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California, nor any of their employees, makes any warranty, express or implied, or
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necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LL.BL-3040

COMPARISON OF HEAVY CHARGED PARTICLES AND X-RAYS

FOR AXTAL TOMOGRAPHIC SCANNING

R. H. Huesman, A. H. Rosenfeld, and F. T. Solmitz

ABSTRACT

A comparison is made between x-rays of various energies and heavy
charged particles for their effectiveness in imaging of three-dimensiénal
distributions of biological samples. It is shown that low-z hecavy
charged particles give lower radiation doses than x-rays for imaging
the human head.

Dose versus resolution calculations for imaging with heavy charged
particleé include nuclear scattering as well as multiple Coulomb scattgring.
Calculations for x-rays neglect the skin dose which is large compared to

the average dose sustained by the patient.
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I. INTRODUCTION

Axial tomographic scans using x-rays have been used for some time as i1nput for
3-dimensional reconstruction of electron density distributions of biological samples.
The "attenuation of an x-ray beam is measured over many coplanar paths through a
"slice* of the object to be reconstructed. Each of these measurements yield the
integral of the attenuation coefficient (lor the particular x-ray energy used) over a line
in the plane. The attenuation coeflicient is roughly proportional to electrou density,

Integrated electron densities can also be determined by measuring the slowing
down of heavy charged particles after having passed through ‘a biological sample. In
this report we shall compare the resolution and relative dose required by heavy
charged particles and x-rays. ’

We shaill assume that a water bath surrounds the object to be reconstructed so
that the measurement of integrated electron density shall be over a fixed path length
L. What is important then is how accurately one can determine the difference between
the integral with the object in the bath and the integral over a length L of water.. It s
also assumed that electron density of the biological sampie is close to that of water.

From the slowing down of a heavy charged particle, what.1s actually measured s
an integral of the linear stopping power of the medium. This i1s directly proportional to
electron density but also depends weakly on the mean exitation energy of the atoms of
the medium. Also, in the x-ray case the linear attenuation coefficient 1s-only directly
proportional to the electron density when the attenuation is due only to Compton
scattering. For the purpose of this comparison we shall normalize to the stopping
power and attenuation coefficient of water and assume that deviations due to the
presence of the biological sample are due to changes in the electron density.

II. ATTENUATION OF X—-RAYS .

We assume that a monoenergetic beam of N, x-rays of energy ¢, 1s incident on
the water box with the biological sample present. The number of x-rays emerging
from the opposite side of the water box is given by,

L .
N =N, exp[ - fo m(x)dx ] L ()
where pu(x) 1s the linear attenuation coefficient of the water and the sample. We define,

1 L 1 L 1 N
= = - = L= — |a—% - p
l, i { _/(; p(x)dx Ml ] . j‘; p(x)dx - L R lo3 L (2)

where p, 15 the attenuation coefficient for water. By normalizing lo water, we have
defined |, to be the integral of the relative electron densily difference from waler when
the x—ray attenuation 1s only due to Compton scattering (1.e., directly proportional to
electron density). '

The accuracy of l, depends on N7 in the following way:

4 SN | |
. o _ON VN 1 . (3)

BN - HN B 'po\]i

L
g

But,



N=N, exp(-p,L) ) . (4)

if the attenuation coefficient of the sample does not differ very much (rom that of
water, so that

1
B VN exp(-pol)

o1, (5)

We now calculate the energy deposited as a function of 61,. Of the N, incident
x-rays, the energy of (N’ ~ N) of them is absorbed so that Lthe total energy deposited is

given by,
E, = N, [ 1 - exp(-pu,L) ] . . (6)
From eqn (5), v
- exp(u L) . . S
N7 ‘I‘co‘,? . : (7)

so that,

e S explugl) = 1] '

E (8
- (p,on,)’

For all practical cases exp(u,L) >> 1, so that

€ exp(p L) 7
52 : (9)

lil. SLOWING DOWN OF HEAVY CHARGED PARTICLES

Heavy charged particles (large mass compared to an ele¢tron) siow down when
passing through matter because of interactions with electrons. Due to the statistical
nature of this process, two identical particles passing through the same material will
not slow down exaclly the same amount. This well known phenomenon s called range
straggling.

We assume that a monoenergetlc beam of N heavy charged particles of atomic
number A and kinetic energy € is incident on the waler box with the biological sample
present. After emerging form the opposite side of the box, the particies enter a second
homogeneous medium of linear stopping power A, (relatlve to water) and come to a
stop, and the average depth of penetration R is measured. If A(x) is the relative hnear
stopping power of the water and sample then, o

AR + j;LA(x)dx = AR, +L v (1)

where R, is the depth of penetration when the sample is not presenl and a thickness L
of water 1s traversed. We define



o= fo AMx)dx - L = A(R, - R) o @

By normalizing to watler, we have delined lp to be the integral of the relative electron

density difference from water apart from the weak dependence of the stopping powe

on mean exitation energy. ’
The accuracy of Ip depends of Nv in the following way:

6l = }%:ﬂoa = A,6R - (3)

But o, the uncertainty in the longitudinal stopping point of each particle, s
approximately proportional to the total range divided by the square root of the mass,
so that - :

s L sL, _ ‘
RO MVA E | w

- where L, is the range in water and S is the constant of proportionality which depends
on the initial velocity but varies slowly and is about 0.01. By taking the average
stopping point of the N, particles, the uncertainty in R is reduced to,

o SL : S ' L
6.R = :7NP - A':7ANP . (5).
so that,

o, = VSE-;; (6)

In addition to range straggling, the particles are deflected by interactions with
the nuclei of the medium they are passing through. This phenomenon is called multiple
Coulomb scattering and makes it impossible to know the path of each particle exactly.
in Section V we shall show that by measuring the entrance and exit positions and
angles of each particie, the uncertainty of the path of the particles i1s greatly reduced.
For the purpose of relative dose calculations in the next section, we neglect this elfect.

We now calculate the energy deposited as a function of 6I,. The N, particles
deposit some fraction, f, of their energy into the water bath and biological sample they
pass through. Then the energy deposited is given by k’Np.

Another type of interaction which the particle can undergo 1s a non-elastic
nuclear collision. Particles undergoing such collisions are not “useful to us, but
increase the number of incident particles needed to have N_ useful ones. Let g be the
fraction which suffer nuclear collhisions and assume that they also deposit a fraction f of
their energy. Then the total energy deposited s,



E = lelN' )

From eqn. (6),

N =l (—S-'—‘*")z  . . (8)

so that,
EP_ AL ~ g) ( ) ’ . 9

IV. RELATIVE AVERAGE DOSE

The relative dose between x-rays and heavy charged particles 1s determined by
the average energy deposited per gram ol the biological sample. What we calculate
here is the average relative dose which dose not take into account two effects:

a) The energy deposited by a beam of x-rays i1s much largcr near the enlrance
" to the water box than near the exit.

b) The energy deposited by a beam of heavy charged parlncles 15 shightly larger
near the exit than it is near the entrance to the water box.

In order to make a comparison, we shall calculate the quantities E,(élrﬂ)2 for
x-rays and E (élp)z for heavy charged particles. These numbers will be directly
proportional to the dose needed to obtain a measurement of I, (or IP) with uncertainty
ol (solp)

For the purpose of comparison we shall assume a water bath thickness L = 25 cm
and heavy charged’ particles of range L, = 32 cm of water. These parameters are
suitable for imaging the human head. ’

From eqn. (11-9),

exp(n L) '
s,(u,)? p ()

where E , 6i, and 4, have the same meaning as 1n Section Il. We have obtained values
of i, for various x—ray energies from ref. 1. Table 1 gives values of E.,(OI,,)‘ for various
values ol E, assuming L = 25 cm. For the convenience of the reader we also show the
fraction of attenuation which is due to the photoelectric effect.

From eqn. {lI[-9), '

fe (SL ‘
E (Olp) __‘.j_(_nf ) (2)
Al - g) :
where E_, élp, {, €pr S, A and g have the same meaning as in Sechon‘ 1. We ha_vc

obtained values for ¢ /A and f from rel. 2, assuming an initial range of 32 cm of water
and a residual range of 7 cm of water after leaving the water box. Values for g have
been calculated using the approximate formula for cross sections of two complex nucier
of atomic weights A, and A, given by,



o = n(1.26)3(A}/3 + AY/I - 8) (fermi?d) | : | )

Values for S have been obtained {rom ref. 3 where we have used values for protons in
berellium (whose mean exitation energy is close to that of water) for the approbrmte
value of ¢P/A. Table 2 gives values of E_(61.)? for various heavy charged particles.

We again remind the reader that for heavy charged particies we have neglected
the effect of multipie Coulomb scattering. By the methods of Section V we shall be able
to know the path of the particle to within a small [raction of the deviation from a
straight line which is due to multiple scattering. For our worst case (protons of range
32 cm of water passing through 25 cm of water) we know the pro,ecled path (halfway
through the water box) to a precision of about 10.8 mm.

Within the above framework, relative doses between x—_rays ol various energies
and various heavy charged particles can be compared directly by inspection ol the last
columns of Tables | and 2.

V. MULTIPLE COULOMB SCATTERING

When a heavy charged particle passes through matler ns path 1s dellected by
elastic scattering with the nuclei ol the medium. This phenomenon has been studied
extensively and is called multiple Coulomb scattering. The distribution of projected
angles of deflection after passing through a small thickness x of matter i1s known to be
approximately Gaussian, and from ref. 4 we get the relation:

@ = 5(52) " A' (1)

where (8%(x)) is the mean square projected angle of deflection; z, p and 8 are the
charge, momentum and velocity of the particle respectively; L, 4 15 the radiation length
of the material and’

E, = m,Vanx137 = 21.2 MeV ) e
where m_ is the mass of the electron. We rewrite eq. (1) as,

(62(x)) = ax ' ' (3)

where
15 MeV ‘
- (z 5 Me )2 1 ) (a)
P Lrod ) :

If one divides the length x into n slabs each ol thickness d, so that x = nd, then
we can write down the correlation between the angular changes between the 1*" and ;'
slab as, ‘ '

(86,08,) = 6,0d ' (5)

where éu 1s the Kronecker delta and the angular changes 1n different slabs are

7



uncorrelated. Taken to the infinitesimal limit this becomes,
(%’;(x-)ggix')) = ab(x' - x*) | ()
where 6(x’ -—Ix") is' the Dirac delta function. We then heve the relation,
.,B(x) - _/;ldx‘:—g‘(x') - )]

To obtain the lateral displacement of the particie downstream a dlslance‘ X, we must
remember that an angular deflection df at a distance x' will be projected as a lateral
displacement (x ~ x')d8 at a distance x. Therefore, the displacement at a distance x is
given by, -

Y0 = fo dxtx - xPox) . (®)

In both (7) and (8) above we have assumed the initial conditions, -
8(0) = y(0) = O ' (9)

in what follows we shall assume that a heavy charged particle 1s 1ncident on a
- homogeneous medium of thickness L. We shall make the approximation that 1/(pg) of
the particle is constant over the path, and in practice we use the average vaiue. We
shall estimate the lateral! deviation of the particle (from a straight line path) by a
function y“(x), which depends on the exit position and angle (y(L) and 8(L) respectively
which we can measure). v

We will now evaluate several expressions which we shall need below.

(0080 = (o ax o) fy axSte) )

= j;"dx‘j;‘zdx' < gg(x‘)%’a—((x') >

a j;‘ldx'k!zdx' 6(x' -~ x°) = ax, . | (10)

where x_ is the smalier of x; and xé. After similar integrations we find,

<8(xl)y(x2)) = —;ax((Zxl - x.) . (1)

and



(r(x,)y(x;)) = éaxf(Jx, - x.) ;.',' o (12)

where x, is the larger of x, and x,.
We now estimate y(x) by the function,

y"(x) = av(L) + bo(L) o (13)

and to determme a and b, we minimize the mean square deviation of y (x) from the
true path y(x) Let Q be this expression, then .

-(ly(x)-y(x)F>-<(ay(u+ba(L)-y(x)F> S e

After setting the partial derivatives with respecl to a and b to zero and doing some
algebra we get,

a(y?(L)) + b{y(L)8(L)) = (y(x)y(L)) :
a(y(L)8(L)) + b(@3(L)) = (y(x)8(L)) ' (15)

Alter solving for a and b, substituting from eqs. (10), (11) and (le) we get {after much
more algerba),

a--L’—(;(JL—x)

x? ' :
b=-T3(L-x) _ R (16)

and we have for the estimated path,

y'(x)-gm zx)y(u-i2 L-x)8L) ) _ (17)

Finally we get for the mean square deviation (after yet more algebra),

o) = 251 - x? A_ (18)

3L3
which is largest at x = .5L where

Q(.5L) = ]—;—Z-aLJ = (5.21x1073)alL? ' (19)

in Table 3 we give values for the maximum r.m.s. deviation o[_l!]g estimated
path from the true path for various heavy charged particles (i.e. VO(.5L)). For the
purpose of this comparison we have used a water bath of thickness L = 25 cm and

particles of range L, = 32 cm of water. (1/pg),, is the average value of 1/pB over the

9



25 cm of water, and we have used L 4 = 36.4 cm.

For other estimates of the path of the particle than that given by eqn. (17), ail
the values of VQ, .. on Table 3 should be muitiplied by a faclor. We give this factor,
without prool, for two other path estimates:

a) For the parabola described by

y'(x) = % yiL) - (20)

the maximum occurs at x = .6L, and the values of VOm“‘on Table 3 should be
mulhplned by 1.49, ' : '
b) For the straight line described by

Y = 7 y(L) | . @)

the maximum occurs at x = .5L, and the values of vom: on Table 3 should be
multiplied by 2. : :

Yl. THE RECONSTRUCTION

Looking toward the reconstruction of the distribution of electron density over
the 2-dimensional slice, we now define the back projection.. We assume that the data,
[;, consist of a collection of integrated electron densities over n coplanar paths through
the slice. We take a square area to be reconstructed which has dimensions DxD, and
we subdivide it into small square cells of dimensions dxd. Then the area to be
reconstructed consists of (D/d)z cells, each of which i1s assumed to contain umform
electron density. v

We define the back projection, B,, for the k'® ceil to be the sum over the n paths
of the integrated electron density times Lhe line length through the k'* cell,

L&, D
nd va d = nad Lhfe (n

where £, 1s the line length of the i*" path through the k'* cell, and I, 1s the integrated
relative electron density diflerence from water over the i'® path as defined in Sections
Il and ill above. The normalization factor, D/(nd3) is chosen such that if the k'" cell
has unit density difference and all other cells have zero density dilference from waler,
then B, 1s approximately equal to umty. : .

It py is the relative electron density difference from water, then l, 1s simply
given by,

I, = 2,:'.?, : (2)

and we can wrile the backprojection in terms of the densily as,

10



— ;l,tu‘ - ;%3 ;tulm, &)

Defining the matrix M by the expression,
—3 ;tﬁtu (4)

and substituting into eq. (3) we see that,

B, = ?“lf’) B (5)

A diagonal element of the matrix M is given by,

. D : R N "
My = T (©

v

but I0 is non-zero aboul d/D of the time, and when non-zero it 1s about equal to d, so
that

D nd , :
M=o@ D ! ™

which justifies the normalization factor stated above.

From eq. (5) we see that the backprojection is just a matrix multiplication with
the density vector, and il the problem is well posed, the density vector can be obtained
after a matrix inversion. Since the matrix M may be very large, it s usually not
practical to invert it. We shall put this problem aside for the moment and return to 1t

later.
Investigating the uncertainty in the reconstruction, we express the density

vector in terms of the inverse of the maltrix M as,
= Y My My! T, = D M, (8)
= THRB = PUR oo Tt = s T DM

The uncertainty of p; due to the uncertainty in the | is easnly calculated. Assuming
that the uncertainty of all I, are equal to 61 we have,

oo = (2087 T (Tutta)” = (28)° Eosinst S aten ©

Substitution from eq. (4) gives,

(6p,)2 (61 d,z:u"u v, =(ol)2;3—, M (10)

11



It is well known that the operation of backprojection is simply a convolution with
the function 1/r (see ref. 5). Therefore the diagonal elements of the matrix M are
equal and the off-diagonal eleiments decrease proportional to the reciprocal .of the
distance between cells. That is, N”l is proportional Lo the reciprocal of the distance_
between the k'® and j'® cells. Since it is usually impractical to invert the matrix M, we
have attempted to find an approximation to M~! which is also a convolution and which
is limited in extent. We have set My! equal to zero when the j'* and k' cells are
greater than a specified distance apart and have soived for the remaining M,’k" which
best satisfy the relationship,

IH5' My = o "‘ (11)

in the least squares sense, where 6, is Lthe Kronecker deita. For all ranges of non-zero
Ili' tried, the diagonal element (central element of the convolution) has remained
stable and is equal to 1.6. ’

A second approach to finding the convolution M™! was also tried. In this
approach we used the 2-dimensional Fourier convolution theorm which states in our
case, . -

Fo(B) = Fy(M*p) = Fo(M)F,(p) : - (12)

where F, indicates 2—dimensional Fourier transformation and * indicates convolution.
Solving for Fy(p) we get,

Fo(p) = F(B)/Fy(M) = F5(B*M™') = F(B)F,(M"!) _ (13)
so that,

M~ = FU[1/F,(M)] (14)
where FZ" indicates inverse 2—dimensional Fourier transformation. With this approach
the central element of the convolution X! was also found.to be equal to 1.6. From eq.
(10) we therefore have the resuit, '

' 1.6D _
(6p) = (Gl)z’mj : (15)

and solving for (6!)? we get,

3 ¢
(817 = (6P T (16)
so that,
2 _nEdJ(ép)z :
E(61)° = ————m‘j_jl N (17)

12



which has been tabulated in Tables 2 and 3 for x-rays of various energies and various
heavy charged particles, respectively. :
The energy deposited in the slice is given by,

_ 1.6D[E(61)?) N
nE “Tj-(mr‘ - (18)

and the dose is given by (assuming a mass density of | g/cm? within the slice),
nE
d - MeV
ose = 13 Me /8

E
- In(—)i x (1.6x107%) mrad

2
'"ligd%«%))f]x (1.6x107%) mrad o _ (19)

where t is the thicknes; of the slice.

Table 4 gives dose calculations for varying cell size and a 1% uncertainty in the
reconstruction. Table 4 assumes a 25 cm water bath and gives values for both He ions
of range 32 cm bf water and 80 keV x-rays.

vil. CONCLUSIONS

We have shown that heavy charged particies are applicable to the problem of
3-dimensional reconstruction of electron density distributions of biological samples.
Inspection of the right hand columns of Tables | and 2 shows that the use of low 2z
heavy charged particles gives about an order of magnitude advantage in dose over
x~-rays when the resolution of the reconstruction s large compared to the muitiple
scattering and when the photoelectric absorbtion of the x-rays is negligible.

We have shown that the transverse uncertainty in the path of a heavy charged
particle due to multiple scattering can be reduced by measureing the entrance and exit
positions and angles of the particle. Table 3 gives this unce’rlainty half way through
the water balh where it is largest.

We have compared patient doses for He ions and 80 keV x- rays under condmons
suitable for imaging the human head. Table 4 gives these doses for various
reconstructed cell sizes.

.
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ENERGY DEPOSITED BY X-RAYS TIMES THE'VARIANCE OF THE .RELATlVE

TABLE 1.
INTEGRATED ELECTRON DENSITY MEASURED®
€, T Mgy X photo
. (MeV) {cm™!) o
N .03 .370 37.3
.04 .267 20.5
.05 .227 11.8
“ .06 . 206 7.3
.08 . 184 3.2
.10 171 1.7
.15 .151 - 0.5
.20 . 137 0.2
.30 . 119 0.0
.40 . 106 0.0
.50 .097 0.0

NN

* The x-rays are assumed to be attenuated by 25 cm of water.

TABLE 2. ENERGY DEPOSITED BY HEAVY CHARGED PARTICLES TIMES THE VARIANCE OF THE

RELATIVE INTEGRATED ELECTRON DENSITY MEASURED®

E,(61,)?

o (MeV~c_|_'n2)
2280

445
283
244
237
246
287
327
415
504
600

A z € /A ( 1-g S E'(Mp)z
' (MeV) - (x107%) (MeV-cm?)
H 1 1 228.3 .581 .64 1.00 21
D 2 1 152.8 .975 .53 1.04 18
T 3 1 121.3 .573 .47 1.06 17
He 4 2 228.3 .581 .43 1.00 32
C 12 6 445.3 .599 .27 . 0.94 89
0 16 8 535.2 .606 .20 0.92 141
Ne 20 10 619.5 .611 .16 0.91 201

* The particles

of water.

are assumed to have a range of 32 cm of water and pass through 25 cm

15



'ABLE 3. MAXIMUM UNCERTAINTY OF TRANSVERSE POSITION OF THE PATH OF A HEAVY
CHARGED PARTICLE

A z (1/p8)uy

a ‘/amax
(MeV™!x1073) (ecm™'x1078) {cm)

H i 1 " 3.55 . 78.1 . 08B0
D 2 i 5.17 41.3 .058 . .
T : 3 1 6.77 31.5 .051 .
He . 4 2 3.55 19.5 .040
c 12 6 1.96 © 5.9 .022
0 16 8 1.67 4.3 .019 w
Ne ) 20 10 1.48 3.4 .017

* The particles are assumed to have a range of 32 cm of water and pass through 25 cm
of water.

TABLE 4. DOSE AS A FUNCTION OF CELL SIZE FOR ALPHA PARTICLES AND B0 keV X-RAYS

1. Cell size (mun) . _ ' .6/ 4 2 t
2. Cells along one side, n &) 42 63 125 250
3. Dose to patient for He (mrad) ®<) 3.5 5.1 37 328
4. Dose to patient for 80 keV x-rays l.l 3e 304 6/438

{(a) For a total area of 25 cm x 25 cm. .
{b) For reconstruction good to +1%. If only 2% is desired, then divide by 4, etc.
(c) For a t cm thick slice. [f the slice thickness is only Smm, multiply by 2, etc.

16
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This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
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-or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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