasing ρr and ρo on p(κ) standard deviation. As already indicated by Figure 5, p(κ)302

tightens proportionally to ρr, ρo; Figure 11B shows that the tightening contributions from ρr and303

ρo are equivalent. Figures 11C and 11D show p(κ) standard deviation and p(κ) mean, respectively.304

The similarities in period and overall shape trends of 11C and 11D suggest correlation between p(κ)305

standard deviation and p(κ) mean. This relationship may be explored in future papers, but is deemed306

out of the scope for the current work.307

5 Conclusion & Future Work308

An analytical model was derived to describe single-point phase measurement uncertainty caused by309

pixel intensity noise. The model was developed in order to advance DFP surface measurement capability310

by adding a statistical model to provide measurable confidence levels for the phase measurement of311

each pixel. We envision that by measuring the noise statistics of each pixel, any existing DFP system312

can be modified to provide phase maps with statistical confidences embedded. We verified our model313

by comparing the derived phase measurement uncertainty distributions to normalized histograms of314

phase values generated by a novel, multi-point graphics model and from Monte-Carlo simulations. The315

model was verified using a wide range of noise realizations with varying levels of correlation, noise levels,316

and bias levels. We observed excellent agreement across pixel intensity noise correlation and pixel317

noise standard deviations that we argue are realistic in physical measurements. When adding biased318

noise, we observed a disagreement between the derived phase uncertainty, multi-point graphics model,319

and the Monte-Carlo simulations which we attribute to two reasons: (1) bias creates a factor which320
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Figure 11: Monte-Carlo simulations of phase measurement uncertainty with 2 varying parameters. Pixel intensity corresponds to
the phase uncertainty distribution standard deviation. Figure (A) shows how phase uncertainty is affected by object pixel intensity
standard deviation σo and the number of bins used for phase measurement N . Figure (B) shows the symmetry of reference image
noise correlation ρr and object image noise correlation ρo on phase uncertainty distribution standard deviation. Figures (C) and
(D) show phase uncertainty distribution standard deviation and phase uncertainty distribution mean, respectively, as functions
of true phase φ. The y-axis on both Figures (C) and (D) represent off diagonal terms of the inter-bin correlation matrices.
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cannot be neglected in the assumption of Equation 10, and (2) bias alters the center intensity value of321

each bin pixel, invalidating the phase reconstruction method (Equation 4). The model verification are322

shown in Figure 4. In order to highlight the nonlinear and "un-intuitive" nature of phase uncertainty,323

the analytical model was used to generate continuous phase uncertainty surfaces (see Figures 5-10)324

where we explored the sensitivity of phase uncertainty to varying noise statistics including inter-bin r4c55325

reference and object correlation, and variations in noise standard deviation. The analytical model326

was also used to generate two-axis parameter studies, where we observed the relative effect of two r4c56327

parameters simultaneously (including number of bins N , pixel noise standard deviation (σr, σo), and328

pixel noise correlation (ρr, ρo)) on phase uncertainty levels and bias.329

This was the first to explicitly determine error propagation of pixel noise in the DFP measurement330

technique, and provided a statistical estimation of phase measurement uncertainty for each point of331

measurement. Advancement of this model currently includes work involving (1) further developing the332

analytical model to include phase-to-height measurement uncertainty, (2) developing a relationship333

between projection parameters (such as camera position, fringe pitch, number of bins, etc.) and phase334

error statistics, to optimize the experimental setup, (3) exploring filtering techniques for full field phase335

mapping using the graphics model, and (4) comparing the uncertainty distribution from the analytical336

model to sampling pixel-by-pixel phase surface measurements to test the efficacy of estimation.337
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6 Appendix: simulation parameters344

Parameter Quantity
height of raised area φ 0.6 [mm]
Number of bins N 4 [bins]
Fringe period P 80 [mm]
Fringe intensity I I = 255

2 (1 + cos(2πx
P + δk))

Camera location [-] {200, 0, 1000} [mm]

Extrinsic camera matrix [R|t]
(

−10 0 0 0
0 9.806 −1.961 0
0 0.402 1. 0
0 −0.196 −0.981 1019.8

)
Intrinsic camera matrix [A]

(
10 0 250
0 10 250
0 0 1.

)
Reference and object pixel noise std. σr,o {0.1, 0.1, 0.1, 0.1}

Table 1: Figure 3 Simulation Parameters

345
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Parameter Quantity
Phase φ 1.885 [rad]
Number of bins N 4 [bins]
Monte-Carlo realizations [-
]

49152 [realizations]

Reference pixel noise std.
σr

{0.125, 0.151, 0.15, 0.28}

Object pixel noise std. σo {0.144, 0.147, 0.13, 0.18}

Reference pixel noise cor-
relation ρr

(
1. 0.201 0.206 0.094

0.201 1. 0.402 0.301
0.206 0.402 1. 0.277
0.094 0.301 0.277 1.

)
,

(
1. 0.601 0.493 0.594

0.601 1. 0.54 0.4
0.493 0.54 1. 0.768
0.594 0.4 0.768 1.

)
,

(
1. 0.69 0.773 0.859

0.69 1. 0.855 0.695
0.773 0.855 1. 0.769
0.859 0.695 0.769 1.

)

Object pixel noise correla-
tion ρo

(
1. 0.296 0.251 0.1

0.296 1. 0.331 0.202
0.251 0.331 1. 0.293

0.1 0.202 0.293 1.

)
,

(
1. 0.597 0.501 0.599

0.597 1. 0.401 0.5
0.501 0.401 1. 0.503
0.599 0.5 0.503 1.

)
,

(
1. 0.885 0.751 0.785

0.885 1. 0.774 0.895
0.751 0.774 1. 0.651
0.785 0.895 0.651 1.

)
Table 2: Figure 4 a Simulation Parameters

Parameter Quantity
Phase φ 1.885 [rad]
Number of bins N 4 [bins]
Monte-Carlo realizations
[-]

49152 [realizations]

Reference pixel noise std.
σr

{0.125, 0.151, 0.15, 0.279}, {0.391, 0.33, 0.379, 0.436},{0.591, 0.63, 0.579, 0.736}

Object pixel noise std.
σo

{0.144, 0.147, 0.13, 0.18},{0.252, 0.324, 0.212, 0.368},{0.752, 0.623, 0.713, 0.869}

Reference pixel noise cor-
relation ρr

(
1. 0.201 0.206 0.094

0.201 1. 0.402 0.301
0.206 0.402 1. 0.277
0.094 0.301 0.277 1.

)

Object pixel noise corre-
lation ρo

(
1. 0.296 0.251 0.1

0.296 1. 0.331 0.202
0.251 0.331 1. 0.293

0.1 0.202 0.293 1.

)
Table 3: Figure 4 b Simulation Parameters

Parameter Quantity
Phase φ 1.885 [rad]
Number of bins N 4 [bins]
Monte-Carlo realizations [-] 49152 [realizations]
Reference pixel noise std. σr {0.537, 0.546521, 0.5372, 0.54624}, {0.7125, 0.83151, 0.715, 0.828}, {1.125,

1.151, 1.115, 1.18}, {1.625, 1.651, 1.615, 1.58}
Object pixel noise std. σo {0.537152, 0.545176, 0.54504, 0.540144}, {0.7144, 0.8147, 0.813,

0.7518},{1.144, 1.147, 1.13, 1.18},{1.644, 1.647, 1.53, 1.78}

Reference pixel noise correla-
tion ρr

(
1. 0.201 0.206 0.094

0.201 1. 0.402 0.301
0.206 0.402 1. 0.277
0.094 0.301 0.277 1.

)

Object pixel noise correlation
ρo

(
1. 0.296 0.251 0.1

0.296 1. 0.331 0.202
0.251 0.331 1. 0.293

0.1 0.202 0.293 1.

)
Table 4: Figure 4 c Simulation Parameters
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Parameter Quantity
Phase φ 1.885 [rad]
Number of bins N 4 [bins]
Monte-Carlo realizations [-] 49152 [realizations]
Reference pixel noise std. σr {0.125, 0.151, 0.15, 0.28}
Object pixel noise std. σo {0.144, 0.147, 0.13, 0.18}
Reference pixel noise biases µr {0., 0.054, 0., -0.058},{0., 0.145, 0., -0.134},{-0.245, 0.35, -0.331, 0.135}
Object pixel noise biases µo {0., 0.068, 0., -0.048},{0., 0.135, 0., -0.175},{0.251, 0.35, -0.54, -0.35}

Reference pixel noise correla-
tion ρr

(
1. 0.201 0.206 0.094

0.201 1. 0.402 0.301
0.206 0.402 1. 0.277
0.094 0.301 0.277 1.

)

Object pixel noise correlation
ρo

(
1. 0.296 0.251 0.1

0.296 1. 0.331 0.202
0.251 0.331 1. 0.293

0.1 0.202 0.293 1.

)
Table 5: Figure 4 e Simulation Parameters

Parameter Quantity
Phase φ 1.885 [rad]
Number of bins N 4 [bins]
Monte-Carlo realizations [-] 250,000 [realizations]
Reference pixel noise std. σr {0.13, 0.13, 0.13, 0.13}
Object pixel noise std. σo {0.15, 0.15, 0.15, 0.15}

Table 6: Figure 4 f Simulation Parameters
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