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Expanding Genomic Sequencing and Incomplete Penetrance

Joseph T. C. Shieh, M.D. Ph.D.
Division of Medical Genetics, Department of Pediatrics, Institute for Human Genetics, University 
of California San Francisco, San Francisco, California

Abstract

Background: Genetic data have the potential to impact patient care significantly. In primary care 

and in the intensive care unit, patients are undergoing genetic testing. Genetics is also 

transforming cancer care and undiagnosed diseases. Optimal personalized medicine relies on the 

understanding of disease penetrance. Here this article examines the complexity of penetrance.

Methods: This article assesses how variable penetrance can be seen with many diseases, 

including those of different modes of inheritance, and how genomic testing is being applied 

effectively for many diseases. The article also identifies challenges in the field, including the 

interpretation of gene variants.

Results: Utilizing advancing bioinformatics and detailed phenotypic assessment, we can increase 

the yield of genomic testing, particularly for highly penetrant conditions. The technologies are 

useful and applicable to different medical situations.

Conclusions: There are now effective genome diagnostics for many diseases, however the best 

personalized application of these data still requires skilled interpretation.

Summary for the Table of Contents

Genomic sequencing is rapidly impacting diagnostics and research, however disease penetrance 

remains a challenge.
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Introduction

The potential for genomic technologies to detect those at risk for disease is tremendous, yet 

reduced (or incomplete) penetrance presents a challenge for providers and patients. When a 

medically-important gene variant is found, but symptoms are not present, there is often 
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uncertainty about when or if symptoms will develop. Genome-scale testing is available more 

broadly these days, however the most effective clinical applications of testing rely on our 

understanding of penetrance. Diagnostic genetic testing and genetic screening may require 

customization by disease in order to optimize clinical utility and minimize uncertainty. This 

article assesses factors influencing penetrance. How do they impact clinical testing? Can we 

apply genomics early in a patient’s medical care?

Heritable Disease and Penetrance

Reduced penetrance can be seen in any mode of inheritance--autosomal dominant, 

autosomal recessive, or X-linked. Let us consider autosomal dominant conditions first. 

While some dominant conditions manifest at an early age, many dominantly-inherited 

conditions have a delayed onset of symptoms or age-dependent penetrance. Since testing for 

many conditions early in life was not possible in the past but is increasingly possible now, it 

is important that we consider penetrance. Cancer predisposition conditions, select cardiac 

conditions, and a list of corresponding genes for these conditions, have been recommended 

as reportable secondary findings in clinical genomic sequencing1. As more sequencing is 

done, we will detect individuals at risk for these conditions early in life. This may be 

advantageous because a family history of early-age/multiple cancers2 is often not present in 

individuals with a cancer-predisposing gene variant and broad testing could find those at risk 

despite the family history3. Tailored cancer surveillance screening for these individuals 

could lead to early disease detection. We aim to optimally implement and interpret the 

genetics so we can apply genetic technologies in the most effective manner for each 

individual or population4,5. Dominant family pedigrees are well-recognized, but X-linked 

pedigrees are important to consider as well. Many X-linked conditions can have variable 

penetrance also. These conditions are classically known to manifest in males6, but symptoms 

can range widely in females. Females may be asymptomatic carriers, or they may be 

significantly affected by an X-linked condition7. Some females carrying pathogenic variants 

in the ornithine transcarbamylase gene, OTC, can present with episodic hyperammonemia, 

whereas others do not, and diagnosis and management of disease can dramatically affect 

clinical outcomes8,9. Although mitigation of symptoms may be due to X-chromosome 

dosage or due to the influence of other genes, environmental factors--such as dietary intake, 

surgical or metabolic stress--may also play a role.

Recessive conditions can also have variable penetrance. For example, hereditary 

hemochromatosis, due to disease-associated variants in HFE, is an important example. 

Although iron-overload is an issue for adults primarily, recent studies have found that iron 

studies in children with HFE mutations are subtly different, suggesting a lifetime of 

cumulative effects that can influence penetrance. Not all mutation-harboring individuals, 

however, will develop iron-overload or organ system manifestations. Identification of 

individuals at risk for disease by genetics could have future management implications. For 

example, genetic results could influence management of iron supplementation or influence 

iron level monitoring10. Indeed multiple genes seem to have an effect on iron levels, and 

these should be considered as candidates that influence disease penetrance11.
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Genetic Testing in Practice

With more genetic testing being employed in pediatrics, parents are being asked to make 

genetic testing decisions affecting their own children. Providers may respect the decision-

making autonomy for parents, but this does not necessarily take into account the autonomy 

of the child, who may be too young to understand a testing decision12. This potential loss of 

autonomy may be balanced by beneficence–that is, the potential to detect or prevent disease 

early in life. The medical conditions to target in testing may need to be significant, treatable 

or better-managed with early detection. On the other hand, for low-penetrance susceptibility 

loci or common variants, it is unclear how medically actionable these typically are13,14, 

compared to highly-penetrant variants.

Effective genetic testing and counseling rely on our understanding of gene-disease 

relationship. Disease-associated genes and clinical phenotypes are numerous and important 

for differential diagnosis. Perhaps equally important are the different effects of genomic 

variants. Indeed, several groups are systematically annotating known gene-disease pairs and 

individual variant pathogenicity15 as the number of Mendelian disease genes reaches several 

thousand16. Even with previously-annotated disease gene variants, it is hard to predict the 

precise natural history of disease. The diagnosis of a genetic condition for a patient may still 

result in altered, and hopefully improved, health management. Assessment of clinical utility 

of genetic diagnoses may require further patient, provider, and stakeholder engagement. 

Consortia including CSER2 (Clinical Sequencing Effectiveness Research) and others are 

trying to address these important challenges17.

Understanding Gene Variants

Different variants in a disease-associated gene could have disparate effects that perturb 

penetrance. For some genes, variants are well annotated, while for others, variants are 

sparse. Loss of function variants are easier to interpret18, while amino-acid substituting 

variants are harder to interpret given the variable effect on function. New methods and tools 

are being developed to help with gene and variant level interpretation using sequencing data 

from the population19–21. Population data from ExAC, gnomAD, NHLBI TOPMed and 

other population-based sequence data are important resources for this process. For example, 

certain genes demonstrate intolerance to loss of function variants, and population exome 

data, from thousands of individuals sequenced in research studies, led to these findings. 

Recently, missense depleted regions (MDRs) in genes have been identified21, and these are 

highly-conserved coding gene regions that are unlikely to be changed without phenotypic 

consequences. Highly-penetrant genetic conditions corresponding to MDRs are likely to be 

diagnostically useful, and these genes may need to be prioritized in early screening 

applications. As further individuals from diverse populations undergo sequencing and 

detailed phenotyping, we should also develop a better understanding of disease penetrance. 

Further focus on highly-penetrant mutations may also be important, however the effect of a 

single mutation may not be immediately obvious if other mitigating genetic factors are also 

important. For example, in recessive conditions, each potentially pathogenic variant by itself 

may confer an effect on dosage, and therefore the specific combinations of different variants 

would be important to consider in disease severity or penetrance.
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With broader genetic testing available, patients and practitioners are increasingly 

recognizing the potential limitations of genetic tests. Multigene testing may increase the 

chance of pathogenic variant detection, but testing may also result in variants of uncertain 

significance (VUS), which are often interpreted by practitioners in various ways. Attempts 

should be made to resolve VUS by further testing of family, further assessment of 

interpretation criteria22, or phenotyping and followup over time. The interpretation of results 

is likely as important as the sequencing technology itself. Genetic variant interpretation is 

challenging23, and further integrative studies combining clinical and laboratory efforts are 

needed.

Challenges in Genetic Disease Screening

As an example, genetic fatty acid oxidation problems can be flagged by abnormal carnitine/

acylcarnitine levels currently used in newborn screening (or used in metabolic-condition 

testing). SLC22A5 is the primary free carnitine transporter, and pathogenic variants in 

SLC22A5 lead to systemic primary carnitine deficiency. A low free carnitine (C0) level, a 

hallmark of primary carnitine transporter defect, can also result from prematurity, 

medications24,25 or other metabolic disorders, making such biochemical newborn screening 

results less specific for primary carnitine deficiency. SLC22A5 deficiency is a treatable 

genetic condition. Genomic sequencing could play an important role in diagnosing recessive 

fatty acid oxidation conditions, such as this primary transporter defect, however direct 

sequencing of SLC22A5 alone identified only one mutation per individual in õne-third of 

patients in a study26. Genomic sequencing could potentially permit pathway analysis 

detecting multiple variants in a biochemical pathway that could in combination yield 

phenotypic effects27,28. An example is a variant in SLC16A9, another transporter, which 

may affect C0 levels as suggested by a genome-wide study for variants affecting metabolic 

traits29. The known disease-associated gene SLC22A5 does not determine C0 levels alone.

Newborn screen false negative results for carnitine deficiency may result since newborn 

carnitine levels are influenced by maternal carnitine status. Since carnitine levels decrease 

after birth, the newborn screening sample may reflect maternal sufficient carnitine levels and 

could mask an underlying carnitine deficiency in the newborn. On the other hand, mothers 

who are carnitine-deficient may have newborns who test falsely positive for a genetic 

disease on biochemical screening, as the newborn may only appear deficient prior to 

significant dietary intake. Additionally, genomic sequencing could define the newborn 

genotype, providing information to minimize newborns that test falsely positive and falsely 

negative by biochemistry in newborn screening30,31. Sequencing could help identify 

neonates born to mothers with carnitine deficiency, although this is beyond the traditional 

scope of newborn screening. Genomic sequencing could allow for improved diagnosis of 

newborns and help prevent potential consequences of carnitine depletion, such as 

hypoglycemia, cardiomyopathy, and hepatic complications. Although carnitine conditions 

may have reduced penetrance, the genetic results could have clear benefits, if used 

appropriately. Carnitine transporter defects also have some predilection to affect newborns 

of Asian descent32, although it affects others as well. Screening in Asian countries support 

the prevalence data from Asian Americans in California33. Caucasian newborns who are 

screen positive for medium chain acylcarnitines (medium chain acyl-CoA dehydrogenase 
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deficiency, MCAD) often have a common ACADM variant, while other newborns of other 

ancestries may have different variants. We may need to take into account ancestry or other 

potential covariates for a full understanding of penetrance. Interestingly, X-linked 

adrenoleukodystrophy demonstrates a great degree of clinical variability, and current 

newborn screening efforts for this condition will be of tremendous interest.

In many instances gene dosage will affect disease penetrance. Variant effects on dosage and 

the symptomatic dosage threshold will vary from condition to condition. To predict with 

confidence how variants lead to effects, we need to have a deep understanding of genetics 

and associated human disease. De novo dominant conditions are rapidly being recognized 

using exome and genome sequencing. It is becoming clear that there are numerous, highly-

penetrant conditions that cannot be predicted by current carrier screening. Effective 

management for these genetic conditions is also challenging; often only a handful of patients 

are initially known. By connecting patients and the medical community, we can promote a 

better understanding of genetic conditions16 and the factors that underlie variability. We can 

indeed prevent potential medical complications of genetic conditions if we approach these 

challenges together.
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