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Abstract

Pointing is an intuitive and commonplace communication
modality. In human-robot collaborative tasks, human point-
ing has been modeled using a variety of approaches, such as
the forearm vector or the vector from eye to hand. However,
models of the human pointing vector have not been uniformly
or comprehensively evaluated. We performed a user study to
compare five different representations of the pointing vector
and their accuracies in identifying the human’s intended tar-
get in an object selection task. We also compare the vectors’
performances to that of domestic dogs to assess a non-human
baseline known to be successful at following human points.
Additionally, we developed an observation model to transform
the vector into a probability map for object search. We imple-
mented our system on our robot, enabling it to locate and fetch
the user’s desired objects efficiently and accurately.

Keywords: Robotics; Comparative Studies; Gesture Analysis;
Human-Animal Interaction

Introduction
People must communicate locations for various tasks and of-
ten use pointing gestures. When pointing, a person uses their
head, body, hand, and arm to refer to an object or location
in the environment. Using a deictic gesture such as point-
ing is intuitive for a person and directly communicates spatial
information in the form of a 3D vector through space. Exist-
ing literature has shown that people can interpret points from
others from infancy (e.g., Butterworth (1998)) and are highly
accurate at interpreting the specific target of human point-
ing gestures (Bertenthal et al., 2014; Wnuczko & Kennedy,
2011). Point following is not limited to human beings; other
species, in particular dogs, are able to follow human point-
ing gestures to locate hidden objects (Agnetta et al., 2000;
Hare et al., 2002; Miklösi et al., 1998; Soproni et al., 2001)
with little or no training, and from a very young age (e.g.,
Bray et al. (2021); Riedel et al. (2008)). Dogs also have
a unique social relationship with human beings, partnering
with us as companions and in a variety of service roles. Their
ability to respond to our social cues makes them particularly
promising for the exploration of human gesture comprehen-
sion by a non-human agent, and an interesting model for
human-robot interactions (Krueger et al., 2021; Byrne et al.,
2020). Further, dog’s close relationship with humans means
many robots are embodied in dog-like structures, for exam-
ple Sony’s AIBO or Boston Dynamic’s Spot (Kerepesi et al.,
2006; Faragó et al., 2014).

Figure 1: Our system enables a robot to locate objects using
information from a person’s unscripted gestures. We compare
our robot’s performance to that of the domestic dog.

Existing work on robotic following of human pointing ges-
tures has used a variety of methods to obtain the 3D vector
through space corresponding to the point. Previous works
(Constantin et al., 2022; Ekrekli et al., 2023; Obo et al.,
2018; Whitney et al., 2017) have demonstrated effective
human-robot collaboration on non-search tasks by incorpo-
rating pointing gestures and speech to relay task-relevant in-
formation to a robot. Such existing approaches rely solely on
social feedback and gestures to help identify the target object
the human is pointing to. However, they fail to consider that
objects can be hidden from view from the robot or the hu-
man’s perspective, or be of different distances away from the
person, so that the target of the point is ambiguous depending
on how the pointing vector is identified.

Prior work in both the robotics and cognitive science com-
munities has used a range of vectors, such as the vector from
the person’s eyes to their hand (Abidi et al., 2013; Azari et
al., 2019; Taylor & McCloskey, 1988; Whitney et al., 2017),
the forearm vector (Herbort & Kunde, 2016; Hu et al., 2022;
Tölgyessy et al., 2017; Whitney et al., 2016), as well as other
non-pointing vectors such as eye gaze (Nickel & Stiefelha-
gen, 2003; Mayer et al., 2018; Perez-Osorio et al., 2015).
Other work has looked to integrate these vectors to help the
point viewer localize the target, or integrate linguistic infor-
mation (Kranstedt et al., 2006) However, there has been no
systematic study that measures which approach most accu-
rately enables a robot to resolve pointing gestures to spatial
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object locations or best corresponds to what vector other en-
tities, such as dogs, use to follow points.

Our work addresses this gap by presenting a mathemati-
cal framework for incorporating human pointing gestures into
robotic object search. We present five algorithms for resolv-
ing a pointing gesture to a 3D vector in space and then trans-
form that vector into a probability map in the physical world
using a generative observation model. Using this probability
map, the robot can incorporate information from the pointing
vector to efficiently find objects in the environment in col-
laboration with the person. To our knowledge, no previous
work has used pointing gestures to give a robot information
for object search.

We evaluate five different approaches for converting infor-
mation from the human’s body pose into a 3D vector in space,
including the vector from eye-to-wrist, nose-to-wrist, elbow-
to-wrist, shoulder-to-wrist, and the eye gaze vector. To our
knowledge, we are the first work to evaluate these different
approaches systematically; other works have used these ap-
proaches individually but have not directly compared them
against each other to see what is most accurate. We com-
pare our approach to the non-human baseline of the domestic
dog, which is well-known to be able to follow human point-
ing gestures (Agnetta et al., 2000), and to engage in collabo-
rative object search and other cooperative tasks with humans
(Hare et al., 2002). Our results demonstrate quantitatively
that the vector from the gaze only performs the worst, while
our other four candidate vectors display comparable levels of
performance at identifying the object the person is pointing
at. Finally we demonstrate an end-to-end object search sys-
tem running on a real robot, showing that the robot can incor-
porate information from the person’s gesture to find objects
effectively.

Related Work
Different humans may have unique ways of expressing point-
ing gestures, so it is imperative to understand the motor and
perceptual processes used to generate pointing gestures. Past
work with infants has found that from an early age, they un-
derstand that points are intended to direct another person’s
attention toward an object or location in the environment
and that points are intentional so that people will not point
at things they do not know about and cannot see (Sodian
& Thoermer, 2004; Liebal et al., 2009; Woodward & Gua-
jardo, 2002). But how are points produced and interpreted
by adults? Point production and following are ubiquitous in
daily life. Under normal pointing conditions (meaning full
visual access to the target), pointers tend to use an eye-to-
hand vector. When blindfolded, however, pointers gesture
with their arm alone (Wnuczko & Kennedy, 2011). There are
also differences in how far the item being indicated is from
the two vectors (eye to the hand vs. down the arm), with
arm-only points consistently overshooting the target. This er-
ror in production is also mirrored by errors in comprehen-
sion. While humans are generally quite accurate at produc-

ing points for others, past work has revealed minor but sys-
temic errors in how the viewer perceives the targets of points
(Herbort & Kunde, 2016; Herbort et al., 2021). Much of this
has to do with errors in perspective taking, with researchers
suggesting that the pointer fails to account for the different
viewing angles of the viewer. While there has been important
work on how people understand and produce points, there has
yet to be a systemic investigation of naturalistic point produc-
tion. Further, we suspect that humans point differently when
they point for other humans versus non-human entities such
as dogs or robots, but this has not been explored.

Dynamic gesture recognition commonly employs non-
vision-based and vision-based approaches. While the for-
mer often requires external devices, the latter, within the
realm of Computer Vision, has seen considerable efforts
aimed at quantifying and comprehending human pointing
gestures, emphasizing automated end-to-end gesture detec-
tion. (Jaiswal et al., 2018; Köpüklü et al., 2019; Yu et al.,
2022; Nakamura et al., 2023). Jaiswal et al. (2018) trained
a deep convolutional neural network to estimate the direc-
tion of finger pointing gestures. The estimation only used the
position of the person’s elbow and wrist, disregarding many
other relevant key points on the human body. Nakamura et al.
(2023) introduced a large-scale dataset and model for point-
ing recognition and direction estimation. However, their data
always include the person’s entire body, which a robot might
not have access to from its point of view. An unsupervised
learning approach (Jirak et al., 2021) has been constructed
to model the variation of pointing gestures without scaling
computationally with the number of gestures and objects be-
ing pointed at. Such research also distinguishes between ar-
bitrary hand movements and meaningful gestures. Our work
employs Google’s MediaPipe Pose Landmarker (Bazarevsky
et al., 2020), a CNN model for human pose estimation, to de-
tect key points on the human user’s body and explicitly com-
pute 3D pointing vectors.

A number of human-computer and human-robot interac-
tion (HRI) papers discuss how to interpret a pointing ges-
ture. Human-computer interaction works (Mayer et al., 2018,
2015) usually require that people wear a headset and use a
clicker to get visual feedback, which can be costly and diffi-
cult to use. We prefer the interaction to be as natural and as
comfortable as possible for human users.

Other approaches study how to enable a robot to generate
a pointing gesture. Fang et al. (2015) described incorporat-
ing pointing gestures with language where the robot points
to objects in order to specify them to a person. Williams et
al. (2013) studied how humans interpret robot pointing be-
havior, finding that the robot’s head and neck were important
in understanding pointing references. They studied three hy-
potheses: the arm vector, the line of sight from the robot’s
head to the end of the gripper, and the direction of the robot’s
head. They found that people interpret the pointing behav-
ior of robots differently from that of people, using the robot’s
head gaze more than people do.
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There have been many previous works on robot object
search. Model-free approaches (Faust et al., 2018; Niroui,
Zhang, Kashino, & Nejat, 2019; Chaplot, Gandhi, Gupta, &
Salakhutdinov, 2020; Gadre, Wortsman, Ilharco, Schmidt, &
Song, 2022) leverage deep neural networks to learn a pol-
icy end-to-end, and thus are data hungry and have limited
generalization capabilities. Model-based works frequently
employ the Partially Observable Markov Decision Processes
(POMDPs) (Kaelbling, Littman, & Cassandra, 1998) frame-
work to define and solve the problem of object search.
Wandzel et al. (2019) introduce Object-Oriented POMDP
(OO-POMDP) to factorize the robot’s belief into independent
object distributions, enabling the size of the belief to scale
linearly in the number of objects, and employ it for efficient
multi-object search. Zheng et al. (2023) extend OO-POMDP
for efficient multi-object search in 3D space. We build off
of their framework, termed GenMOS, for our robot object
search demonstrations.

Technical Approach
Our approach enables a Boston Dynamics Spot robot to inter-
pret a person’s pointing gesture to find objects in the environ-
ment. To perform this task, we need to estimate the person’s
body pose and then use information from the pose to inter-
pret pointing gestures. We explore different approaches to
converting the body pose into a vector in the world. Finally,
we define an observation model to convert this vector to a
Gaussian expectation to enable the robot to use information
from the pointing gesture to search for objects.

Human Body Pose Estimation
We record the person’s body pose with an Intel RealSense
camera. We used a camera on a tripod pointed at the scene for
our experiments. For the on-board experiments, we used an
RGB-D camera that is part of the Spot robot’s on-board sens-
ing. Given a camera image, we need to estimate the human
body pose. We use Google’s MediaPipe Pose Landmarker
(Bazarevsky et al., 2020) to process input RGB images and
detect key points on the human body. We then employ the
depth information to transform the relevant key points’ coor-
dinates from 2D into 3D space. Example input RGB-D im-
ages and MediaPipe’s output are shown in Figure 3. We then
ray-casted vectors from various key points with the user’s
wrist as the endpoint and calculated the vectors’ intersection
points with the environment as the pointing targets. Figure 2
presents visualizations of the five pointing vectors.

We assume the person is already in the robot’s field of view.
We also need to make sure the camera is calibrated relative to
the position of the robot in order to situate the pointing vector
correctly in the robot’s frame of reference. This requires a
camera calibration step for an off-board camera, which we
perform using April tags (Wang & Olson, 2016).

Converting Human Body Pose to Pointing Vectors
Given the body pose of a person, we need to extract a vec-
tor according to the pointing gesture. We explore five dif-

Figure 2: Five pointing vectors on a sample image: eye-to-
wrist, nose-to-wrist, shoulder-to-wrist, elbow-to-wrist, and
eye gaze. The left wrist is used as the frame of reference.

ferent algorithms for computing a vector from the person’s
body pose. Given this vector, we re-cast it into the environ-
ment and calculate the vectors’ intersection points with the
environment as the pointing targets. We explore two different
high-level approaches: the vector from the head to the hand
and the vector from the arm. We use the person’s wrist posi-
tion as a proxy for their hand, as fingers are much smaller and
thus more difficult to detect. We also formed a correspond-
ing gaze vector that represents the general direction the user
is looking at. To distinguish meaningful gestures from arbi-
trary noise, such as from crossed arms, we included an angle
threshold so that vectors could be filtered out. Visualizations
of the five pointing vectors are shown in Figure 2.

Our work uses five pointing vectors: First, we use the Eye-
to-wrist ray-cast (EWRC), defined by a vector connecting
the eye and wrist of the pointing arm. Next, we use the Nose-
to-wrist ray-cast (NWRC), which is defined by a vector con-
necting the nose and wrist of the pointing arm. Third, we use
the Arm ray-cast (ARC), a ray-cast defined by a vector con-
necting the shoulder and wrist of the pointing arm. Fourth,
we use the Forearm ray-cast (FRC), a ray-cast defined by a
vector connecting the elbow and wrist of the pointing arm. Fi-
nally, we use the Gaze ray-cast (GRC), a ray-cast that estab-
lishes a corresponding gaze vector representing the general
direction the user is looking at. To find the GRC, we com-
puted the normal vector to the plane passing through their
left eye, right eye, and center of the mouth.
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Figure 3: An example RBG image (Left), depth image (Middle) and MediaPipe’s keypoint detection output (Right).

Observation Model for Pointing Vectors
A second technical contribution of this paper is a formal ob-
servation model for object search defined in terms of a point-
ing vector established from the person’s body in Section . Fol-
lowing (Zheng et al., 2023), we formalize the object search
problem as an OO-POMDP. The robot state consists of its
pose. Actions consist of moving through the environment,
looking with its sensor at a particular location, and marking
the object as found. After correctly marking the object as
found, the robot receives a reward.

We define an observation model for pointing for GenMOS
as object search as:

Pr(o|s,a). (1)

In previous work, the observation consisted of sensor in-
put from the robot’s sensor, as well as natural language input
from the person. However, to our knowledge, no previous
work has used pointing gestures to give a robot information
for object search. Our work assumes the vector can be pa-
rameterized by two angles, corresponding to the “pitch” and
“yaw” of the pointing vector, which we term α and β, defined
in Section . We assume the vector is parameterized by the
person’s location, which is known, height, which is directly
observed, and two angles, α and β, giving us:

Pr(o|s,a) = Pr(α,β|s,a) (2)

We project this distribution forward to the ground as a vec-
tor as shown in Figure 4. The noise of this vector will result in
a Gaussian shaped like an ellipse because moving the “pitch”
of the arm will move the target farther away, creating more
uncertainty about where the object is; whereas moving the
“yaw” will keep the same distance. Thus, uniform variance
in both of these two angles will result in a different distribu-
tion on where the point intersects the plane.

Pr(α,β|X) = N (µ,Σ) (3)

In our evaluation, we collect a dataset of people pointing
out objects. For each item in the dataset, n, we have informa-
tion about the true pose of the object, X , as well as the point-
ing ray α and β, observed from depth measurements. Given
this information, we can compute the perplexity of the model
over the dataset N as follows:

Figure 4: A diagram showing our observation model as a
Gaussian projected onto the ground plane. For simplicity, we
show this vector as the arm vector (method ARC); in reality,
our evaluation assesses several different vectors.

Perplexity(N) = exp

{
− 1
|N| ∑

n∈N
logPr(α,β|X)

}
(4)

In the special case where we know the object is in one of a
predefined set of locations ti and the distance from the point-
ing ray intersection location to each target dn, we can com-
pute the perplexity as a multinomial over the true location as
follows:

L(ti|d1, ...,dn) ∝
d−1

i

∑
n
j=1 d−1

j
(5)

Perplexity(N) = exp

{
− 1
|N| ∑

n∈N
logL(ti|d1, ...,dn)

}
(6)

Equation 6 is how we compute the perplexity scores in our
experiments in Section .

Evaluation
The aim of our evaluation is to measure the effectiveness of
different vectors for enabling a robot to accurately and effi-
ciently resolve human pointing gestures to find objects. We
collect a new dataset of humans pointing to a non-human part-
ner, the domestic dog. We hypothesize that human-dog inter-
action is similar to human-robot interaction. We contrast this

170



with humans, pointing for another human to see if there are
differences in behavior. The robot we use for interpreting the
pointing gesture is a quadruped robot, the Boston Dynamics
Spot robot. We use this dataset to evaluate the performance of
our five different approaches for resolving pointing gestures
based on human body pose and also compare our algorithm’s
performance to that of the dogs.

Finally, we perform an end-to-end demonstration on the
real robot, demonstrating our algorithm’s use to enable a
robot to resolve pointing gestures.

Experimental Setup

To assess the natural interaction between humans and dogs
through deictic gestures, we brought dog-guardian pairs into
the lab to observe both how guardians naturally point for their
dogs and how their dogs behave.

Participants Six human-dog pairs participated in the point-
ing tasks. Dog owners were all adults (over 18 years of age)
who acted as the primary caretaker for their dog. The dogs
were 5.2 years old on average, and three of the six dogs were
female.

Materials The experimental setup, illustrated in Figure 5,
comprises four cups placed equidistant in front of the dog. To
minimize external device interference in the dogs’ decision-
making process, we utilized the Intel RealSense D435 camera
to capture depth and RGB image. Dog treats were used to
motivate dogs to search.

Procedure Before pointing, dog-human pairs completed
two warm-up activities. First, in the initial familiarization
phase, dogs observed their guardians place a treat under a
cup and then were released to touch the cup, constituting a
choice. This familiarized dogs first with touching a target to
reveal the hidden treat and was repeated four times. Next,
during the hidden familiarization phase, dogs got to practice
leaving the room and returning to locate a treat under the one
hidden target. For our critical test trials, as in hidden famil-
iarization at the start of each trial, the dog was led out of the
room so the guardian could place a concealed treat beneath
one of the targets as instructed by an experimenter (4 targets
used, order semi-randomized). The dog was returned to the
room, and guardians were instructed to point their dogs to the
hidden treat. Dogs were then allowed to search exhaustively.
This procedure was repeated for 12 trials and 72 recorded tri-
als across dog-human pairs.

After pointing to their dogs, 3 of the 6 guardians were
recorded pointing the human experimenter to the cups in a
semi-randomized order. At the start of each human pointing
trial, dog guardians were asked to point to one of the four
cups. The experimenter then waited approximately 2 seconds
before following the point visually with their eyes and then
instructing the dog guardian to point to the next cup. The
room setup was the same as in Figure 3, and this was repeated
for 12 trials, for a total of 36 recorded trials. We evaluated
the 5 vectors’ performance on this data and report the results

along with the 95% confidence interval in Table 2.

Figure 5: Annotated image of the room setup

Evaluation Metrics
We manually annotate the frame of the image used to evalu-
ate human pointing results. We use three metrics to evaluate
average object selection performance. First, we used the Eu-
clidean distance offset to the target object, where lower val-
ues are better. Second, we evaluated the weighted accuracy,
where higher values indicate better performance. Where A is
1 if the correct target was selected and 0 otherwise, n is the
number of selections made until the target is selected, and w
is the probability of a target being selected—calculated using
the normalized inverse Euclidean distance.

acc =
∑

n
i=1 wiAi

∑
n
i=1 wi

Finally, we evaluate perplexity (PP), measuring a model’s un-
certainty where a lower value is better. following equation 6,
the target can be 1 of 4 cups, and we use the Euclidean dis-
tance from the pointing ray intersection to each cup to com-
pute the perplexity score.

Human-Dog Pointing Results
Even under naturalistic pointing conditions, dogs sometimes
had difficulty following the human pointing gesture. Dogs
were allowed to search exhaustively, and on their first choice
dogs chose the pointed location on 37% of trials (chance be-
ing 1/4 or 25%, and on 42% of trials dogs chose correct loca-
tion as their second choice. This is fairly consistent with past
work with dogs when four search locations are used (Lakatos
et al., 2012). The two locations closer to the human pointer
tend to be chosen more frequently than those on the periphery.
In our sample, consistent with past work, dogs were highly
accurate at choosing the correct side of the indicated cup, go-
ing to the correct side (to the pointer’s Left or Right) on the
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first trial 76% of the time. Most errors dogs made involved
choosing the cup closer to the guardian, rather than the one
further from the guardian on the same side. The proximity
of the cup to the guardian may make it more attractive, as the
proximity of a person is a cue that dogs can use to find hidden
food (Hare & Tomasello, 1999). It is also possible that dogs
were seeking attention from their guardians and were thus at-
tracted to the closer locations or that their past reward history
with their guardians (meaning they have received lots of re-
wards directly from their guardians) causes dogs to prefer to
search nearer to their guardians. We leave a full evaluation
of these results to a future paper, as the primary focus of this
paper is the performance of our autonomous pointing algo-
rithms.

Ray-cast Performance
Table 1 shows the performance of our five different vectors
for resolving pointing gestures along with 95% confidence in-
tervals. Our primary result is that most methods perform sim-
ilarly, with the lowest-performing method using gaze alone,
which performs significantly worse than other baselines. It is
interesting to see that the eye-to-wrist vector has higher ac-
curacy, but the shoulder-to-wrist has the lowest PP. Given the
confidence intervals, there may not be much of a significant
difference between which vector to use. The perplexity dif-
fers from accuracy as it is more resistant to noise in the data: a
small change in the distance from the vector’s intersection lo-
cation to the cups can result in a large change in the accuracy
but not the perplexity score.

Table 1: Performance from humans pointing for their dogs

Distance(m)↓ Accuracy(%)↑ PP↓
EWRC 0.516 (0.071) 96.9 (3.4) 3.213 (0.135)
NWRC 0.514 (0.065) 95.7 (3.8) 3.128 (0.112)
ARC 0.565 (0.065) 94.0 (4.2) 3.111 (0.135)
FRC 0.868 (0.272) 92.5 (4.2) 3.372 (0.131)
GRC 2.711 (0.158) 51.8 (8.4) 3.581 (0.120)

Human-Human Pointing Experiment
There appears to be consistent performance between nose,
eye, and shoulder-to-wrist vectors. The accuracy does not
differ much in human-to-dog versus human-to-human, but
PP is better in the human-to-human case (PP dog baseline
= 4). While conclusions should be limited at this time given
the reduced sample size, it is interesting that, as observed in
the human-dog pointing data, the gaze-only vector is a much
worse fit, while all other vectors perform exceptionally well.

Spot Demonstration
We demonstrate the effectiveness of resolving pointing vec-
tors on the Spot robot. First we assess the accuracy of point-
ing by directly using the vector to resolve the object reference

Table 2: Performance on pointing for another person

Distance(m)↓ Accuracy(%)↑ PP↓
EWRC 0.607 (0.117) 100.0 (0) 3.228 (0.162)
NWRC 0.591 (0.108) 100.0 (0) 3.199 (0.177)
ARC 0.593 (0.123) 100.0 (0) 3.066 (0.213)
FRC 0.742 (0.170) 98.6 (2.8) 3.265 (0.187)
GRC 2.947 (0.305) 57.0 (10.0) 3.986 (0.002)

Figure 6: Our system enables the robot to correctly fetch
the object the human user is pointing at, such as the penguin
plush (left) and green cat (right).

to the object closest to the pointing vector intersection. Then
we used the Spot API to direct the robot to pick up that ob-
ject. The results are demonstrated in Figure 6. Spot was able
to follow the human pointer to correctly approach and select
the indicated object from a set of four candidate objects.

Conclusion

In this paper we presented an evaluation of different pointing
vectors to resolve human pointing gestures to locations in the
environment. We present a probabilistic observation model
for how this vector can be used for object search, the primary
reason humans point for other humans. We evaluated our sys-
tem on a new dataset of humans pointing for their domestic
dog, as well as humans pointing for other humans, and com-
pared the performance of our autonomous algorithms to that
of dogs.

Future work can consider using timecourse data and point-
ing information from videos rather than still images. Anec-
dotally, many pointers first aligned their gaze with the target,
then moved their gaze back to the point viewer when initiat-
ing arm movement. This could help to explain why, at the
moment of pointing, the gaze-only vector had such poor ac-
curacy. Further, this approach can be used on more complex
applied object search tasks, such as those requiring coopera-
tion between human and dog or human and robot.
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